1
|
Kucharski M, Nayak S, Gendrot M, Dondorp AM, Bozdech Z. Peeling the onion: how complex is the artemisinin resistance genetic trait of malaria parasites? Trends Parasitol 2024:S1471-4922(24)00245-9. [PMID: 39358163 DOI: 10.1016/j.pt.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
The genetics of Plasmodium as an intracellular, mostly haploid, sexually reproducing, eukaryotic organism with a complex life cycle, presents unprecedented challenges in studying drug resistance. This article summarizes current knowledge on the genetic basis of artemisinin resistance (AR) - a main component of current drug therapies for falciparum malaria. Although centered on nonsynonymous single-nucleotide polymorphisms (nsSNPs), we describe multifaceted resistance mechanisms as part of a complex, cumulative genetic trait that involves regulation of expression by a wide array of polymorphisms in noncoding regions. These genetic variations alter transcriptome profiles linked to Plasmodium's development and population dynamics, ultimately influencing the emergence and spread of the resistance.
Collapse
Affiliation(s)
- Michal Kucharski
- School of Biological Sciences, Nanyang Technological University, Singapore; Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Sourav Nayak
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Mathieu Gendrot
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore; Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Watson SJ, van der Watt ME, Theron A, Reader J, Tshabalala S, Erlank E, Koekemoer LL, Naude M, Stampolaki M, Adewole F, Sadowska K, Pérez-Lozano P, Turcu AL, Vázquez S, Ko J, Mazurek B, Singh D, Malwal SR, Njoroge M, Chibale K, Onajole OK, Kolocouris A, Oldfield E, Birkholtz LM. The Tuberculosis Drug Candidate SQ109 and Its Analogs Have Multistage Activity against Plasmodium falciparum. ACS Infect Dis 2024; 10:3358-3367. [PMID: 39143042 PMCID: PMC11406516 DOI: 10.1021/acsinfecdis.4c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Toward repositioning the antitubercular clinical candidate SQ109 as an antimalarial, analogs were investigated for structure-activity relationships for activity against asexual blood stages of the human malaria parasite Plasmodium falciparum pathogenic forms, as well as transmissible, sexual stage gametocytes. We show that equipotent activity (IC50) in the 100-300 nM range could be attained for both asexual and sexual stages, with the activity of most compounds retained against a multidrug-resistant strain. The multistage activity profile relies on high lipophilicity ascribed to the adamantane headgroup, and antiplasmodial activity is critically dependent on the diamine linker. Frontrunner compounds showed conserved activity against genetically diverse southern African clinical isolates. We additionally validated that this series could block transmission to mosquitoes, marking these compounds as novel chemotypes with multistage antiplasmodial activity.
Collapse
Affiliation(s)
| | | | - Anjo Theron
- Next Generation Health, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | | | | | - Erica Erlank
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Johannesburg 2000, South Africa
| | - Lizette L Koekemoer
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Johannesburg 2000, South Africa
| | | | - Marianna Stampolaki
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis-Zografou, 15771 Athens, Greece
| | - Feyisola Adewole
- Department of Biological, Physical and Health Sciences, College of Science, Health & Pharmacy, Roosevelt University, 425 South Wabash Avenue, Chicago, Illinois 60605, United States
| | - Katie Sadowska
- Department of Biological, Physical and Health Sciences, College of Science, Health & Pharmacy, Roosevelt University, 425 South Wabash Avenue, Chicago, Illinois 60605, United States
| | - Pilar Pérez-Lozano
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain
| | - Andreea L Turcu
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Jihee Ko
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ben Mazurek
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Davinder Singh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Satish R Malwal
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Capetown 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Capetown 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Centre, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Capetown 7701, South Africa
| | - Oluseye K Onajole
- Department of Biological, Physical and Health Sciences, College of Science, Health & Pharmacy, Roosevelt University, 425 South Wabash Avenue, Chicago, Illinois 60605, United States
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis-Zografou, 15771 Athens, Greece
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | |
Collapse
|
3
|
Chaumeau V, Wasisakun P, Watson JA, Oo T, Aryalamloed S, Sue MP, Htoo GN, Tha NM, Archusuksan L, Sawasdichai S, Gornsawun G, Mehra S, White NJ, Nosten FH. Transmission-blocking activities of artesunate, chloroquine, and methylene blue on Plasmodium vivax gametocytes. Antimicrob Agents Chemother 2024; 68:e0085324. [PMID: 39058023 PMCID: PMC11382624 DOI: 10.1128/aac.00853-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Plasmodium vivax is now the main cause of malaria outside Africa. The gametocytocidal effects of antimalarial drugs are important to reduce malaria transmissibility, particularly in low-transmission settings, but they are not well characterized for P. vivax. The transmission-blocking effects of chloroquine, artesunate, and methylene blue on P. vivax gametocytes were assessed. Blood specimens were collected from patients presenting with vivax malaria, incubated with or without the tested drugs, and then fed to mosquitos from a laboratory-adapted colony of Anopheles dirus (a major malaria vector in Southeast Asia). The effects on oocyst and sporozoite development were analyzed under a multi-level Bayesian model accounting for assay variability and the heterogeneity of mosquito Plasmodium infection. Artesunate and methylene blue, but not chloroquine, exhibited potent transmission-blocking effects. Gametocyte exposures to artesunate and methylene blue reduced the mean oocyst count 469-fold (95% CI: 345 to 650) and 1,438-fold (95% CI: 970 to 2,064), respectively. The corresponding estimates for the sporozoite stage were a 148-fold reduction (95% CI: 61 to 470) and a 536-fold reduction (95% CI: 246 to 1,311) in the mean counts, respectively. In contrast, high chloroquine exposures reduced the mean oocyst count only 1.40-fold (95% CI: 1.20 to 1.64) and the mean sporozoite count 1.34-fold (95% CI: 1.12 to 1.66). This suggests that patients with vivax malaria often remain infectious to anopheline mosquitos after treatment with chloroquine. Use of artemisinin combination therapies or immediate initiation of primaquine radical cure should reduce the transmissibility of P. vivax infections.
Collapse
Affiliation(s)
- Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
| | - Praphan Wasisakun
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - James A Watson
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Thidar Oo
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Sarang Aryalamloed
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Mu Phang Sue
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Gay Nay Htoo
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Naw Moo Tha
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Laypaw Archusuksan
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Sunisa Sawasdichai
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Gornpan Gornsawun
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Somya Mehra
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
| |
Collapse
|
4
|
Vareta J, Horstman NA, Adams M, Seydel KB, McCann RS, Cohee LM, Laufer MK, Takala-Harrison S. Genotyping Plasmodium falciparum gametocytes using amplicon deep sequencing. Malar J 2024; 23:96. [PMID: 38582837 PMCID: PMC10999092 DOI: 10.1186/s12936-024-04920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/27/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Understanding the dynamics of gametocyte production in polyclonal Plasmodium falciparum infections requires a genotyping method that detects distinct gametocyte clones and estimates their relative frequencies. Here, a marker was identified and evaluated to genotype P. falciparum mature gametocytes using amplicon deep sequencing. METHODS A data set of polymorphic regions of the P. falciparum genome was mined to identify a gametocyte genotyping marker. To assess marker resolution, the number of unique haplotypes in the marker region was estimated from 95 Malawian P. falciparum whole genome sequences. Specificity of the marker for detection of mature gametocytes was evaluated using reverse transcription-polymerase chain reaction of RNA extracted from NF54 mature gametocytes and rings from a non-gametocyte-producing strain of P. falciparum. Amplicon deep sequencing was performed on experimental mixtures of mature gametocytes from two distinct parasite clones, as well as gametocyte-positive P. falciparum field isolates to evaluate the quantitative ability and determine the limit of detection of the genotyping approach. RESULTS A 400 bp region of the pfs230 gene was identified as a gametocyte genotyping marker. A larger number of unique haplotypes was observed at the pfs230 marker (34) compared to the sera-2 (18) and ama-1 (14) markers in field isolates from Malawi. RNA and DNA genotyping accurately estimated gametocyte and total parasite clone frequencies when evaluating agreement between expected and observed haplotype frequencies in gametocyte mixtures, with concordance correlation coefficients of 0.97 [95% CI: 0.92-0.99] and 0.92 [95% CI: 0.83-0.97], respectively. The detection limit of the genotyping method for male gametocytes was 0.41 pfmget transcripts/µl [95% CI: 0.28-0.72] and for female gametocytes was 1.98 ccp4 transcripts/µl [95% CI: 1.35-3.68]. CONCLUSIONS A region of the pfs230 gene was identified as a marker to genotype P. falciparum gametocytes. Amplicon deep sequencing of this marker can be used to estimate the number and relative frequency of parasite clones among mature gametocytes within P. falciparum infections. This gametocyte genotyping marker will be an important tool for studies aimed at understanding dynamics of gametocyte production in polyclonal P. falciparum infections.
Collapse
Affiliation(s)
- Jimmy Vareta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Natalie A Horstman
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Adams
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Karl B Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Robert S McCann
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lauren M Cohee
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Miriam K Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Platon L, Ménard D. Plasmodium falciparum ring-stage plasticity and drug resistance. Trends Parasitol 2024; 40:118-130. [PMID: 38104024 DOI: 10.1016/j.pt.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Malaria is a life-threatening tropical disease caused by parasites of the genus Plasmodium, of which Plasmodium falciparum is the most lethal. Malaria parasites have a complex life cycle, with stages occurring in both the Anopheles mosquito vector and human host. Ring stages are the youngest form of the parasite in the intraerythrocytic developmental cycle and are associated with evasion of spleen clearance, temporary growth arrest (TGA), and drug resistance. This formidable ability to survive and develop into mature, sexual, or growth-arrested forms demonstrates the inherent population heterogeneity. Here we highlight the role of the ring stage as a crossroads in parasite development and as a reservoir of surviving cells in the human host via TGA survival mechanisms.
Collapse
Affiliation(s)
- Lucien Platon
- Institut Pasteur, Université Paris Cité, Malaria Genetics and Resistance Unit, INSERM U1201, F-75015 Paris, France; Sorbonne Université, Collège Doctoral ED 515 Complexité du Vivant, F-75015 Paris, France; Université de Strasbourg, Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, F-67000 Strasbourg, France.
| | - Didier Ménard
- Institut Pasteur, Université Paris Cité, Malaria Genetics and Resistance Unit, INSERM U1201, F-75015 Paris, France; Institut Pasteur, Université Paris Cité, Malaria Parasite Biology and Vaccines Unit, F-75015 Paris, France; Université de Strasbourg, Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, F-67000 Strasbourg, France; CHU Strasbourg, Laboratory of Parasitology and Medical Mycology, F-67000 Strasbourg, France.
| |
Collapse
|
6
|
do Nascimento Martinez L, Silva DC, Brilhante-da-Silva N, da Silva Rodrigues FL, de Lima AA, Tada MS, Costa JDN. Monitoring the density of Plasmodium spp. gametocytes in isolates from patient samples in the region of Porto Velho, Rondônia. 3 Biotech 2023; 13:405. [PMID: 37987025 PMCID: PMC10657340 DOI: 10.1007/s13205-023-03822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/06/2023] [Indexed: 11/22/2023] Open
Abstract
Gametocytes are the forms of the malaria parasite that are essential for the continuation of the transmission cycle to the vector Anopheles. This study aimed to evaluate the parasite density of Plasmodium spp gametocytes in samples from patients in the region of Porto Velho, Rondônia. Slides containing patient samples were selected from users who sought out care at the Center for Research in Tropical Medicine (CEPEM) during the period from January to December 2016. Samples of Plasmodium vivax and Plasmodium falciparum were selected for analysis of their respective gametocytes. In parallel, monitoring was performed in cultures of NF54 strain P. falciparum gametocytes. Of 248 thick smear slides (EG) evaluated in double blind, 142 (57.2%) were detected with P. vivax, of this total 47 (18.9%) had gametocytes, 1 (0.4%) with LVC negative diagnosis for gametocytes and 1 (0.4%) Pv + Pf (mixed malaria). Regarding P. falciparum, the total number of samples analyzed was 106 (42.7%), of which 20 (8.0%) had gametocytes detected, 6 (2.4%) LVC negative for gametocyte forms, and 3 (1.2%) Pv + Pf (mixed malaria), Plasmodium malariae species was not detected among the samples. The results showed that P. vivax gametocytes were present in the first days of symptoms, with a higher prevalence in patients with two crosses, a fact that was also observed in patients with P. falciparum regarding the prevalence of gametocytes. Faced with this problem, it is necessary to monitor the fluctuation of gametocytes, since these forms are responsible for continuing the malaria cycle within the mosquito vector.
Collapse
Affiliation(s)
- Leandro do Nascimento Martinez
- Plataforma de Bioensaios em Malária e Leishmaniose (PBML)-Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO Brazil
- Programa de Pós-Graduação em Biologia Experimental (Pgbioexp), Centro Universitário São Lucas-PVH/ Afya, Porto Velho, RO Brazil
| | | | - Nairo Brilhante-da-Silva
- Laboratório de Engenharia de Anticorpos (LEA)-Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO Brazil
- Programa de Pós-Graduação em Biologia Celular E Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
| | | | | | - Mauro Shugiro Tada
- Centro de Pesquisa em Medicina Tropical–CEPEM, Instituto de Pesquisa em Patologias Tropicais, Porto Velho, Rondônia Brazil
| | - Joana D.‘Arc Neves Costa
- Laboratório de Epidemiologia de Malária, Centro de Pesquisa em Medicina Tropical-CEPEM, Instituto de Pesquisa em Patologias Tropicais, Porto Velho, RO Brasil
| |
Collapse
|
7
|
Tsebriy O, Khomiak A, Miguel-Blanco C, Sparkes PC, Gioli M, Santelli M, Whitley E, Gamo FJ, Delves MJ. Machine learning-based phenotypic imaging to characterise the targetable biology of Plasmodium falciparum male gametocytes for the development of transmission-blocking antimalarials. PLoS Pathog 2023; 19:e1011711. [PMID: 37801466 PMCID: PMC10584170 DOI: 10.1371/journal.ppat.1011711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/18/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
Preventing parasite transmission from humans to mosquitoes is recognised to be critical for achieving elimination and eradication of malaria. Consequently developing new antimalarial drugs with transmission-blocking properties is a priority. Large screening campaigns have identified many new transmission-blocking molecules, however little is known about how they target the mosquito-transmissible Plasmodium falciparum stage V gametocytes, or how they affect their underlying cell biology. To respond to this knowledge gap, we have developed a machine learning image analysis pipeline to characterise and compare the cellular phenotypes generated by transmission-blocking molecules during male gametogenesis. Using this approach, we studied 40 molecules, categorising their activity based upon timing of action and visual effects on the organisation of tubulin and DNA within the cell. Our data both proposes new modes of action and corroborates existing modes of action of identified transmission-blocking molecules. Furthermore, the characterised molecules provide a new armoury of tool compounds to probe gametocyte cell biology and the generated imaging dataset provides a new reference for researchers to correlate molecular target or gene deletion to specific cellular phenotype. Our analysis pipeline is not optimised for a specific organism and could be applied to any fluorescence microscopy dataset containing cells delineated by bounding boxes, and so is potentially extendible to any disease model.
Collapse
Affiliation(s)
| | | | | | - Penny C. Sparkes
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | | | | | - Edgar Whitley
- Department of Management, London School of Economics and Political Science, London, United Kingdom
| | | | - Michael J. Delves
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| |
Collapse
|
8
|
Kuehnel RM, Ganga E, Balestra AC, Suarez C, Wyss M, Klages N, Brusini L, Maco B, Brancucci N, Voss TS, Soldati D, Brochet M. A Plasmodium membrane receptor platform integrates cues for egress and invasion in blood forms and activation of transmission stages. SCIENCE ADVANCES 2023; 9:eadf2161. [PMID: 37327340 PMCID: PMC10275601 DOI: 10.1126/sciadv.adf2161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/11/2023] [Indexed: 06/18/2023]
Abstract
Critical events in the life cycle of malaria-causing parasites depend on cyclic guanosine monophosphate homeostasis by guanylyl cyclases (GCs) and phosphodiesterases, including merozoite egress or invasion of erythrocytes and gametocyte activation. These processes rely on a single GCα, but in the absence of known signaling receptors, how this pathway integrates distinct triggers is unknown. We show that temperature-dependent epistatic interactions between phosphodiesterases counterbalance GCα basal activity preventing gametocyte activation before mosquito blood feed. GCα interacts with two multipass membrane cofactors in schizonts and gametocytes: UGO (unique GC organizer) and SLF (signaling linking factor). While SLF regulates GCα basal activity, UGO is essential for GCα up-regulation in response to natural signals inducing merozoite egress and gametocyte activation. This work identifies a GC membrane receptor platform that senses signals triggering processes specific to an intracellular parasitic lifestyle, including host cell egress and invasion to ensure intraerythrocytic amplification and transmission to mosquitoes.
Collapse
Affiliation(s)
- Ronja Marie Kuehnel
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Emma Ganga
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Aurélia C. Balestra
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Catherine Suarez
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Matthias Wyss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Natacha Klages
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Nicolas Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Dominique Soldati
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| |
Collapse
|
9
|
Carucci M, Duez J, Tarning J, García-Barbazán I, Fricot-Monsinjon A, Sissoko A, Dumas L, Gamallo P, Beher B, Amireault P, Dussiot M, Dao M, Hull MV, McNamara CW, Roussel C, Ndour PA, Sanz LM, Gamo FJ, Buffet P. Safe drugs with high potential to block malaria transmission revealed by a spleen-mimetic screening. Nat Commun 2023; 14:1951. [PMID: 37029122 PMCID: PMC10082216 DOI: 10.1038/s41467-023-37359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/15/2023] [Indexed: 04/09/2023] Open
Abstract
Malaria parasites like Plasmodium falciparum multiply in red blood cells (RBC), which are cleared from the bloodstream by the spleen when their deformability is altered. Drug-induced stiffening of Plasmodium falciparum-infected RBC should therefore induce their elimination from the bloodstream. Here, based on this original mechanical approach, we identify safe drugs with strong potential to block the malaria transmission. By screening 13 555 compounds with spleen-mimetic microfilters, we identified 82 that target circulating transmissible form of P. falciparum. NITD609, an orally administered PfATPase inhibitor with known effects on P. falciparum, killed and stiffened transmission stages in vitro at nanomolar concentrations. Short exposures to TD-6450, an orally-administered NS5A hepatitis C virus inhibitor, stiffened transmission parasite stages and killed asexual stages in vitro at high nanomolar concentrations. A Phase 1 study in humans with a primary safety outcome and a secondary pharmacokinetics outcome ( https://clinicaltrials.gov , ID: NCT02022306) showed no severe adverse events either with single or multiple doses. Pharmacokinetic modelling showed that these concentrations can be reached in the plasma of subjects receiving short courses of TD-6450. This physiologically relevant screen identified multiple mechanisms of action, and safe drugs with strong potential as malaria transmission-blocking agents which could be rapidly tested in clinical trials.
Collapse
Affiliation(s)
- Mario Carucci
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | | | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Irene García-Barbazán
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, 28222, Madrid, Spain
| | - Aurélie Fricot-Monsinjon
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | - Abdoulaye Sissoko
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | - Lucie Dumas
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | - Pablo Gamallo
- Global Health Medicines R&D, GlaxoSmith Kline (GSK), 28760, Tres Cantos, Spain
| | - Babette Beher
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | - Pascal Amireault
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM, 75014, Paris, France
| | - Michael Dussiot
- Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM, 75014, Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, MA, 02139, Cambridge, USA
| | - Mitchell V Hull
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Case W McNamara
- Calibr, a division of The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Camille Roussel
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
- Laboratoire d'Hématologie générale, Hôpital Universitaire Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015, Paris, France
| | - Papa Alioune Ndour
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France
| | - Laura Maria Sanz
- Global Health Medicines R&D, GlaxoSmith Kline (GSK), 28760, Tres Cantos, Spain
| | | | - Pierre Buffet
- Université Paris Cité, Inserm, UMR-1134, Biologie Intégré du Globule Rouge, 75015, Paris, France.
- Department of Infectious & Tropical Disease, AP-HP, Necker Hospital, 75015, Paris, France.
- Centre Médical de l'Institut Pasteur (CMIP), Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
10
|
Patterns of Heterochromatin Transitions Linked to Changes in the Expression of Plasmodium falciparum Clonally Variant Genes. Microbiol Spectr 2023; 11:e0304922. [PMID: 36515553 PMCID: PMC9927496 DOI: 10.1128/spectrum.03049-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The survival of malaria parasites in the changing human blood environment largely depends on their ability to alter gene expression by epigenetic mechanisms. The active state of Plasmodium falciparum clonally variant genes (CVGs) is associated with euchromatin characterized by the histone mark H3K9ac, whereas the silenced state is characterized by H3K9me3-based heterochromatin. Expression switches are linked to euchromatin-heterochromatin transitions, but these transitions have not been characterized for the majority of CVGs. To define the heterochromatin distribution patterns associated with the alternative transcriptional states of CVGs, we compared H3K9me3 occupancy at a genome-wide level among several parasite subclones of the same genetic background that differed in the transcriptional state of many CVGs. We found that de novo heterochromatin formation or the complete disruption of a heterochromatin domain is a relatively rare event, and for the majority of CVGs, expression switches can be explained by the expansion or retraction of heterochromatin domains. We identified different modalities of heterochromatin changes linked to transcriptional differences, but despite this complexity, heterochromatin distribution patterns generally enable the prediction of the transcriptional state of specific CVGs. We also found that in some subclones, several var genes were simultaneously in an active state. Furthermore, the heterochromatin levels in the putative regulatory region of the gdv1 antisense noncoding RNA, a regulator of sexual commitment, varied between parasite lines with different sexual conversion rates. IMPORTANCE The malaria parasite P. falciparum is responsible for more than half a million deaths every year. P. falciparum clonally variant genes (CVGs) mediate fundamental host-parasite interactions and play a key role in parasite adaptation to fluctuations in the conditions of the human host. The expression of CVGs is regulated at the epigenetic level by changes in the distribution of a type of chromatin called heterochromatin. Here, we describe at a genome-wide level the changes in the heterochromatin distribution associated with the different transcriptional states of CVGs. Our results also reveal a likely role for heterochromatin at a particular locus in determining the parasite investment in transmission to mosquitoes. Additionally, this data set will enable the prediction of the transcriptional state of CVGs from epigenomic data, which is important for the study of parasite adaptation to the conditions of the host in natural malaria infections.
Collapse
|
11
|
Fitri LE, Endharti AT, Abidah HY, Khotimah ARH, Endrawati H. Fractions 14 and 36K of Metabolite Extract Streptomyces hygroscopicus subsp. Hygroscopicus Have Antimalarial Activities Against Plasmodium berghei in vitro. Infect Drug Resist 2023; 16:2973-2985. [PMID: 37201124 PMCID: PMC10187656 DOI: 10.2147/idr.s400538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/14/2023] [Indexed: 05/20/2023] Open
Abstract
Purpose The study was conducted to investigate the effectivity and the cytotoxicity of fractions 14 and 36K of metabolite extract of Streptomyces hygroscopicus subsp. Hygroscopicus as an antimalarial compounds against Plasmodium berghei in vitro. Methods Fractions 14 and 36K of metabolite extract of Streptomyces hygroscopicus subsp. Hygroscopicus produced by the fractionation process utilizing the Flash Column Chromatography (FCC) BUCHI Reveleris® PREP. Plasmodium berghei culture was used to assess the antimalarial activity of fractions 14 and 36K. Parasite densities and the ability of parasite growth were determined under microscopic. The cytotoxicity of the fractions was assessed using MTT assays on the MCF-7 cell line. Results Streptomyces hygroscopicus subsp. Hygroscopicus fractions 14 and 36K have antimalarial activity against Plasmodium berghei, with fraction 14 having the more potent activity. The percentage of Plasmodium berghei-infected erythrocytes was decreased as well as the increase of fraction concentration. Fraction 14 has the highest inhibition of parasite growth at a concentration of 156,25 μg/mL, with an inhibition percentage of 67.73% (R2 = 0.953, p = 0.000). IC50 of fractions 14 and 36K were found at 10.63 μg/mL and 135,91 μg/mL, respectively. The fractions caused morphological damage in almost all asexual stages of the parasite. Both fractions were not toxic against MCF-7, indicating that the fractions have a safe active metabolite. Conclusion Fractions 14 and 36K of metabolite extract Streptomyces hygroscopicus subsp. Hygroscopicus contains non-toxic compounds that could damage the morphology and inhibit the growth of Plasmodium berghei in vitro.
Collapse
Affiliation(s)
- Loeki Enggar Fitri
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Malaria Research Group, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Agustina Tri Endharti
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Hafshah Yasmina Abidah
- Master Program in Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Medical Doctor Profession Education, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, Indonesia
- Correspondence: Hafshah Yasmina Abidah, Master Program in Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia, Tel +62 895 397 064 350, Fax +62 341 564755, Email ;
| | - Alif Raudhah Husnul Khotimah
- Master Program in Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Medical Doctor Profession Education, Faculty of Medical and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, Indonesia
| | - Heni Endrawati
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
12
|
A Novel Ex Vivo Drug Assay for Assessing the Transmission-Blocking Activity of Compounds on Field-Isolated Plasmodium falciparum Gametocytes. Antimicrob Agents Chemother 2022; 66:e0100122. [PMID: 36321830 PMCID: PMC9764978 DOI: 10.1128/aac.01001-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discovery and development of transmission-blocking therapies challenge malaria elimination and necessitate standard and reproducible bioassays to measure the blocking properties of antimalarial drugs and candidate compounds. Most of the current bioassays evaluating the transmission-blocking activity of compounds rely on laboratory-adapted Plasmodium strains. Transmission-blocking data from clinical gametocyte isolates could help select novel transmission-blocking candidates for further development. Using freshly collected Plasmodium falciparum gametocytes from asymptomatic individuals, we first optimized ex vivo culture conditions to improve gametocyte viability and infectiousness by testing several culture parameters. We next pre-exposed ex vivo field-isolated gametocytes to chloroquine, dihydroartemisinin, primaquine, KDU691, GNF179, and oryzalin for 48 h prior to direct membrane feeding. We measured the activity of the drug on the ability of gametocytes to resume the sexual life cycle in Anopheles after drug exposure. Using 57 blood samples collected from Malian volunteers aged 6 to 15 years, we demonstrate that the infectivity of freshly collected field gametocytes can be preserved and improved ex vivo in a culture medium supplemented with 10% horse serum at 4% hematocrit for 48 h. Moreover, our optimized drug assay displays the weak transmission-blocking activity of chloroquine and dihydroartemisinin, while primaquine and oryzalin exhibited a transmission-blocking activity of ~50% at 1 μM. KDU691 and GNF179 both interrupted Plasmodium transmission at 1 μM and 5 nM, respectively. This new approach, if implemented, has the potential to accelerate the screening of compounds with transmission-blocking activity.
Collapse
|
13
|
Keroack CD, Duraisingh MT. Molecular mechanisms of cellular quiescence in apicomplexan parasites. Curr Opin Microbiol 2022; 70:102223. [PMID: 36274498 DOI: 10.1016/j.mib.2022.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/25/2023]
Abstract
Quiescence is a reversible nonproliferative cellular state that allows organisms to persist through unfavorable conditions. Quiescence can be stimulated by a wide range of external or intrinsic factors. Cells undergo a coordinated molecular program to enter and exit from the quiescent state, which is governed by signaling, transcriptional and translational changes, epigenetic mechanisms, metabolic switches, and changes in cellular architecture. These mechanisms have been extensively studied in model organisms, and a growing number of studies have identified conserved mechanisms in apicomplexan parasites. Quiescence in the context of a parasitic infection has significant clinical impact: quiescent forms may underlie treatment failures, relapsing infections, and stress tolerance. Here, we review the latest understanding of quiescence in apicomplexa, synthesizing these studies to highlight conserved mechanisms, and identifying technologies to assist in further characterization of quiescence. Understanding conserved mechanisms of quiescence in apicomplexans will provide avenues for transmission prevention and radical cure of infections.
Collapse
|
14
|
Mianda SM, Invernizzi L, van der Watt ME, Reader J, Moyo P, Birkholtz LM, Maharaj VJ. In vitro dual activity of Aloe marlothii roots and its chemical constituents against Plasmodium falciparum asexual and sexual stage parasites. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115551. [PMID: 35850311 DOI: 10.1016/j.jep.2022.115551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aloe marlothii A.Berger (Xanthorrhoeaceae) is indigenous to southern African countries where its aqueous preparations are used in traditional medicine to treat several ailments including hypertension, respiratory infections, venereal diseases, chest pain, sore throat and malaria. AIM OF THE STUDY The aims of this study were as follows: (i) isolate and identify the antiplasmodial active compounds in A. marlothii roots. As the water extract was previously inactive, the dichloromethane:methanol (DCM:MeOH) (1:1) was used, (ii) examine the activity of the isolated compounds against Plasmodium falciparum asexual blood stage (ABS) parasites as well as for transmission-blocking activity against gametocytes and gametes, and (iii) to use in silico tools to predict the target(s) of the active molecules. MATERIALS AND METHODS The crude DCM:MeOH (1:1) extract of A. marlothii roots was fractionated on a reverse phase C8 column, using a positive pressure solid-phase extraction (ppSPE) workstation to produce seven fractions. The resulting fractions and the crude DCM:MeOH extract were tested in vitro against P. falciparum (NF54) ABS parasites using the malaria SYBR Green I based-fluorescence assay. Flash silica chromatography and mass-directed preparative high-performance liquid chromatography were utilised to isolate the active compounds. The isolated compounds were evaluated in vitro against P. falciparum asexual (NF54 and K1 strains) and sexual (gametocytes and gametes) stage parasites. Molecular docking was then used for the in silico prediction of targets for the isolated active compounds in P. falciparum. RESULTS The crude extract and two SPE fractions displayed good antiplasmodial activity with >97% and 100% inhibition of ABS parasites proliferation at 10 and 20 μg/mL, respectively. Following UPLC-MS analysis of these active fractions, a targeted purification resulted in the isolation of six compounds identified as aloesaponol I (1), aloesaponarin I (2), aloesaponol IV (3), β-sorigenin-1-O-methylether (4), emodin (5), and chrysophanol (6). Aloesaponarin I (2) was the most bioactive, compared to other isolated constituents, against P. falciparum ABS parasites exhibiting equipotency against the drug-sensitive (NF54) (IC50 = 1.54 μg/mL (5 μM)) and multidrug-resistant (K1) (IC50 = 1.58 μg/mL (5 μM)) strains. Aloesaponol IV (3) showed pronounced activity against late-stage (>90% stage IV/V) gametocytes (IC50 = 6.53 μg/mL (22.6 μM)) demonstrating a 3-fold selective potency towards these sexual stages compared to asexual forms of the parasite (IC50 = 19.77 ± 6.835 μg/mL (68 μM)). Transmission-blocking potential of aloesaponol IV (3) was validated by in vitro inhibition of exflagellation of male gametes (94% inhibition at 20 μg/mL). In silico studies identified β-hematin and DNA topoisomerase II as potential biological targets of compounds 2 and 3, respectively. CONCLUSION The findings from our study substantiate the traditional use of A. marlothii to treat malaria. To our knowledge, this study has provided the first report on the isolation and identification of antiplasmodial compounds from A. marlothii roots. Furthermore, our study has provided the first report on the transmission-blocking potential of one of the compounds from the genus Aloe, motivating for the investigation of other species within this genus for their potential P. falciparum transmission-blocking activity.
Collapse
Affiliation(s)
- Sephora Mutombo Mianda
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0028, South Africa.
| | - Luke Invernizzi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0028, South Africa.
| | - Mariëtte E van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa; Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Gezina, Pretoria, 0031, South Africa.
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
| | - Phanankosi Moyo
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0028, South Africa; Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
| | - Vinesh J Maharaj
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0028, South Africa.
| |
Collapse
|
15
|
Methylene Blue-Based Combination Therapy with Amodiaquine Prevents Severe Malaria in an Experimental Rodent Model. Pharmaceutics 2022; 14:pharmaceutics14102031. [PMID: 36297466 PMCID: PMC9611243 DOI: 10.3390/pharmaceutics14102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Untreated malaria can progress rapidly to severe forms (<24 h). Moreover, resistance to antimalarial drugs is a threat to global efforts to protect people from malaria. Given this, it is clear that new chemotherapy must be developed. We contribute new data about using methylene blue (MB) to cure malaria and cerebral malaria in a combined therapy with common antimalarial drugs, including mefloquine (MQ) and amodiaquine (AQ). A C57BL6/J mouse model was used in an experimental cerebral malaria model. Mice were infected with Plasmodium berghei ANKA on Day 0 (D0) and the treatment started on D3 (nearly 1% parasitaemia) with AQ, MQ or MB alone or in combination with AQ or MQ. AQ, MQ and MB alone were unable to prevent cerebral malaria as part of a late chemotherapy. MB-based combination therapies were efficient even if treatment began at a late stage. We found a significant difference in survival rate (p < 0.0001) between MBAQ and the untreated group, but also with the AQ (p = 0.0024) and MB groups (p < 0.0001). All the infected mice treated with MB in combination with AQ were protected from cerebral malaria. Partial protection was demonstrated with MB associated with MQ. In this group, a significant difference was found between MBMQ and the untreated group (p < 0.0001), MQ (p = 0.0079) and MB (p = 0.0039). MB associated with AQ would be a good candidate for preventing cerebral malaria.
Collapse
|
16
|
Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission. Nat Commun 2022; 13:4400. [PMID: 35906227 PMCID: PMC9338275 DOI: 10.1038/s41467-022-32076-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
Tryptophan C-mannosylation stabilizes proteins bearing a thrombospondin repeat (TSR) domain in metazoans. Here we show that Plasmodium falciparum expresses a DPY19 tryptophan C-mannosyltransferase in the endoplasmic reticulum and that DPY19-deficiency abolishes C-glycosylation, destabilizes members of the TRAP adhesin family and inhibits transmission to mosquitoes. Imaging P. falciparum gametogenesis in its entirety in four dimensions using lattice light-sheet microscopy reveals defects in ΔDPY19 gametocyte egress and exflagellation. While egress is diminished, ΔDPY19 microgametes still fertilize macrogametes, forming ookinetes, but these are abrogated for mosquito infection. The gametogenesis defects correspond with destabilization of MTRAP, which we show is C-mannosylated in P. falciparum, and the ookinete defect is concordant with defective CTRP secretion on the ΔDPY19 background. Genetic complementation of DPY19 restores ookinete infectivity, sporozoite production and C-mannosylation activity. Therefore, tryptophan C-mannosylation by DPY19 ensures TSR protein quality control at two lifecycle stages for successful transmission of the human malaria parasite. Here, Lopaticki et al. show that Plasmodium falciparum expresses a Dpy19 C-mannosyltransferase in the endoplasmic reticulum that glycosylates TSR domains. Functional characterization shows that PfDpy19 plays a critical role in transmission through mosquitoes as PfDpy19-deficiency abolishes C-glycosylation and destabilizes proteins relevant for gametogenesis and oocyst formation.
Collapse
|
17
|
Reader J, van der Watt ME, Birkholtz LM. Streamlined and Robust Stage-Specific Profiling of Gametocytocidal Compounds Against Plasmodium falciparum. Front Cell Infect Microbiol 2022; 12:926460. [PMID: 35846744 PMCID: PMC9282888 DOI: 10.3389/fcimb.2022.926460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022] Open
Abstract
Malaria elimination is dependent on the ability to target both the pathogenic and transmissible stages of the human malaria parasite, Plasmodium falciparum. These forms of the parasite are differentiated by unique developmental stages, each with their own biological mechanisms and processes. These individual stages therefore also respond differently to inhibitory compounds, and this complicates the discovery of multistage active antimalarial agents. The search for compounds with transmission-blocking activity has focused on screening for activity on mature gametocytes, with only limited descriptions available for the activity of such compounds on immature stage gametocytes. This therefore poses a gap in the profiling of antimalarial agents for pan-reactive, multistage activity to antimalarial leads. Here, we optimized an effective and robust strategy for the simple and cost-effective description of the stage-specific action of gametocytocidal antimalarial compounds.
Collapse
Affiliation(s)
- Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Mariette E. van der Watt
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- *Correspondence: Lyn-Marié Birkholtz,
| |
Collapse
|
18
|
van der Watt ME, Reader J, Birkholtz LM. Adapt or Die: Targeting Unique Transmission-Stage Biology for Malaria Elimination. Front Cell Infect Microbiol 2022; 12:901971. [PMID: 35755845 PMCID: PMC9218253 DOI: 10.3389/fcimb.2022.901971] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022] Open
Abstract
Plasmodium parasites have a complex life cycle that includes development in the human host as well as the Anopheles vector. Successful transmission of the parasite between its host and vector therefore requires the parasite to balance its investments in asexual replication and sexual reproduction, varying the frequency of sexual commitment to persist within the human host and generate future opportunities for transmission. The transmission window is extended further by the ability of stage V gametocytes to circulate in peripheral blood for weeks, whereas immature stage I to IV gametocytes sequester in the bone marrow and spleen until final maturation. Due to the low gametocyte numbers in blood circulation and with the ease of targeting such life cycle bottlenecks, transmission represents an efficient target for therapeutic intervention. The biological process of Plasmodium transmission is a multistage, multifaceted process and the past decade has seen a much deeper understanding of the molecular mechanisms and regulators involved. Clearly, specific and divergent processes are used during transmission compared to asexual proliferation, which both poses challenges but also opportunities for discovery of transmission-blocking antimalarials. This review therefore presents an update of our molecular understanding of gametocyte and gamete biology as well as the status of transmission-blocking activities of current antimalarials and lead development compounds. By defining the biological components associated with transmission, considerations for the development of new transmission-blocking drugs to target such untapped but unique biology is suggested as an important, main driver for transmission-blocking drug discovery.
Collapse
Affiliation(s)
- Mariëtte E van der Watt
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Janette Reader
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
19
|
Abstract
Some antimalarial drugs that have lost clinical usefulness have been repurposed for experimental applications. One example is sulfadiazine, an analog of p-aminobenzoic acid (pABA), which inhibits the parasite's folate synthesis pathway to block DNA synthesis. Sulfadiazine treatment of mice infected with Plasmodium yoelii and P. berghei is routinely used to enrich for gametocytes by killing asexual blood-stage parasites, but it is not well known if there are downstream effects on transmission. To determine if there was a significant effect of sulfadiazine exposure upon transmission, we transmitted Plasmodium yoelii (17XNL strain) parasites to Anopheles stephensi mosquitoes and evaluated the prevalence and intensity of infection under different sulfadiazine treatment conditions. We observed that there was a reduction in both the number of mosquitoes that became infected and in the intensity of infection if parasites were exposed to sulfadiazine in the mouse host or mosquito vector. Sulfadiazine treatment could be marginally overcome if mosquitoes were provided fresh pABA. In contrast, we determined that gametocytes exposed to sulfadiazine could develop into morphologically mature ookinetes in vitro, thus sulfadiazine exposure in the host may be reversible if the drug is washed out and the parasites are supplemented with pABA in the culture media. Overall, this indicates that sulfadiazine dampens host-to-vector transmission and that this inhibition can only be partially overcome by exposure to fresh pABA in vivo and in vitro. Because gametocytes are of great interest for developing transmission-blocking interventions, we recommend the use of less disruptive approaches for gametocyte enrichment. IMPORTANCE In this work, we have uncovered a substantial problem with how many studies of the sexual stages of rodent malaria parasites are conducted. Briefly, the isolation of sexual blood-stage Plasmodium parasites, or gametocytes, is essential to study pretransmission and transmission-stage biology of malaria. A routine method for the isolation of this specific stage in rodent-infectious malaria models is drug treatment with sulfadiazine, an antifolate that selectively kills actively replicating asexual blood-stage parasites but not gametocytes. Thus, researchers use this as a convenient way to produce highly enriched gametocyte samples. However, in this work, we describe how this standard drug selection with sulfadiazine not only kills asexual blood-stage parasites but also substantially impacts host-to-vector transmission.
Collapse
|
20
|
Chotsiri P, Mahamar A, Hoglund RM, Koita F, Sanogo K, Diawara H, Dicko A, Simpson JA, Bousema T, White NJ, Brown JM, Gosling R, Chen I, Tarning J. Mechanistic Modeling of Primaquine Pharmacokinetics, Gametocytocidal Activity, and Mosquito Infectivity. Clin Pharmacol Ther 2022; 111:676-685. [PMID: 34905220 PMCID: PMC9302630 DOI: 10.1002/cpt.2512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/08/2021] [Indexed: 11/06/2022]
Abstract
Clinical studies have shown that adding a single 0.25 mg base/kg dose of primaquine to standard antimalarial regimens rapidly sterilizes Plasmodium falciparum gametocytes. However, the mechanism of action and overall impact on malaria transmission is still unknown. Using data from 81 adult Malians with P. falciparum gametocytemia who received the standard dihydroartemisinin-piperaquine treatment course and were randomized to receive either a single dose of primaquine between 0.0625 and 0.5 mg base/kg or placebo, we characterized the pharmacokinetic-pharmacodynamic relationships for transmission blocking activity. Both gametocyte clearance and mosquito infectivity were assessed. A mechanistically linked pharmacokinetic-pharmacodynamic model adequately described primaquine and carboxy-primaquine pharmacokinetics, gametocyte dynamics, and mosquito infectivity at different clinical doses of primaquine. Primaquine showed a dose-dependent gametocytocidal effect that precedes clearance. A single low dose of primaquine (0.25 mg/kg) rapidly prevented P. falciparum transmissibility.
Collapse
Affiliation(s)
- Palang Chotsiri
- Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Almahamoudou Mahamar
- Malaria Research and Training CentreFaculty of Pharmacy and Faculty of Medicine and DentistryUniversity of Science, Techniques and Technologies of BamakoBamakoMali
| | - Richard M. Hoglund
- Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global HealthNuffield Department of MedicineOxford UniversityOxfordUK
| | - Fanta Koita
- Malaria Research and Training CentreFaculty of Pharmacy and Faculty of Medicine and DentistryUniversity of Science, Techniques and Technologies of BamakoBamakoMali
| | - Koualy Sanogo
- Malaria Research and Training CentreFaculty of Pharmacy and Faculty of Medicine and DentistryUniversity of Science, Techniques and Technologies of BamakoBamakoMali
| | - Halimatou Diawara
- Malaria Research and Training CentreFaculty of Pharmacy and Faculty of Medicine and DentistryUniversity of Science, Techniques and Technologies of BamakoBamakoMali
| | - Alassane Dicko
- Malaria Research and Training CentreFaculty of Pharmacy and Faculty of Medicine and DentistryUniversity of Science, Techniques and Technologies of BamakoBamakoMali
| | - Julie A. Simpson
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Teun Bousema
- Radboud Institute of Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Nicholas J. White
- Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global HealthNuffield Department of MedicineOxford UniversityOxfordUK
| | - Joelle M. Brown
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Roly Gosling
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Global Health GroupMalaria Elimination InitiativeUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Ingrid Chen
- Global Health GroupMalaria Elimination InitiativeUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Joel Tarning
- Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global HealthNuffield Department of MedicineOxford UniversityOxfordUK
| |
Collapse
|
21
|
Birkholtz LM, Alano P, Leroy D. Transmission-blocking drugs for malaria elimination. Trends Parasitol 2022; 38:390-403. [DOI: 10.1016/j.pt.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
|
22
|
Dabira ED, Hachizovu S, Conteh B, Mendy A, Nyang H, Lawal B, Ndiath MO, Mulenga JM, Mwanza S, Borghini-Fuhrer I, Arbe-Barnes S, Miller R, Shin J, Duparc S, D'Alessandro U, Manyando C, Achan J. Efficacy, Safety and Tolerability of Pyronaridine-artesunate in Asymptomatic Malaria-infected Individuals: a Randomized Controlled Trial. Clin Infect Dis 2022; 74:180-188. [PMID: 33983371 PMCID: PMC8800175 DOI: 10.1093/cid/ciab425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Pyronaridine-artesunate (PA) is a registered artemisinin-based combination therapy, potentially useful for mass drug administration campaigns. However, further data are needed to evaluate its efficacy, safety and tolerability as full or incomplete treatment in asymptomatic Plasmodium falciparum-infected individuals. METHODS This phase II, multi-center, open label, randomized clinical trial was conducted in The Gambia and Zambia. Participants with microscopically confirmed asymptomatic P. falciparum infection were randomly assigned (1:1:1) to receive a 3-day, 2-day, or 1-day treatment regimen of PA (180:60 mg), dosed according to bodyweight. The primary efficacy outcome was polymerase chain reaction (PCR)-adjusted adequate parasitological response (APR) at day 28 in the per-protocol population. RESULTS A total of 303 participants were randomized. Day 28 PCR-adjusted APR was 100% for both the 3-day (98/98) and 2-day regimens (96/96), and 96.8% (89/94) for the 1-day regimen. Efficacy was maintained at 100% until day 63 for the 3-day and 2-day regimens but declined to 94.4% (84/89) with the 1-day regimen. Adverse event frequency was similar between the 3-day (51.5% [52/101]), 2-day (52.5% [52/99]), and 1-day (54.4% [56/103]) regimens; the majority of adverse events were of grade 1 or 2 severity (85% [136/160]). Asymptomatic, transient increases (>3 times the upper limit of normal) in alanine aminotransferase/aspartate aminotransferase were observed for 6/301 (2.0%) participants. CONCLUSIONS PA had high efficacy and good tolerability in asymptomatic P. falciparum-infected individuals, with similar efficacy for the full 3-day and incomplete 2-day regimens. Although good adherence to the 3-day regimen should be encouraged, these results support the further investigation of PA for mass drug administration campaigns. CLINICAL TRIALS REGISTRATION NCT03814616.
Collapse
Affiliation(s)
- Edgard D Dabira
- Disease Control and Elimination Theme, Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | | | - Bakary Conteh
- Disease Control and Elimination Theme, Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Alieu Mendy
- Disease Control and Elimination Theme, Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Haddy Nyang
- Disease Control and Elimination Theme, Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Bolarinde Lawal
- Disease Control and Elimination Theme, Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Mamadou Ousmane Ndiath
- Disease Control and Elimination Theme, Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | | | | | | | | | | | | | - Stephan Duparc
- Medicines for Malaria Venture (MMV), Geneva, Switzerland
| | - Umberto D'Alessandro
- Disease Control and Elimination Theme, Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | | | - Jane Achan
- Disease Control and Elimination Theme, Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| |
Collapse
|
23
|
Assessment
in vitro
of the antimalarial and transmission blocking activities of Cipargamin and Ganaplacide in artemisinin resistant
Plasmodium falciparum. Antimicrob Agents Chemother 2022; 66:e0148121. [DOI: 10.1128/aac.01481-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Artemisinin resistance in
Plasmodium falciparum
has emerged and spread widely in the Greater Mekong Subregion threatening current first line artemisinin combination treatments. New antimalarial drugs are needed urgently. Cipargamin (KAE609) and ganaplacide (KAF156) are promising novel antimalarial compounds in advanced stages of development. Both compounds have potent asexual blood stage activities, inhibit
P. falciparum
gametocytogenesis and reduce oocyst development in anopheline mosquitoes. In this study, we compared the asexual and sexual stage activities of cipargamin, ganaplacide and artesunate in artemisinin resistant
P. falciparum
isolates (N=7, K13 mutation; C580Y, G449A and R539T) from Thailand and Cambodia. Asexual blood stage antimalarial activity was evaluated in a SYBR-green I based 72h
in vitro
assay, and the effects on male and female mature stage V gametocytes were assessed in the
P. falciparum
dual gamete formation assay. Ganaplacide had higher activities when compared to cipargamin and artesunate, with a mean (SD) IC50 against asexual stages of 5.5 (1.1) nM, 7.8 (3.9) nM for male gametocytes and 57.9 (59.6) nM for female gametocytes. Cipargamin had a similar potency against male and female gametocytes, with a mean (SD) IC50 of 123.1 (80.2) nM for male gametocytes, 88.5 (52.7) nM for female gametocytes and 2.4 (0.6) nM for asexual stages. Both cipargamin and ganaplacide showed significant transmission-blocking activities against artemisinin resistant
P. falciparum
in vitro
.
Collapse
|
24
|
Dinko B, Tackie R, Henriques G, Stewart L, Sutherland C. Generation of Plasmodium falciparum Gametocytes In Vitro with Specific Considerations for Field Isolates. Methods Mol Biol 2022; 2470:121-132. [PMID: 35881343 DOI: 10.1007/978-1-0716-2189-9_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reproducible induction of gametocytes of Plasmodium falciparum in vitro is crucial for performing various experimental analyses to understand gametocyte cellular and molecular biology and immunology, and for the evaluation of antigametocidal agents and vaccine development. In this protocol, we present specific procedures for the enrichment, synchronous production and separation of developmental stages of P. falciparum gametocytes from culture-adapted field isolates.
Collapse
Affiliation(s)
- Bismarck Dinko
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana.
| | - Richmond Tackie
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Gisela Henriques
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Lindsay Stewart
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Colin Sutherland
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
25
|
A New Thienopyrimidinone Chemotype Shows Multistage Activity against Plasmodium falciparum, Including Artemisinin-Resistant Parasites. Microbiol Spectr 2021; 9:e0027421. [PMID: 34724729 PMCID: PMC8557901 DOI: 10.1128/spectrum.00274-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human malaria infection begins with a one-time asymptomatic liver stage followed by a cyclic symptomatic blood stage. For decades, the research for novel antimalarials focused on the high-throughput screening of molecules that only targeted the asexual blood stages. In a search for new effective compounds presenting a triple action against erythrocytic and liver stages in addition to the ability to block the transmission of the disease via the mosquito vector, 2-amino-thienopyrimidinone derivatives were synthesized and tested for their antimalarial activity. One molecule, named gamhepathiopine (denoted as “M1” herein), was active at submicromolar concentrations against both erythrocytic (50% effective concentration [EC50] = 0.045 μM) and liver (EC50 = 0.45 μM) forms of Plasmodium falciparum. Furthermore, gamhepathiopine efficiently blocked the development of the sporogonic cycle in the mosquito vector by inhibiting the exflagellation step. Moreover, M1 was active against artemisinin-resistant forms (EC50 = 0.227 μM), especially at the quiescent stage. Nevertheless, in mice, M1 showed modest activity due to its rapid metabolization by P450 cytochromes into inactive derivatives, calling for the development of new parent compounds with improved metabolic stability and longer half-lives. These results highlight the thienopyrimidinone scaffold as a novel antiplasmodial chemotype of great interest to search for new drug candidates displaying multistage activity and an original mechanism of action with the potential to be used in combination therapies for malaria elimination in the context of artemisinin resistance. IMPORTANCE This work reports a new chemical structure that (i) displays activity against the human malaria parasite Plasmodium falciparum at 3 stages of the parasitic cycle (blood stage, hepatic stage, and sexual stages), (ii) remains active against parasites that are resistant to the first-line treatment recommended by the World Health Organization (WHO) for the treatment of severe malaria (artemisinins), and (iii) reduces transmission of the parasite to the mosquito vector in a mouse model. This new molecule family could open the way to the conception of novel antimalarial drugs with an original multistage mechanism of action to fight against Plasmodium drug resistance and block interhuman transmission of malaria.
Collapse
|
26
|
Comparative effect of dihydroartemisinin-piperaquine and artemether-lumefantrine on gametocyte clearance and haemoglobin recovery in children with uncomplicated Plasmodium falciparum malaria in Africa: a systematic review and meta-analysis of randomized control trials. Int J Infect Dis 2021; 113:136-147. [PMID: 34653658 DOI: 10.1016/j.ijid.2021.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/04/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Plasmodium falciparum gametocytaemia has been associated with anaemia. The aim of this review was to synthesize available evidence on the comparative effect of dihydroartemisinin-piperaquine (DHA-PQ) and artemether-lumefantrine (AL) on gametocyte clearance and haemoglobin recovery in children with uncomplicated P. falciparum malaria in Africa. METHODS A systematic literature search was undertaken to identify relevant articles from online databases. The search was performed from August 2020 to 30 April 2021. Extracted data from eligible studies were pooled as risk ratios with 95% confidence intervals (CI). RESULTS Gametocyte carriage was reduced in both treatment groups, with no significant difference found between the groups. However, on days 28 and 42, a significant increase in serum haemoglobin level from baseline was observed in the DHA-PQ group (standardized mean difference 0.15, 95% CI 0.05-0.26; participants=2715; studies=4; I2=32%, high quality of evidence) compared with the AL group (mean difference 0.35, 95% CI 0.12-0.59; participants=1434; studies=3; I2=35%, high quality of evidence). CONCLUSION DHA-PQ had a greater impact on haemoglobin recovery than AL on days 28 and 42; this difference was significant.
Collapse
|
27
|
Niemand J, van Biljon R, van der Watt M, van Heerden A, Reader J, van Wyk R, Orchard L, Chibale K, Llinás M, Birkholtz LM. Chemogenomic Fingerprints Associated with Stage-Specific Gametocytocidal Compound Action against Human Malaria Parasites. ACS Infect Dis 2021; 7:2904-2916. [PMID: 34569223 DOI: 10.1021/acsinfecdis.1c00373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kinase-focused inhibitors previously revealed compounds with differential activity against different stages of Plasmodium falciparum gametocytes. MMV666810, a 2-aminopyrazine, is more active on late-stage gametocytes, while a pyrazolopyridine, MMV674850, preferentially targets early-stage gametocytes. Here, we probe the biological mechanisms underpinning this differential stage-specific killing using in-depth transcriptome fingerprinting. Compound-specific chemogenomic profiles were observed with MMV674850 treatment associated with biological processes shared between asexual blood stage parasites and early-stage gametocytes but not late-stage gametocytes. MMV666810 has a distinct profile with clustered gene sets associated primarily with late-stage gametocyte development, including Ca2+-dependent protein kinases (CDPK1 and 5) and serine/threonine protein kinases (FIKK). Chemogenomic profiling therefore highlights essential processes in late-stage gametocytes, on a transcriptional level. This information is important to prioritize compounds that preferentially compromise late-stage gametocytes for further development as transmission-blocking antimalarials.
Collapse
Affiliation(s)
- Jandeli Niemand
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Riëtte van Biljon
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Mariëtte van der Watt
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Ashleigh van Heerden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Roelof van Wyk
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Lindsey Orchard
- Department of Biochemistry & Molecular Biology and the Huck Centre for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African Medical Research Council, Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology and the Huck Centre for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
- Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
28
|
Yaméogo KB, Yerbanga RS, Ouattara SB, Yao FA, Lefèvre T, Zongo I, Nikièma F, Compaoré YD, Tinto H, Chandramohan D, Greenwood B, Belem AMG, Cohuet A, Ouédraogo JB. Effect of seasonal malaria chemoprevention plus azithromycin on Plasmodium falciparum transmission: gametocyte infectivity and mosquito fitness. Malar J 2021; 20:326. [PMID: 34315475 PMCID: PMC8314489 DOI: 10.1186/s12936-021-03855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/16/2021] [Indexed: 11/24/2022] Open
Abstract
Background Seasonal malaria chemoprevention (SMC) consists of administration of sulfadoxine-pyrimethamine (SP) + amodiaquine (AQ) at monthly intervals to children during the malaria transmission period. Whether the addition of azithromycin (AZ) to SMC could potentiate the benefit of the intervention was tested through a double-blind, randomized, placebo-controlled trial. The effect of SMC and the addition of AZ, on malaria transmission and on the life history traits of Anopheles gambiae mosquitoes have been investigated. Methods The study included 438 children randomly selected from among participants in the SMC + AZ trial and 198 children from the same area who did not receive chemoprevention. For each participant in the SMC + AZ trial, blood was collected 14 to 21 days post treatment, examined for the presence of malaria sexual and asexual stages and provided as a blood meal to An. gambiae females using a direct membrane-feeding assay. Results The SMC treatment, with or without AZ, significantly reduced the prevalence of asexual Plasmodium falciparum (LRT X22 = 69, P < 0.0001) and the gametocyte prevalence (LRT X22 = 54, P < 0.0001). In addition, the proportion of infectious feeds (LRT X22 = 61, P < 0.0001) and the prevalence of oocysts among exposed mosquitoes (LRT X22 = 22.8, P < 0.001) was reduced when mosquitoes were fed on blood from treated children compared to untreated controls. The addition of AZ to SPAQ was associated with an increased proportion of infectious feeds (LRT X21 = 5.2, P = 0.02), suggesting a significant effect of AZ on gametocyte infectivity. There was a slight negative effect of SPAQ and SPAQ + AZ on mosquito survival compared to mosquitoes fed with blood from control children (LRTX22 = 330, P < 0.0001). Conclusion This study demonstrates that SMC may contribute to a reduction in human to mosquito transmission of P. falciparum, and the reduced mosquito longevity observed for females fed on treated blood may increase the benefit of this intervention in control of malaria. The addition of AZ to SPAQ in SMC appeared to enhance the infectivity of gametocytes providing further evidence that this combination is not an appropriate intervention.
Collapse
Affiliation(s)
- Koudraogo Bienvenue Yaméogo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso. .,Université Nazi Boni, Bobo-Dioulasso, Burkina Faso.
| | - Rakiswendé Serge Yerbanga
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Institut des Sciences et Techniques (INSTech Bobo), BP2779, Bobo-Dioulasso, Burkina Faso
| | | | - Franck A Yao
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Thierry Lefèvre
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France.,Laboratoire Mixte International Sur Les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso.,Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | - Issaka Zongo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Frederic Nikièma
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | | | - Halidou Tinto
- Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | | | | | | | - Anna Cohuet
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France.,Laboratoire Mixte International Sur Les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Jean Bosco Ouédraogo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Institut des Sciences et Techniques (INSTech Bobo), BP2779, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
29
|
Schneider P, Reece SE. The private life of malaria parasites: Strategies for sexual reproduction. Mol Biochem Parasitol 2021; 244:111375. [PMID: 34023299 PMCID: PMC8346949 DOI: 10.1016/j.molbiopara.2021.111375] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022]
Abstract
Malaria parasites exhibit a complex lifecycle, requiring extensive asexual replication in the liver and blood of the vertebrate host, and in the haemocoel of the insect vector. Yet, they must also undergo a single round of sexual reproduction, which occurs in the vector's midgut upon uptake of a blood meal. Sexual reproduction is obligate for infection of the vector and thus, is essential for onwards transmission to new hosts. Sex in malaria parasites involves several bottlenecks in parasite number, making the stages involved attractive targets for blocking disease transmission. Malaria parasites have evolved a suite of adaptations ("strategies") to maximise the success of sexual reproduction and transmission, which could undermine transmission-blocking interventions. Yet, understanding parasite strategies may also reveal novel opportunities for such interventions. Here, we outline how evolutionary and ecological theories, developed to explain reproductive strategies in multicellular taxa, can be applied to explain two reproductive strategies (conversion rate and sex ratio) expressed by malaria parasites within the vertebrate host.
Collapse
Affiliation(s)
- Petra Schneider
- Institute of Evolutionary Biology, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Sarah E Reece
- Institute of Evolutionary Biology, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
30
|
Gendrot M, Madamet M, Mosnier J, Fonta I, Amalvict R, Benoit N, Briolant S, Pradines B. Baseline and multinormal distribution of ex vivo susceptibilities of Plasmodium falciparum to methylene blue in Africa, 2013-18. J Antimicrob Chemother 2021; 75:2141-2148. [PMID: 32407538 DOI: 10.1093/jac/dkaa174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Plasmodium falciparum resistance to most antimalarial compounds has emerged in Southeast Asia and spread to Africa. In this context, the development of new antimalarial drugs is urgent. OBJECTIVES To determine the baseline in vitro activity of methylene blue (Proveblue®) on African isolates and to determine whether parasites have different phenotypes of susceptibility to methylene blue. METHODS Ex vivo susceptibility to methylene blue was measured for 609 P. falciparum isolates of patients hospitalized in France for malaria imported from Africa. A Bayesian statistical analysis was designed to describe the distribution of median effective concentration (EC50) estimates. RESULTS The EC50 ranged from 0.16 to 87.2 nM with a geometric mean of 7.17 nM (95% CI = 6.21-8.13). The 609 EC50 values were categorized into four components: A (mean = 2.5 nM; 95% CI = 2.28-2.72), B (mean = 7.44 nM; 95% CI = 7.07-7.81), C (mean = 16.29 nM; 95% CI = 15.40-17.18) and D (mean = 38.49 nM; 95% CI = 34.14-42.84). The threshold value for in vitro reduced susceptibility to methylene blue was estimated at 35 nM using the geometric mean of EC50 plus 2 SDs of the 609 isolates. This cut-off also corresponds to the lower limit of the 95% CI of the methylene blue EC50 of component D. Thirty-five isolates (5.7%) displayed EC50 values above this threshold. CONCLUSIONS Methylene blue exerts a promising efficacy against P. falciparum and is a potential partner for triple combinations.
Collapse
Affiliation(s)
- Mathieu Gendrot
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Marylin Madamet
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Joel Mosnier
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Isabelle Fonta
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Rémy Amalvict
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Nicolas Benoit
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Sébastien Briolant
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Bruno Pradines
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| |
Collapse
|
31
|
Ramos GQ, Baia-da-Silva DC, Lacerda MVG, Monteiro WM, Lopes SCP. Viability and Infectivity of Plasmodium vivax Gametocytes in Short-Term Culture. Front Cell Infect Microbiol 2021; 11:676276. [PMID: 34141630 PMCID: PMC8204544 DOI: 10.3389/fcimb.2021.676276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
The control and elimination of malaria caused by Plasmodium vivax both represent a great challenge due to the biological aspects of the species. Gametocytes are the forms responsible for the transmission of the parasite to the vector and the search for new strategies for blocking transmission are essential in a scenario of control and elimination The challenges in this search in regard to P. vivax mainly stem from the lack of a long-term culture and the limitation of studies of gametocytes. This study evaluated the viability and infectivity of P. vivax gametocytes in short-term culture. The samples enriched in gametocytes using Percoll (i), using magnetic-activated cell sorting (MACS®) (ii), and using non-enriched samples (iii) were evaluated. After the procedures, gametocytes were cultured in IMDM medium for up to 48 h. Cultured P. vivax gametocytes were viable and infectious for up to 48 h, however differences in viability and infectivity were observed in the samples after 12 h of culture in relation to 0 h. Percoll-enriched samples were shown to be viable in culture for longer intervals than those purified using MACS®. Gametocyte viability after enrichment procedures and short-term culture may provide new avenues in the development of methods for evaluating P. vivax TB.
Collapse
Affiliation(s)
- Glenda Quaresma Ramos
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Djane Clarys Baia-da-Silva
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas & Maria Deane, FIOCRUZ, Manaus, Brazil
| | - Marcus Vinícius Guimarães Lacerda
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas & Maria Deane, FIOCRUZ, Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Stefanie Costa Pinto Lopes
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas & Maria Deane, FIOCRUZ, Manaus, Brazil
| |
Collapse
|
32
|
Abstract
Malaria is a mosquito-borne disease caused by apicomplexan parasites of the genus Plasmodium. Completion of the parasite’s life cycle depends on the transmission of sexual stages, the gametocytes, from an infected human host to the mosquito vector. Sexual commitment occurs in only a small fraction of asexual blood-stage parasites and is initiated by external cues. The gametocyte development protein 1 (GDV1) has been described as a key facilitator to trigger sexual commitment. GDV1 interacts with the silencing factor heterochromatin protein 1 (HP1), leading to its dissociation from heterochromatic DNA at the genomic locus encoding AP2-G, the master transcription factor of gametocytogenesis. How this process is regulated is not known. In this study, we have addressed the role of protein kinases implicated in gametocyte development. From a pool of available protein kinase knockout (KO) lines, we identified two kinase knockout lines which fail to produce gametocytes. However, independent genetic verification revealed that both kinases are not required for gametocytogenesis but that both lines harbor the same mutation that leads to a truncation in the extreme C terminus of GDV1. Introduction of the identified nonsense mutation into the genome of wild-type parasite lines replicates the observed phenotype. Using a GDV1 overexpression line, we show that the truncation in the GDV1 C terminus does not interfere with the nuclear import of GDV1 or its interaction with HP1 in vitro but appears to be important to sustain GDV1 protein levels and thereby sexual commitment. IMPORTANCE Transmission of malaria-causing Plasmodium species by mosquitos requires the parasite to change from a continuously growing asexual parasite form growing in the blood to a sexually differentiated form, the gametocyte. Only a small subset of asexual parasites differentiates into gametocytes that are taken up by the mosquito. Transmission represents a bottleneck in the life cycle of the parasite, so a molecular understanding of the events that lead to stage conversion may identify novel intervention points. Here, we screened a subset of kinases we hypothesized to play a role in this process. While we did not identify kinases required for sexual conversion, we identified a mutation in the C terminus of the gametocyte development 1 protein (GDV1), which abrogates sexual development. The mutation destabilizes the protein but not its interaction with its cognate binding partner HP1. This suggests an important role for the GDV1 C terminus beyond trafficking and protein stability.
Collapse
|
33
|
Gendrot M, Delandre O, Robert MG, Foguim FT, Benoit N, Amalvict R, Fonta I, Mosnier J, Madamet M, Pradines B. Absence of Association between Methylene Blue Reduced Susceptibility and Polymorphisms in 12 Genes Involved in Antimalarial Drug Resistance in African Plasmodium falciparum. Pharmaceuticals (Basel) 2021; 14:ph14040351. [PMID: 33918981 PMCID: PMC8069138 DOI: 10.3390/ph14040351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022] Open
Abstract
Half the human population is exposed to malaria. Plasmodium falciparum antimalarial drug resistance monitoring and development of new drugs are major issues related to the control of malaria. Methylene blue (MB), the oldest synthetic antimalarial, is again a promising drug after the break of its use as an antimalarial drug for more than 80 years and a potential partner for triple combination. Very few data are available on the involvement of polymorphisms on genes known to be associated with standard antimalarial drugs and parasite in vitro susceptibility to MB (cross-resistance). In this context, MB susceptibility was evaluated against 482 isolates of imported malaria from Africa by HRP2-based ELISA chemosusceptibility assay. A total of 12 genes involved in antimalarial drug resistance (Pfcrt, Pfdhfr, Pfmdr1, Pfmdr5, Pfmdr6, PfK13, Pfubq, Pfcarl, Pfugt, Pfact, Pfcoronin, and copy number of Pfpm2) were sequenced by Sanger method and quantitative PCR. On the Pfmdr1 gene, the mutation 86Y combined with 184F led to more susceptible isolates to MB (8.0 nM vs. 11.6 nM, p = 0.03). Concerning Pfmdr6, the isolates bearing 12 Asn repetitions were more susceptible to MB (4.6 nM vs. 11.6 nM, p = 0.005). None of the polymorphisms previously described as involved in antimalarial drug resistance was shown to be associated with reduced susceptibility to MB. Some genes (particularly PfK13, Pfugt, Pfact, Pfpm2) did not present enough genetic variability to draw conclusions about their involvement in reduced susceptibility to MB. None of the polymorphisms analyzed by multiple correspondence analysis (MCA) had an impact on the MB susceptibility of the samples successfully included in the analysis. It seems that there is no in vitro cross-resistance between MB and commonly used antimalarial drugs.
Collapse
Affiliation(s)
- Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.G.); (O.D.); (M.G.R.); (F.T.F.); (N.B.); (R.A.); (I.F.); (J.M.); (M.M.)
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Océane Delandre
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.G.); (O.D.); (M.G.R.); (F.T.F.); (N.B.); (R.A.); (I.F.); (J.M.); (M.M.)
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Marie Gladys Robert
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.G.); (O.D.); (M.G.R.); (F.T.F.); (N.B.); (R.A.); (I.F.); (J.M.); (M.M.)
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Francis Tsombeng Foguim
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.G.); (O.D.); (M.G.R.); (F.T.F.); (N.B.); (R.A.); (I.F.); (J.M.); (M.M.)
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Nicolas Benoit
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.G.); (O.D.); (M.G.R.); (F.T.F.); (N.B.); (R.A.); (I.F.); (J.M.); (M.M.)
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Rémy Amalvict
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.G.); (O.D.); (M.G.R.); (F.T.F.); (N.B.); (R.A.); (I.F.); (J.M.); (M.M.)
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.G.); (O.D.); (M.G.R.); (F.T.F.); (N.B.); (R.A.); (I.F.); (J.M.); (M.M.)
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.G.); (O.D.); (M.G.R.); (F.T.F.); (N.B.); (R.A.); (I.F.); (J.M.); (M.M.)
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Marylin Madamet
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.G.); (O.D.); (M.G.R.); (F.T.F.); (N.B.); (R.A.); (I.F.); (J.M.); (M.M.)
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.G.); (O.D.); (M.G.R.); (F.T.F.); (N.B.); (R.A.); (I.F.); (J.M.); (M.M.)
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
- Centre National de Référence du Paludisme, 13005 Marseille, France
- Correspondence:
| | | |
Collapse
|
34
|
Assefa DG, Zeleke ED, Bekele D, Tesfahunei HA, Getachew E, Joseph M, Manyazewal T. Efficacy and safety of dihydroartemisinin-piperaquine versus artemether-lumefantrine for treatment of uncomplicated Plasmodium falciparum malaria in Ugandan children: a systematic review and meta-analysis of randomized control trials. Malar J 2021; 20:174. [PMID: 33794897 PMCID: PMC8017896 DOI: 10.1186/s12936-021-03711-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/24/2021] [Indexed: 12/02/2022] Open
Abstract
Background The emergence of artemisinin resistance in Southeast Asia and Plasmodium falciparum kelch13 propeller gene mutations in sub-Saharan African pose the greatest threat to global efforts to control malaria. This is a critical concern in Uganda, where artemisinin-based combination therapy (ACT) is the first-line treatment for uncomplicated falciparum. The objective of this study was to compare the efficacy and safety of dihydroartemisinin–piperaquine (DHA–PQ) and artemether–lumefantrine (AL) for the treatment of uncomplicated falciparum malaria in Ugandan children. Methods A search of PubMed and the Cochrane Central Register of Controlled Trials for retrieving randomized controlled trials comparing the efficacy and safety of DHA–PQ and AL for treatment of uncomplicated falciparum malaria in Ugandan children was done. The search was performed up to 31 August 2020. The data extracted from eligible studies and pooled as risk ratio (RR) with a 95% confidence interval (CI), using Rev Man Software (5.4). The protocol was registered in PROSPERO, ID: CRD42020182354. Results Eleven trials were included in this review and two of them only included under safety outcome. Total 3798 participants were enrolled. The PCR unadjusted treatment failure was significantly lower with DHA–PQ at day 28 (RR 0.30, 95% CI 0.19–0.49; participants = 7863; studies = 5; I2 = 93%, low quality evidence) and at day 42 (RR 0.53, 95% CI 0.38–0.76; participants = 1618; studies = 4; I2 = 79%, moderate quality of evidence). The PCR adjusted treatment failure at day 42 was significantly lower with DHA–PQ treatment group (RR 0.45, 95% CI 0.28 to 0.72; participants = 1370; studies = 5, high quality of evidence), and it was below 5% in both arms at day 28 (moderate quality of evidence). AL showed a longer prophylactic effect on new infections which may last for up to 63 days (PCR-adjusted treatment failure: RR 2.04, 95% CI 1.13–3.70; participants = 1311; studies = 2, moderate quality of evidence). Compared to AL, DHA–PQ was associated with a slightly higher frequency of cough (RR 1.07, 95% CI 1.01 to 1.13; 2575 participants; six studies; high quality of evidence). In both treatment groups, the risk of recurrent parasitaemia due to possible recrudescence was less than 5% at day 28. The appearance of gametocyte between 29 and 42 days was also significantly lower in DHA–PQ than AL (RR 0.26, 95% CI 0.12 to 0.56; participants = 623; studies = 2; I2 = 0%). Conclusion Compared to AL, DHA–PQ appeared to reduce treatment failure and gametocyte carriage in Ugandan children. This may trigger DHA–PQ to become the first-line treatment option. Both treatments were safe and well-tolerated. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03711-4.
Collapse
Affiliation(s)
- Dawit Getachew Assefa
- College of Health Sciences, Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia. .,Department of Nursing, College of Health Science and Medicine, Dilla University, Dilla, Ethiopia.
| | - Eden Dagnachew Zeleke
- College of Health Sciences, Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia.,Department of Midwifery, College of Health Science, Bule-Hora University, Bule-Hora, Ethiopia
| | - Delayehu Bekele
- College of Health Sciences, Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia.,Department of Obstetrics and Gynecology, Saint Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Hanna Amanuel Tesfahunei
- College of Health Sciences, Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia.,Hager Biomedical Research Institute, Asmara, Eritrea
| | - Emnet Getachew
- College of Health Sciences, Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia.,Arsi University, Asella, Ethiopia
| | - Michele Joseph
- College of Health Sciences, Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia
| | - Tsegahun Manyazewal
- College of Health Sciences, Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia
| |
Collapse
|
35
|
Snider D, Weathers PJ. In vitro reduction of Plasmodium falciparum gametocytes: Artemisia spp. tea infusions vs. artemisinin. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113638. [PMID: 33271239 PMCID: PMC7855472 DOI: 10.1016/j.jep.2020.113638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/27/2020] [Accepted: 11/25/2020] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua has a long history of use in Southeast Asia where it was used to treat "fever", and A. afra has a similar history in southern Africa. Since their discovery, A. annua use, in particular, has expanded globally with millions of people using the plant in therapeutic tea infusions, mainly to treat malaria. AIM OF THE STUDY In this study, we used in vitro studies to query if and how A. annua and A. afra tea infusions being used across the globe affect asexual Plasmodium falciparum parasites, and their sexual gametocytes. MATERIALS AND METHODS P. falciparumstrain NF54 was grown in vitro, synchronized, and induced to form gametocytes using N-acetylglucosamine. Cultures during asexual, early, and late stage gametocytogenesis were treated with artemisinin, methylene blue, and A. annua and A. afra tea infusions (5 g DW/L) using cultivars that contained 0-283 μM artemisinin. Asexual parasitemia and gametocytemia were analyzed microscopically. Gametocyte morphology also was scored. Markers of early (PfGEXP5) and late stage (Pfs25) gametocyte gene expression also were measured using RT-qPCR. RESULTS Both A. annua and A. afra tea infusions reduced gametocytemia in vitro, and the effect was mainly artemisinin dependent. Expression levels of both marker genes were reduced and also occurred with the effect mainly attributed to artemisinin content of four tested Artemisia cultivars. Tea infusions of both species also inhibited asexual parasitemia and although mainly artemisinin dependent, there was a weak antiparasitic effect from artemisinin-deficient A. afra. CONCLUSIONS These results showed that A. annua and to a lesser extent, A. afra, inhibited parasitemia and gametocytemia in vitro.
Collapse
Affiliation(s)
- Danielle Snider
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| | - Pamela J Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
36
|
Chawla J, Oberstaller J, Adams JH. Targeting Gametocytes of the Malaria Parasite Plasmodium falciparum in a Functional Genomics Era: Next Steps. Pathogens 2021; 10:346. [PMID: 33809464 PMCID: PMC7999360 DOI: 10.3390/pathogens10030346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/04/2023] Open
Abstract
Mosquito transmission of the deadly malaria parasite Plasmodium falciparum is mediated by mature sexual forms (gametocytes). Circulating in the vertebrate host, relatively few intraerythrocytic gametocytes are picked up during a bloodmeal to continue sexual development in the mosquito vector. Human-to-vector transmission thus represents an infection bottleneck in the parasite's life cycle for therapeutic interventions to prevent malaria. Even though recent progress has been made in the identification of genetic factors linked to gametocytogenesis, a plethora of genes essential for sexual-stage development are yet to be unraveled. In this review, we revisit P. falciparum transmission biology by discussing targetable features of gametocytes and provide a perspective on a forward-genetic approach for identification of novel transmission-blocking candidates in the future.
Collapse
Affiliation(s)
- Jyotsna Chawla
- Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, MDC 7, Tampa, FL 33612, USA;
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 404, Tampa, FL 33612, USA;
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 404, Tampa, FL 33612, USA;
| |
Collapse
|
37
|
Posayapisit N, Pengon J, Prommana P, Shoram M, Yuthavong Y, Uthaipibull C, Kamchonwongpaisan S, Jupatanakul N. Transgenic pyrimethamine-resistant plasmodium falciparum reveals transmission-blocking potency of P218, a novel antifolate candidate drug. Int J Parasitol 2021; 51:635-642. [PMID: 33713651 DOI: 10.1016/j.ijpara.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
Antimalarial drugs capable of targeting multiple parasite stages, particularly the transmissible stages, can be valuable tools for advancing the malaria elimination agenda. Current antifolate drugs such as pyrimethamine can inhibit replicative parasite stages in both humans and mosquitoes, but antifolate resistance remains a challenge. The lack of reliable gametocyte-producing, antifolate-resistant Plasmodium falciparum laboratory strain hinders the study of new antifolate compounds that can overcome antifolate resistance including development stages in the mosquito. We used clustered regularly interspaced short palindromic repeats-Cas9 genome editing to develop a transgenic gametocyte-producing strain of P. falciparum with quadruple mutations (N51I, C59R, S108N, I164L) in the dihydrofolate reductase (dhfr) gene, using NF54 as a parental strain. The transgenic parasites exhibited pyrimethamine resistance while maintaining their gametocyte-producing activity. We then demonstrated that pyrimethamine could no longer inhibit male gametocyte exflagellation in the transgenic parasite. In contrast, P218, the novel antifolate, designed to overcome antifolate resistance, potently inhibited exflagellation. The exflagellation IC50 of P218 was five times lower than the asexual stage half maximal inhibitory concentration (IC50), suggesting a strong barrier for transmission of P218-resistant parasites. The transgenic gametocyte-producing, pyrimethamine-resistant parasite is a robust system for evaluating novel antifolate compounds against non-asexual stage development.
Collapse
Affiliation(s)
- Navaporn Posayapisit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand
| | - Jutharat Pengon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand
| | - Parichat Prommana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand
| | - Molnipha Shoram
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand
| | - Chairat Uthaipibull
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand
| | | | - Natapong Jupatanakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand.
| |
Collapse
|
38
|
Rotella D, Siekierka J, Bhanot P. Plasmodium falciparum cGMP-Dependent Protein Kinase - A Novel Chemotherapeutic Target. Front Microbiol 2021; 11:610408. [PMID: 33613463 PMCID: PMC7886688 DOI: 10.3389/fmicb.2020.610408] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
The primary effector of cGMP signaling in Plasmodium is the cGMP-dependent protein kinase (PKG). Work in human-infective Plasmodium falciparum and rodent-infective Plasmodium berghei has provided biological validation of P. falciparum PKG (PfPKG) as a drug target for treating and/or protecting against malaria. PfPKG is essential in the asexual erythrocytic and sexual cycles as well as the pre-erythrocytic cycle. Medicinal chemistry efforts, both target-based and phenotype-based, have targeted PfPKG in the past few years. This review provides a brief overview of their results and challenges.
Collapse
Affiliation(s)
- David Rotella
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, United States
| | - John Siekierka
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, United States
| | - Purnima Bhanot
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
39
|
Lawong A, Gahalawat S, Okombo J, Striepen J, Yeo T, Mok S, Deni I, Bridgford JL, Niederstrasser H, Zhou A, Posner B, Wittlin S, Gamo FJ, Crespo B, Churchyard A, Baum J, Mittal N, Winzeler E, Laleu B, Palmer MJ, Charman SA, Fidock DA, Ready JM, Phillips MA. Novel Antimalarial Tetrazoles and Amides Active against the Hemoglobin Degradation Pathway in Plasmodium falciparum. J Med Chem 2021; 64:2739-2761. [PMID: 33620219 DOI: 10.1021/acs.jmedchem.0c02022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Malaria control programs continue to be threatened by drug resistance. To identify new antimalarials, we conducted a phenotypic screen and identified a novel tetrazole-based series that shows fast-kill kinetics and a relatively low propensity to develop high-level resistance. Preliminary structure-activity relationships were established including identification of a subseries of related amides with antiplasmodial activity. Assaying parasites with resistance to antimalarials led us to test whether the series had a similar mechanism of action to chloroquine (CQ). Treatment of synchronized Plasmodium falciparum parasites with active analogues revealed a pattern of intracellular inhibition of hemozoin (Hz) formation reminiscent of CQ's action. Drug selections yielded only modest resistance that was associated with amplification of the multidrug resistance gene 1 (pfmdr1). Thus, we have identified a novel chemical series that targets the historically druggable heme polymerization pathway and that can form the basis of future optimization efforts to develop a new malaria treatment.
Collapse
Affiliation(s)
- Aloysus Lawong
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Suraksha Gahalawat
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Jessica L Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Hanspeter Niederstrasser
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Anwu Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, 4002 Basel, Switzerland
| | | | - Benigno Crespo
- Medicines Development Campus, GlaxoSmithKline, Tres Cantos, 28760 Madrid, Spain
| | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, SW7 2AZ South Kensington, U.K
| | - Jake Baum
- Department of Life Sciences, Imperial College London, SW7 2AZ South Kensington, U.K
| | - Nimisha Mittal
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, United States
| | - Elizabeth Winzeler
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, United States
| | - Benoît Laleu
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States.,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Margaret A Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
40
|
Villa M, Buysse M, Berthomieu A, Rivero A. The transmission-blocking effects of antimalarial drugs revisited: fitness costs and sporontocidal effects of artesunate and sulfadoxine-pyrimethamine. Int J Parasitol 2021; 51:279-289. [PMID: 33508331 DOI: 10.1016/j.ijpara.2020.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022]
Abstract
Assays used to evaluate the transmission-blocking activity of antimalarial drugs are largely focused on their potential to inhibit or reduce the infectivity of gametocytes, the blood stages of the parasite that are responsible for the onward transmission to the mosquito vector. For this purpose, the drug is administered concomitantly with gametocyte-infected blood, and the results are evaluated as the percentage of reduction in the number of oocysts in the mosquito midgut. We report the results of a series of experiments that explore the transmission-blocking potential of two key antimalarial drugs, artesunate and sulfadoxine-pyrimethamine, when administered to mosquitoes already infected from a previous blood meal. For this purpose, uninfected mosquitoes and mosquitoes carrying a 6 day old Plasmodium relictum infection (early oocyst stages) were allowed to feed either on a drug-treated or an untreated host in a fully factorial experiment. This protocol allowed us to bypass the gametocyte stages and establish whether the drugs have a sporontocidal effect, i.e. whether they are able to arrest the ongoing development of oocysts and sporozoites, as would be the case when a mosquito takes a post-infection treated blood meal. In a separate experiment, we also explored whether a drug-treated blood meal impacted key life history traits of the mosquito relevant for transmission, and if this depended on their infection status. Our results showed that feeding on an artesunate- or sulfadoxine-pyrimethamine-treated hosts has no epidemiologically relevant effects on the fitness of infected or uninfected mosquitoes. In contrast, when infected mosquitoes fed on an sulfadoxine-pyrimethamine-treated host, we observed both a significant increase in the number of oocysts in the midgut, and a drastic decrease in both sporozoite prevalence (-30%) and burden (-80%) compared with the untreated controls. We discuss the potential mechanisms underlying these seemingly contradictory results and contend that, provided the results are translatable to human malaria, the potential epidemiological and evolutionary consequences of the current preventive use of sulfadoxine-pyrimethamine in malaria-endemic countries could be substantial.
Collapse
Affiliation(s)
- M Villa
- MIVEGEC (CNRS - IRD - Université de Montpellier), France.
| | - M Buysse
- MIVEGEC (CNRS - IRD - Université de Montpellier), France
| | - A Berthomieu
- MIVEGEC (CNRS - IRD - Université de Montpellier), France; CREES (Centre d'Écologie et Évolution de la Santé, Montpellier), 911 avenue Agropolis, 34394 Montpellier, France
| | - A Rivero
- MIVEGEC (CNRS - IRD - Université de Montpellier), France; CREES (Centre d'Écologie et Évolution de la Santé, Montpellier), 911 avenue Agropolis, 34394 Montpellier, France
| |
Collapse
|
41
|
Multistage and transmission-blocking targeted antimalarials discovered from the open-source MMV Pandemic Response Box. Nat Commun 2021; 12:269. [PMID: 33431834 PMCID: PMC7801607 DOI: 10.1038/s41467-020-20629-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022] Open
Abstract
Chemical matter is needed to target the divergent biology associated with the different life cycle stages of Plasmodium. Here, we report the parallel de novo screening of the Medicines for Malaria Venture (MMV) Pandemic Response Box against Plasmodium asexual and liver stage parasites, stage IV/V gametocytes, gametes, oocysts and as endectocides. Unique chemotypes were identified with both multistage activity or stage-specific activity, including structurally diverse gametocyte-targeted compounds with potent transmission-blocking activity, such as the JmjC inhibitor ML324 and the antitubercular clinical candidate SQ109. Mechanistic investigations prove that ML324 prevents histone demethylation, resulting in aberrant gene expression and death in gametocytes. Moreover, the selection of parasites resistant to SQ109 implicates the druggable V-type H+-ATPase for the reduced sensitivity. Our data therefore provides an expansive dataset of compounds that could be redirected for antimalarial development and also point towards proteins that can be targeted in multiple parasite life cycle stages. Here, Reader et al. screen the Medicines for Malaria Venture Pandemic Response Box in parallel against Plasmodiumasexual and liver stage parasites, stage IV/V gametocytes, gametes, oocysts and as endectocides. They identify two potent transmission-blocking drugs: a histone demethylase inhibitor ML324 and the antitubercular SQ109.
Collapse
|
42
|
Transmission of Artemisinin-Resistant Malaria Parasites to Mosquitoes under Antimalarial Drug Pressure. Antimicrob Agents Chemother 2020; 65:AAC.00898-20. [PMID: 33139275 PMCID: PMC7927852 DOI: 10.1128/aac.00898-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022] Open
Abstract
Resistance to artemisinin-based combination therapy (ACT) in the Plasmodium falciparum parasite is threatening to reverse recent gains in reducing global deaths from malaria. While resistance manifests as delayed parasite clearance in patients, the phenotype can only spread geographically via the sexual stages and mosquito transmission. In addition to their asexual killing properties, artemisinin and its derivatives sterilize sexual male gametocytes. Whether resistant parasites overcome this sterilizing effect has not, however, been fully tested. Resistance to artemisinin-based combination therapy (ACT) in the Plasmodium falciparum parasite is threatening to reverse recent gains in reducing global deaths from malaria. While resistance manifests as delayed parasite clearance in patients, the phenotype can only spread geographically via the sexual stages and mosquito transmission. In addition to their asexual killing properties, artemisinin and its derivatives sterilize sexual male gametocytes. Whether resistant parasites overcome this sterilizing effect has not, however, been fully tested. Here, we analyzed P. falciparum clinical isolates from the Greater Mekong Subregion, each demonstrating delayed clinical clearance and known resistance-associated polymorphisms in the Kelch13 (PfK13var) gene. As well as demonstrating reduced asexual sensitivity to drug, certain PfK13var isolates demonstrated a marked reduction in sensitivity to artemisinin in an in vitro male gamete formation assay. Importantly, this same reduction in sensitivity was observed when the most resistant isolate was tested directly in mosquito feeds. These results indicate that, under artemisinin drug pressure, while sensitive parasites are blocked, resistant parasites continue transmission. This selective advantage for resistance transmission could favor acquisition of additional host-specificity or polymorphisms affecting partner drug sensitivity in mixed infections. Favored resistance transmission under ACT coverage could have profound implications for the spread of multidrug-resistant malaria beyond Southeast Asia.
Collapse
|
43
|
Prajapati SK, Ayanful-Torgby R, Pava Z, Barbeau MC, Acquah FK, Cudjoe E, Kakaney C, Amponsah JA, Obboh E, Ahmed AE, Abuaku BK, McCarthy JS, Amoah LE, Williamson KC. The transcriptome of circulating sexually committed Plasmodium falciparum ring stage parasites forecasts malaria transmission potential. Nat Commun 2020; 11:6159. [PMID: 33268801 PMCID: PMC7710746 DOI: 10.1038/s41467-020-19988-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022] Open
Abstract
Malaria is spread by the transmission of sexual stage parasites, called gametocytes. However, with Plasmodium falciparum, gametocytes can only be detected in peripheral blood when they are mature and transmissible to a mosquito, which complicates control efforts. Here, we identify the set of genes overexpressed in patient blood samples with high levels of gametocyte-committed ring stage parasites. Expression of all 18 genes is regulated by transcription factor AP2-G, which is required for gametocytogenesis. We select three genes, not expressed in mature gametocytes, to develop as biomarkers. All three biomarkers we validate in vitro using 6 different parasite lines and develop an algorithm that predicts gametocyte production in ex vivo samples and volunteer infection studies. The biomarkers are also sensitive enough to monitor gametocyte production in asymptomatic P. falciparum carriers allowing early detection and treatment of infectious reservoirs, as well as the in vivo analysis of factors that modulate sexual conversion. Malaria gametocytes are sexual-stage parasites transmitted from mammalian host’s blood back to their insect vector. Here, Prajapati et al. identify gametocyte-committed ring-stage biomarkers allowing to forecast malaria transmission potential.
Collapse
Affiliation(s)
- Surendra K Prajapati
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Ruth Ayanful-Torgby
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Zuleima Pava
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Michelle C Barbeau
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,University of Virginia, Charlottesville, VA, USA
| | - Festus K Acquah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Elizabeth Cudjoe
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Courage Kakaney
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Jones A Amponsah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Anwar E Ahmed
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Benjamin K Abuaku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Linda E Amoah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
44
|
Eagon S, Hammill JT, Sigal M, Ahn KJ, Tryhorn JE, Koch G, Belanger B, Chaplan CA, Loop L, Kashtanova AS, Yniguez K, Lazaro H, Wilkinson SP, Rice AL, Falade MO, Takahashi R, Kim K, Cheung A, DiBernardo C, Kimball JJ, Winzeler EA, Eribez K, Mittal N, Gamo FJ, Crespo B, Churchyard A, García-Barbazán I, Baum J, Anderson MO, Laleu B, Guy RK. Synthesis and Structure-Activity Relationship of Dual-Stage Antimalarial Pyrazolo[3,4- b]pyridines. J Med Chem 2020; 63:11902-11919. [PMID: 32945666 DOI: 10.1021/acs.jmedchem.0c01152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Malaria remains one of the most deadly infectious diseases, causing hundreds of thousands of deaths each year, primarily in young children and pregnant mothers. Here, we report the discovery and derivatization of a series of pyrazolo[3,4-b]pyridines targeting Plasmodium falciparum, the deadliest species of the malaria parasite. Hit compounds in this series display sub-micromolar in vitro activity against the intraerythrocytic stage of the parasite as well as little to no toxicity against the human fibroblast BJ and liver HepG2 cell lines. In addition, our hit compounds show good activity against the liver stage of the parasite but little activity against the gametocyte stage. Parasitological profiles, including rate of killing, docking, and molecular dynamics studies, suggest that our compounds may target the Qo binding site of cytochrome bc1.
Collapse
Affiliation(s)
- Scott Eagon
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Jared T Hammill
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40508, United States
| | - Martina Sigal
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Kevin J Ahn
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Julia E Tryhorn
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Grant Koch
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Briana Belanger
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Cory A Chaplan
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Lauren Loop
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Anna S Kashtanova
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Kenya Yniguez
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Horacio Lazaro
- Promega Biosciences, 277 Granada Drive, San Luis Obispo, California 93401, United States
| | - Steven P Wilkinson
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Amy L Rice
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40508, United States
| | - Mofolusho O Falade
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40508, United States
| | - Rei Takahashi
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Katie Kim
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Ashley Cheung
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Celine DiBernardo
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Joshua J Kimball
- Promega Biosciences, 277 Granada Drive, San Luis Obispo, California 93401, United States
| | - Elizabeth A Winzeler
- School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Korina Eribez
- School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Nimisha Mittal
- School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | | | - Benigno Crespo
- GlaxoSmithKline, Global Health, DDW, Tres Cantos, Madrid 28760, Spain
| | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Irene García-Barbazán
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, United States
| | - Benoît Laleu
- Medicines for Malaria Venture (MMV), P.O. Box 1826, 20, Route de Pré-Bois, Geneva 1215, Switzerland
| | - R Kiplin Guy
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40508, United States
| |
Collapse
|
45
|
Moyo P, Mugumbate G, Eloff JN, Louw AI, Maharaj VJ, Birkholtz LM. Natural Products: A Potential Source of Malaria Transmission Blocking Drugs? Pharmaceuticals (Basel) 2020; 13:E251. [PMID: 32957668 PMCID: PMC7558993 DOI: 10.3390/ph13090251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
The ability to block human-to-mosquito and mosquito-to-human transmission of Plasmodium parasites is fundamental to accomplish the ambitious goal of malaria elimination. The WHO currently recommends only primaquine as a transmission-blocking drug but its use is severely restricted by toxicity in some populations. New, safe and clinically effective transmission-blocking drugs therefore need to be discovered. While natural products have been extensively investigated for the development of chemotherapeutic antimalarial agents, their potential use as transmission-blocking drugs is comparatively poorly explored. Here, we provide a comprehensive summary of the activities of natural products (and their derivatives) of plant and microbial origins against sexual stages of Plasmodium parasites and the Anopheles mosquito vector. We identify the prevailing challenges and opportunities and suggest how these can be mitigated and/or exploited in an endeavor to expedite transmission-blocking drug discovery efforts from natural products.
Collapse
Affiliation(s)
- Phanankosi Moyo
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028 Pretoria, South Africa;
| | - Grace Mugumbate
- Department of Chemistry, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, Private Bag, 7724 Chinhoyi, Zimbabwe;
| | - Jacobus N. Eloff
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag x04, Onderstepoort 0110 Pretoria, South Africa;
| | - Abraham I. Louw
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028 Pretoria, South Africa;
| | - Vinesh J. Maharaj
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028 Pretoria, South Africa;
| | - Lyn-Marié Birkholtz
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028 Pretoria, South Africa;
| |
Collapse
|
46
|
Bradley J, Soumaré HM, Mahamar A, Diawara H, Roh M, Delves M, Drakeley C, Churcher TS, Dicko A, Gosling R, Bousema T. Transmission-blocking Effects of Primaquine and Methylene Blue Suggest Plasmodium falciparum Gametocyte Sterilization Rather Than Effects on Sex Ratio. Clin Infect Dis 2020; 69:1436-1439. [PMID: 30753355 PMCID: PMC6763632 DOI: 10.1093/cid/ciz134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/07/2019] [Indexed: 11/16/2022] Open
Abstract
Gametocyte density and sex ratio can predict the proportion of mosquitoes that will become infected after feeding on blood of patients receiving nongametocytocidal drugs. Because primaquine and methylene blue sterilize gametocytes before affecting their density and sex ratio, mosquito feeding experiments are required to demonstrate their early transmission-blocking effects.
Collapse
Affiliation(s)
- John Bradley
- Medical Research Council (MRC) Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Harouna M Soumaré
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Science, Techniques and Technologies of Bamako, Mali
| | - Almahamoudou Mahamar
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Science, Techniques and Technologies of Bamako, Mali
| | - Halimatou Diawara
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Science, Techniques and Technologies of Bamako, Mali
| | - Michelle Roh
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco
| | - Michael Delves
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Thomas S Churcher
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, United Kingdom
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Science, Techniques and Technologies of Bamako, Mali
| | - Roly Gosling
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco
| | - Teun Bousema
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, United Kingdom
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Correspondence: T. Bousema, Radboud University Medical Center Nijmegen, Department of Medical Microbiology 268, 6525 GA Nijmegen, The Netherlands ()
| |
Collapse
|
47
|
Novel Method for the Separation of Male and Female Gametocytes of the Malaria Parasite Plasmodium falciparum That Enables Biological and Drug Discovery. mSphere 2020; 5:5/4/e00671-20. [PMID: 32817458 PMCID: PMC7426174 DOI: 10.1128/msphere.00671-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The protozoan Plasmodium falciparum causes the most severe form of human malaria. The development of sexual forms (so-called gametocytes) is crucial for disease transmission. However, knowledge of these forms is severely hampered by the paucity of sex-specific markers and the inability to extract single sex gametocytes in high purity. Moreover, the identification of compounds that specifically affect one sex is difficult due to the female bias of the gametocytes. We have developed a system that allows for the separation of male and female gametocytes from the same population. Applying our system, we show that male and female parasites mature at different rates, which might have implications for transmission. We also identified new sex-specific genes that can be used as sex markers or to unravel sex-specific functions. Our system will not only aid in the discovery of much needed gametocidal compounds, but it also represents a valuable tool for exploring malaria transmission biology. We developed a flow-cytometry-based method to separate and collect cocultured male and female Plasmodium falciparum gametocytes responsible for malaria transmission. The purity of the collected cells was estimated at >97% using flow cytometry, and sorted cells were observed by Giemsa-stained thin-smear and live-cell fluorescence microscopy. The expression of validated sex-specific markers corroborated the sorting strategy. Collected male and female gametocytes were used to confirm three novel sex-specific markers by quantitative real-time PCR that were more enriched in sorted male and female gametocyte populations than existing sex-specific markers. We also applied the method as a proof-of-principle drug screen that allows the identification of drugs that kill gametocytes in a sex-specific manner. Since the developed method allowed for the separation of male and female parasites from the same culture, we observed for the first time a difference in development time between the sexes: females developed faster than males. Hence, the ability to separate male and female gametocytes opens the door to a new field of sex-specific P. falciparum gametocyte biology to further our understanding of malaria transmission. IMPORTANCE The protozoan Plasmodium falciparum causes the most severe form of human malaria. The development of sexual forms (so-called gametocytes) is crucial for disease transmission. However, knowledge of these forms is severely hampered by the paucity of sex-specific markers and the inability to extract single sex gametocytes in high purity. Moreover, the identification of compounds that specifically affect one sex is difficult due to the female bias of the gametocytes. We have developed a system that allows for the separation of male and female gametocytes from the same population. Applying our system, we show that male and female parasites mature at different rates, which might have implications for transmission. We also identified new sex-specific genes that can be used as sex markers or to unravel sex-specific functions. Our system will not only aid in the discovery of much needed gametocidal compounds, but it also represents a valuable tool for exploring malaria transmission biology.
Collapse
|
48
|
Rosenthal MR, Ng CL. Plasmodium falciparum Artemisinin Resistance: The Effect of Heme, Protein Damage, and Parasite Cell Stress Response. ACS Infect Dis 2020; 6:1599-1614. [PMID: 32324369 DOI: 10.1021/acsinfecdis.9b00527] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite a significant decline in morbidity and mortality over the last two decades, in 2018 there were 228 million reported cases of malaria and 405000 malaria-related deaths. Artemisinin, the cornerstone of artemisinin-based combination therapies, is the most potent drug in the antimalarial armamentarium against falciparum malaria. Heme-mediated activation of artemisinin and its derivatives results in widespread parasite protein alkylation, which is thought to lead to parasite death. Alarmingly, cases of decreased artemisinin efficacy have been widely detected across Cambodia and in neighboring countries, and a few cases have been reported in the Guiana Shield, India, and Africa. The grim prospect of widespread artemisinin resistance propelled a concerted effort to understand the mechanisms of artemisinin action and resistance. The identification of genetic markers and the knowledge of molecular mechanisms underpinning artemisinin resistance allow prospective surveillance and inform future drug development strategies, respectively. Here, we highlight recent advances in our understanding of how parasite vesicle trafficking, hemoglobin digestion, and cell stress responses contribute to artemisinin resistance.
Collapse
Affiliation(s)
- Melissa R. Rosenthal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Caroline L. Ng
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
49
|
Wang CYT, Ballard E, Llewellyn S, Marquart L, Bousema T, McCarthy JS, Collins KA. Assays for quantification of male and female gametocytes in human blood by qRT-PCR in the absence of pure sex-specific gametocyte standards. Malar J 2020; 19:218. [PMID: 32576184 PMCID: PMC7310411 DOI: 10.1186/s12936-020-03291-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/17/2020] [Indexed: 12/25/2022] Open
Abstract
Background Malaria transmission from humans to Anopheles mosquitoes requires the presence of gametocytes in human peripheral circulation, and the dynamics of transmission are determined largely by the density and sex ratio of the gametocytes. Molecular methods are thus employed to measure gametocyte densities, particularly when assessing transmission epidemiology and the efficacy of transmission-blocking interventions. However, accurate quantification of male and female gametocytes with molecular methods requires pure male and female gametocytes as reference standards, which are not widely available. Methods qRT-PCR assays were used to quantify levels of sex-specific mRNA transcripts in Plasmodium falciparum female and male gametocytes (pfs25 and pfMGET, respectively) using synthetic complimentary RNA standards and in vitro cultured gametocytes. Assays were validated and assay performance was investigated in blood samples of clinical trial participants using these standards and compared to absolute quantification by droplet digital PCR (ddPCR). Results The number of transcript copies per gametocyte were determined to be 279.3 (95% CI 253.5–307.6) for the female-specific transcript pfs25, and 12.5 (95% CI 10.6–14.9) for the male-specific transcript pfMGET. These numbers can be used to convert from transcript copies/mL to gametocyte/mL. The reportable range was determined to be 5.71 × 106 to 5.71 female gametocytes/mL for pfs25, and 1.73 × 107 to 1.73 × 101 male gametocytes/mL for pfMGET. The limit of detection was 3.9 (95% CI 2.5–8.2) female gametocytes/mL for pfs25, and 26.9 (95% CI 19.3–51.7) male gametocytes/mL for PfMGET. Both assays showed minimal intra-assay and inter-assay variability with coefficient of variation < 3%. No cross-reactivity was observed in both assays in uninfected human blood samples. Comparison of results from ddPCR to qRT-PCR assays on clinical blood samples indicated a high-level agreement (ICC = 0.998 for pfs25 and 0.995 for pfMGET). Conclusions This study reports the validation of qRT-PCR assays that are able to accurately quantify female and male P. falciparum gametocytes at sub-microscopic densities. The assays showed excellent reproducibility, sensitivity, precision, specificity, and accuracy. The methodology will enable the estimation of gametocyte density in the absence of pure female and male gametocyte standards, and will facilitate clinical trials and epidemiological studies.
Collapse
Affiliation(s)
- Claire Y T Wang
- QPID Laboratory, Centre for Children's Health Research, Brisbane, QLD, Australia
| | - Emma Ballard
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Stacey Llewellyn
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Teun Bousema
- Radboud Institute for Health Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Katharine A Collins
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,Radboud Institute for Health Science, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
50
|
Choi R, Michaels SA, Onu EC, Hulverson MA, Saha A, Coker ME, Weeks JC, Van Voorhis WC, Ojo KK. Taming the Boys for Global Good: Contraceptive Strategy to Stop Malaria Transmission. Molecules 2020; 25:molecules25122773. [PMID: 32560085 PMCID: PMC7356879 DOI: 10.3390/molecules25122773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 12/21/2022] Open
Abstract
Transmission of human malaria parasites (Plasmodium spp.) by Anopheles mosquitoes is a continuous process that presents a formidable challenge for effective control of the disease. Infectious gametocytes continue to circulate in humans for up to four weeks after antimalarial drug treatment, permitting prolonged transmission to mosquitoes even after clinical cure. Almost all reported malaria cases are transmitted to humans by mosquitoes, and therefore decreasing the rate of Plasmodium transmission from humans to mosquitoes with novel transmission-blocking remedies would be an important complement to other interventions in reducing malaria incidence.
Collapse
Affiliation(s)
- Ryan Choi
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
| | - Samantha A. Michaels
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
| | - Emmanuel C. Onu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria; (E.C.O.); (M.E.C.)
| | - Matthew A. Hulverson
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
| | - Aparajita Saha
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
| | - Morenike E. Coker
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria; (E.C.O.); (M.E.C.)
| | - Janis C. Weeks
- Department of Biology, University of Oregon, Eugene, OR 97403, USA;
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
| | - Kayode K. Ojo
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
- Correspondence: ; Tel.: +1-206-543-0821
| |
Collapse
|