1
|
Maitre T, Godmer A, Mory C, Chauffour A, Mai TC, El Helali N, Aubry A, Veziris N. Levofloxacin activity at increasing doses in a murine model of fluoroquinolone-susceptible and -resistant tuberculosis. Antimicrob Agents Chemother 2024; 68:e0058324. [PMID: 39412267 PMCID: PMC11539234 DOI: 10.1128/aac.00583-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/19/2024] [Indexed: 11/07/2024] Open
Abstract
High-dose levofloxacin was explored in a clinical trial against multidrug-resistant tuberculosis and failed to show increased efficacy. In this study, we used a murine model to explore the efficacy of a dose increase in levofloxacin monotherapy beyond the maximum dose evaluated in humans. A total of 120 4-week-old female BALB/c mice were intravenously infected with 106 CFU of Mycobacterium tuberculosis H37Rv wild-type (WT) or isogenic H37Rv mutants harboring GyrA A90V or D94G substitutions; the MICs were 0.25, 4, and 6 µg/mL, respectively. Levofloxacin 250 and 500 mg/kg were given every 12 h (q12h) orally for 4 weeks. Pharmacokinetic parameters were determined after five doses. These two regimens decreased lung bacillary load in mice infected with H37Rv WT but not in mice infected with the A90V and D94G mutants. Levofloxacin 250 mg/kg q12h in mice generated pharmacokinetic parameters equivalent to 1,000 mg/d in humans, whereas 500 mg/kg q12h generated a twofold greater exposure than the highest equivalent dose tested in humans (1,500 mg/d). In our dose-response model, the effective concentration at 50% (EC50) produced an AUC/MIC (AUC0-24h/MIC) ratio of 167.9 ± 27.5, and at EC80 it was 281.2 ± 97.3. Based on this model, high-dose levofloxacin regimens above 1,000 mg/d are not expected to cause a significant increase in bactericidal activity. This study suggests no benefit of high-dose levofloxacin above 1,000 mg/d in the treatment of fluoroquinolone-susceptible or -resistant tuberculosis.
Collapse
Affiliation(s)
- Thomas Maitre
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, Paris, France
- Department of Pneumology and Reference Centre for Rare Lung Diseases, Assistance Publique Hôpitaux de Paris, Tenon Hospital, Paris, France
| | - Alexandre Godmer
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, Paris, France
- Fédération de Bactériologie, Centre National de Référence des Mycobactéries, APHP, Sorbonne Université, Paris, France
| | - Céline Mory
- Unité de Microbiologie Clinique et Dosage des Anti-infectieux, Groupe Hospitalier Paris-Saint-Joseph, Paris, France
| | - Aurélie Chauffour
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, Paris, France
| | - Thi Cuc Mai
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, Paris, France
| | - Najoua El Helali
- Unité de Microbiologie Clinique et Dosage des Anti-infectieux, Groupe Hospitalier Paris-Saint-Joseph, Paris, France
| | - Alexandra Aubry
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, Paris, France
- Fédération de Bactériologie, Centre National de Référence des Mycobactéries, APHP, Sorbonne Université, Paris, France
| | - Nicolas Veziris
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, Paris, France
- Fédération de Bactériologie, Centre National de Référence des Mycobactéries, APHP, Sorbonne Université, Paris, France
| |
Collapse
|
2
|
Bauman AA, Sarathy JP, Kaya F, Massoudi LM, Scherman MS, Hastings C, Liu J, Xie M, Brooks EJ, Ramey ME, Jones IL, Benedict ND, Maclaughlin MR, Miller-Dawson JA, Waidyarachchi SL, Butler MM, Bowlin TL, Zimmerman MD, Lenaerts AJ, Meibohm B, Gonzalez-Juarrero M, Lyons MA, Dartois V, Lee RE, Robertson GT. Spectinamide MBX-4888A exhibits favorable lesion and tissue distribution and promotes treatment shortening in advanced murine models of tuberculosis. Antimicrob Agents Chemother 2024; 68:e0071624. [PMID: 39345140 PMCID: PMC11539231 DOI: 10.1128/aac.00716-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
The spectinamides are novel, narrow-spectrum semisynthetic analogs of spectinomycin, modified to avoid intrinsic efflux by Mycobacterium tuberculosis. Spectinamides, including lead MBX-4888A (Lee-1810), exhibit promising therapeutic profiles in mice, as single drugs and as partner agents with other anti-tuberculosis antibiotics including rifampin and/or pyrazinamide. Here, we show that MBX-4888A, given by injection with the front-line standard of care regimen, is treatment shortening in multiple murine tuberculosis infection models. The positive treatment responses to MBX-4888A combination therapy in multiple mouse models, including mice exhibiting advanced pulmonary disease, can be attributed to favorable distribution in tissues and lesions, retention in caseum, along with favorable effects with rifampin and pyrazinamide under conditions achieved in necrotic lesions. This study also provides an additional data point regarding the safety and tolerability of spectinamide MBX-4888A in long-term murine efficacy studies.
Collapse
Affiliation(s)
- Allison A. Bauman
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Jansy P. Sarathy
- Hackensack Meridian School of Medicine, Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Firat Kaya
- Hackensack Meridian School of Medicine, Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Lisa M. Massoudi
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Michael S. Scherman
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Courtney Hastings
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Jiuyu Liu
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Min Xie
- Hackensack Meridian School of Medicine, Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Elizabeth J. Brooks
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Michelle E. Ramey
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Isabelle L. Jones
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Noalani D. Benedict
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Madelyn R. Maclaughlin
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Jake A. Miller-Dawson
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | | | | | | | - Matthew D. Zimmerman
- Hackensack Meridian School of Medicine, Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Anne J. Lenaerts
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | | | - Michael A. Lyons
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Veronique Dartois
- Hackensack Meridian School of Medicine, Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Richard E. Lee
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Gregory T. Robertson
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Zohaib Ali M, Dutt TS, MacNeill A, Walz A, Pearce C, Lam H, Philp JS, Patterson J, Henao-Tamayo M, Lee R, Liu J, Robertson GT, Hickey AJ, Meibohm B, Gonzalez Juarrero M. A modified BPaL regimen for tuberculosis treatment replaces linezolid with inhaled spectinamides. eLife 2024; 13:RP96190. [PMID: 39378165 PMCID: PMC11460978 DOI: 10.7554/elife.96190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
The Nix-TB clinical trial evaluated a new 6 month regimen containing three oral drugs; bedaquiline (B), pretomanid (Pa), and linezolid (L) (BPaL regimen) for the treatment of tuberculosis (TB). This regimen achieved remarkable results as almost 90% of the multidrug-resistant or extensively drug-resistant TB participants were cured but many patients also developed severe adverse events (AEs). The AEs were associated with the long-term administration of the protein synthesis inhibitor linezolid. Spectinamide 1599 is also a protein synthesis inhibitor of Mycobacterium tuberculosis with an excellent safety profile, but it lacks oral bioavailability. Here, we propose to replace L in the BPaL regimen with spectinamide (S) administered via inhalation and we demonstrate that inhaled spectinamide 1599, combined with BPa --BPaS regimen--has similar efficacy to that of the BPaL regimen while simultaneously avoiding the L-associated AEs. The BPaL and BPaS regimens were compared in the BALB/c and C3HeB/FeJ murine chronic TB efficacy models. After 4-weeks of treatment, both regimens promoted equivalent bactericidal effects in both TB murine models. However, treatment with BPaL resulted in significant weight loss and the complete blood count suggested the development of anemia. These effects were not similarly observed in mice treated with BPaS. BPaL and BPa, but not the BPaS treatment, also decreased myeloid to erythroid ratio suggesting the S in the BPaS regimen was able to recover this effect. Moreover, the BPaL also increased concentration of proinflammatory cytokines in bone marrow compared to mice receiving BPaS regimen. These combined data suggest that inhaled spectinamide 1599 combined with BPa is an effective TB regimen without L-associated AEs.
Collapse
Affiliation(s)
- Malik Zohaib Ali
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
- Program in Cell & Molecular Biology, Colorado State UniversityFort CollinsUnited States
| | - Taru S Dutt
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Amy MacNeill
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Amanda Walz
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Camron Pearce
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
- Program in Cell & Molecular Biology, Colorado State UniversityFort CollinsUnited States
| | - Ha Lam
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Jamie S Philp
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Johnathan Patterson
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Marcela Henao-Tamayo
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Richard Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research HospitalMemphisUnited States
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research HospitalMemphisUnited States
| | - Gregory T Robertson
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Anthony J Hickey
- Technology Advancement and Commercialization, RTI InternationalResearch Triangle ParkUnited States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, University of Tennessee Health Science CenterMemphisUnited States
| | - Mercedes Gonzalez Juarrero
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| |
Collapse
|
4
|
Nakamura H, Hikichi H, Seto S, Hijikata M, Keicho N. Transcriptional regulators SP110 and SP140 modulate inflammatory response genes in Mycobacterium tuberculosis-infected human macrophages. Microbiol Spectr 2024; 12:e0010124. [PMID: 39162523 PMCID: PMC11448263 DOI: 10.1128/spectrum.00101-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Understanding the functions of human transcriptional regulatory genes SP110 and SP140 during Mycobacterium tuberculosis infection is crucial; in a mouse model, homologous genes Sp110 and Sp140 have been shown to negatively regulate inflammatory response genes, including the type I interferon (IFN) response. The reduction of these genes in mice is associated with susceptibility to M. tuberculosis infection and the development of necrotizing granulomatous lesions. To investigate the involvement of SP110 and SP140 in human inflammatory response, we analyzed their regulatory manner in THP-1 macrophages infected with M. tuberculosis. Genome-wide transcriptional profiling revealed that the depletion of SP110 and/or SP140 impaired the induction of gene expression associated with inflammatory responses, including IFN response genes, although it had little effect on the intracellular proliferation of M. tuberculosis. By contrast, genes related to phosphorylation were upregulated in infected macrophages with SP110 and/or SP140 knockdown, but downregulated in infected control macrophages without their knockdown. Reverse transcription-quantitative PCR and ELISA further confirmed the impairment of the induction of IFN response genes by the depletion of SP110 and/or SP140 in M. tuberculosis-infected macrophages. These findings suggest that human SP110 and SP140 act as positive regulators for genes associated with inflammatory responses in M. tuberculosis-infected macrophages. IMPORTANCE Tuberculosis (TB) is one of the most serious infectious diseases, with high morbidity and mortality worldwide. C3HeB/FeJ mice are widely utilized for evaluating anti-TB drugs because their drug sensitivity and pathology during M. tuberculosis infection resemble those of human TB, including the development of necrotizing granulomas. Downregulation of the transcriptional regulatory genes Sp110 and Sp140 in C3HeB/FeJ mice has been demonstrated to activate gene expression associated with inflammatory responses during M. tuberculosis infection, resulting in susceptibility to the infection. Here, we examined the regulatory manner of SP110 and SP140 using transcriptomic analysis in M. tuberculosis-infected human macrophages. Depletion of SP110 and/or SP140 in M. tuberculosis-infected THP-1 macrophages impaired the induction of gene expression associated with inflammatory responses, including interferon response genes, compared with that in control macrophages. These results suggest that human SP110 and SP140 act as positive regulators for genes associated with inflammatory responses upon M. tuberculosis infection.
Collapse
Affiliation(s)
- Hajime Nakamura
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Haruka Hikichi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shintaro Seto
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Naoto Keicho
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| |
Collapse
|
5
|
Sarathy JP. Molecular and microbiological methods for the identification of nonreplicating Mycobacterium tuberculosis. PLoS Pathog 2024; 20:e1012595. [PMID: 39383167 PMCID: PMC11463790 DOI: 10.1371/journal.ppat.1012595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Chronic tuberculosis (TB) disease, which requires months-long chemotherapy with multiple antibiotics, is defined by diverse pathological manifestations and bacterial phenotypes. Targeting drug-tolerant bacteria in the host is critical to achieving a faster and durable cure for TB. In order to facilitate this field of research, we need to consider the physiology of persistent MTB during infection, which is often associated with the nonreplicating (NR) state. However, the traditional approach to quantifying bacterial burden through colony enumeration alone only informs on the abundance of live bacilli at the time of sampling, and provides an incomplete picture of the replicative state of the pathogen and the extent to which bacterial replication is balanced by ongoing cell death. Modern approaches to profiling bacterial replication status provide a better understanding of inter- and intra-population dynamics under different culture conditions and in distinct host microenvironments. While some methods use molecular markers of DNA replication and cell division, other approaches take advantage of advances in the field of microfluidics and live-cell microscopy. Considerable effort has been made over the past few decades to develop preclinical in vivo models of TB infection and some are recognized for more closely recapitulating clinical disease pathology than others. Unique lesion compartments presenting different environmental conditions produce significant heterogeneity between Mycobacterium tuberculosis populations within the host. While cellular lesion compartments appear to be more permissive of ongoing bacterial replication, caseous foci are associated with the maintenance of M. tuberculosis in a state of static equilibrium. The accurate identification of nonreplicators and where they hide within the host have significant implications for the way novel chemotherapeutic agents and regimens are designed for persistent infections.
Collapse
Affiliation(s)
- Jansy Passiflora Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, United States of America
- Hackensack Meridian School of Medicine, Department of Medical Sciences, Nutley, New Jersey, United States of America
| |
Collapse
|
6
|
Marwitz F, Hädrich G, Redinger N, Besecke KFW, Li F, Aboutara N, Thomsen S, Cohrs M, Neumann PR, Lucas H, Kollan J, Hozsa C, Gieseler RK, Schwudke D, Furch M, Schaible U, Dailey LA. Intranasal Administration of Bedaquiline-Loaded Fucosylated Liposomes Provides Anti-Tubercular Activity while Reducing the Potential for Systemic Side Effects. ACS Infect Dis 2024; 10:3222-3232. [PMID: 39136125 PMCID: PMC11406518 DOI: 10.1021/acsinfecdis.4c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Liposomal formulations of antibiotics for inhalation offer the potential for the delivery of high drug doses, controlled drug release kinetics in the lung, and an excellent safety profile. In this study, we evaluated the in vivo performance of a liposomal formulation for the poorly soluble, antituberculosis agent, bedaquiline. Bedaquiline was encapsulated within monodisperse liposomes of ∼70 nm at a relatively high drug concentration (∼3.6 mg/mL). Formulations with or without fucose residues, which bind to C-type lectin receptors and mediate a preferential binding to macrophage mannose receptor, were prepared, and efficacy was assessed in an in vivo C3HeB/FeJ mouse model of tuberculosis infection (H37Rv strain). Seven intranasal instillations of 5 mg/kg bedaquiline formulations administered every second day resulted in a significant reduction in lung burden (∼0.4-0.6 Δlog10 CFU), although no differences between fucosylated and nonfucosylated formulations were observed. A pharmacokinetic study in healthy, noninfected Balb/c mice demonstrated that intranasal administration of a single dose of 2.5 mg/kg bedaquiline liposomal formulation (fucosylated) improved the lung bioavailability 6-fold compared to intravenous administration of the same formulation at the same dose. Importantly, intranasal administration reduced systemic concentrations of the primary metabolite, N-desmethyl-bedaquiline (M2), compared with both intravenous and oral administration. This is a clinically relevant finding as the M2 metabolite is associated with a higher risk of QT-prolongation in predisposed patients. The results clearly demonstrate that a bedaquiline liposomal inhalation suspension may show enhanced antitubercular activity in the lung while reducing systemic side effects, thus meriting further nonclinical investigation.
Collapse
Affiliation(s)
- Franziska Marwitz
- Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, Borstel 23845, Germany
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Borstel 23845, Germany
| | - Gabriela Hädrich
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2 ,Vienna 1090, Austria
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
| | - Natalja Redinger
- Cellular Microbiology, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40 ,Borstel 23845, Germany
| | - Karen F W Besecke
- Rodos Biotarget GmbH, Feodor-Lynen-Straße 31, Hannover 30625, Germany
- Siegfried Hameln GmbH, Langes Feld 13 ,Hameln 31789, Germany
- Cardior Pharmaceuticals GmbH, Hollerithallee 20 ,Hannover 30419, Germany
| | - Feng Li
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2 ,Vienna 1090, Austria
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Josef-Holaubek-Platz 2 ,Vienna 1090, Austria
| | - Nadine Aboutara
- Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, Borstel 23845, Germany
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Borstel 23845, Germany
| | - Simone Thomsen
- Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, Borstel 23845, Germany
| | - Michaela Cohrs
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
- General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460 ,Ghent 9000, Belgium
| | - Paul Robert Neumann
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
| | - Henrike Lucas
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
| | - Julia Kollan
- Institute of Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle/Saale 06120, Germany
| | - Constantin Hozsa
- Rodos Biotarget GmbH, Feodor-Lynen-Straße 31, Hannover 30625, Germany
- Siegfried Hameln GmbH, Langes Feld 13 ,Hameln 31789, Germany
| | - Robert K Gieseler
- Rodos Biotarget GmbH, Feodor-Lynen-Straße 31, Hannover 30625, Germany
- Department of Medicine, University Hospital, Knappschaftskrankenhaus Bochum, Ruhr University Bochum, In der Schornau 23-25 ,Bochum 44892, Germany
| | - Dominik Schwudke
- Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, Borstel 23845, Germany
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Borstel 23845, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Research Center Borstel, Leibniz Lung Center, Borstel 23845, Germany
- Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, Kiel 24118, Germany
| | - Marcus Furch
- Rodos Biotarget GmbH, Feodor-Lynen-Straße 31, Hannover 30625, Germany
- Certmedica International GmbH, Magnolienweg 17 ,Aschaffenburg 63741, Germany
| | - Ulrich Schaible
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Borstel 23845, Germany
- Cellular Microbiology, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40 ,Borstel 23845, Germany
| | - Lea Ann Dailey
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2 ,Vienna 1090, Austria
| |
Collapse
|
7
|
Kumar R, Kolloli A, Subbian S, Kaushal D, Shi L, Tyagi S. Imaging the Architecture of Granulomas Induced by Mycobacterium tuberculosis Infection with Single-molecule Fluorescence In Situ Hybridization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:526-537. [PMID: 38912840 PMCID: PMC11407750 DOI: 10.4049/jimmunol.2300068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
Granulomas are an important hallmark of Mycobacterium tuberculosis infection. They are organized and dynamic structures created when immune cells assemble around the sites of infection in the lungs that locally restrict M. tuberculosis growth and the host's inflammatory responses. The cellular architecture of granulomas is traditionally studied by immunofluorescence labeling of surface markers on the host cells. However, very few Abs are available for model animals used in tuberculosis research, such as nonhuman primates and rabbits, and secreted immunological markers such as cytokines cannot be imaged in situ using Abs. Furthermore, traditional phenotypic surface markers do not provide sufficient resolution for the detection of the many subtypes and differentiation states of immune cells. Using single-molecule fluorescence in situ hybridization (smFISH) and its derivatives, amplified smFISH and iterative smFISH, we developed a platform for imaging mRNAs encoding immune markers in rabbit and macaque tuberculosis granulomas. Multiplexed imaging for several mRNA and protein markers was followed by quantitative measurement of the expression of these markers in single cells. An analysis of the combinatorial expressions of these markers allowed us to classify the cells into several subtypes, and to chart their densities within granulomas. For one mRNA target, hypoxia-inducible factor-1α, we imaged its mRNA and protein in the same cells, demonstrating the specificity of the probes. This method paves the way for defining granular differentiation states and cell subtypes from transcriptomic data, identifying key mRNA markers for these cell subtypes, and then locating the cells in the spatial context of granulomas.
Collapse
Affiliation(s)
| | | | - Selvakumar Subbian
- Public Health Research Institute
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX
| | - Lanbo Shi
- Public Health Research Institute
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Sanjay Tyagi
- Public Health Research Institute
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| |
Collapse
|
8
|
Meade RK, Smith CM. Immunological roads diverged: mapping tuberculosis outcomes in mice. Trends Microbiol 2024:S0966-842X(24)00170-7. [PMID: 39034171 DOI: 10.1016/j.tim.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
The journey from phenotypic observation to causal genetic mechanism is a long and challenging road. For pathogens like Mycobacterium tuberculosis (Mtb), which causes tuberculosis (TB), host-pathogen coevolution has spanned millennia, costing millions of human lives. Mammalian models can systematically recapitulate host genetic variation, producing a spectrum of disease outcomes. Leveraging genome sequences and deep phenotyping data from infected mouse genetic reference populations (GRPs), quantitative trait locus (QTL) mapping approaches have successfully identified host genomic regions associated with TB phenotypes. Here, we review the ongoing optimization of QTL mapping study design alongside advances in mouse GRPs. These next-generation resources and approaches have enabled identification of novel host-pathogen interactions governing one of the most prevalent infectious diseases in the world today.
Collapse
Affiliation(s)
- Rachel K Meade
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Clare M Smith
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA.
| |
Collapse
|
9
|
Dartois V, Bonfield TL, Boyce JP, Daley CL, Dick T, Gonzalez-Juarrero M, Gupta S, Kramnik I, Lamichhane G, Laughon BE, Lorè NI, Malcolm KC, Olivier KN, Tuggle KL, Jackson M. Preclinical murine models for the testing of antimicrobials against Mycobacterium abscessus pulmonary infections: Current practices and recommendations. Tuberculosis (Edinb) 2024; 147:102503. [PMID: 38729070 PMCID: PMC11168888 DOI: 10.1016/j.tube.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 05/12/2024]
Abstract
Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, is increasingly recognized as an important pathogen of the human lung, disproportionally affecting people with cystic fibrosis (CF) and other susceptible individuals with non-CF bronchiectasis and compromised immune functions. M. abscessus infections are extremely difficult to treat due to intrinsic resistance to many antibiotics, including most anti-tuberculous drugs. Current standard-of-care chemotherapy is long, includes multiple oral and parenteral repurposed drugs, and is associated with significant toxicity. The development of more effective oral antibiotics to treat M. abscessus infections has thus emerged as a high priority. While murine models have proven instrumental in predicting the efficacy of therapeutic treatments for M. tuberculosis infections, the preclinical evaluation of drugs against M. abscessus infections has proven more challenging due to the difficulty of establishing a progressive, sustained, pulmonary infection with this pathogen in mice. To address this issue, a series of three workshops were hosted in 2023 by the Cystic Fibrosis Foundation (CFF) and the National Institute of Allergy and Infectious Diseases (NIAID) to review the current murine models of M. abscessus infections, discuss current challenges and identify priorities toward establishing validated and globally harmonized preclinical models. This paper summarizes the key points from these workshops. The hope is that the recommendations that emerged from this exercise will facilitate the implementation of informative murine models of therapeutic efficacy testing across laboratories, improve reproducibility from lab-to-lab and accelerate preclinical-to-clinical translation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation & Department of Medical Sciences, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Tracey L Bonfield
- Genetics and Genome Sciences and National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jim P Boyce
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charles L Daley
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas Dick
- Center for Discovery and Innovation & Department of Medical Sciences, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA; Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Shashank Gupta
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA; Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02215, USA; Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Barbara E Laughon
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicola I Lorè
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kenneth N Olivier
- Department of Medicine, Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, USA; Marsico Lung Institute, Chapel Hill, 27599-7248, NC, USA
| | | | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA.
| |
Collapse
|
10
|
Raman SK, Siva Reddy DV, Jain V, Bajpai U, Misra A, Singh AK. Mycobacteriophages: therapeutic approach for mycobacterial infections. Drug Discov Today 2024; 29:104049. [PMID: 38830505 DOI: 10.1016/j.drudis.2024.104049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Tuberculosis (TB) is a significant global health threat, and cases of infection with non-tuberculous mycobacteria (NTM) causing lung disease (NTM-LD) are rising. Bacteriophages and their gene products have garnered interest as potential therapeutic options for bacterial infections. Here, we have compiled information on bacteriophages and their products that can kill Mycobacterium tuberculosis or NTM. We summarize the mechanisms whereby viable phages can access macrophage-resident bacteria and not elicit immune responses, review methodologies of pharmaceutical product development containing mycobacteriophages and their gene products, mainly lysins, in the context of drug regulatory requirements and we discuss industrially relevant methods for producing pharmaceutical products comprising mycobacteriophages, emphasizing delivery of mycobacteriophages to the lungs. We conclude with an outline of some recent case studies on mycobacteriophage therapy.
Collapse
Affiliation(s)
- Sunil Kumar Raman
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - D V Siva Reddy
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji , New Delhi 110019, India
| | - Amit Misra
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra 282004, Uttar Pradesh, India.
| |
Collapse
|
11
|
Ali MZ, Dutt TS, MacNeill A, Walz A, Pearce C, Lam H, Philp J, Patterson J, Henao-Tamayo M, Lee RE, Liu J, Robertson GT, Hickey AJ, Meibohm B, Gonzalez-Juarrero M. A Modified BPaL Regimen for Tuberculosis Treatment replaces Linezolid with Inhaled Spectinamides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.16.567434. [PMID: 38014249 PMCID: PMC10680823 DOI: 10.1101/2023.11.16.567434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The Nix-TB clinical trial evaluated a new 6-month regimen containing three-oral- drugs; bedaquiline (B), pretomanid (Pa) and linezolid (L) (BPaL regimen) for treatment of tuberculosis (TB). This regimen achieved remarkable results as almost 90% of the multidrug resistant (MDR) or extensively drug resistant (XDR) TB participants were cured but many patients also developed severe adverse events (AEs). The AEs were associated with the long-term administration of the protein synthesis inhibitor linezolid. Spectinamide 1599 is also a protein synthesis inhibitor of Mycobacterium tuberculosis with an excellent safety profile but which lacks oral bioavailability. Here, we propose to replace L in the BPaL regimen with spectinamide (S) administered via inhalation and we demonstrate that inhaled spectinamide 1599, combined with BPa --BPaS regimen--has similar efficacy to that of BPaL regimen while simultaneously avoiding the L-associated AEs. The BPaL and BPaS regimens were compared in the BALB/c and C3HeB/FeJ murine chronic TB efficacy models. After 4-weeks of treatment, both regimens promoted equivalent bactericidal effect in both TB murine models. However, treatment with BPaL resulted in significant weight loss and the complete blood count suggested development of anemia. These effects were not similarly observed in mice treated with BPaS. BPaL and BPa, but no the BPaS treatment, also decreased myeloid to erythroid ratio suggesting the S in the BPaS regimen was able to recover this effect. Moreover, the BPaL also increased concentration of proinflammatory cytokines in bone marrow compared to mice receiving BPaS regimen. During therapy both regimens improved the lung lesion burden, reduced neutrophil and cytotoxic T cells counts while increased the number of B and helper and regulatory T cells. These combined data suggest that inhaled spectinamide 1599 combined with BPa is an effective TB regimen that avoids L-associated AEs. IMPORTANCE Tuberculosis (TB) is an airborne infectious disease that spreads via aerosols containing Mycobacterium tuberculosis (Mtb), the causative agent of TB. TB can be cured by administration of 3-4 drugs for 6-9 months but there are limited treatment options for patients infected with multidrug (MDR) and extensively resistant (XDR) strains of Mtb. BPaL is a new all-oral combination of drugs consisting of Bedaquiline (B), Pretomanid (Pa) and Linezolid (L). This regimen was able to cure ∼90% of MDR and XDR TB patients in clinical trials but many patients developed severe adverse events (AEs) associated to the long-term administration of linezolid. We evaluated a new regimen in which Linezolid in the BPaL regimen was replaced with inhaled spectinamide 1599. In the current study, we demonstrate that 4-weeks of treatment with inhaled spectinamide 1599 in combination with Bedaquiline and Pretomanid has equivalent efficacy to the BPaL drug combination and avoids the L-associated-AEs.
Collapse
|
12
|
Nikonenko B, Logunova N, Egorova A, Kapina M, Sterzhanova N, Bocharova I, Kondratieva E, Riabova O, Semyonova L, Makarov V. Efficacy of macozinone in mice with genetically diverse susceptibility to Mycobacterium tuberculosis infection. Microbes Infect 2024:105376. [PMID: 38852904 DOI: 10.1016/j.micinf.2024.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Host heterogeneity in pulmonary tuberculosis leads to varied responses to infection and drug treatment. The present portfolio of anti-TB drugs needs to be boosted with new drugs and drug regimens. Macozinone, a clinical-stage molecule targeting the essential enzyme, DprE1, represents an attractive option. Mice (I/St, B6, (AKRxI/St)F1, B6.I-100 and B6.I-139) genetically diverse susceptibility to Mycobacterium tuberculosis (Mtb) H37Rv infection were subjected to aerosol- or intravenous infection to determine the efficacy of macozinone (MCZ). They were treated with macozinone or reference drugs (isoniazid, rifampicin). Lung and spleen bacterial burdens were measured at four and eight weeks post-infection. Lung histology was evaluated at four weeks of treatment. Treatment with macozinone resulted in a statistically significant reduction in the bacterial load in the lungs and spleen as early as four weeks after treatment initiation in mice susceptible or resistant to Mtb infection. In the TB hypoxic granuloma model, macozinone was more potent than rifampicin in reducing the CFU counts. However, histopathological analysis revealed significant lung changes in I/St mice after eight weeks of treatment initiation. Macozinone demonstrated efficacy to varying degrees across all mouse models of Mtb infection used. These results should facilitate its further development and potential introduction into clinical practice.
Collapse
Affiliation(s)
- Boris Nikonenko
- Department of Immunology, Central Tuberculosis Research Institute, 2 Yauzskaya Alley, 107564 Moscow, Russia
| | - Nadezhda Logunova
- Department of Immunology, Central Tuberculosis Research Institute, 2 Yauzskaya Alley, 107564 Moscow, Russia
| | - Anna Egorova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Marina Kapina
- Department of Immunology, Central Tuberculosis Research Institute, 2 Yauzskaya Alley, 107564 Moscow, Russia
| | - Natalia Sterzhanova
- Department of Immunology, Central Tuberculosis Research Institute, 2 Yauzskaya Alley, 107564 Moscow, Russia
| | - Irina Bocharova
- Department of Immunology, Central Tuberculosis Research Institute, 2 Yauzskaya Alley, 107564 Moscow, Russia
| | - Elena Kondratieva
- Department of Immunology, Central Tuberculosis Research Institute, 2 Yauzskaya Alley, 107564 Moscow, Russia
| | - Olga Riabova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia
| | - Lyudmila Semyonova
- Department of Immunology, Central Tuberculosis Research Institute, 2 Yauzskaya Alley, 107564 Moscow, Russia
| | - Vadim Makarov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, 119071 Moscow, Russia.
| |
Collapse
|
13
|
Boucau J, Naidoo T, Liu Y, Dasgupta S, Jain N, Castillo JR, Jacobson NE, Nargan K, Cimini BA, Eliceiri KW, Steyn AJ, Barczak AK. A mouse model of TB-associated lung fibrosis reveals persistent inflammatory macrophage populations during treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597479. [PMID: 38895338 PMCID: PMC11185692 DOI: 10.1101/2024.06.04.597479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Post-TB lung disease (PTLD) causes a significant burden of global disease. Fibrosis is a central component of many clinical features of PTLD. To date, we have a limited understanding of the mechanisms of TB-associated fibrosis and how these mechanisms are similar to or dissimilar from other fibrotic lung pathologies. We have adapted a mouse model of TB infection to facilitate the mechanistic study of TB-associated lung fibrosis. We find that the morphologies of fibrosis that develop in the mouse model are similar to the morphologies of fibrosis observed in human tissue samples. Using Second Harmonic Generation (SHG) microscopy, we are able to quantify a major component of fibrosis, fibrillar collagen, over time and with treatment. Inflammatory macrophage subpopulations persist during treatment; matrix remodeling enzymes and inflammatory gene signatures remain elevated. Our mouse model suggests that there is a therapeutic window during which adjunctive therapies could change matrix remodeling or inflammatory drivers of tissue pathology to improve functional outcomes after treatment for TB infection.
Collapse
Affiliation(s)
- Julie Boucau
- The Ragon Institute of Mass General Brigham, MIT, and Harvard, Cambridge, MA, USA
| | - Threnesan Naidoo
- Africa Health Research Institute (AHRI), University of Kwazulu-Natal, Durban, South Africa
- Departments of Forensic & Legal Medicine and Laboratory Medicine & Pathology, Walter Sisulu University, Mthatha, Eastern Cape, South Africa
| | - Yuming Liu
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Neha Jain
- The Ragon Institute of Mass General Brigham, MIT, and Harvard, Cambridge, MA, USA
| | | | - Nicholas E. Jacobson
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Kievershen Nargan
- Africa Health Research Institute (AHRI), University of Kwazulu-Natal, Durban, South Africa
| | | | - Kevin W. Eliceiri
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Adrie J.C. Steyn
- Africa Health Research Institute (AHRI), University of Kwazulu-Natal, Durban, South Africa
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amy K. Barczak
- The Ragon Institute of Mass General Brigham, MIT, and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Kayukova SI, Karpina NL, Ulyumdzhieva VA, Semenova LA, Donnikov AE, Bocharova IV, Nikonenko BV. Impact of Experimental Tuberculosis on Fertility of Female BALB/c Mice. Bull Exp Biol Med 2024; 177:256-260. [PMID: 39093472 DOI: 10.1007/s10517-024-06168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 08/04/2024]
Abstract
The study revealed no effects of pregnancy and childbirth on the course of tuberculosis in female BALB/c mice after aerosol infection with Mycobacterium tuberculosis. However, we demonstrated a negative effect of tuberculosis infection on the fertility of infected females, which manifested in a longer period from mating to pregnancy and in a smaller litter size. Impaired reproductive function in response to the effect of the systemic infectious process was accompanied by the development of immunosuppression confirmed by an immunological test (delayed-type hypersensitivity to tuberculin) and the formation of genital tract dysbiosis during pregnancy and postpartum period.
Collapse
Affiliation(s)
- S I Kayukova
- Central Research Institute of Tuberculosis, Moscow, Russia.
| | - N L Karpina
- Central Research Institute of Tuberculosis, Moscow, Russia
| | | | - L A Semenova
- Central Research Institute of Tuberculosis, Moscow, Russia
| | - A E Donnikov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I V Bocharova
- Central Research Institute of Tuberculosis, Moscow, Russia
| | - B V Nikonenko
- Central Research Institute of Tuberculosis, Moscow, Russia
| |
Collapse
|
15
|
Bauman AA, Sarathy JP, Kaya F, Massoudi LM, Scherman MS, Hastings C, Liu J, Xie M, Brooks EJ, Ramey ME, Jones IL, Benedict ND, Maclaughlin MR, Miller-Dawson JA, Waidyarachchi SL, Butler MM, Bowlin TL, Zimmerman MD, Lenaerts AJ, Meibohm B, Gonzalez-Juarrero M, Lyons MA, Dartois V, Lee RE, Robertson GT. Spectinamide MBX-4888A exhibits favorable lesion and tissue distribution and promotes treatment shortening in advanced murine models of tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593953. [PMID: 38798577 PMCID: PMC11118289 DOI: 10.1101/2024.05.13.593953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The spectinamides are novel, narrow-spectrum semisynthetic analogs of spectinomycin, modified to avoid intrinsic efflux by Mycobacterium tuberculosis . Spectinamides, including lead MBX-4888A (Lee-1810), exhibit promising therapeutic profiles in mice, as single drugs and as partner agents with other anti-tuberculosis antibiotics including rifampin and/or pyrazinamide. To demonstrate that this translates to more effective cure, we first confirmed the role of rifampin, with or without pyrazinamide, as essential to achieve effective bactericidal responses and sterilizing cure in the current standard of care regimen in chronically infected C3HeB/FeJ mice compared to BALB/c mice. Thus, demonstrating added value in testing clinically relevant regimens in murine models of increasing pathologic complexity. Next we show that MBX-4888A, given by injection with the front-line standard of care regimen, is treatment shortening in multiple murine tuberculosis infection models. The positive treatment responses to MBX-4888A combination therapy in multiple mouse models including mice exhibiting advanced pulmonary disease can be attributed to favorable distribution in tissues and lesions, retention in caseum, along with favorable effects with rifampin and pyrazinamide under conditions achieved in necrotic lesions. This study also provides an additional data point regarding the safety and tolerability of spectinamide MBX-4888A in long-term murine efficacy studies.
Collapse
|
16
|
Boshoff HIM, Young K, Ahn YM, Yadav VD, Crowley BM, Yang L, Su J, Oh S, Arora K, Andrews J, Manikkam M, Sutphin M, Smith AJ, Weiner DM, Piazza MK, Fleegle JD, Gomez F, Dayao EK, Prideaux B, Zimmerman M, Kaya F, Sarathy J, Tan VY, Via LE, Tschirret-Guth R, Lenaerts AJ, Robertson GT, Dartois V, Olsen DB, Barry CE. Mtb-Selective 5-Aminomethyl Oxazolidinone Prodrugs: Robust Potency and Potential Liabilities. ACS Infect Dis 2024; 10:1679-1695. [PMID: 38581700 DOI: 10.1021/acsinfecdis.4c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Linezolid is a drug with proven human antitubercular activity whose use is limited to highly drug-resistant patients because of its toxicity. This toxicity is related to its mechanism of action─linezolid inhibits protein synthesis in both bacteria and eukaryotic mitochondria. A highly selective and potent series of oxazolidinones, bearing a 5-aminomethyl moiety (in place of the typical 5-acetamidomethyl moiety of linezolid), was identified. Linezolid-resistant mutants were cross-resistant to these molecules but not vice versa. Resistance to the 5-aminomethyl molecules mapped to an N-acetyl transferase (Rv0133) and these mutants remained fully linezolid susceptible. Purified Rv0133 was shown to catalyze the transformation of the 5-aminomethyl oxazolidinones to their corresponding N-acetylated metabolites, and this transformation was also observed in live cells of Mycobacterium tuberculosis. Mammalian mitochondria, which lack an appropriate N-acetyltransferase to activate these prodrugs, were not susceptible to inhibition with the 5-aminomethyl analogues. Several compounds that were more potent than linezolid were taken into C3HeB/FeJ mice and were shown to be highly efficacious, and one of these (9) was additionally taken into marmosets and found to be highly active. Penetration of these 5-aminomethyl oxazolidinone prodrugs into caseum was excellent. Unfortunately, these compounds were rapidly converted into the corresponding 5-alcohols by mammalian metabolism which retained antimycobacterial activity but resulted in substantial mitotoxicity.
Collapse
Affiliation(s)
- Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Katherine Young
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yong-Mo Ahn
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Veena D Yadav
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | - Lihu Yang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jing Su
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jenna Andrews
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Michelle Manikkam
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Michelle Sutphin
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Anthony J Smith
- Mycobacterial Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Ft Collins, Colorado 80521, United States
| | - Danielle M Weiner
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Michaela K Piazza
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Joel D Fleegle
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Felipe Gomez
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Emmannual K Dayao
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | - Brendan Prideaux
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Matthew Zimmerman
- Hackensack Meridian Health Center for Discovery & Innovation, Nutley, New Jersey 07110, United States
| | - Firat Kaya
- Hackensack Meridian Health Center for Discovery & Innovation, Nutley, New Jersey 07110, United States
| | - Jansy Sarathy
- Hackensack Meridian Health Center for Discovery & Innovation, Nutley, New Jersey 07110, United States
| | - Vee Yang Tan
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Laura E Via
- Tuberculosis Imaging Program, Division of Intramural Research, National Insititute of Allergy and Infectious Disease, National Insititutes of Health, Bethesda, Maryland 20892, United States
| | | | - Anne J Lenaerts
- Mycobacterial Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Ft Collins, Colorado 80521, United States
| | - Gregory T Robertson
- Mycobacterial Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Ft Collins, Colorado 80521, United States
| | - Véronique Dartois
- Mycobacterial Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Ft Collins, Colorado 80521, United States
| | - David B Olsen
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
17
|
Yang F, Labani-Motlagh A, Bohorquez JA, Moreira JD, Ansari D, Patel S, Spagnolo F, Florence J, Vankayalapati A, Sakai T, Sato O, Ikebe M, Vankayalapati R, Dennehy JJ, Samten B, Yi G. Bacteriophage therapy for the treatment of Mycobacterium tuberculosis infections in humanized mice. Commun Biol 2024; 7:294. [PMID: 38461214 PMCID: PMC10924958 DOI: 10.1038/s42003-024-06006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 03/02/2024] [Indexed: 03/11/2024] Open
Abstract
The continuing emergence of new strains of antibiotic-resistant bacteria has renewed interest in phage therapy; however, there has been limited progress in applying phage therapy to multi-drug resistant Mycobacterium tuberculosis (Mtb) infections. In this study, we show that bacteriophage strains D29 and DS6A can efficiently lyse Mtb H37Rv in 7H10 agar plates. However, only phage DS6A efficiently kills H37Rv in liquid culture and in Mtb-infected human primary macrophages. We further show in subsequent experiments that, after the humanized mice were infected with aerosolized H37Rv, then treated with DS6A intravenously, the DS6A treated mice showed increased body weight and improved pulmonary function relative to control mice. Furthermore, DS6A reduces Mtb load in mouse organs with greater efficacy in the spleen. These results demonstrate the feasibility of developing phage therapy as an effective therapeutic against Mtb infection.
Collapse
Affiliation(s)
- Fan Yang
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Alireza Labani-Motlagh
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Center for Discovery and Innovation, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Jose Alejandro Bohorquez
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Josimar Dornelas Moreira
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Danish Ansari
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Sahil Patel
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Fabrizio Spagnolo
- Life Sciences Department, Long Island University Post, Brookville, NY, USA
| | - Jon Florence
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Abhinav Vankayalapati
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Tsuyoshi Sakai
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Osamu Sato
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Mitsuo Ikebe
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Ramakrishna Vankayalapati
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - John J Dennehy
- Biology Department, Queens College of The City University of New York, Flushing, NY, USA.
- The Graduate Center of The City University of New York, New York, NY, USA.
| | - Buka Samten
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
| | - Guohua Yi
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA.
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
| |
Collapse
|
18
|
Kumari N, Sharma R, Ali J, Chandra G, Singh S, Krishnan MY. The use of Mycobacterium tuberculosis H37Ra-infected immunocompetent mice as an in vivo model of persisters. Tuberculosis (Edinb) 2024; 145:102479. [PMID: 38262199 DOI: 10.1016/j.tube.2024.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/13/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Persistence of Mycobacterium tuberculosis (Mtb) is one of the challenges to successful treatment of tuberculosis (TB). In vitro models of non-replicating Mtb are used to test the efficacy of new molecules against Mtb persisters. The H37Ra strain is attenuated for growth in macrophages and mice. We validated H37Ra-infected immunocompetent mice for testing anti-TB molecules against slow/non-replicating Mtb in vivo. Swiss mice were infected intravenously with H37Ra and monitored for CFU burden and histopathology for a period of 12 weeks. The bacteria multiplied at a slow pace reaching a maximum load of ∼106 in 8-12 weeks depending on the infection dose, accompanied by time and dose-dependent histopathological changes in the lungs. Surprisingly, four-weeks of treatment with isoniazid-rifampicin-ethambutol-pyrazinamide combination caused only 0.4 log10 and 1 log10 reduction in CFUs in lungs and spleen respectively. The results show that ∼40 % of the H37Ra bacilli in lungs are persisters after 4 weeks of anti-TB therapy. Isoniazid/rifampicin monotherapy also showed similar results. A combination of bedaquiline and isoniazid reduced the CFU counts to <200 (limit of detection), compared to ∼5000 CFUs by isoniazid alone. The study demonstrates an in vivo model of Mtb persisters for testing new leads using a BSL-2 strain.
Collapse
Affiliation(s)
- Neetu Kumari
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India
| | - Romil Sharma
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Juned Ali
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India
| | - Gyan Chandra
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India
| | - Sarika Singh
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Manju Y Krishnan
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
19
|
Chen Y, MacGilvary NJ, Tan S. Mycobacterium tuberculosis response to cholesterol is integrated with environmental pH and potassium levels via a lipid metabolism regulator. PLoS Genet 2024; 20:e1011143. [PMID: 38266039 PMCID: PMC10843139 DOI: 10.1371/journal.pgen.1011143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
Successful colonization of the host requires Mycobacterium tuberculosis (Mtb) to sense and respond coordinately to disparate environmental cues during infection and adapt its physiology. However, how Mtb response to environmental cues and the availability of key carbon sources may be integrated is poorly understood. Here, by exploiting a reporter-based genetic screen, we have unexpectedly found that overexpression of transcription factors involved in Mtb lipid metabolism altered the dampening effect of low environmental potassium concentrations ([K+]) on the pH response of Mtb. Cholesterol is a major carbon source for Mtb during infection, and transcriptional analyses revealed that Mtb response to acidic pH was augmented in the presence of cholesterol and vice versa. Strikingly, deletion of the putative lipid regulator mce3R had little effect on Mtb transcriptional response to acidic pH or cholesterol individually, but resulted specifically in loss of cholesterol response augmentation in the simultaneous presence of acidic pH. Similarly, while mce3R deletion had little effect on Mtb response to low environmental [K+] alone, augmentation of the low [K+] response by the simultaneous presence of cholesterol was lost in the mutant. Finally, a mce3R deletion mutant was attenuated for growth in foamy macrophages and for colonization in a murine infection model that recapitulates caseous necrotic lesions and the presence of foamy macrophages. These findings reveal the critical coordination between Mtb response to environmental cues and cholesterol, a vital carbon source, and establishes Mce3R as a transcription factor that crucially serves to integrate these signals.
Collapse
Affiliation(s)
- Yue Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Nathan J. MacGilvary
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Current affiliation: Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
20
|
Ramey ME, Kaya F, Bauman AA, Massoudi LM, Sarathy JP, Zimmerman MD, Scott DWL, Job AM, Miller-Dawson JA, Podell BK, Lyons MA, Dartois V, Lenaerts AJ, Robertson GT. Drug distribution and efficacy of the DprE1 inhibitor BTZ-043 in the C3HeB/FeJ mouse tuberculosis model. Antimicrob Agents Chemother 2023; 67:e0059723. [PMID: 37791784 PMCID: PMC10648937 DOI: 10.1128/aac.00597-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/04/2023] [Indexed: 10/05/2023] Open
Abstract
BTZ-043, a suicide inhibitor of the Mycobacterium tuberculosis cell wall synthesis decaprenylphosphoryl-beta-D-ribose 2' epimerase, is under clinical development as a potential new anti-tuberculosis agent. BTZ-043 is potent and bactericidal in vitro but has limited activity against non-growing bacilli in rabbit caseum. To better understand its behavior in vivo, BTZ-043 was evaluated for efficacy and spatial drug distribution as a single agent in the C3HeB/FeJ mouse model presenting with caseous necrotic pulmonary lesions upon Mycobacterium tuberculosis infection. BTZ-043 promoted significant reductions in lung and spleen bacterial burdens in the C3HeB/FeJ mouse model after 2 months of therapy. BTZ-043 penetrates cellular and necrotic lesions and was retained at levels above the serum-shifted minimal inhibitory concentration in caseum. The calculated rate of kill was found to be highest and dose-dependent during the second month of treatment. BTZ-043 treatment was associated with improved histology scores of pulmonary lesions, especially compared to control mice, which experienced advanced fulminant neutrophilic alveolitis in the absence of treatment. These positive treatment responses to BTZ-043 monotherapy in a mouse model of advanced pulmonary disease can be attributed to favorable distribution in tissues and lesions, retention in the caseum, and its high potency and bactericidal nature at drug concentrations achieved in necrotic lesions.
Collapse
Affiliation(s)
- Michelle E. Ramey
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Firat Kaya
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Allison A. Bauman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Lisa M. Massoudi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Jansy P. Sarathy
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Matthew D. Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Dashick W. L. Scott
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Alyx M. Job
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Jake A. Miller-Dawson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Brendan K. Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Michael A. Lyons
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Anne J. Lenaerts
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory T. Robertson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
21
|
Lai R, Ogunsola AF, Rakib T, Behar SM. Key advances in vaccine development for tuberculosis-success and challenges. NPJ Vaccines 2023; 8:158. [PMID: 37828070 PMCID: PMC10570318 DOI: 10.1038/s41541-023-00750-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Breakthrough findings in the clinical and preclinical development of tuberculosis (TB) vaccines have galvanized the field and suggest, for the first time since the development of bacille Calmette-Guérin (BCG), that a novel and protective TB vaccine is on the horizon. Here we highlight the TB vaccines that are in the development pipeline and review the basis for optimism in both the clinical and preclinical space. We describe immune signatures that could act as immunological correlates of protection (CoP) to facilitate the development and comparison of vaccines. Finally, we discuss new animal models that are expected to more faithfully model the pathology and complex immune responses observed in human populations.
Collapse
Affiliation(s)
- Rocky Lai
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Abiola F Ogunsola
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Tasfia Rakib
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
22
|
Hunter L, Ruedas-Torres I, Agulló-Ros I, Rayner E, Salguero FJ. Comparative pathology of experimental pulmonary tuberculosis in animal models. Front Vet Sci 2023; 10:1264833. [PMID: 37901102 PMCID: PMC10602689 DOI: 10.3389/fvets.2023.1264833] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Research in human tuberculosis (TB) is limited by the availability of human tissues from patients, which is often altered by therapy and treatment. Thus, the use of animal models is a key tool in increasing our understanding of the pathogenesis, disease progression and preclinical evaluation of new therapies and vaccines. The granuloma is the hallmark lesion of pulmonary tuberculosis, regardless of the species or animal model used. Although animal models may not fully replicate all the histopathological characteristics observed in natural, human TB disease, each one brings its own attributes which enable researchers to answer specific questions regarding TB immunopathogenesis. This review delves into the pulmonary pathology induced by Mycobacterium tuberculosis complex (MTBC) bacteria in different animal models (non-human primates, rodents, guinea pigs, rabbits, cattle, goats, and others) and compares how they relate to the pulmonary disease described in humans. Although the described models have demonstrated some histopathological features in common with human pulmonary TB, these data should be considered carefully in the context of this disease. Further research is necessary to establish the most appropriate model for the study of TB, and to carry out a standard characterisation and score of pulmonary lesions.
Collapse
Affiliation(s)
- Laura Hunter
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Inés Ruedas-Torres
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus, Córdoba, Spain
| | - Irene Agulló-Ros
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus, Córdoba, Spain
| | - Emma Rayner
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Francisco J. Salguero
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| |
Collapse
|
23
|
Walter ND, Ernest JP, Dide-Agossou C, Bauman AA, Ramey ME, Rossmassler K, Massoudi LM, Pauly S, Al Mubarak R, Voskuil MI, Kaya F, Sarathy JP, Zimmerman MD, Dartois V, Podell BK, Savic RM, Robertson GT. Lung microenvironments harbor Mycobacterium tuberculosis phenotypes with distinct treatment responses. Antimicrob Agents Chemother 2023; 67:e0028423. [PMID: 37565762 PMCID: PMC10508168 DOI: 10.1128/aac.00284-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/30/2023] [Indexed: 08/12/2023] Open
Abstract
Tuberculosis lung lesions are complex and harbor heterogeneous microenvironments that influence antibiotic effectiveness. Major strides have been made recently in understanding drug pharmacokinetics in pulmonary lesions, but the bacterial phenotypes that arise under these conditions and their contribution to drug tolerance are poorly understood. A pharmacodynamic marker called the RS ratio® quantifies ongoing rRNA synthesis based on the abundance of newly synthesized precursor rRNA relative to mature structural rRNA. Application of the RS ratio in the C3HeB/FeJ mouse model demonstrated that Mycobacterium tuberculosis populations residing in different tissue microenvironments are phenotypically distinct and respond differently to drug treatment with rifampin, isoniazid, or bedaquiline. This work provides a foundational basis required to address how anatomic and pathologic microenvironmental niches may contribute to long treatment duration and drug tolerance during the treatment of human tuberculosis.
Collapse
Affiliation(s)
- Nicholas D. Walter
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
| | - Jackie P. Ernest
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Christian Dide-Agossou
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Allison A. Bauman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Michelle E. Ramey
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Karen Rossmassler
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lisa M. Massoudi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Samantha Pauly
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Reem Al Mubarak
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Martin I. Voskuil
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Firat Kaya
- Center for Discovery and Innovation, Nutley, New Jersey, USA
| | | | | | | | - Brendan K. Podell
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Radojka M. Savic
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Gregory T. Robertson
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
24
|
Kim H, Shin SJ. Revolutionizing control strategies against Mycobacterium tuberculosis infection through selected targeting of lipid metabolism. Cell Mol Life Sci 2023; 80:291. [PMID: 37704889 PMCID: PMC11072447 DOI: 10.1007/s00018-023-04914-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/12/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
Lipid species play a critical role in the growth and virulence expression of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). During Mtb infection, foamy macrophages accumulate lipids in granulomas, providing metabolic adaptation and survival strategies for Mtb against multiple stresses. Host-derived lipid species, including triacylglycerol and cholesterol, can also contribute to the development of drug-tolerant Mtb, leading to reduced efficacy of antibiotics targeting the bacterial cell wall or transcription. Transcriptional and metabolic analyses indicate that lipid metabolism-associated factors of Mtb are highly regulated by antibiotics and ultimately affect treatment outcomes. Despite the well-known association between major antibiotics and lipid metabolites in TB treatment, a comprehensive understanding of how altered lipid metabolites in both host and Mtb influence treatment outcomes in a drug-specific manner is necessary to overcome drug tolerance. The current review explores the controversies and correlations between lipids and drug efficacy in various Mtb infection models and proposes novel approaches to enhance the efficacy of anti-TB drugs. Moreover, the review provides insights into the efficacious control of Mtb infection by elucidating the impact of lipids on drug efficacy. This review aims to improve the effectiveness of current anti-TB drugs and facilitate the development of innovative therapeutic strategies against Mtb infection by making reverse use of Mtb-favoring lipid species.
Collapse
Affiliation(s)
- Hagyu Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
25
|
Chen Y, MacGilvary NJ, Tan S. Mycobacterium tuberculosis response to cholesterol is integrated with environmental pH and potassium levels via a lipid utilization regulator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554309. [PMID: 37662244 PMCID: PMC10473576 DOI: 10.1101/2023.08.22.554309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
How bacterial response to environmental cues and nutritional sources may be integrated in enabling host colonization is poorly understood. Exploiting a reporter-based screen, we discovered that overexpression of Mycobacterium tuberculosis (Mtb) lipid utilization regulators altered Mtb acidic pH response dampening by low environmental potassium (K+). Transcriptional analyses unveiled amplification of Mtb response to acidic pH in the presence of cholesterol, a major carbon source for Mtb during infection, and vice versa. Strikingly, deletion of the putative lipid regulator mce3R resulted in loss of augmentation of (i) cholesterol response at acidic pH, and (ii) low [K+] response by cholesterol, with minimal effect on Mtb response to each signal individually. Finally, the ∆mce3R mutant was attenuated for colonization in a murine model that recapitulates lesions with lipid-rich foamy macrophages. These findings reveal critical coordination between bacterial response to environmental and nutritional cues, and establish Mce3R as a crucial integrator of this process.
Collapse
Affiliation(s)
- Yue Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Nathan J. MacGilvary
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
26
|
Lanni A, Iacobino A, Fattorini L, Giannoni F. Eradication of Drug-Tolerant Mycobacterium tuberculosis 2022: Where We Stand. Microorganisms 2023; 11:1511. [PMID: 37375013 PMCID: PMC10301435 DOI: 10.3390/microorganisms11061511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The lungs of tuberculosis (TB) patients contain a spectrum of granulomatous lesions, ranging from solid and well-vascularized cellular granulomas to avascular caseous granulomas. In solid granulomas, current therapy kills actively replicating (AR) intracellular bacilli, while in low-vascularized caseous granulomas the low-oxygen tension stimulates aerobic and microaerophilic AR bacilli to transit into non-replicating (NR), drug-tolerant and extracellular stages. These stages, which do not have genetic mutations and are often referred to as persisters, are difficult to eradicate due to low drug penetration inside the caseum and mycobacterial cell walls. The sputum of TB patients also contains viable bacilli called differentially detectable (DD) cells that, unlike persisters, grow in liquid, but not in solid media. This review provides a comprehensive update on drug combinations killing in vitro AR and drug-tolerant bacilli (persisters and DD cells), and sterilizing Mycobacterium tuberculosis-infected BALB/c and caseum-forming C3HeB/FeJ mice. These observations have been important for testing new drug combinations in noninferiority clinical trials, in order to shorten the duration of current regimens against TB. In 2022, the World Health Organization, following the results of one of these trials, supported the use of a 4-month regimen for the treatment of drug-susceptible TB as a possible alternative to the current 6-month regimen.
Collapse
Affiliation(s)
| | | | | | - Federico Giannoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Via Regina Elena 299, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
| |
Collapse
|
27
|
Abstract
Mycobacteria are responsible for several human and animal diseases. NOD2 is a pattern recognition receptor that has an important role in mycobacterial recognition. However, the mechanisms by which mutations in NOD2 alter the course of mycobacterial infection remain unclear. Herein, we aimed to review the totality of studies directly addressing the relationship between NOD2 and mycobacteria as a foundation for moving the field forward. NOD2 was linked to mycobacterial infection at 3 levels: (1) genetic, through association with mycobacterial diseases of humans; (2) chemical, through the distinct NOD2 ligand in the mycobacterial cell wall; and (3) immunologic, through heightened NOD2 signaling caused by the unique modification of the NOD2 ligand. The immune response to mycobacteria is shaped by NOD2 signaling, responsible for NF-κB and MAPK activation, and the production of various immune effectors like cytokines and nitric oxide, with some evidence linking this to bacteriologic control. Absence of NOD2 during mycobacterial infection of mice can be detrimental, but the mechanism remains unknown. Conversely, the success of immunization with mycobacteria has been linked to NOD2 signaling and NOD2 has been targeted as an avenue of immunotherapy for diseases even beyond mycobacteria. The mycobacteria-NOD2 interaction remains an important area of study, which may shed light on immune mechanisms in disease.
Collapse
Affiliation(s)
- Jean-Yves Dubé
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
| | - Marcel A. Behr
- Department of Medicine, McGill University Health Centre, Montréal, Canada
| |
Collapse
|
28
|
Rudolph D, Redinger N, Schwarz K, Li F, Hädrich G, Cohrs M, Dailey LA, Schaible UE, Feldmann C. Amorphous Drug Nanoparticles for Inhalation Therapy of Multidrug-Resistant Tuberculosis. ACS NANO 2023; 17:9478-9486. [PMID: 37160267 PMCID: PMC10211367 DOI: 10.1021/acsnano.3c01664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023]
Abstract
Tuberculosis (TB) is one of the most prevalent infectious diseases. The global TB situation is further complicated by increasing patient numbers infected with Mycobacterium tuberculosis (M.tb.) strains resistant to either one or two of the first-line therapeutics, promoted by insufficient treatment length and/or drug levels due to adverse reactions and reduced patient compliance. An intriguing approach to improve anti-TB therapy relates to nanocarrier-based drug-delivery systems, which enhance local drug concentrations at infection sites without systemic toxicity. Recently developed anti-TB antibiotics, however, are lipophilic and difficult to transport in aqueous systems. Here, the very lipophilic TB-antibiotics bedaquiline (BDQ) and BTZ (1,3-benzothiazin-4-one 043) are prepared as high-dose, amorphous nanoparticles via a solvent-antisolvent technique. The nanoparticles exhibit mean diameters of 60 ± 13 nm (BDQ) and 62 ± 44 nm (BTZ) and have an extraordinarily high drug load with 69% BDQ and >99% BTZ of total nanoparticle mass plus a certain amount of surfactant (31% for BDQ, <1% for BTZ) to make the lipophilic drugs water-dispersible. Suspensions with high drug load (4.1 mg/mL BDQ, 4.2 mg/mL BTZ) are stable for several weeks. In vitro and in vivo studies employing M.tb.-infected macrophages and susceptible C3HeB/FeJ mice show promising activity, which outperforms conventional BDQ/BTZ solutions (in DMF or DMSO) with an up to 50% higher efficacy upon pulmonary delivery. In vitro, the BDQ/BTZ nanoparticles demonstrate their ability to cross the different biological barriers and to reach the site of the intracellular mycobacteria. In vivo, high amounts of the BDQ/BTZ nanoparticles are found in the lung and specifically inside granulomas, whereas only low BDQ/BTZ-nanoparticle levels are observed in spleen or liver. Thus, pulmonary delivered BDQ/BTZ nanoparticles are promising formulations to improve antituberculosis treatment.
Collapse
Affiliation(s)
- David Rudolph
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Natalja Redinger
- Research
Center Borstel, Leibniz Lung Center, Priority Area Infections, Division Cellular Microbiology, Parkallee 1-40, 23845 Borstel, Germany
- German
Center for Infection Research (DZIF),
Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
| | | | - Feng Li
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Wien, Austria
| | - Gabriela Hädrich
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Wien, Austria
| | - Michaela Cohrs
- Laboratory
for General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Lea Ann Dailey
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Wien, Austria
| | - Ulrich E. Schaible
- Research
Center Borstel, Leibniz Lung Center, Priority Area Infections, Division Cellular Microbiology, Parkallee 1-40, 23845 Borstel, Germany
- German
Center for Infection Research (DZIF),
Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
- University of Lübeck, 23563 Lübeck, Germany
| | - Claus Feldmann
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| |
Collapse
|
29
|
Asai M, Li Y, Newton SM, Robertson BD, Langford PR. Galleria mellonella-intracellular bacteria pathogen infection models: the ins and outs. FEMS Microbiol Rev 2023; 47:fuad011. [PMID: 36906279 PMCID: PMC10045907 DOI: 10.1093/femsre/fuad011] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
Galleria mellonella (greater wax moth) larvae are used widely as surrogate infectious disease models, due to ease of use and the presence of an innate immune system functionally similar to that of vertebrates. Here, we review G. mellonella-human intracellular bacteria pathogen infection models from the genera Burkholderia, Coxiella, Francisella, Listeria, and Mycobacterium. For all genera, G. mellonella use has increased understanding of host-bacterial interactive biology, particularly through studies comparing the virulence of closely related species and/or wild-type versus mutant pairs. In many cases, virulence in G. mellonella mirrors that found in mammalian infection models, although it is unclear whether the pathogenic mechanisms are the same. The use of G. mellonella larvae has speeded up in vivo efficacy and toxicity testing of novel antimicrobials to treat infections caused by intracellular bacteria: an area that will expand since the FDA no longer requires animal testing for licensure. Further use of G. mellonella-intracellular bacteria infection models will be driven by advances in G. mellonella genetics, imaging, metabolomics, proteomics, and transcriptomic methodologies, alongside the development and accessibility of reagents to quantify immune markers, all of which will be underpinned by a fully annotated genome.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Sandra M Newton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Brian D Robertson
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, South Kensington campus, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
30
|
Lanni F, Wijnant GJ, Xie M, Osiecki P, Dartois V, Sarathy JP. Adaptation to the intracellular environment of primary human macrophages influences drug susceptibility of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2023; 139:102318. [PMID: 36889104 DOI: 10.1016/j.tube.2023.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 01/24/2023]
Abstract
As a facultative intracellular pathogen, M. tuberculosis (Mtb) is highly adapted to evading antibacterial mechanisms in phagocytic cells. Both the macrophage and pathogen experience transcriptional and metabolic changes from the onset of phagocytosis. To account for this interaction in the assessment of intracellular drug susceptibility, we allowed a 3-day preadaptation phase post-macrophage infection prior to drug treatment. We found that intracellular Mtb in human monocyte-derived macrophages (MDM) presents dramatic alterations in susceptibility to isoniazid, sutezolid, rifampicin and rifapentine when compared to axenic culture. Infected MDM gradually accumulate lipid bodies, adopting a characteristic appearance reminiscent of foamy macrophages in granulomas. Furthermore, TB granulomas in vivo develop hypoxic cores with decreasing oxygen tension gradients across their radii. Accordingly, we evaluated the effects of hypoxia on preadapted intracellular Mtb in our MDM model. We observed that hypoxia induced greater lipid body formation and no additional shifts in drug tolerance, suggesting that the adaptation of intracellular Mtb to baseline host cell conditions under normoxia dominates changes to intracellular drug susceptibility. Using unbound plasma concentrations in patients as surrogates for free drug concentrations in lung interstitial fluid, we estimate that intramacrophage Mtb in granulomas are exposed to bacteriostatic concentrations of most study drugs.
Collapse
Affiliation(s)
- Faye Lanni
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States
| | - Gert-Jan Wijnant
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States
| | - Min Xie
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States
| | - Paulina Osiecki
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States; Hackensack School of Medicine, Department of Medical Sciences, 123, Metro Boulevard, Nutley, NJ, 07110, United States
| | - Jansy P Sarathy
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States.
| |
Collapse
|
31
|
Intranasal multivalent adenoviral-vectored vaccine protects against replicating and dormant M.tb in conventional and humanized mice. NPJ Vaccines 2023; 8:25. [PMID: 36823425 PMCID: PMC9948798 DOI: 10.1038/s41541-023-00623-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Viral-vectored vaccines are highly amenable for respiratory mucosal delivery as a means of inducing much-needed mucosal immunity at the point of pathogen entry. Unfortunately, current monovalent viral-vectored tuberculosis (TB) vaccine candidates have failed to demonstrate satisfactory clinical protective efficacy. As such, there is a need to develop next-generation viral-vectored TB vaccine strategies which incorporate both vaccine antigen design and delivery route. In this study, we have developed a trivalent chimpanzee adenoviral-vectored vaccine to provide protective immunity against pulmonary TB through targeting antigens linked to the three different growth phases (acute/chronic/dormancy) of Mycobacterium tuberculosis (M.tb) by expressing an acute replication-associated antigen, Ag85A, a chronically expressed virulence-associated antigen, TB10.4, and a dormancy/resuscitation-associated antigen, RpfB. Single-dose respiratory mucosal immunization with our trivalent vaccine induced robust, sustained tissue-resident multifunctional CD4+ and CD8+ T-cell responses within the lung tissues and airways, which were further quantitatively and qualitatively improved following boosting of subcutaneously BCG-primed hosts. Prophylactic and therapeutic immunization with this multivalent trivalent vaccine in conventional BALB/c mice provided significant protection against not only actively replicating M.tb bacilli but also dormant, non-replicating persisters. Importantly, when used as a booster, it also provided marked protection in the highly susceptible C3HeB/FeJ mice, and a single respiratory mucosal inoculation was capable of significant protection in a humanized mouse model. Our findings indicate the great potential of this next-generation TB vaccine strategy and support its further clinical development for both prophylactic and therapeutic applications.
Collapse
|
32
|
Kumar R, Kolloli A, Subbian S, Kaushal D, Shi L, Tyagi S. Imaging Architecture of Granulomas Induced by Mycobacterium tuberculosis Infections with Single-Molecule FISH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526702. [PMID: 36778404 PMCID: PMC9915589 DOI: 10.1101/2023.02.02.526702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Granulomas are an important hallmark of Mycobacterium tuberculosis (Mtb) infection. They are organized and dynamic structures created by an assembly of immune cells around the sites of infection in the lungs to locally restrict the bacterial growth and the host's inflammatory responses. The cellular architecture of granulomas is traditionally studied by immunofluorescence labeling of phenotypic surface markers. However, very few antibodies are available for model animals used in tuberculosis research, such as non-human primates and rabbits; secreted immunological markers such as cytokines cannot be imaged in situ using antibodies; and traditional phenotypic surface markers do not provide sufficient resolution for the detection of many subtypes and differentiation states of immune cells. Using single-molecule fluorescent in situ hybridization (smFISH) and its derivatives, amplified smFISH (ampFISH) and iterative smFISH, we developed a platform for imaging mRNAs encoding immune markers in rabbit and macaque tuberculosis granulomas. Multiplexed imaging for several mRNA and protein markers was followed by quantitative measurement of expression of these markers in single cells in situ. A quantitative analysis of combinatorial expressions of these markers allowed us to classify the cells into several subtypes and chart their distributions within granulomas. For one mRNA target, HIF-1α, we were able to image its mRNA and protein in the same cells, demonstrating the specificity of probes. This method paves the way for defining granular differentiation states and cell subtypes from transcriptomic data, identifying key mRNA markers for these cell subtypes, and then locating the cells in the spatial context of granulomas.
Collapse
Affiliation(s)
- Ranjeet Kumar
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Afsal Kolloli
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| |
Collapse
|
33
|
Dal NJK, Schäfer G, Thompson AM, Schmitt S, Redinger N, Alonso-Rodriguez N, Johann K, Ojong J, Wohlmann J, Best A, Koynov K, Zentel R, Schaible UE, Griffiths G, Barz M, Fenaroli F. Π-Π interactions stabilize PeptoMicelle-based formulations of Pretomanid derivatives leading to promising therapy against tuberculosis in zebrafish and mouse models. J Control Release 2023; 354:851-868. [PMID: 36681282 DOI: 10.1016/j.jconrel.2023.01.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/15/2022] [Accepted: 01/14/2023] [Indexed: 01/23/2023]
Abstract
Tuberculosis is the deadliest bacterial disease globally, threatening the lives of millions every year. New antibiotic therapies that can shorten the duration of treatment, improve cure rates, and impede the development of drug resistance are desperately needed. Here, we used polymeric micelles to encapsulate four second-generation derivatives of the antitubercular drug pretomanid that had previously displayed much better in vivo activity against Mycobacterium tuberculosis than pretomanid itself. Because these compounds were relatively hydrophobic and had limited bioavailability, we expected that their micellar formulations would overcome these limitations, reduce toxicities, and improve therapeutic outcomes. The polymeric micelles were based on polypept(o)ides (PeptoMicelles) and were stabilized in their hydrophobic core by π-π interactions, allowing the efficient encapsulation of aromatic pretomanid derivatives. The stability of these π-π-stabilized PeptoMicelles was demonstrated in water, blood plasma, and lung surfactant by fluorescence cross-correlation spectroscopy and was further supported by prolonged circulation times of several days in the vasculature of zebrafish larvae. The most efficacious PeptoMicelle formulation tested in the zebrafish larvae infection model almost completely eradicated the bacteria at non-toxic doses. This lead formulation was further assessed against Mycobacterium tuberculosis in the susceptible C3HeB/FeJ mouse model, which develops human-like necrotic granulomas. Following intravenous administration, the drug-loaded PeptoMicelles significantly reduced bacterial burden and inflammatory responses in the lungs and spleens of infected mice.
Collapse
Affiliation(s)
- Nils-Jørgen K Dal
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Gabriela Schäfer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany; Leiden Academic Center for Drug Research (LACDR), Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Andrew M Thompson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Sascha Schmitt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Natalja Redinger
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Program Area Infections, Div. Cellular Microbiology; University of Lübeck, Immunochemistry and Biochemical Microbiology, & German Center for Infection Research, partner site Hamburg-Lübeck - Borstel - Riems, 23845 Borstel, Germany
| | | | - Kerstin Johann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jessica Ojong
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Program Area Infections, Div. Cellular Microbiology; University of Lübeck, Immunochemistry and Biochemical Microbiology, & German Center for Infection Research, partner site Hamburg-Lübeck - Borstel - Riems, 23845 Borstel, Germany
| | - Jens Wohlmann
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Andreas Best
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Rudolf Zentel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Ulrich E Schaible
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Program Area Infections, Div. Cellular Microbiology; University of Lübeck, Immunochemistry and Biochemical Microbiology, & German Center for Infection Research, partner site Hamburg-Lübeck - Borstel - Riems, 23845 Borstel, Germany
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Matthias Barz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany; Leiden Academic Center for Drug Research (LACDR), Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands.
| | - Federico Fenaroli
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway; Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway.
| |
Collapse
|
34
|
Greenstein T, Aldridge BB. Tools to develop antibiotic combinations that target drug tolerance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2023; 12:1085946. [PMID: 36733851 PMCID: PMC9888313 DOI: 10.3389/fcimb.2022.1085946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/08/2023] Open
Abstract
Combination therapy is necessary to treat tuberculosis to decrease the rate of disease relapse and prevent the acquisition of drug resistance, and shorter regimens are urgently needed. The adaptation of Mycobacterium tuberculosis to various lesion microenvironments in infection induces various states of slow replication and non-replication and subsequent antibiotic tolerance. This non-heritable tolerance to treatment necessitates lengthy combination therapy. Therefore, it is critical to develop combination therapies that specifically target the different types of drug-tolerant cells in infection. As new tools to study drug combinations earlier in the drug development pipeline are being actively developed, we must consider how to best model the drug-tolerant cells to use these tools to design the best antibiotic combinations that target those cells and shorten tuberculosis therapy. In this review, we discuss the factors underlying types of drug tolerance, how combination therapy targets these populations of bacteria, and how drug tolerance is currently modeled for the development of tuberculosis multidrug therapy. We highlight areas for future studies to develop new tools that better model drug tolerance in tuberculosis infection specifically for combination therapy testing to bring the best drug regimens forward to the clinic.
Collapse
Affiliation(s)
- Talia Greenstein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA, United States
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, United States
| |
Collapse
|
35
|
Sriram D, Wahi R, Maggioncalda EC, Panthi CM, Lamichhane G. Clofazimine as a comparator for preclinical efficacy evaluations of experimental therapeutics against pulmonary M. abscessus infection in mice. Tuberculosis (Edinb) 2022; 137:102268. [PMID: 36228452 PMCID: PMC10739713 DOI: 10.1016/j.tube.2022.102268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Mycobacteroides abscessus (Mab, also known as Mycobacterium abscessus) can cause chronic pulmonary disease in the setting of structural lung conditions. Current treatment recommendations require at least one year of daily therapy with repurposed antibiotics. Yet these therapies are often ineffective and associated with significant adverse events. To address this challenge, research efforts are underway to develop new antibiotics and regimens. During the preclinical phase of treatment development, experimental agents require testing and comparison alongside positive controls that are known agents with clinical history. As there are no FDA approved treatments for this indication, here, we have considered repurposed antibiotics currently included in the recommendation for treating Mab disease as candidates for selection of an ideal standard comparator that can serve as a positive control in preclinical studies. Clofazimine meets the criteria for an ideal positive control as it can be administered via the least invasive route, requires only once-daily dosing, is well tolerated, and is widely available in high purity from independent sources. Using a mouse model of pulmonary Mab disease, we assessed for ideal dosages of clofazimine in C3HeB/FeJ and BALB/c mice in a six-week treatment window. Clofazimine, 25 mg/kg, once daily, produced desired reduction in Mab burden in the lungs of C3HeB/FeJ and BALB/c mice. Based on these findings, we conclude that clofazimine meets the criteria for a positive control comparator in mice for use in preclinical efficacy assessments of agents for treatment of Mab pulmonary disease. Although not included in the current standard-of-care for treating Mab disease, rifabutin, 20 mg/kg, also produced desired reduction in Mab lung burden in C3HeB/FeJ mice but not in BALB/c mice. IMPORTANCE: Mycobacteroides abscessus can cause life-threatening infections in patients with chronic lung conditions. New treatments are needed as cure rate using existing drugs is low. During pre-clinical phase of treatment development, it is important to compare the efficacy of the experimental drug against existing ones with known history. Here, we demonstrate that clofazimine, one of the antibiotics repurposed for treating Mab disease, can serve as a positive control comparator for efficacy assessments of experimental drugs and regimens to treat M. abscessus disease in mice.
Collapse
Affiliation(s)
- Divya Sriram
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Rishi Wahi
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Emily C Maggioncalda
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Chandra M Panthi
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.
| |
Collapse
|
36
|
Mycobacterium tuberculosis Dormancy: How to Fight a Hidden Danger. Microorganisms 2022; 10:microorganisms10122334. [PMID: 36557586 PMCID: PMC9784227 DOI: 10.3390/microorganisms10122334] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Both latent and active TB infections are caused by a heterogeneous population of mycobacteria, which includes actively replicating and dormant bacilli in different proportions. Dormancy substantially affects M. tuberculosis drug tolerance and TB clinical management due to a significant decrease in the metabolic activity of bacilli, which leads to the complexity of both the diagnosis and the eradication of bacilli. Most diagnostic approaches to latent infection deal with a subpopulation of active M. tuberculosis, underestimating the contribution of dormant bacilli and leading to limited success in the fight against latent TB. Moreover, active TB appears not only as a primary form of infection but can also develop from latent TB, when resuscitation from dormancy is followed by bacterial multiplication, leading to disease progression. To win against latent infection, the identification of the Achilles' heel of dormant M. tuberculosis is urgently needed. Regulatory mechanisms and metabolic adaptation to growth arrest should be studied using in vitro and in vivo models that adequately imitate latent TB infection in macroorganisms. Understanding the mechanisms underlying M. tuberculosis dormancy and resuscitation may provide clues to help control latent infection, reduce disease severity in patients, and prevent pathogen transmission in the population.
Collapse
|
37
|
Jeon SM, Kim YJ, Nguyen TQ, Cui J, Thi Bich Hanh B, Silwal P, Kim JK, Kim JM, Oh DC, Jang J, Jo EK. Ohmyungsamycin Promotes M1-like Inflammatory Responses to Enhance Host Defense against Mycobacteroides abscessus Infections. Virulence 2022; 13:1966-1984. [PMID: 36271707 DOI: 10.1080/21505594.2022.2138009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Ohmyungsamycin A (OMS) is a newly identified cyclic peptide that exerts antimicrobial effects against Mycobacterium tuberculosis. However, its role in nontuberculous mycobacteria (NTMs) infections has not been clarified. Mycobacteroides abscessus (Mabc) is a rapidly growing NTM that has emerged as a human pathogen in both immunocompetent and immunosuppressed individuals. In this study, we demonstrated that OMS had significant antimicrobial effects against Mabc infection in both immunocompetent and immunodeficient mice, and in macrophages. OMS treatment amplified Mabc-induced expression of M1-related proinflammatory cytokines and inducible nitric oxide synthase, and significantly downregulated arginase-1 expression in murine macrophages. In addition, OMS augmented Mabc-mediated production of mitochondrial reactive oxygen species (mtROS), which promoted M1-like proinflammatory responses in Mabc-infected macrophages. OMS-induced production of mtROS and nitric oxide was critical for OMS-mediated antimicrobial responses during Mabc infections. Notably, the combination of OMS and rifabutin had a synergistic effect on the antimicrobial responses against Mabc infections in vitro, in murine macrophages, and in zebrafish models in vivo. Collectively, these data strongly suggest that OMS may be an effective M1-like adjunctive therapeutic against Mabc infections, either alone or in combination with antibiotics.
Collapse
Affiliation(s)
- Sang Min Jeon
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Thanh Quang Nguyen
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Jinsheng Cui
- Department of Microbiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Bui Thi Bich Hanh
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University,Jinju, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
38
|
Paik S, Kim KT, Kim IS, Kim YJ, Kim HJ, Choi S, Kim HJ, Jo EK. Mycobacterial acyl carrier protein suppresses TFEB activation and upregulates miR-155 to inhibit host defense. Front Immunol 2022; 13:946929. [PMID: 36248815 PMCID: PMC9559204 DOI: 10.3389/fimmu.2022.946929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Mycobacterial acyl carrier protein (AcpM; Rv2244), a key protein involved in Mycobacterium tuberculosis (Mtb) mycolic acid production, has been shown to suppress host cell death during mycobacterial infection. This study reports that mycobacterial AcpM works as an effector to subvert host defense and promote bacterial growth by increasing microRNA (miRNA)-155-5p expression. In murine bone marrow-derived macrophages (BMDMs), AcpM protein prevented transcription factor EB (TFEB) from translocating to the nucleus in BMDMs, which likely inhibited transcriptional activation of several autophagy and lysosomal genes. Although AcpM did not suppress autophagic flux in BMDMs, AcpM reduced Mtb and LAMP1 co-localization indicating that AcpM inhibits phagolysosomal fusion during Mtb infection. Mechanistically, AcpM boosted the Akt-mTOR pathway in BMDMs by upregulating miRNA-155-5p, a SHIP1-targeting miRNA. When miRNA-155-5p expression was inhibited in BMDMs, AcpM-induced increased intracellular survival of Mtb was suppressed. In addition, AcpM overexpression significantly reduced mycobacterial clearance in C3HeB/FeJ mice infected with recombinant M. smegmatis strains. Collectively, our findings point to AcpM as a novel mycobacterial effector to regulate antimicrobial host defense and a potential new therapeutic target for Mtb infection.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- *Correspondence: Seungwha Paik, ; Eun-Kyeong Jo,
| | - Kyeong Tae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - In Soo Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hyeon Ji Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seunga Choi
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
- *Correspondence: Seungwha Paik, ; Eun-Kyeong Jo,
| |
Collapse
|
39
|
Seto S, Nakamura H, Guo TC, Hikichi H, Wakabayashi K, Miyabayashi A, Nagata T, Hijikata M, Keicho N. Spatial multiomic profiling reveals the novel polarization of foamy macrophages within necrotic granulomatous lesions developed in lungs of C3HeB/FeJ mice infected with Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:968543. [PMID: 36237431 PMCID: PMC9551193 DOI: 10.3389/fcimb.2022.968543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Infection with Mycobacterium tuberculosis leads to the development of tuberculosis (TB) with the formation of granulomatous lesions. Foamy macrophages (FM) are a hallmark of TB granulomas, because they provide the primary platform of M. tuberculosis proliferation and the main source of caseous necrosis. In this study, we applied spatial multiomic profiling to identify the signatures of FM within the necrotic granulomas developed in a mouse model resembling human TB histopathology. C3HeB/FeJ mice were infected with M. tuberculosis to induce the formation of necrotic granulomas in the lungs. Using laser microdissection, necrotic granulomas were fractionated into three distinct regions, including the central caseous necrosis, the rim containing FM, and the peripheral layer of macrophages and lymphocytes, and subjected to proteomic and transcriptomic analyses. Comparison of proteomic and transcriptomic analyses of three distinct granulomatous regions revealed that four proteins/genes are commonly enriched in the rim region. Immunohistochemistry confirmed the localization of identified signatures to the rim of necrotic granulomas. We also investigated the localization of the representative markers for M1 macrophages in granulomas because the signatures of the rim included M2 macrophage markers. The localization of both macrophage markers suggests that FM in necrotic granulomas possessed the features of M1 or M2 macrophages. Gene set enrichment analysis of transcriptomic profiling revealed the upregulation of genes related to M2 macrophage activation and mTORC1 signaling in the rim. These results will provide new insights into the process of FM biogenesis, leading to further understanding of the pathophysiology of TB granulomas.
Collapse
Affiliation(s)
- Shintaro Seto
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- *Correspondence: Shintaro Seto,
| | - Hajime Nakamura
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Tz-Chun Guo
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Haruka Hikichi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Keiko Wakabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Akiko Miyabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Toshi Nagata
- Department of Health Science, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Naoto Keicho
- Vice Director, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| |
Collapse
|
40
|
Parbhoo T, Mouton JM, Sampson SL. Phenotypic adaptation of Mycobacterium tuberculosis to host-associated stressors that induce persister formation. Front Cell Infect Microbiol 2022; 12:956607. [PMID: 36237425 PMCID: PMC9551238 DOI: 10.3389/fcimb.2022.956607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium tuberculosis exhibits a remarkable ability to interfere with the host antimicrobial response. The pathogen exploits elaborate strategies to cope with diverse host-induced stressors by modulating its metabolism and physiological state to prolong survival and promote persistence in host tissues. Elucidating the adaptive strategies that M. tuberculosis employs during infection to enhance persistence is crucial to understanding how varying physiological states may differentially drive disease progression for effective management of these populations. To improve our understanding of the phenotypic adaptation of M. tuberculosis, we review the adaptive strategies employed by M. tuberculosis to sense and coordinate a physiological response following exposure to various host-associated stressors. We further highlight the use of animal models that can be exploited to replicate and investigate different aspects of the human response to infection, to elucidate the impact of the host environment and bacterial adaptive strategies contributing to the recalcitrance of infection.
Collapse
|
41
|
Asai M, Li Y, Spiropoulos J, Cooley W, Everest DJ, Kendall SL, Martín C, Robertson BD, Langford PR, Newton SM. Galleria mellonella as an infection model for the virulent Mycobacterium tuberculosis H37Rv. Virulence 2022; 13:1543-1557. [PMID: 36052440 PMCID: PMC9481108 DOI: 10.1080/21505594.2022.2119657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a leading cause of infectious disease mortality. Animal infection models have contributed substantially to our understanding of TB, yet their biological and non-biological limitations are a research bottleneck. There is a need for more ethically acceptable, economical, and reproducible TB infection models capable of mimicking key aspects of disease. Here, we demonstrate and present a basic description of how Galleria mellonella (the greater wax moth, Gm) larvae can be used as a low cost, rapid, and ethically more acceptable model for TB research. This is the first study to infect Gm with the fully virulent MTB H37Rv, the most widely used strain in research. Infection of Gm with MTB resulted in a symptomatic lethal infection, the virulence of which differed from both attenuated Mycobacterium bovis BCG and auxotrophic MTB strains. The Gm-MTB model can also be used for anti-TB drug screening, although CFU enumeration from Gm is necessary for confirmation of mycobacterial load reducing activity of the tested compound. Furthermore, comparative virulence of MTB isogenic mutants can be determined in Gm. However, comparison of mutant phenotypes in Gm against conventional models must consider the limitations of innate immunity. Our findings indicate that Gm will be a practical, valuable, and advantageous additional model to be used alongside existing models to advance tuberculosis research.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, UK
| | - Yanwen Li
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, UK
| | - John Spiropoulos
- Department of Pathology, Animal and Plant Health Agency, Addlestone, UK
| | - William Cooley
- Department of Pathology, Animal and Plant Health Agency, Addlestone, UK
| | - David J Everest
- Department of Pathology, Animal and Plant Health Agency, Addlestone, UK
| | - Sharon L Kendall
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hartfield, UK
| | - Carlos Martín
- Department of Microbiology, Facultad de Medicina Universidad de Zaragoza, CIBERES, (ISCIII), Spain
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, UK
| | - Paul R Langford
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, UK
| | - Sandra M Newton
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
42
|
Comparing Current and Next-generation Humanized Mouse Models for Advancing HIV and HIV/Mtb Co-infection Studies. Viruses 2022; 14:v14091927. [PMID: 36146734 PMCID: PMC9500899 DOI: 10.3390/v14091927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
In people living with HIV, Mycobacterium tuberculosis (Mtb) is the major cause of death. Due to the increased morbidity/mortality in co-infection, further research is urgently required. A limiting factor to research in HIV and HIV/Mtb co-infection is the lack of accessible in vivo models. Next-generation humanized mice expressing HLA transgenes report improved human immune reconstitution and functionality, which may better recapitulate human disease. This study compares well-established huNRG mice and next-generation HLA I/II-transgenic (huDRAG-A2) mice for immune reconstitution, disease course, and pathology in HIV and TB. HuDRAG-A2 mice have improved engraftment of key immune cell types involved in HIV and TB disease. Upon intravaginal HIV-1 infection, both models developed significant HIV target cell depletion in the blood and tissues. Upon intranasal Mtb infection, both models sustained high bacterial load within the lungs and tissue dissemination. Some huDRAG-A2 granulomas appeared more classically organized, characterized by focal central necrosis, multinucleated giant cells, and foamy macrophages surrounded by a halo of CD4+ T cells. HIV/Mtb co-infection in huNRG mice trended towards worsened TB pathology and showed potential for modeling co-infection. Both huNRG and huDRAG-A2 mice are viable options for investigating HIV and TB, but the huDRAG-A2 model may offer advantages.
Collapse
|
43
|
Magoulopoulou A, Qian X, Pediatama Setiabudiawan T, Marco Salas S, Yokota C, Rottenberg ME, Nilsson M, Carow B. Spatial Resolution of Mycobacterium tuberculosis Bacteria and Their Surrounding Immune Environments Based on Selected Key Transcripts in Mouse Lungs. Front Immunol 2022; 13:876321. [PMID: 35663950 PMCID: PMC9157500 DOI: 10.3389/fimmu.2022.876321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) bacilli are the causative agent of tuberculosis (TB), a major killer of mankind. Although it is widely accepted that local interactions between Mtb and the immune system in the tuberculous granuloma determine whether the outcome of infection is controlled or disseminated, these have been poorly studied due to methodological constraints. We have recently used a spatial transcriptomic technique, in situ sequencing (ISS), to define the spatial distribution of immune transcripts in TB mouse lungs. To further contribute to the understanding of the immune microenvironments of Mtb and their local diversity, we here present two complementary automated bacteria-guided analysis pipelines. These position 33 ISS-identified immune transcripts in relation to single bacteria and bacteria clusters. The analysis was applied on new ISS data from lung sections of Mtb-infected C57BL/6 and C3HeB/FeJ mice. In lungs from C57BL/6 mice early and late post infection, transcripts that define inflammatory macrophages were enriched at subcellular distances to bacteria, indicating the activation of infected macrophages. In contrast, expression patterns associated to antigen presentation were enriched in non-infected cells at 12 weeks post infection. T-cell transcripts were evenly distributed in the tissue. In Mtb-infected C3HeB/FeJ mice, transcripts characterizing activated macrophages localized in apposition to small bacteria clusters, but not in organized granulomas. Despite differences in the susceptibility to Mtb, the transcript patterns found around small bacteria clusters of C3HeB/FeJ and C57BL/6 mice were similar. Altogether, the presented tools allow us to characterize in depth the immune cell populations and their activation that interact with Mtb in the infected lung.
Collapse
Affiliation(s)
- Anastasia Magoulopoulou
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Xiaoyan Qian
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Todia Pediatama Setiabudiawan
- Department of Microbiology, Tumor and Cell Biology and Centre for Tuberculosis Research, Karolinska Institutet, Solna, Sweden
| | - Sergio Marco Salas
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Chika Yokota
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Martin E Rottenberg
- Department of Microbiology, Tumor and Cell Biology and Centre for Tuberculosis Research, Karolinska Institutet, Solna, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Berit Carow
- Department of Microbiology, Tumor and Cell Biology and Centre for Tuberculosis Research, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
44
|
Fernandes GFS, Thompson AM, Castagnolo D, Denny WA, Dos Santos JL. Tuberculosis Drug Discovery: Challenges and New Horizons. J Med Chem 2022; 65:7489-7531. [PMID: 35612311 DOI: 10.1021/acs.jmedchem.2c00227] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past 2000 years, tuberculosis (TB) has claimed more lives than any other infectious disease. In 2020 alone, TB was responsible for 1.5 million deaths worldwide, comparable to the 1.8 million deaths caused by COVID-19. The World Health Organization has stated that new TB drugs must be developed to end this pandemic. After decades of neglect in this field, a renaissance era of TB drug discovery has arrived, in which many novel candidates have entered clinical trials. However, while hundreds of molecules are reported annually as promising anti-TB agents, very few successfully progress to clinical development. In this Perspective, we critically review those anti-TB compounds published in the last 6 years that demonstrate good in vivo efficacy against Mycobacterium tuberculosis. Additionally, we highlight the main challenges and strategies for developing new TB drugs and the current global pipeline of drug candidates in clinical studies to foment fresh research perspectives.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Andrew M Thompson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - William A Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil
| |
Collapse
|
45
|
GSK2556286 Is a Novel Antitubercular Drug Candidate Effective In Vivo with the Potential To Shorten Tuberculosis Treatment. Antimicrob Agents Chemother 2022; 66:e0013222. [PMID: 35607978 DOI: 10.1128/aac.00132-22] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
As a result of a high-throughput compound screening campaign using Mycobacterium tuberculosis-infected macrophages, a new drug candidate for the treatment of tuberculosis has been identified. GSK2556286 inhibits growth within human macrophages (50% inhibitory concentration [IC50] = 0.07 μM), is active against extracellular bacteria in cholesterol-containing culture medium, and exhibits no cross-resistance with known antitubercular drugs. In addition, it has shown efficacy in different mouse models of tuberculosis (TB) and has an adequate safety profile in two preclinical species. These features indicate a compound with a novel mode of action, although still not fully defined, that is effective against both multidrug-resistant (MDR) or extensively drug-resistant (XDR) and drug-sensitive (DS) M. tuberculosis with the potential to shorten the duration of treatment in novel combination drug regimens. (This study has been registered at ClinicalTrials.gov under identifier NCT04472897).
Collapse
|
46
|
Dubé JY, McIntosh F, Behr MA. Mice Dually Disrupted for Nod2 and Mincle Manifest Early Bacteriological Control but Late Susceptibility During Mycobacterium tuberculosis Infection. Front Immunol 2022; 13:862992. [PMID: 35418999 PMCID: PMC8995500 DOI: 10.3389/fimmu.2022.862992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Pattern recognition receptors Mincle and NOD2 have been implicated in mycobacterial immunity. However, knockout (KO) animal infection studies with Mycobacterium tuberculosis (Mtb) have had mild/delayed phenotypes. Given that genetic susceptibility to infectious diseases can be polygenic, we hypothesized that murine double knockout (DKO) of Mincle and Nod2 would result in exacerbation of altered immunity to mycobacterial infection leading to a more extreme phenotype than either KO alone. To test this hypothesis, we monitored bacterial burden, immune responses and survival following in vivo infections with Mtb in DKO mice for comparison to wildtype (WT) and single KOs. Bacterial burden and immune responses were not significantly affected at 3 and 6 weeks after infection in all mutant mice. At later timepoints, Nod2-KO mice had reduced survival compared to wildtype mice, and Mincle-KO survival was intermediate. Unexpectedly, dual disruption had no further effect; rather, DKO mice phenocopied Nod2-KO mice. We observed that Mtb-related death, exclusively in mice with disrupted Nod2, was accompanied by greater pulmonary cell death and distinct large necrotic foci. Therefore, determining how these receptors contribute to mycobacterial resistance will require analysis of immunophenotypes and their consequences on host pathology.
Collapse
Affiliation(s)
- Jean-Yves Dubé
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,McGill International TB Centre, Montréal, QC, Canada
| | - Fiona McIntosh
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,McGill International TB Centre, Montréal, QC, Canada
| | - Marcel A Behr
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,McGill International TB Centre, Montréal, QC, Canada.,Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
47
|
Chung ES, Johnson WC, Aldridge BB. Types and functions of heterogeneity in mycobacteria. Nat Rev Microbiol 2022; 20:529-541. [PMID: 35365812 DOI: 10.1038/s41579-022-00721-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/24/2022]
Abstract
The remarkable ability of Mycobacterium tuberculosis to survive attacks from the host immune response and drug treatment is due to the resilience of a few bacilli rather than a result of survival of the entire population. Maintenance of mycobacterial subpopulations with distinct phenotypic characteristics is key for survival in the face of dynamic and variable stressors encountered during infection. Mycobacterial populations develop a wide range of phenotypes through an innate asymmetric growth pattern and adaptation to fluctuating microenvironments during infection that point to heterogeneity being a vital survival strategy. In this Review, we describe different types of mycobacterial heterogeneity and discuss how heterogeneity is generated and regulated in response to environmental cues. We discuss how this heterogeneity may have a key role in recording memory of their environment at both the single-cell level and the population level to give mycobacterial populations plasticity to withstand complex stressors.
Collapse
Affiliation(s)
- Eun Seon Chung
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - William C Johnson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Tufts University School of Graduate Biomedical Sciences, Boston, MA, USA
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA. .,Tufts University School of Graduate Biomedical Sciences, Boston, MA, USA. .,Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA, USA. .,Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, USA.
| |
Collapse
|
48
|
Lavin RC, Tan S. Spatial relationships of intra-lesion heterogeneity in Mycobacterium tuberculosis microenvironment, replication status, and drug efficacy. PLoS Pathog 2022; 18:e1010459. [PMID: 35344572 PMCID: PMC8989358 DOI: 10.1371/journal.ppat.1010459] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/07/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
A hallmark of Mycobacterium tuberculosis (Mtb) infection is the marked heterogeneity that exists, spanning lesion type differences to microenvironment changes as infection progresses. A mechanistic understanding of how this heterogeneity affects Mtb growth and treatment efficacy necessitates single bacterium level studies in the context of intact host tissue architecture; however, such an evaluation has been technically challenging. Here, we exploit fluorescent reporter Mtb strains and the C3HeB/FeJ murine model in an integrated imaging approach to study microenvironment heterogeneity within a single lesion in situ, and analyze how these differences relate to non-uniformity in Mtb replication state, activity, and drug efficacy. We show that the pH and chloride environments differ spatially even within a single caseous necrotic lesion, with increased acidity and chloride levels in the lesion cuff versus core. Strikingly, a higher percentage of Mtb in the lesion core versus cuff were in an actively replicating state, and correspondingly active in transcription/translation. Finally, examination of three first-line anti-tubercular drugs showed that isoniazid efficacy was conspicuously poor against Mtb in the lesion cuff. Our study reveals spatial relationships of intra-lesion heterogeneity, sheds light on important considerations in anti-tubercular treatment strategies, and establishes a foundational framework for Mtb infection heterogeneity analysis at the single bacterium level in situ.
Collapse
Affiliation(s)
- Richard C. Lavin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
49
|
Nguyen TK, Niaz Z, Kruzel ML, Actor JK. Recombinant Human Lactoferrin Reduces Inflammation and Increases Fluoroquinolone Penetration to Primary Granulomas During Mycobacterial Infection of C57Bl/6 Mice. Arch Immunol Ther Exp (Warsz) 2022; 70:9. [PMID: 35226195 PMCID: PMC8922470 DOI: 10.1007/s00005-022-00648-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022]
Abstract
Infection with Mycobacterium tuberculosis (Mtb) results in the primary formation of a densely packed inflammatory foci that limits entry of therapeutic agents into pulmonary sites where organisms reside. No current therapeutic regimens exist that modulate host immune responses to permit increased drug penetration to regions of pathological damage during tuberculosis disease. Lactoferrin is a natural iron-binding protein previously demonstrated to modulate inflammation and granuloma cohesiveness, while maintaining control of pathogenic burden. Studies were designed to examine recombinant human lactoferrin (rHLF) to modulate histological progression of Mtb-induced pathology in a non-necrotic model using C57Bl/6 mice. The rHLF was oral administered at times corresponding to initiation of primary granulomatous response, or during granuloma maintenance. Treatment with rHLF demonstrated significant reduction in size of primary inflammatory foci following Mtb challenge, and permitted penetration of ofloxacin fluoroquinolone therapeutic to sites of pathological disruption where activated (foamy) macrophages reside. Increased drug penetration was accompanied by retention of endothelial cell integrity. Immunohistochemistry revealed altered patterns of M1-like and M2-like phenotypic cell localization post infectious challenge, with increased presence of M2-like markers found evenly distributed throughout regions of pulmonary inflammatory foci in rHLF-treated mice.
Collapse
Affiliation(s)
- Thao K.T. Nguyen
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA,The University of Texas MD Anderson Cancer Center – UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Zainab Niaz
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Marian L. Kruzel
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Jeffrey K. Actor
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| |
Collapse
|
50
|
Evaluation of Myeloperoxidase as Target for Host-Directed Therapy in Tuberculosis In Vivo. Int J Mol Sci 2022; 23:ijms23052554. [PMID: 35269694 PMCID: PMC8910451 DOI: 10.3390/ijms23052554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022] Open
Abstract
Due to the rise of tuberculosis cases infected with multi and extensively drug-resistant Mycobacterium tuberculosis strains and the emergence of isolates resistant to antibiotics newly in clinical use, host-directed therapies targeting pathogenesis-associated immune pathways adjunct to antibiotics may ameliorate disease and bacterial clearance. Active tuberculosis is characterized by neutrophil-mediated lung pathology and tissue destruction. Previously, we showed that preventing M. tuberculosis induced necrosis in human neutrophils by inhibition of myeloperoxidase (MPO) promoted default apoptosis and subsequent control of mycobacteria by macrophages taking up the mycobacteria-infected neutrophils. To translate our findings in an in vivo model, we tested the MPO inhibitor 4-aminobenzoic acid hydrazide (ABAH) in C3HeB/FeJ mice, which are highly susceptible to M. tuberculosis infection manifesting in neutrophil-associated necrotic granulomas. MPO inhibition alone or as co-treatment with isoniazid, a first-line antibiotic in tuberculosis treatment, did not result in reduced bacterial burden, improved pathology, or altered infiltrating immune cell compositions. MPO inhibition failed to prevent M. tuberculosis induced neutrophil necrosis in C3Heb/FeJ mice in vivo as well as in murine neutrophils in vitro. In contrast to human neutrophils, murine neutrophils do not respond to M. tuberculosis infection in an MPO-dependent manner. Thus, the murine C3HeB/FeJ model does not fully resemble the pathomechanisms in active human tuberculosis. Consequently, murine infection models of tuberculosis are not necessarily adequate to evaluate host-directed therapies targeting neutrophils in vivo.
Collapse
|