1
|
Li Q, Liu Y, Zheng J, Chen Y, Liu Z, Xie Q, Li D, Xi L, Zheng J, Liu H. Potassium iodide enhances the killing effect of methylene blue mediated photodynamic therapy against F. monophora. Photodiagnosis Photodyn Ther 2024; 48:104255. [PMID: 38901715 DOI: 10.1016/j.pdpdt.2024.104255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Chromoblastomycosis (CMB) is a chronic granulomatous fungal infection that affect the skin and subcutaneous tissues. It is clinically problematic due to limited treatment options, low cure rates, and high rates of relapse. This underscores the necessity for innovative treatment approaches. In this study, potassium iodide (KI) combined with Methylene Blue (MB) mediated antimicrobial photodynamic therapy (PDT) were assessed in the treatment of Fonsecaea monophora (F. monophora) both in vitro and in vivo. And the underlying mechanism that contributes to the efficacy of this treatment approach was investigated. METHODS In vitro experiments were conducted using different combinations and concentrations of MB, KI, and 660 nm light (60 mW/cm2) to inhibit F. monophora. The study was carried out using colony-forming unit (CFU) counts and scanning electron microscopy (SEM). The production of singlet oxygen (1O2), free iodine (I2), hydrogen peroxide (H2O2), and superoxide anion during the KI combined MB-mediated antimicrobial PDT process was also detected. In vivo experiments were developed using a Balb/c mouse paw infection model with F. monophora and treated with PBS, 10 mM KI, 2 mM MB +100 J/cm² and 10 mM KI+2 mM MB +100 J/cm² respectively. Inflammatory swelling, fungal load and histopathological analyses of the mouse footpads were assessed. RESULTS KI enhanced the killing effect of MB-mediated antimicrobial PDT on the conidial spores of F. monophora at the cell and infected animal model level. During the process, the main antimicrobial agents in KI combined with MB- mediated antimicrobial PDT could produce stronger toxic active species including free I2 and H2O2. CONCLUSION: KI combined with MB-mediated antimicrobial PDT could be an effective adjunct therapy for treating CBM.
Collapse
Affiliation(s)
- Qian Li
- Guangdong Clinical College of Dermatology, Anhui Medical University, Hefei, China; Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yinghui Liu
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jinjin Zheng
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yangxia Chen
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zeyu Liu
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Qiulin Xie
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Dongmei Li
- Department of Microbiology/Immunology, Georgetown University Medical Center, Washington, D.C., USA
| | - Liyan Xi
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China; Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Judun Zheng
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China.
| | - Hongfang Liu
- Guangdong Clinical College of Dermatology, Anhui Medical University, Hefei, China; Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Zheng MZ, Chen WX, Zhao YX, Fang Q, Wang LG, Tian SY, Shi YG, Chen JS. Ascorbic acid potentiates photodynamic inactivation mediated by octyl gallate and blue light for rapid eradication of planktonic bacteria and biofilms. Food Chem 2024; 448:139073. [PMID: 38574713 DOI: 10.1016/j.foodchem.2024.139073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024]
Abstract
This study reported for the first time that Ascorbic acid (AA) could appreciably boost the efficiency of Octyl gallate (OG)-mediated photodynamic inactivation (PDI) on Escherichia coli and Staphylococcus aureus in planktonic and biofilm states. The combination of OG (0.075 mM) and AA (200 mM) with 420 nm blue light (212 mW/cm2) led to a >6 Log killing within only 5 min for E. coli and S. aureus and rapid eradication of biofilms. The mechanism of action appears to be the generation of highly toxic hydroxyl radicals (•OH) via photochemical pathways. OG was exposed to BL irradiation to generate various reactive oxygen radicals (ROS) and the addition of AA could transform singlet oxygen (1O2) into hydrogen peroxide (H2O2), which could further react with AA to generate enormous •OH. These ROS jeopardized bacteria and biofilms by nonspecifically attacking various biomacromolecules. Overall, this PDI strategy provides a powerful microbiological decontamination modality to guarantee safe food products.
Collapse
Affiliation(s)
- Mei-Zhi Zheng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Wen-Xuan Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yue-Xin Zhao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Qiang Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Ling-Gang Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Shi-Yi Tian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| | - Jian-She Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| |
Collapse
|
3
|
Shi YG, Chen WX, Zheng MZ, Zhao YX, Wang YR, Chu YH, Du ST, Shi ZY, Gu Q, Chen JS. Ultraefficient OG-Mediated Photodynamic Inactivation Mechanism for Ablation of Bacteria and Biofilms in Water Augmented by Potassium Iodide under Blue Light Irradiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13672-13687. [PMID: 37671932 DOI: 10.1021/acs.jafc.3c03182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
While photodynamic inactivation (PDI) has emerged as a novel sterilization strategy for drinking water treatment that recently attracted tremendous attention, its efficiency needs to be further improved. In this study, we aimed to clarify the ultraefficient mechanism by which potassium iodide (KI) potentiates octyl gallate (OG)-mediated PDI against bacteria and biofilms in water. When OG (0.15 mM) and bacteria were exposed to blue light (BL, 420 nm, 210 mW/cm2), complete sterilization (>7.5 Log cfu/mL of killing) was achieved by the addition of KI (250 mM) within only 5 min (63.9 J/cm2). In addition, at lower doses of OG (0.1 mM) with KI (100 mM), the biofilm was completely eradicated within 10 min (127.8 J/cm2). The KI-potentiated mechanism involves in situ rapid photogeneration of a multitude of reactive oxygen species, especially hydroxyl radicals (•OH), reactive iodine species, and new photocytocidal substances (quinone) by multiple photochemical pathways, which led to the destruction of cell membranes and membrane proteins, the cleavage of genomic DNA and extracellular DNA within biofilms, and the degradation of QS signaling molecules. This multitarget synergistic strategy provided new insights into the development of an environmentally friendly, safe, and ultraefficient photodynamic drinking water sterilization technology.
Collapse
Affiliation(s)
- Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Wen-Xuan Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Mei-Zhi Zheng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Yue-Xin Zhao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Yi-Ran Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102 Taiwan, China
| | - Shao-Ting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Ze-Yu Shi
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Jian-She Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| |
Collapse
|
4
|
Damrongrungruang T, Panutyothin N, Kongjun S, Thanabat K, Ratha J. Combined bisdemethoxycurcumin and potassium iodide-mediated antimicrobial photodynamic therapy. Heliyon 2023; 9:e17490. [PMID: 37455953 PMCID: PMC10345248 DOI: 10.1016/j.heliyon.2023.e17490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Antimicrobial photodynamic therapy is emerging as a promising way to treat infections with minimal side effects. Typically, a single photosensitizer used in photodynamic therapy is capable of generating only one type of reactive oxygen species, which may have inadequate capability to eradicate certain types of microbes, especially Candida species. Thus, the use of combined photosensitizers is examined as a means of achieving superior antimicrobial results. We postulate that bisdemethoxycurcumin, a type I reactive oxygen species generator, combined with potassium iodide, an antimicrobial iodide molecule, might exhibit superior antimicrobial effects compared to a single photosensitizer-mediated photodynamic therapy. The effects of bisdemethoxycurcumin + potassium iodide + dental blue light on Candida albicans reduction were examined. Candida biofilms were treated with 20, 40 or 80 μM bisdemethoxycurcumin, 100 mM potassium iodide or a combination of these species for 20 min before irradiation with a dental blue light (90 J/cm2). The negative and positive controls were phosphate buffer saline and nystatin at 1 : 100,000 units/ml, respectively. Candidal numbers were quantified at 0, 1, 6 and 24 h. Hydroxyl radicals were spectrophotometrically measured using 2-[6-(4'amino phynoxyl-3H-xanthen-3-on-9-yl)] benzoic acid or APF probe-mediated fluorescence intensity (Varioskan) at 490/515 nm (excitation/emission). Candidal counts and hydroxyl radical comparisons were performed using the Kruskal-Wallis test and one-way ANOVA, respectively. Correlations between candidal numbers and hydroxyl radical levels were done with a Pearson correlation test. Forty μM bisdemethoxycurcumin+100 mM KI could provide a 3.5 log10 CFU/ml reduction after 6 h. Bisdemethoxycurcumin alone generated OH levels that were strongly correlated with candidal reduction. In conclusion, 40 μM bisdemethoxycurcumin+100 mM KI could reduce C. albicans biofilm.
Collapse
Affiliation(s)
- Teerasak Damrongrungruang
- Division of Oral Diagnosis, Department of Oral Biomedical Science, Faculty of Dentistry, Khon Kaen University, 40002, Thailand
- Melatonin Research Program, The Research and Academic Affairs, Khon Kaen University, 40002, Thailand
| | - Nichapat Panutyothin
- Division of Oral Diagnosis, Department of Oral Biomedical Science, Faculty of Dentistry, Khon Kaen University, 40002, Thailand
| | - Sirapakorn Kongjun
- Division of Oral Diagnosis, Department of Oral Biomedical Science, Faculty of Dentistry, Khon Kaen University, 40002, Thailand
| | - Kittapak Thanabat
- Division of Oral Diagnosis, Department of Oral Biomedical Science, Faculty of Dentistry, Khon Kaen University, 40002, Thailand
| | - Juthamat Ratha
- Melatonin Research Program, The Research and Academic Affairs, Khon Kaen University, 40002, Thailand
| |
Collapse
|
5
|
Adesina MO, Block I, Günter C, Unuabonah EI, Taubert A. Efficient Removal of Tetracycline and Bisphenol A from Water with a New Hybrid Clay/TiO 2 Composite. ACS OMEGA 2023; 8:21594-21604. [PMID: 37360480 PMCID: PMC10286278 DOI: 10.1021/acsomega.3c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/05/2023] [Indexed: 06/28/2023]
Abstract
New TiO2 hybrid composites were prepared from kaolin clay, predried and carbonized biomass, and titanium tetraisopropoxide and explored for tetracycline (TET) and bisphenol A (BPA) removal from water. Overall, the removal rate is 84% for TET and 51% for BPA. The maximum adsorption capacities (qm) are 30 and 23 mg/g for TET and BPA, respectively. These capacities are far greater than those obtained for unmodified TiO2. Increasing the ionic strength of the solution does not change the adsorption capacity of the adsorbent. pH changes only slightly change BPA adsorption, while a pH > 7 significantly reduces the adsorption of TET on the material. The Brouers-Sotolongo fractal model best describes the kinetic data for both TET and BPA adsorption, predicting that the adsorption process occurs via a complex mechanism involving various forces of attraction. Temkin and Freundlich isotherms, which best fit the equilibrium adsorption data for TET and BPA, respectively, suggest that adsorption sites are heterogeneous in nature. Overall, the composite materials are much more effective for TET removal from aqueous solution than for BPA. This phenomenon is assigned to a difference in the TET/adsorbent interactions vs the BPA/adsorbent interactions: the decisive factor appears to be favorable electrostatic interactions for TET yielding a more effective TET removal.
Collapse
Affiliation(s)
- Morenike O. Adesina
- Institute
of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
- African
Centre of Excellence for Water and Environment Research (ACEWATER), Redeemer’s University, PMB 230 Ede, Osun State 232101, Nigeria
- Department
of Chemical Sciences, Redeemer’s
University, PMB 230 Ede, Osun State 232101, Nigeria
- Lead
City University, Ibadan 200255, Oyo State, Nigeria
| | - Inga Block
- Institute
of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Christina Günter
- Institute
of Geosciences, University of Potsdam, D-14476 Potsdam, Germany
| | - Emmanuel I. Unuabonah
- African
Centre of Excellence for Water and Environment Research (ACEWATER), Redeemer’s University, PMB 230 Ede, Osun State 232101, Nigeria
- Department
of Chemical Sciences, Redeemer’s
University, PMB 230 Ede, Osun State 232101, Nigeria
| | - Andreas Taubert
- Institute
of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
6
|
Butler J, Handy RD, Upton M, Besinis A. Review of Antimicrobial Nanocoatings in Medicine and Dentistry: Mechanisms of Action, Biocompatibility Performance, Safety, and Benefits Compared to Antibiotics. ACS NANO 2023; 17:7064-7092. [PMID: 37027838 PMCID: PMC10134505 DOI: 10.1021/acsnano.2c12488] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This review discusses topics relevant to the development of antimicrobial nanocoatings and nanoscale surface modifications for medical and dental applications. Nanomaterials have unique properties compared to their micro- and macro-scale counterparts and can be used to reduce or inhibit bacterial growth, surface colonization and biofilm development. Generally, nanocoatings exert their antimicrobial effects through biochemical reactions, production of reactive oxygen species or ionic release, while modified nanotopographies create a physically hostile surface for bacteria, killing cells via biomechanical damage. Nanocoatings may consist of metal nanoparticles including silver, copper, gold, zinc, titanium, and aluminum, while nonmetallic compounds used in nanocoatings may be carbon-based in the form of graphene or carbon nanotubes, or composed of silica or chitosan. Surface nanotopography can be modified by the inclusion of nanoprotrusions or black silicon. Two or more nanomaterials can be combined to form nanocomposites with distinct chemical or physical characteristics, allowing combination of different properties such as antimicrobial activity, biocompatibility, strength, and durability. Despite their wide range of applications in medical engineering, questions have been raised regarding potential toxicity and hazards. Current legal frameworks do not effectively regulate antimicrobial nanocoatings in matters of safety, with open questions remaining about risk analysis and occupational exposure limits not considering coating-based approaches. Bacterial resistance to nanomaterials is also a concern, especially where it may affect wider antimicrobial resistance. Nanocoatings have excellent potential for future use, but safe development of antimicrobials requires careful consideration of the "One Health" agenda, appropriate legislation, and risk assessment.
Collapse
Affiliation(s)
- James Butler
- School
of Engineering, Computing and Mathematics, Faculty of Science and
Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Richard D. Handy
- School
of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Mathew Upton
- School
of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United
Kingdom
| | - Alexandros Besinis
- School
of Engineering, Computing and Mathematics, Faculty of Science and
Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
- Peninsula
Dental School, Faculty of Health, University
of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| |
Collapse
|
7
|
Trochowski M, Kobielusz M, Pucelik B, Dąbrowski JM, Macyk W. Dihydroxyanthraquinones as stable and cost-effective TiO2 photosensitizers for environmental and biomedical applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Karbownik-Lewińska M, Stępniak J, Iwan P, Lewiński A. Iodine as a potential endocrine disruptor-a role of oxidative stress. Endocrine 2022; 78:219-240. [PMID: 35726078 PMCID: PMC9584999 DOI: 10.1007/s12020-022-03107-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE Iodine is an essential micronutrient required for thyroid hormone biosynthesis. However, overtreatment with iodine can unfavorably affect thyroid physiology. The aim of this review is to present the evidence that iodine-when in excess-can interfere with thyroid hormone synthesis and, therefore, can act as a potential endocrine-disrupting chemical (EDC), and that this action, as well as other abnormalities in the thyroid, occurs-at least partially-via oxidative stress. METHODS We reviewed published studies on iodine as a potential EDC, with particular emphasis on the phenomenon of oxidative stress. RESULTS This paper summarizes current knowledge on iodine excess in the context of its properties as an EDC and its effects on oxidative processes. CONCLUSION Iodine does fulfill the criteria of an EDC because it is an exogenous chemical that interferes-when in excess-with thyroid hormone synthesis. However, this statement cannot change general rules regarding iodine supply, which means that iodine deficiency should be still eliminated worldwide and, at the same time, iodine excess should be avoided. Universal awareness that iodine is a potential EDC would make consumers more careful regarding their diet and what they supplement in tablets, and-what is of great importance-it would make caregivers choose iodine-containing medications (or other chemicals) more prudently. It should be stressed that compared to iodine deficiency, iodine in excess (acting either as a potential EDC or via other mechanisms) is much less harmful in such a sense that it affects only a small percentage of sensitive individuals, whereas the former affects whole populations; therefore, it causes endemic consequences.
Collapse
Affiliation(s)
- Małgorzata Karbownik-Lewińska
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland.
- Polish Mother's Memorial Hospital-Research Institute, 93-338, Lodz, Poland.
| | - Jan Stępniak
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland
| | - Paulina Iwan
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland
| | - Andrzej Lewiński
- Polish Mother's Memorial Hospital-Research Institute, 93-338, Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338, Lodz, Poland
| |
Collapse
|
9
|
López-Fernández AM, Moisescu EE, de Llanos R, Galindo F. Development of a Polymeric Film Entrapping Rose Bengal and Iodide Anion for the Light-Induced Generation and Release of Bactericidal Hydrogen Peroxide. Int J Mol Sci 2022; 23:ijms231710162. [PMID: 36077560 PMCID: PMC9478968 DOI: 10.3390/ijms231710162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
A series of poly(2-hydroxyethyl methacrylate) (PHEMA) thin films entrapping photosensitizer Rose Bengal (RB) and tetrabutylammonium iodide (TBAI) have been synthetized. The materials have been characterized by means of Thermogravimetric Analysis (TGA), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and UV-vis Absorption spectroscopy. Irradiation of the materials with white light led to the generation of several bactericidal species, including singlet oxygen (1O2), triiodide anion (I3-) and hydrogen peroxide (H2O2). 1O2 production was demonstrated spectroscopically by reaction with the chemical trap 2,2'-(anthracene-9,10-diylbis(methylene))dimalonic acid (ABDA). In addition, the reaction of iodide anion with 1O2 yielded I3- inside the polymeric matrix. This reaction is accompanied by the formation of H2O2, which diffuses out the polymeric matrix. Generation of both I3- and H2O2 was demonstrated spectroscopically (directly in the case of triiodide by the absorption at 360 nm and indirectly for H2O2 using the xylenol orange test). A series of photodynamic inactivation assays were conducted with the synthesized polymers against Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. Complete eradication (7 log10 CFU/mL) of both bacteria occurred after only 5 min of white light irradiation (400-700 nm; total energy dose 24 J/cm2) of the polymer containing both RB and TBAI. The control polymer without embedded iodide (only RB) showed only marginal reductions of ca. 0.5 log10 CFU/mL. The main novelty of the present investigation is the generation of three bactericidal species (1O2, I3- and H2O2) at the same time using a single polymeric material containing all the elements needed to produce such a bactericidal cocktail, although the most relevant antimicrobial activity is shown by H2O2. This experimental approach avoids multistep protocols involving a final step of addition of I-, as described previously for other assays in solution.
Collapse
Affiliation(s)
- Ana M. López-Fernández
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071 Castellón, Spain
| | - Evelina E. Moisescu
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071 Castellón, Spain
| | - Rosa de Llanos
- Unidad Predepartamental de Medicina, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071 Castellón, Spain
- Correspondence: (R.d.L.); (F.G.)
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071 Castellón, Spain
- Correspondence: (R.d.L.); (F.G.)
| |
Collapse
|
10
|
Synergistic Effect of Combination of a Temoporfin-Based Photodynamic Therapy with Potassium Iodide or Antibacterial Agents on Oral Disease Pathogens In Vitro. Pharmaceuticals (Basel) 2022; 15:ph15040488. [PMID: 35455485 PMCID: PMC9027005 DOI: 10.3390/ph15040488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023] Open
Abstract
5, 10, 15, 20-Tetrakis(3-hydroxyphenyl)chlorin (temoporfin) is a photosensitizer used in photodynamic therapy for oral cancer and periodontal disease treatment. This study determined the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of temoporfin. Additionally, the combination of potassium iodide (KI) or antimicrobial agents in oral pathogens under hypoxic or normoxic conditions were determined. We also evaluated the biofilm removal effect and detected the expressions of the antibiotic resistance-related genes and biofilm formation-related genes of methicillin-resistant staphylococcus aureus (MRSA). The results provided reveal that the combination of the temoporfin and KI had a synergistic effect of reducing the MICs and MBCs of Lactobacillus acidophilus and Lactobacillus paracasei under normoxic and hypoxic conditions due to increasing H2O2 production. Temoporfin increased the biofilm removal of Aggregatibacter actinomycetemcomitans, Enterococcus faecalis, and Staphylococcus aureus under normoxic condition, and it reduced the antibiotic resistance-related genes expression of MRSA. The combination of temoporfin with ampicillin or chlorhexidine significantly enhanced the bactericidal effect on MRSA. This study provides a potential application of temoporfin on the clinical side against oral pathogens and the prevention of oral diseases.
Collapse
|
11
|
Hemeg HA. Combatting persisted and biofilm antimicrobial resistant bacterial by using nanoparticles. Z NATURFORSCH C 2022; 77:365-378. [PMID: 35234019 DOI: 10.1515/znc-2021-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/04/2022] [Indexed: 11/15/2022]
Abstract
Some bacteria can withstand the existence of an antibiotic without undergoing any genetic changes. They are neither cysts nor spores and are one of the causes of disease recurrence, accounting for about 1% of the biofilm. There are numerous approaches to eradication and combating biofilm-forming organisms. Nanotechnology is one of them, and it has shown promising results against persister cells. In the review, we go over the persister cell and biofilm in extensive detail. This includes the biofilm formation cycle, antibiotic resistance, and treatment with various nanoparticles. Furthermore, the gene-level mechanism of persister cell formation and its therapeutic interventions with nanoparticles were discussed.
Collapse
Affiliation(s)
- Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Monawra 41411, Saudi Arabia
| |
Collapse
|
12
|
Sahare P, Alvarez PG, Yanez JMS, Bárcenas JGL, Chakraborty S, Paul S, Estevez M. Engineered titania nanomaterials in advanced clinical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:201-218. [PMID: 35223351 PMCID: PMC8848344 DOI: 10.3762/bjnano.13.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 02/03/2022] [Indexed: 06/06/2023]
Abstract
Significant advancement in the field of nanotechnology has raised the possibility of applying potent engineered biocompatible nanomaterials within biological systems for theranostic purposes. Titanium dioxide (titanium(IV) oxide/titania/TiO2) has garnered considerable attention as one of the most extensively studied metal oxides in clinical applications. Owing to the unique properties of titania, such as photocatalytic activity, excellent biocompatibility, corrosion resistance, and low toxicity, titania nanomaterials have revolutionized therapeutic approaches. Additionally, titania provides an exceptional choice for developing innovative medical devices and the integration of functional moieties that can modulate the biological responses. Thus, the current review aims to present a comprehensive and up-to-date overview of TiO2-based nanotherapeutics and the corresponding future challenges.
Collapse
Affiliation(s)
- Padmavati Sahare
- Centre of Applied Physics and Advanced Technologies (CFATA), National Autonomous University of Mexico, Queretaro, Mexico
| | - Paulina Govea Alvarez
- Centre of Applied Physics and Advanced Technologies (CFATA), National Autonomous University of Mexico, Queretaro, Mexico
| | - Juan Manual Sanchez Yanez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
| | | | - Samik Chakraborty
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Querétaro, Mexico
| | - Miriam Estevez
- Centre of Applied Physics and Advanced Technologies (CFATA), National Autonomous University of Mexico, Queretaro, Mexico
| |
Collapse
|
13
|
Sorrenti S, Baldini E, Pironi D, Lauro A, D'Orazi V, Tartaglia F, Tripodi D, Lori E, Gagliardi F, Praticò M, Illuminati G, D'Andrea V, Palumbo P, Ulisse S. Iodine: Its Role in Thyroid Hormone Biosynthesis and Beyond. Nutrients 2021; 13:4469. [PMID: 34960019 PMCID: PMC8709459 DOI: 10.3390/nu13124469] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
The present review deals with the functional roles of iodine and its metabolism. The main biological function of iodine concerns its role in the biosynthesis of thyroid hormones (THs) by the thyroid gland. In addition, however, further biological roles of iodine have emerged. Precisely, due to its significant action as scavenger of reactive oxygen species (ROS), iodine is thought to represent one of the oldest antioxidants in living organisms. Moreover, iodine oxidation to hypoiodite (IO-) has been shown to possess strong bactericidal as well as antiviral and antifungal activity. Finally, and importantly, iodine has been demonstrated to exert antineoplastic effects in human cancer cell lines. Thus, iodine, through the action of different tissue-specific peroxidases, may serve different evolutionarily conserved physiological functions that, beyond TH biosynthesis, encompass antioxidant activity and defense against pathogens and cancer progression.
Collapse
Affiliation(s)
- Salvatore Sorrenti
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Enke Baldini
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Daniele Pironi
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Augusto Lauro
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Valerio D'Orazi
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Francesco Tartaglia
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Domenico Tripodi
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Eleonora Lori
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Federica Gagliardi
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Marianna Praticò
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Giulio Illuminati
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Vito D'Andrea
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Piergaspare Palumbo
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Salvatore Ulisse
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| |
Collapse
|
14
|
Kumar RS, Ryu J, Kim H, Mergu N, Park JY, Shin HJ, Kim MG, Lee SG, Son YA. Synthesis, characterization, and photocatalytic disinfection studies of porphyrin dimer/TiO2-based photocatalyst. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Bartolomeu M, Oliveira C, Pereira C, Neves MGPMS, Faustino MAF, Almeida A. Antimicrobial Photodynamic Approach in the Inactivation of Viruses in Wastewater: Influence of Alternative Adjuvants. Antibiotics (Basel) 2021; 10:767. [PMID: 34202496 PMCID: PMC8300698 DOI: 10.3390/antibiotics10070767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022] Open
Abstract
Pathogenic viruses are frequently present in marine and estuarine waters, due to poor wastewater (WW) treatments, which consequently affect water quality and human health. Chlorination, one of the most common methods used to ensure microbiological safety in tertiarily treated effluents, may lead to the formation of toxic chemical disinfection by-products on reaction with organic matter present in the effluents. Antimicrobial photodynamic therapy (aPDT) can be a promising disinfecting approach for the inactivation of pathogens, without the formation of known toxic by-products. Additionally, some studies have reported the potentiator effect on aPDT of some compounds, such as potassium iodide (KI) and hydrogen peroxide (H2O2). In the present study, the aPDT efficiency of a PS formulation constituted of five cationic porphyrins (Form) in the inactivation of E. coli T4-like bacteriophage, a model of mammalian viruses, in different aqueous matrices with different organic matter content, was evaluated. Photoinactivation studies were performed at different concentrations of Form and in the presence of the adjuvants KI and H2O2. The results showed that the efficiency of bacteriophage photoinactivation is correlated with the Form concentration, the amount of the organic matter in WW, and the adjuvant type. Form can be an effective alternative to controlling viruses in WW, particularly if combined with H2O2, allowing to significantly reduce PS concentration and treatment time. When combined with KI, the Form is less effective in inactivating T4-like bacteriophage in WW.
Collapse
Affiliation(s)
- Maria Bartolomeu
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.B.); (C.O.); (C.P.)
| | - Cristiana Oliveira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.B.); (C.O.); (C.P.)
| | - Carla Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.B.); (C.O.); (C.P.)
| | | | - M. Amparo F. Faustino
- Department of Chemistry and LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.B.); (C.O.); (C.P.)
| |
Collapse
|
16
|
Munir MU, Ahmed A, Usman M, Salman S. Recent Advances in Nanotechnology-Aided Materials in Combating Microbial Resistance and Functioning as Antibiotics Substitutes. Int J Nanomedicine 2020; 15:7329-7358. [PMID: 33116477 PMCID: PMC7539234 DOI: 10.2147/ijn.s265934] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
The ongoing escalation of drug-resistant bacteria creates the leading challenges for human health. Current predictions show that deaths due to bacterial illness will be more in comparison to cancer in 2050. Irrational use of antibiotics, prolonged regimen and using as a prophylactic treatment for various infections are leading cause of microbial resistance. It is an emerging approach to introduce evolving nanomaterials (NMs) as a base of antibacterial therapy to overcome the bacterial resistance pattern. NMs can implement several bactericidal ways and turn into a challenge for bacteria to survive and develop resistance against NMs. All the pathways depend on the surface chemistry, shape, core material and size of NMs. Because of these reasons, NMs based stuff shows a critical role in advancing the treatment efficiency by interacting with the cellular system of bacteria and functioned as an antibiotic substitute. We divided this review into two sections. The first part highlights the development of microbial resistance to antibiotics and their mechanisms. The second section details the NMs mechanisms to combat antibiotic resistance. In short, we try to summarize the advances in NMs role to deal with microbial resistance and giving solution as antibiotics substitute.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72388, Saudi Arabia.,Nanobiotech Group, Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Arsalan Ahmed
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Muhammad Usman
- Department of Physics, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Sajal Salman
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| |
Collapse
|
17
|
Li R, Yuan L, Jia W, Qin M, Wang Y. Effects of Rose Bengal- and Methylene Blue-Mediated Potassium Iodide-Potentiated Photodynamic Therapy on Enterococcus faecalis: A Comparative Study. Lasers Surg Med 2020; 53:400-410. [PMID: 32662529 DOI: 10.1002/lsm.23299] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVES This study was performed to compare the use of methylene blue (MB) and rose bengal (RB) in antimicrobial photodynamic therapy (PDT) targeting Enterococcus faecalis (E. faecalis) bacteria in planktonic and biofilm forms with potassium iodide (KI) potentiation. STUDY DESIGN/MATERIALS AND METHODS E. faecalis bacteria in planktonic form were exposed to antimicrobial PDT protocols activating MB and RB, with or without KI potentiation, following laser irradiation with different exposure times, 60 mW/cm2 laser power, and different photosensitizer agent (PS)/potentiator concentrations to observe relationships among the variables. Two continuous-wave diode lasers were used for irradiation (red light: λ = 660 nm and green light: λ = 565 nm). The pre-irradiation time was 10 minutes. The vitality of E. faecalis biofilm was assessed by confocal laser scanning microscopy, and the morphology was determined by scanning electron microscopy. The effects on the proliferation of stem cells from the apical papilla (SCAPs) were analyzed by cell counting kit-8 assay. The staining effect of antimicrobial PDT on dentin slices was investigated. Statistical analysis using a one-way analysis of variance was done. RESULTS KI-potentiated RB and MB antimicrobial PDT both effectively eradicated E. faecalis bacteria in planktonic and biofilm forms. The minimum bactericidal concentrations of PSs (±100 mM KI) were obtained through PDT on planktonic E. faecalis, and the optimal light parameters were 60 mW/cm2 , 6 J/cm2 for 100 seconds. KI-potentiated PDT effectively strengthened the ability to inhibit E. faecalis biofilm with 86.50 ± 5.78% for MB (P = 0.0015 < 0.01) and 91.50 ± 1.75% for RB (P = 0.0418 < 0.05) of bactericidal rate, with less toxicity for SCAPs (P < 0.001) and less staining. KI could reduce the staining induced by antimicrobial PDT on dentin slices. CONCLUSION A combination of KI and antimicrobial PDT may be a useful alternative to conventional disinfection methods in endodontic treatment. MB and RB antimicrobial PDT at much lower concentrations with KI could hopefully achieve disinfection effects comparable with those of 1.5% NaClO while causing few adverse effects on SCAPs. KI helps to avoid staining problems associated with high concentrations of photosensitizer agents. Lasers Surg. Med. © 2020 Wiley Periodicals, LLC.
Collapse
Affiliation(s)
- Ruijie Li
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lintian Yuan
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.,Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Weiqian Jia
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Man Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuguang Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.,Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
18
|
Castro KADF, Brancini GTP, Costa LD, Biazzotto JC, Faustino MAF, Tomé AC, Neves MGPMS, Almeida A, Hamblin MR, da Silva RS, Braga GÚL. Efficient photodynamic inactivation of Candida albicans by porphyrin and potassium iodide co-encapsulation in micelles. Photochem Photobiol Sci 2020; 19:1063-1071. [PMID: 32613213 DOI: 10.1039/d0pp00085j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic inactivation of bacterial and fungal pathogens is a promising alternative to the extensive use of conventional single-target antibiotics and antifungal agents. The combination of photosensitizers and adjuvants can improve the photodynamic inactivation efficiency. In this regard, it has been shown that the use of potassium iodide (KI) as adjuvant increases pathogen killing. Following our interest in this topic, we performed the co-encapsulation of a neutral porphyrin photosensitizer (designated as P1) and KI into micelles and tested the obtained nanoformulations against the human pathogenic fungus Candida albicans. The results of this study showed that the micelles containing P1 and KI displayed a better photodynamic performance towards C. albicans than P1 and KI in solution. It is noteworthy that higher concentrations of KI within the micelles resulted in increased killing of C. albicans. Subcellular localization studies by confocal fluorescence microscopy revealed that P1 was localized in the cell cytoplasm, but not in the nuclei or mitochondria. Overall, our results show that a nanoformulation containing a photosensitizer plus an adjuvant is a promising approach for increasing the efficiency of photodynamic treatment. Actually, the use of this strategy allows a considerable decrease in the amount of both photosensitizer and adjuvant required to achieve pathogen killing.
Collapse
Affiliation(s)
- Kelly A D F Castro
- Departamento de Física e Química, Faculdade de Ciencias Farmacéuticas de Ribeirão Preto, Universidade de Sao Paulo, Ribeirao Preto, Brazil
| | - Guilherme T P Brancini
- Departamento Análises Clínicas, Toxicológicas e Bromatológicas, Facuidade de Ciencias Farmacêuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Brazil
| | - Leticia D Costa
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Juliana C Biazzotto
- Departamento de Física e Química, Faculdade de Ciencias Farmacéuticas de Ribeirão Preto, Universidade de Sao Paulo, Ribeirao Preto, Brazil
| | - M Amparo F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Augusto C Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Graca P M S Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 02114, Boston, MA, USA.,Laser Research Centre, Faculty of Health Science, University of Johannesburg, 2028, Doornfontein, South Africa
| | - Roberto S da Silva
- Departamento de Física e Química, Faculdade de Ciencias Farmacéuticas de Ribeirão Preto, Universidade de Sao Paulo, Ribeirao Preto, Brazil.
| | - Gilberto Ú L Braga
- Departamento Análises Clínicas, Toxicológicas e Bromatológicas, Facuidade de Ciencias Farmacêuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
19
|
Biofunctionalization of Textile Materials. 3. Fabrication of Poly(lactide)-Potassium Iodide Composites with Antifungal Properties. COATINGS 2020. [DOI: 10.3390/coatings10060593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The paper presents a method of obtaining poly(lactide) (PLA) nonwoven fabrics with antifungal properties using potassium iodide as a nonwoven modifying agent. PLA nonwoven fabrics were obtained by the melt-blown technique and subsequently surface modified (PLA→PLA-SM-KI) by the dip-coating method. The analysis of these PLA-SM-KI (0.1%–2%) composites included Scanning Electron Microscopy (SEM), UV/VIS transmittance, FTIR spectrometry and air permeability. The nonwovens were subjected to microbial activity tests against Aspergillus niger fungal mold species, exhibiting substantial antifungal activity. The studies showed that PLA-KI hybrids containing 2% KI have appropriate mechanical properties, morphology and demanded antimicrobial properties to be further developed as a potential antimicrobial, biodegradable material.
Collapse
|
20
|
Braz M, Salvador D, Gomes AT, Mesquita MQ, Faustino MAF, Neves MGP, Almeida A. Photodynamic inactivation of methicillin-resistant Staphylococcus aureus on skin using a porphyrinic formulation. Photodiagnosis Photodyn Ther 2020; 30:101754. [DOI: 10.1016/j.pdpdt.2020.101754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 01/10/2023]
|
21
|
Abstract
Hinai green tuff, which is found in Akita Prefecture, Japan, is used for the production of building materials, etc. About 60% of all stone is emitted as waste powder and therefore it is important to find ways for recycling it. In this work, the characteristics of green tuff powder have been investigated. The results of scanning electron microscope (SEM) and elemental map observations indicate that the green tuff contains TiO2 on zeolite. The green tuff can therefore be used as a natural catalyst for producing hydrogen peroxide with moisture and oxygen with light. The optimum calcined temperature of the green tuff powder is about 800 °C, producing the hydroxyl radical from hydrogen peroxide decomposition without ultraviolet light (UV) and decomposition of the superoxide anion. As the application of green tuff powder, Cavendish banana trees found in the Philippines infected by a new Panama disease were treated with powder suspension in order to remove the fungus (a type of Fusarium wilt) due to the photocatalyst characteristics of powder. The suspension, prepared by using the powder was sprayed on the infected banana trees for about one month. Photograph observation indicated that the so-called 800 °C suspension spray was more effective in growing the infected banana trees.
Collapse
|
22
|
Santos AR, Batista AFP, Gomes ATPC, Neves MDGPMS, Faustino MAF, Almeida A, Hioka N, Mikcha JMG. The Remarkable Effect of Potassium Iodide in Eosin and Rose Bengal Photodynamic Action against Salmonella Typhimurium and Staphylococcus aureus. Antibiotics (Basel) 2019; 8:E211. [PMID: 31694195 PMCID: PMC6963404 DOI: 10.3390/antibiotics8040211] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has been shown as a promising technique to inactivate foodborne bacteria, without inducing the development of bacterial resistance. Knowing that addition of inorganic salts, such as potassium iodide (KI), can modulate the photodynamic action of the photosensitizer (PS), we report in this study the antimicrobial effect of eosin (EOS) and rose bengal (RB) combined with KI against Salmonella enterica serovar Typhimurium and Staphylococcus aureus. Additionally, the possible development of bacterial resistance after this combined aPDT protocol was evaluated. The combination of EOS or RB, at all tested concentrations, with KI at 100 mM, was able to efficiently inactivate S. Typhimurium and S. aureus. This combined approach allows a reduction in the PS concentration up to 1000 times, even against one of the most common foodborne pathogenics, S. Typhimurium, a gram-negative bacterium which is not so prone to inactivation with xanthene dyes when used alone. The photoinactivation of S. Typhimurium and S. aureus by both xanthenes with KI did not induce the development of resistance. The low price of the xanthene dyes, the non-toxic nature of KI, and the possibility of reducing the PS concentration show that this technology has potential to be easily transposed to the food industry.
Collapse
Affiliation(s)
- Adriele R. Santos
- Postgraduate Program in Food Science, State University of Maringá, Maringá 87020-900, Brazil;
| | - Andréia F. P. Batista
- Postgraduate Program in Food Science, State University of Maringá, Maringá 87020-900, Brazil;
| | - Ana T. P. C. Gomes
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Maria da Graça P. M. S. Neves
- QOPNA& LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.d.G.P.M.S.N.); (M.A.F.F.)
| | - Maria Amparo F. Faustino
- QOPNA& LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.d.G.P.M.S.N.); (M.A.F.F.)
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Noboru Hioka
- Department of Chemistry, State University of Maringá, Maringá 87020-900, Brazil;
| | - Jane M. G. Mikcha
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá 87020-900, Brazil
| |
Collapse
|
23
|
Zhang K, Mao J, Chen B. Reconsideration of heterostructures of biochars: Morphology, particle size, elemental composition, reactivity and toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113017. [PMID: 31415977 DOI: 10.1016/j.envpol.2019.113017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/22/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Great attention has been paid on biochar due to potential application as soil amendment. The majority of research concerning the structural evolution of biochar commonly considered biochar as a whole. However, the knowledge of structural evolution of biochar resulting from physicochemical disintegration is rarely known. Biochars in this study were categorized into sedimented particles, suspended coarse particles and soluble components and ultrafine particles according to their suspension property. It was found out that these categories were significantly different in morphology, particle size, and elemental composition, demonstrating the presence of heterostructures in biochar. Additionally, the oxidizability of these heterogeneous particles was tested by Starch potassium iodide method and it presented that the oxidizability of the sedimented particles from high-temperature biochar was the highest. Based on the analysis of Luminescent bacteria test, the toxicity of the soluble components and ultrafine particles of low-temperature biochar was higher than that of high-temperature biochar. The heterogeneous structure of biochar and its effect proposed in this study is beneficial to individualize design of biochar sustainable application and to understand disintegration process and environmental risk of biochar in biochar-amended soil.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jiefei Mao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
24
|
Huang L, Ma L, Xuan W, Zhen X, Zheng H, Chen W, Hamblin MR. Exploration of Copper-Cysteamine Nanoparticles as a New Type of Agents for Antimicrobial Photodynamic Inactivation. J Biomed Nanotechnol 2019; 15:2142-2148. [PMID: 31462378 PMCID: PMC6731549 DOI: 10.1166/jbn.2019.2829] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Copper-cysteamine (Cu-Cy) nanoparticles (NPs) are a new type of sensitizers that can be activated by UV light, X-rays, microwaves and ultrasound to produce reactive oxygen species for cancer treatment. Here, for the first time, we explored Cu-Cy NPs for bacteria inactivation by treating gram-positive bacteria (methicillin-resistant Staphylococcus aureus and Enterococcus faecalis) and gram-negative bacteria (Escherichia coli and Acinetobacter baumannii), respectively. The results show that Cu-Cy NPs are very effective in killing gram-positive bacteria but are quite limited in killing gram-negative bacteria yet. The major killing mechanism is cell damage by singlet oxygen and Cu-Cy NPs are potential agents for bacteria inactivation.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, 530022, China
| | - Lun Ma
- Department of Physics, The University of Texas at Arlington, Arlington, Texas 76019-0059, United States
| | - Weijun Xuan
- Department of Otorhinolaryngology, Head and Neck Surgery, First Clinical Medical College and Hospital, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Xiumei Zhen
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, 530022, China
| | - Han Zheng
- Department of Physics, The University of Texas at Arlington, Arlington, Texas 76019-0059, United States
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, Texas 76019-0059, United States
| | - Michael R. Hamblin
- Department of Dermatology, Harvard Medical School, Boston, MA, 02138, USA
| |
Collapse
|
25
|
Surface Modification of Nanocrystalline TiO2 Materials with Sulfonated Porphyrins for Visible Light Antimicrobial Therapy. Catalysts 2019. [DOI: 10.3390/catal9100821] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Highly-active, surface-modified anatase TiO2 nanoparticles were successfully synthesized and characterized. The morphological and optical properties of the obtained (metallo)porphyrin@qTiO2 materials were evaluated using absorption and fluorescence spectroscopy, scanning electron microscopy (SEM) imaging, and dynamic light scattering (DLS). These hybrid nanoparticles efficiently generated reactive oxygen species (ROS) under blue-light irradiation (420 ± 20 nm) and possessed a unimodal size distribution of 20–70 nm in diameter. The antimicrobial performance of the synthetized agents was examined against Gram-negative and Gram-positive bacteria. After a short-term incubation of microorganisms with nanomaterials (at 1 g/L) and irradiation with blue-light at a dose of 10 J/cm2, 2–3 logs of Escherichia coli, and 3–4 logs of Staphylococcus aureus were inactivated. A further decrease in bacteria viability was observed after potentiation photodynamic inactivation (PDI), either by H2O2 or KI, resulting in complete microorganism eradication even when using low material concentration (from 0.1 g/L). SEM analysis of bacteria morphology after each mode of PDI suggested different mechanisms of cellular disruption depending on the type of generated oxygen and/or iodide species. These data suggest that TiO2-based materials modified with sulfonated porphyrins are efficient photocatalysts that could be successfully used in biomedical strategies, most notably, photodynamic inactivation of microorganisms.
Collapse
|
26
|
Hamblin MR, Abrahamse H. Tetracyclines: light-activated antibiotics? Future Med Chem 2019; 11:2427-2445. [PMID: 31544504 PMCID: PMC6785754 DOI: 10.4155/fmc-2018-0513] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Tetracyclines are well established antibiotics but show phototoxicity as a side effect. Antimicrobial photodynamic inactivation uses nontoxic dyes combined with harmless light to destroy microbial cells by reactive oxygen species. Tetracyclines (demeclocycline and doxycycline) can act as light-activated antibiotics by binding to bacterial cells and killing them only upon illumination. The remaining tetracyclines can prevent bacterial regrowth after illumination has ceased. Antimicrobial photodynamic inactivation can be potentiated by potassium iodide. Azide quenched the formation of iodine, but not hydrogen peroxide. Demeclotetracycline (but not doxycycline) iodinated tyrosine after light activation in the presence of potassium iodide. Bacteria are killed by photoactivation of tetracyclines in the absence of oxygen. Since topical tetracyclines are already used clinically, blue light activation may increase the bactericidal effect.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard – MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, Gauteng, South Africa
| |
Collapse
|
27
|
Sułek A, Pucelik B, Kuncewicz J, Dubin G, Dąbrowski JM. Sensitization of TiO2 by halogenated porphyrin derivatives for visible light biomedical and environmental photocatalysis. Catal Today 2019. [DOI: 10.1016/j.cattod.2019.02.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Qi M, Chi M, Sun X, Xie X, Weir MD, Oates TW, Zhou Y, Wang L, Bai Y, Xu HHK. Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases. Int J Nanomedicine 2019; 14:6937-6956. [PMID: 31695368 PMCID: PMC6718167 DOI: 10.2147/ijn.s212807] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/06/2019] [Indexed: 01/03/2023] Open
Abstract
Oral diseases such as tooth caries, periodontal diseases, endodontic infections, etc., are prevalent worldwide. The heavy burden of oral infectious diseases and their consequences on the patients' quality of life indicates a strong need for developing effective therapies. Advanced understandings of such oral diseases, e.g., inflammatory periodontal lesions, have raised the demand for antibacterial therapeutic strategies, because these diseases are caused by viruses and bacteria. The application of antimicrobial photodynamic therapy (aPDT) on oral infectious diseases has attracted tremendous interest in the past decade. However, aPDT had a minimal effect on the viability of organized biofilms due to the hydrophobic nature of the majority of the photosensitizers (PSs). Therefore, novel nanotechnologies were rapidly developed to target the delivery of hydrophobic PSs into microorganisms for the antimicrobial performance improvement of aPDT. This review focuses on the state-of-the-art of nanomaterials applications in aPDT against oral infectious diseases. The first part of this article focuses on the cutting-edge research on the synthesis, toxicity, and therapeutic effects of various forms of nanomaterials serving as PS carriers for aPDT applications. The second part discusses nanomaterials applications for aPDT in treatments of oral diseases. These novel bioactive nanomaterials have demonstrated great potential to serve as carriers for PSs to substantially enhance the PDT therapeutic effects. Furthermore, the novel aPDT applications not only have exciting therapeutic potential to inhibit bacterial plaque-initiated oral diseases, but also have a wide applicability to other biomedical and tissue engineering applications.
Collapse
Affiliation(s)
- Manlin Qi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun130021, People’s Republic of China
| | - Minghan Chi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun130021, People’s Republic of China
| | - Xiaolin Sun
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun130021, People’s Republic of China
| | - Xianju Xie
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD21201, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD21201, USA
| | - Yanmin Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun130021, People’s Republic of China
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun130021, People’s Republic of China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD21201, USA
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
| | - Hockin HK Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD21201, USA
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD21201, USA
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD21201, USA
| |
Collapse
|
29
|
Jia Q, Song Q, Li P, Huang W. Rejuvenated Photodynamic Therapy for Bacterial Infections. Adv Healthc Mater 2019; 8:e1900608. [PMID: 31240867 DOI: 10.1002/adhm.201900608] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/13/2019] [Indexed: 12/31/2022]
Abstract
The emergence of multidrug resistant bacterial strains has hastened the exploration of advanced microbicides and antibacterial techniques. Photodynamic antibacterial therapy (PDAT), an old-fashioned technique, has been rejuvenated to combat "superbugs" and biofilm-associated infections owing to its excellent characteristics of noninvasiveness and broad antibacterial spectrum. More importantly, bacteria are less likely to produce drug resistance to PDAT because it does not require specific targeting interaction between photosensitizers (PSs) and bacteria. This review mainly focuses on recent developments and future prospects of PDAT. The mechanisms of PDAT against bacteria and biofilms are briefly introduced. In addition to classical macrocyclic PSs, several innovative PSs, including non-self-quenching PSs, conjugated polymer-based PSs, and nano-PSs, are summarized in detail. Numerous multifunctional PDAT systems such as in situ light-activated PDAT, stimuli-responsive PDAT, oxygen self-enriching enhanced PDAT, and PDAT-based multimodal therapy are highlighted to overcome the inherent defects of PDAT in vivo (e.g., limited penetration depth of light and hypoxic environment of infectious sites).
Collapse
Affiliation(s)
- Qingyan Jia
- Xi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Qing Song
- Xi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Peng Li
- Xi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Wei Huang
- Xi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| |
Collapse
|
30
|
Vieira C, Santos A, Mesquita MQ, Gomes ATPC, Neves MGPMS, Faustino MAF, Almeida A. Advances in aPDT based on the combination of a porphyrinic formulation with potassium iodide: Effectiveness on bacteria and fungi planktonic/biofilm forms and viruses. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500408] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The increasing world-wide rate of antibiotic resistance as well as the capacity of microorganisms to form biofilms, have led to a higher incidence of mortal infections that require alternative methods for their control. Antimicrobial photodynamic therapy (aPDT) emerged as an effective solution against resistant strains. The present work aims to evaluate the aPDT efficiency of a photosensitizer (PS) based on a low-cost formulation constituted by five cationic porphyrins (FORM) and its potentiation effect by KI on a broad spectrum of microorganisms under white light (380–700 nm, 25 W/m[Formula: see text]. The aPDT assays were performed with different concentrations of FORM (0.1 to 5.0 [Formula: see text]M) and 100 mM of KI on planktonic and biofilm forms of gram-positive (methicillin resistant Staphylococcus aureus–MRSA) and gram-negative (Escherichia coli resistant to chloramphenicol and ampicillin) bacteria, of the fungi Candida albicans and on a T4-like bacteriophage as a mammalian virus model. The results indicate that the FORM alone is an efficient PS to photoinactivate not only gram-negative and gram-positive bacteria, but also C. albicans, in planktonic and biofilm forms, and T4-like phage at low concentrations (<5.0 [Formula: see text]M). The presence of KI enhanced the photodynamic effect of this FORM for all microorganisms on the planktonic form, allowing the reduction of PS concentration and treatment time. The results also show that the combination FORM/KI is highly efficient in the elimination of already well-established biofilms of E. coli,S. aureus and C. albicans. This effect is probably associated with longer-lived iodine reactive species produced during the aPDT treatment.
Collapse
Affiliation(s)
- Cátia Vieira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adriele Santos
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Clinical Analysis and Biomedicine, State University of Maringá, 87020-900, Maringá - Paraná, Brazil
| | - Mariana Q. Mesquita
- QOPNA & LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana T. P. C. Gomes
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M. Graça P. M. S. Neves
- QOPNA & LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M. Amparo F. Faustino
- QOPNA & LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
31
|
Waugh DT. Fluoride Exposure Induces Inhibition of Sodium/Iodide Symporter (NIS) Contributing to Impaired Iodine Absorption and Iodine Deficiency: Molecular Mechanisms of Inhibition and Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1086. [PMID: 30917615 PMCID: PMC6466022 DOI: 10.3390/ijerph16061086] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022]
Abstract
The sodium iodide symporter (NIS) is the plasma membrane glycoprotein that mediates active iodide transport in the thyroid and other tissues, such as the salivary, gastric mucosa, rectal mucosa, bronchial mucosa, placenta and mammary glands. In the thyroid, NIS mediates the uptake and accumulation of iodine and its activity is crucial for the development of the central nervous system and disease prevention. Since the discovery of NIS in 1996, research has further shown that NIS functionality and iodine transport is dependent on the activity of the sodium potassium activated adenosine 5'-triphosphatase pump (Na+, K+-ATPase). In this article, I review the molecular mechanisms by which F inhibits NIS expression and functionality which in turn contributes to impaired iodide absorption, diminished iodide-concentrating ability and iodine deficiency disorders. I discuss how NIS expression and activity is inhibited by thyroglobulin (Tg), tumour necrosis factor alpha (TNF-α), transforming growth factor beta 1 (TGF-β1), interleukin 6 (IL-6) and Interleukin 1 beta (IL-1β), interferon-γ (IFN-γ), insulin like growth factor 1 (IGF-1) and phosphoinositide 3-kinase (PI3K) and how fluoride upregulates expression and activity of these biomarkers. I further describe the crucial role of prolactin and megalin in regulation of NIS expression and iodine homeostasis and the effect of fluoride in down regulating prolactin and megalin expression. Among many other issues, I discuss the potential conflict between public health policies such as water fluoridation and its contribution to iodine deficiency, neurodevelopmental and pathological disorders. Further studies are warranted to examine these associations.
Collapse
Affiliation(s)
- Declan Timothy Waugh
- EnviroManagement Services, 11 Riverview, Doherty's Rd, Bandon, Co. Cork, P72 YF10, Ireland.
| |
Collapse
|
32
|
Huang YY, Rajda PJ, Szewczyk G, Bhayana B, Chiang LY, Sarna T, Hamblin MR. Sodium nitrite potentiates antimicrobial photodynamic inactivation: possible involvement of peroxynitrate. Photochem Photobiol Sci 2019; 18:505-515. [PMID: 30534721 DOI: 10.1039/c8pp00452h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have recently shown that a wide range of different inorganic salts can potentiate antimicrobial photodynamic inactivation (aPDI) and TiO2-mediated antimicrobial photocatalysis. Potentiation has been shown with azide, bromide, thiocyanate, selenocyanate, and most strongly, with iodide. Here we show that sodium nitrite can also potentiate broad-spectrum aPDI killing of Gram-positive MRSA and Gram-negative Escherichia coli bacteria. Literature reports have previously shown that two photosensitizers (PS), methylene blue (MB) and riboflavin, when excited by broad-band light in the presence of nitrite could lead to tyrosine nitration. Addition of up to 100 mM nitrite gave 6 logs of extra killing in the case of Rose Bengal excited by green light against E. coli, and 2 logs of extra killing against MRSA (eradication in both cases). Comparable results were obtained for other PS (TPPS4 + blue light and MB + red light). Some bacterial killing was obtained when bacteria were added after light using a functionalized fullerene (LC15) + nitrite + blue light, and tyrosine ester amide was nitrated using both "in" and "after" modes with all four PS. The mechanism could involve formation of peroxynitrate by a reaction between superoxide radicals and nitrogen dioxide radicals; formation of the latter species was demonstrated by spin trapping with nitromethane.
Collapse
Affiliation(s)
- Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Paweł J Rajda
- Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Krakow, Poland
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Brijesh Bhayana
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Long Y Chiang
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA. .,Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA. .,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
33
|
Hamblin MR, Abrahamse H. Can light-based approaches overcome antimicrobial resistance? Drug Dev Res 2019; 80:48-67. [PMID: 30070718 PMCID: PMC6359990 DOI: 10.1002/ddr.21453] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 01/10/2023]
Abstract
The relentless rise of antibiotic resistance is considered one of the most serious problems facing mankind. This mini-review will cover three cutting-edge approaches that use light-based techniques to kill antibiotic-resistant microbial species, and treat localized infections. First, we will discuss antimicrobial photodynamic inactivation using rationally designed photosensitizes combined with visible light, with the added possibility of strong potentiation by inorganic salts such as potassium iodide. Second, the use of blue and violet light alone that activates endogenous photoactive porphyrins within the microbial cells. Third, it is used for "safe UVC" at wavelengths between 200 nm and 230 nm that can kill microbial cells without damaging host mammalian cells. We have gained evidence that all these approaches can kill multidrug resistant bacteria in vitro, and they do not induce themselves any resistance, and moreover can treat animal models of localized infections caused by resistant species that can be monitored by noninvasive bioluminescence imaging. Light-based antimicrobial approaches are becoming a growing translational part of anti-infective treatments in the current age of resistance.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, South Africa
| |
Collapse
|
34
|
Inorganic Salts and Antimicrobial Photodynamic Therapy: Mechanistic Conundrums? Molecules 2018; 23:molecules23123190. [PMID: 30514001 PMCID: PMC6321187 DOI: 10.3390/molecules23123190] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 11/25/2022] Open
Abstract
We have recently discovered that the photodynamic action of many different photosensitizers (PSs) can be dramatically potentiated by addition of a solution containing a range of different inorganic salts. Most of these studies have centered around antimicrobial photodynamic inactivation that kills Gram-negative and Gram-positive bacteria in suspension. Addition of non-toxic water-soluble salts during illumination can kill up to six additional logs of bacterial cells (one million-fold improvement). The PSs investigated range from those that undergo mainly Type I photochemical mechanisms (electron transfer to produce superoxide, hydrogen peroxide, and hydroxyl radicals), such as phenothiazinium dyes, fullerenes, and titanium dioxide, to those that are mainly Type II (energy transfer to produce singlet oxygen), such as porphyrins, and Rose Bengal. At one extreme of the salts is sodium azide, that quenches singlet oxygen but can produce azide radicals (presumed to be highly reactive) via electron transfer from photoexcited phenothiazinium dyes. Potassium iodide is oxidized to molecular iodine by both Type I and Type II PSs, but may also form reactive iodine species. Potassium bromide is oxidized to hypobromite, but only by titanium dioxide photocatalysis (Type I). Potassium thiocyanate appears to require a mixture of Type I and Type II photochemistry to first produce sulfite, that can then form the sulfur trioxide radical anion. Potassium selenocyanate can react with either Type I or Type II (or indeed with other oxidizing agents) to produce the semi-stable selenocyanogen (SCN)2. Finally, sodium nitrite may react with either Type I or Type II PSs to produce peroxynitrate (again, semi-stable) that can kill bacteria and nitrate tyrosine. Many of these salts (except azide) are non-toxic, and may be clinically applicable.
Collapse
|
35
|
Xuan W, He Y, Huang L, Huang YY, Bhayana B, Xi L, Gelfand JA, Hamblin MR. Antimicrobial Photodynamic Inactivation Mediated by Tetracyclines in Vitro and in Vivo: Photochemical Mechanisms and Potentiation by Potassium Iodide. Sci Rep 2018; 8:17130. [PMID: 30459451 PMCID: PMC6244358 DOI: 10.1038/s41598-018-35594-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022] Open
Abstract
Tetracyclines (including demeclocycline, DMCT, or doxycycline, DOTC) represent a class of dual-action antibacterial compounds, which can act as antibiotics in the dark, and also as photosensitizers under illumination with blue or UVA light. It is known that tetracyclines are taken up inside bacterial cells where they bind to ribosomes. In the present study, we investigated the photochemical mechanism: Type 1 (hydroxyl radicals); Type 2 (singlet oxygen); or Type 3 (oxygen independent). Moreover, we asked whether addition of potassium iodide (KI) could potentiate the aPDI activity of tetracyclines. High concentrations of KI (200–400 mM) strongly potentiated (up to 5 logs of extra killing) light-mediated killing of Gram-negative Escherichia coli or Gram-positive MRSA (although the latter was somewhat less susceptible). KI potentiation was still apparent after a washing step showing that the iodide could penetrate the E. coli cells where the tetracycline had bound. When cells were added to the tetracycline + KI mixture after light, killing was observed in the case of E. coli showing formation of free molecular iodine. Addition of azide quenched the formation of iodine but not hydrogen peroxide. DMCT but not DOTC iodinated tyrosine. Both E. coli and MRSA could be killed by tetracyclines plus light in the absence of oxygen and this killing was not quenched by azide. A mouse model of a superficial wound infection caused by bioluminescent E. coli could be treated by topical application of DMCT and blue light and bacterial regrowth did not occur owing to the continued anti biotic activity of the tetracycline.
Collapse
Affiliation(s)
- Weijun Xuan
- Department of Otorhinolaryngology, Head and Neck Surgery, First Clinical Medical College and Hospital, Guangxi University of Chinese Medicine, Nanning, China.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Ya He
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liyi Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, USA.,Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Brijesh Bhayana
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Liyan Xi
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jeffrey A Gelfand
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA. .,Department of Dermatology, Harvard Medical School, Boston, MA, USA. .,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
36
|
Vieira C, Gomes ATPC, Mesquita MQ, Moura NMM, Neves MGPMS, Faustino MAF, Almeida A. An Insight Into the Potentiation Effect of Potassium Iodide on aPDT Efficacy. Front Microbiol 2018; 9:2665. [PMID: 30510542 PMCID: PMC6252324 DOI: 10.3389/fmicb.2018.02665] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) is gaining a special importance as an effective approach against multidrug-resistant strains responsible of fatal infections. The addition of potassium iodide (KI), a non-toxic salt, is recognized to increase the aPDT efficiency of some photosensitizers (PSs) on a broad-spectrum of microorganisms. As the reported cases only refer positive aPDT potentiation results, in this work we selected a broad range of porphyrinic and non-porphyrinic PSs in order to gain a more comprehensive knowledge about this aPDT potentiation by KI. For this evaluation were selected a series of meso-tetraarylporphyrins positively charged at meso positions or at β-pyrrolic positions and the non-porphyrinic dyes Methylene blue, Rose Bengal, Toluidine Blue O, Malachite Green and Crystal Violet; the assays were performed using a bioluminescent E. coli strain as a model. The results indicate that KI has also the ability to potentiate the aPDT process mediated by some of the cationic PSs [Tri-Py(+)-Me, Tetra-Py(+)-Me, Form, RB, MB, Mono-Py(+)-Me, β-ImiPhTPP, β-ImiPyTPP, and β-BrImiPyTPP] allowing a drastic reduction of the treatment time as well as of the PS concentration. However, the efficacy of some porphyrinic and non-porphyrinic PSs [Di-Py(+)-Me opp , Di-Py(+)-Me adj , Tetra-Py, TBO, CV, and MG] was not improved by the presence of the coadjuvant. For the PSs tested in this study, the ones capable to decompose the peroxyiodide into iodine (easily detectable by spectroscopy or by the visual appearance of a blue color in the presence of amylose) were the most promising ones to be used in combination with KI. Although these studies confirmed that the generation of 1O2 is an important fact in this process, the PS structure (charge number and charge position), aggregation behavior and affinity for the cell membrane are also important features to be taken in account.
Collapse
Affiliation(s)
- Cátia Vieira
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | | | | | - Nuno M. M. Moura
- Department of Chemistry and QOPNA, University of Aveiro, Aveiro, Portugal
| | | | | | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
37
|
Huang L, Bhayana B, Xuan W, Sanchez RP, McCulloch BJ, Lalwani S, Hamblin MR. Comparison of two functionalized fullerenes for antimicrobial photodynamic inactivation: Potentiation by potassium iodide and photochemical mechanisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2018; 186:197-206. [PMID: 30075425 PMCID: PMC6118214 DOI: 10.1016/j.jphotobiol.2018.07.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/10/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022]
Abstract
A new fullerene (BB4-PPBA) functionalized with a tertiary amine and carboxylic acid was prepared and compared with BB4 (cationic quaternary group) for antimicrobial photodynamic inactivation (aPDI). BB4 was highly active against Gram-positive methicillin resistant Staphylococcus aureus (MRSA) and BB4-PPBA was moderately active when activated by blue light. Neither compound showed much activity against Gram-negative Escherichia coli or fungus Candida albicans. Therefore, we examined potentiation by addition of potassium iodide. Both compounds were highly potentiated by KI (1-6 extra logs of killing). BB4-PPBA was potentiated more than BB4 against MRSA and E. coli, while for C. albicans the reverse was the case. Addition of azide potentiated aPDI mediated by BB4 against MRSA, but abolished the potentiation caused by KI with both compounds. The killing ability after light decayed after 24 h in the case of BB4, implying a contribution from hypoiodite as well as free iodine. Tyrosine was readily iodinated with BB4-PPBA plus KI, but less so with BB4. We conclude that the photochemical mechanisms of these two fullerenes are different. BB4-PPBA is more Type 2 (singlet oxygen) while BB4 is more Type 1 (electron transfer). There is also a possibility of direct bacterial killing by electron transfer, but this will require more study to prove.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Brijesh Bhayana
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Weijun Xuan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Department of Otorhinolaryngology, Head and Neck Surgery, First Clinical Medical College and Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | | | | | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
38
|
Saharudin KA, Sreekantan S, Basiron N, Khor YL, Harun NH, S M N Mydin RB, Md Akil H, Seeni A, Vignesh K. Bacteriostatic Activity of LLDPE Nanocomposite Embedded with Sol⁻Gel Synthesized TiO₂/ZnO Coupled Oxides at Various Ratios. Polymers (Basel) 2018; 10:E878. [PMID: 30960803 PMCID: PMC6403739 DOI: 10.3390/polym10080878] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/05/2023] Open
Abstract
Metal oxide-polymer nanocomposite has been proven to have selective bactericidal effects against the main and common pathogens (Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli)) that can cause harmful infectious diseases. As such, this study looked into the prospect of using TiO₂/ZnO with linear low-density polyethylene (LLDPE) to inactivate S. aureus and E. coli. The physical, structural, chemical, mechanical, and antibacterial properties of the nanocomposite were investigated in detail in this paper. The production of reactive species, such as hydroxyl radicals (•OH), holes (h⁺), superoxide anion radicals (O₂•¯), and zinc ion (Zn2+), released from the nanocomposite were quantified to elucidate the underlying antibacterial mechanisms. LLDPE/25T75Z with TiO₂/ZnO (1:3) nanocomposite displayed the best performance that inactivated S. aureus and E. coli by 95% and 100%, respectively. The dominant reactive active species and the zinc ion release toward the superior antibacterial effect of nanocomposite are discussed. This work does not only offer depiction of the effective element required for antimicrobial biomedical appliances, but also the essential structural characteristics to enhance water uptake to expedite photocatalytic activity of LLDPE/metal oxide nanocomposite for long term application.
Collapse
Affiliation(s)
- Khairul Arifah Saharudin
- School of Materials & Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia.
| | - Srimala Sreekantan
- School of Materials & Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia.
| | - Norfatehah Basiron
- School of Materials & Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia.
| | - Yong Ling Khor
- School of Materials & Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia.
| | - Nor Hazliana Harun
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Pulau Pinang 13200, Malaysia.
| | | | - Hazizan Md Akil
- School of Materials & Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia.
| | - Azman Seeni
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPHARM), National Institute of Biotechnology Malaysia, Ministry of Science, Technology and Innovation, Bukit Gambir, Gelugor, Pulau Pinang 11700, Malaysia.
| | - Kumaravel Vignesh
- Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland.
| |
Collapse
|
39
|
De la Vieja A, Santisteban P. Role of iodide metabolism in physiology and cancer. Endocr Relat Cancer 2018; 25:R225-R245. [PMID: 29437784 DOI: 10.1530/erc-17-0515] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/28/2022]
Abstract
Iodide (I-) metabolism is crucial for the synthesis of thyroid hormones (THs) in the thyroid and the subsequent action of these hormones in the organism. I- is principally transported by the sodium iodide symporter (NIS) and by the anion exchanger PENDRIN, and recent studies have demonstrated the direct participation of new transporters including anoctamin 1 (ANO1), cystic fibrosis transmembrane conductance regulator (CFTR) and sodium multivitamin transporter (SMVT). Several of these transporters have been found expressed in various tissues, implicating them in I- recycling. New research supports the exciting idea that I- participates as a protective antioxidant and can be oxidized to hypoiodite, a potent oxidant involved in the host defense against microorganisms. This was possibly the original role of I- in biological systems, before the appearance of TH in evolution. I- per se participates in its own regulation, and new evidence indicates that it may be antineoplastic, anti-proliferative and cytotoxic in human cancer. Alterations in the expression of I- transporters are associated with tumor development in a cancer-type-dependent manner and, accordingly, NIS, CFTR and ANO1 have been proposed as tumor markers. Radioactive iodide has been the mainstay adjuvant treatment for thyroid cancer for the last seven decades by virtue of its active transport by NIS. The rapid advancement of techniques that detect radioisotopes, in particular I-, has made NIS a preferred target-specific theranostic agent.
Collapse
Affiliation(s)
- Antonio De la Vieja
- Tumor Endocrine Unit, Chronic Disease Program (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
- CiberOnc, Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Santisteban
- CiberOnc, Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiopathology of Endocrine a Nervous System, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| |
Collapse
|
40
|
Hibbitts A, O'Leary C. Emerging Nanomedicine Therapies to Counter the Rise of Methicillin-Resistant Staphylococcus aureus. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E321. [PMID: 29473883 PMCID: PMC5849018 DOI: 10.3390/ma11020321] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 12/25/2022]
Abstract
In a recent report, the World Health Organisation (WHO) classified antibiotic resistance as one of the greatest threats to global health, food security, and development. Methicillin-resistant Staphylococcus aureus (MRSA) remains at the core of this threat, with persistent and resilient strains detectable in up to 90% of S. aureus infections. Unfortunately, there is a lack of novel antibiotics reaching the clinic to address the significant morbidity and mortality that MRSA is responsible for. Recently, nanomedicine strategies have emerged as a promising therapy to combat the rise of MRSA. However, these approaches have been wide-ranging in design, with few attempts to compare studies across scientific and clinical disciplines. This review seeks to reconcile this discrepancy in the literature, with specific focus on the mechanisms of MRSA infection and how they can be exploited by bioactive molecules that are delivered by nanomedicines, in addition to utilisation of the nanomaterials themselves as antibacterial agents. Finally, we discuss targeting MRSA biofilms using nano-patterning technologies and comment on future opportunities and challenges for MRSA treatment using nanomedicine.
Collapse
Affiliation(s)
- Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
| | - Cian O'Leary
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
41
|
Hamblin MR. Potentiation of antimicrobial photodynamic inactivation by inorganic salts. Expert Rev Anti Infect Ther 2017; 15:1059-1069. [PMID: 29084463 DOI: 10.1080/14787210.2017.1397512] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Antimicrobial photodynamic inactivation (aPDI) involves the use of non-toxic dyes excited with visible light to produce reactive oxygen species (ROS) that can destroy all classes of microorganisms including bacteria, fungi, parasites, and viruses. Selectivity of killing microbes over host mammalian cells allows this approach (antimicrobial photodynamic therapy, aPDT) to be used in vivo as an alternative therapeutic approach for localized infections especially those that are drug-resistant. Areas covered: We have discovered that aPDI can be potentiated (up to 6 logs of extra killing) by the addition of simple inorganic salts. The most powerful and versatile salt is potassium iodide, but potassium bromide, sodium thiocyanate, sodium azide and sodium nitrite also show potentiation. The mechanism of potentiation with iodide is likely to be singlet oxygen addition to iodide to form iodine radicals, hydrogen peroxide and molecular iodine. Another mechanism involves two-electron oxidation of iodide/bromide to form hypohalites. A third mechanism involves a one-electron oxidation of azide anion to form azide radical. Expert commentary: The addition of iodide has been shown to improve the performance of aPDT in several animal models of localized infection. KI is non-toxic and is an approved drug for antifungal therapy, so its transition to clinical use in aPDT should be straightforward.
Collapse
Affiliation(s)
- Michael R Hamblin
- a Massachusetts General Hospital , Wellman Center for Photomedicine , Boston , MA , USA
| |
Collapse
|
42
|
Huang L, El-Hussein A, Xuan W, Hamblin MR. Potentiation by potassium iodide reveals that the anionic porphyrin TPPS4 is a surprisingly effective photosensitizer for antimicrobial photodynamic inactivation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:277-286. [PMID: 29172135 DOI: 10.1016/j.jphotobiol.2017.10.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/17/2017] [Accepted: 10/29/2017] [Indexed: 01/30/2023]
Abstract
We recently reported that addition of the non-toxic salt, potassium iodide can potentiate antimicrobial photodynamic inactivation of a broad-spectrum of microorganisms, producing many extra logs of killing. If the photosensitizer (PS) can bind to the microbial cells, then delivering light in the presence of KI produces short-lived reactive iodine species, while if the cells are added after light the killing is caused by molecular iodine produced as a result of singlet oxygen-mediated oxidation of iodide. In an attempt to show the importance of PS-bacterial binding, we compared two charged porphyrins, TPPS4 (thought to be anionic and not able to bind to Gram-negative bacteria) and TMPyP4 (considered cationic and well able to bind to bacteria). As expected TPPS4+light did not kill Gram-negative Escherichia coli, but surprisingly when 100mM KI was added, it was highly effective (eradication at 200nM+10J/cm2 of 415nm light). TPPS4 was more effective than TMPyP4 in eradicating the Gram-positive bacteria, methicillin-resistant Staphylococcus aureus and the fungal yeast Candida albicans (regardless of KI). TPPS4 was also highly active against E. coli after a centrifugation step when KI was added, suggesting that the supposedly anionic porphyrin bound to bacteria and Candida. This was confirmed by uptake experiments. We compared the phthalocyanine tetrasulfonate derivative (ClAlPCS4), which did not bind to bacteria or allow KI-mediated killing of E. coli after a spin, suggesting it was truly anionic. We conclude that TPPS4 behaves as if it has some cationic character in the presence of bacteria, which may be related to its delivery from suppliers in the form of a dihydrochloride salt.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Ahmed El-Hussein
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; The National Institute of Laser Enhanced Science, Cairo University, Egypt
| | - Weijun Xuan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Otorhinolaryngology, Head and Neck Surgery, First Clinical Medical College and Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
43
|
Kashef N, Huang YY, Hamblin MR. Advances in antimicrobial photodynamic inactivation at the nanoscale. NANOPHOTONICS 2017; 6:853-879. [PMID: 29226063 PMCID: PMC5720168 DOI: 10.1515/nanoph-2016-0189] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The alarming worldwide increase in antibiotic resistance amongst microbial pathogens necessitates a search for new antimicrobial techniques, which will not be affected by, or indeed cause resistance themselves. Light-mediated photoinactivation is one such technique that takes advantage of the whole spectrum of light to destroy a broad spectrum of pathogens. Many of these photoinactivation techniques rely on the participation of a diverse range of nanoparticles and nanostructures that have dimensions very similar to the wavelength of light. Photodynamic inactivation relies on the photochemical production of singlet oxygen from photosensitizing dyes (type II pathway) that can benefit remarkably from formulation in nanoparticle-based drug delivery vehicles. Fullerenes are a closed-cage carbon allotrope nanoparticle with a high absorption coefficient and triplet yield. Their photochemistry is highly dependent on microenvironment, and can be type II in organic solvents and type I (hydroxyl radicals) in a biological milieu. Titanium dioxide nanoparticles act as a large band-gap semiconductor that can carry out photo-induced electron transfer under ultraviolet A light and can also produce reactive oxygen species that kill microbial cells. We discuss some recent studies in which quite remarkable potentiation of microbial killing (up to six logs) can be obtained by the addition of simple inorganic salts such as the non-toxic sodium/potassium iodide, bromide, nitrite, and even the toxic sodium azide. Interesting mechanistic insights were obtained to explain this increased killing.
Collapse
Affiliation(s)
- Nasim Kashef
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
44
|
Kashef N, Hamblin MR. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation? Drug Resist Updat 2017; 31:31-42. [PMID: 28867242 DOI: 10.1016/j.drup.2017.07.003] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/28/2017] [Accepted: 07/13/2017] [Indexed: 01/08/2023]
Abstract
Infections have been a major cause of disease throughout the history of humans on earth. With the introduction of antibiotics, it was thought that infections had been conquered. However, bacteria have been able to develop resistance to antibiotics at an exponentially increasing rate. The growing threat from multi-drug resistant organisms calls for intensive action to prevent the emergence of totally resistant and untreatable infections. Novel, non-invasive, non-antibiotic strategies are needed that act more efficiently and faster than current antibiotics. One promising alternative is antimicrobial photodynamic inactivation (APDI), an approach that produces reactive oxygen species when dyes and light are combined. So far, it has been questionable if bacteria can develop resistance against APDI. This review paper gives an overview of recent studies concerning the susceptibility of bacteria towards oxidative stress, and suggests possible mechanisms of the development of APDI-resistance that should at least be addressed. Some ways to potentiate APDI and also to overcome future resistance are suggested.
Collapse
Affiliation(s)
- Nasim Kashef
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
45
|
Potassium Iodide Potentiates Antimicrobial Photodynamic Inactivation Mediated by Rose Bengal in In Vitro and In Vivo Studies. Antimicrob Agents Chemother 2017; 61:AAC.00467-17. [PMID: 28438946 DOI: 10.1128/aac.00467-17] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/19/2017] [Indexed: 02/05/2023] Open
Abstract
Rose bengal (RB) is a halogenated xanthene dye that has been used to mediate antimicrobial photodynamic inactivation for several years. While RB is highly active against Gram-positive bacteria, it is largely inactive in killing Gram-negative bacteria. We have discovered that addition of the nontoxic salt potassium iodide (100 mM) potentiates green light (540-nm)-mediated killing by up to 6 extra logs with the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium methicillin-resistant Staphylococcus aureus, and the fungal yeast Candida albicans The mechanism is proposed to be singlet oxygen addition to iodide anion to form peroxyiodide, which decomposes into radicals and, finally, forms hydrogen peroxide and molecular iodine. The effects of these different bactericidal species can be teased apart by comparing the levels of killing achieved in three different scenarios: (i) cells, RB, and KI are mixed together and then illuminated with green light; (ii) cells and RB are centrifuged, and then KI is added and the mixture is illuminated with green light; and (iii) RB and KI are illuminated with green light, and then cells are added after illumination with the light. We also showed that KI could potentiate RB photodynamic therapy in a mouse model of skin abrasions infected with bioluminescent P. aeruginosa.
Collapse
|
46
|
Huang L, Szewczyk G, Sarna T, Hamblin MR. Potassium Iodide Potentiates Broad-Spectrum Antimicrobial Photodynamic Inactivation Using Photofrin. ACS Infect Dis 2017; 3:320-328. [PMID: 28207234 DOI: 10.1021/acsinfecdis.7b00004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is known that noncationic porphyrins such as Photofrin (PF) are effective in mediating antimicrobial photodynamic inactivation (aPDI) of Gram-positive bacteria or fungi. However, the aPDI activity of PF against Gram-negative bacteria is accepted to be extremely low. Here we report that the nontoxic inorganic salt potassium iodide (KI) at a concentration of 100 mM when added to microbial cells (108/mL) + PF (10 μM hematoporphyrin equivalent) + 415 nm light (10 J/cm2) can eradicate (>6 log killing) five different Gram-negative species (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, and Acinetobacter baumannii), whereas no killing was obtained without KI. The mechanism of action appears to be the generation of microbicidal molecular iodine (I2/I3-) as shown by comparable bacterial killing when cells were added to the mixture after completion of illumination and light-dependent generation of iodine as detected by the formation of the starch complex. Gram-positive methicillin-resistant Staphylococcus aureus is much more sensitive to aPDI (200-500 nM PF), and in this case potentiation by KI may be mediated mainly by short-lived iodine reactive species. The fungal yeast Candida albicans displayed intermediate sensitivity to PF-aPDI, and killing was also potentiated by KI. The reaction mechanism occurs via singlet oxygen (1O2). KI quenched 1O2 luminescence (1270 nm) at a rate constant of 9.2 × 105 M-1 s-1. Oxygen consumption was increased when PF was illuminated in the presence of KI. Hydrogen peroxide but not superoxide was generated from illuminated PF in the presence of KI. Sodium azide completely inhibited the killing of E. coli with PF/blue light + KI.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Infectious
Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
- Wellman Center
for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Michael R. Hamblin
- Wellman Center
for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02114, United States
- Harvard−MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
47
|
Karimi M, Zangabad PS, Mehdizadeh F, Malekzad H, Ghasemi A, Bahrami S, Zare H, Moghoofei M, Hekmatmanesh A, Hamblin MR. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. NANOSCALE 2017; 9:1356-1392. [PMID: 28067384 PMCID: PMC5300024 DOI: 10.1039/c6nr07315h] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanocages (NCs) have emerged as a new class of drug-carriers, with a wide range of possibilities in multi-modality medical treatments and theranostics. Nanocages can overcome such limitations as high toxicity caused by anti-cancer chemotherapy or by the nanocarrier itself, due to their unique characteristics. These properties consist of: (1) a high loading-capacity (spacious interior); (2) a porous structure (analogous to openings between the bars of the cage); (3) enabling smart release (a key to unlock the cage); and (4) a low likelihood of unfavorable immune responses (the outside of the cage is safe). In this review, we cover different classes of NC structures such as virus-like particles (VLPs), protein NCs, DNA NCs, supramolecular nanosystems, hybrid metal-organic NCs, gold NCs, carbon-based NCs and silica NCs. Moreover, NC-assisted drug delivery including modification methods, drug immobilization, active targeting, and stimulus-responsive release mechanisms are discussed, highlighting the advantages, disadvantages and challenges. Finally, translation of NCs into clinical applications, and an up-to-date assessment of the nanotoxicology considerations of NCs are presented.
Collapse
Affiliation(s)
- Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Hedieh Malekzad
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Faculty of Chemistry, Kharazmi University of Tehran, Tehran, Iran
| | - Alireza Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Sajad Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Zare
- Biomaterials Group, Materials Science & Engineering Department, Iran University of Science & Technology, P.O. Box 1684613114 Tehran, Iran
| | - Mohsen Moghoofei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Hekmatmanesh
- Laboratory of Intelligent Machines, Lappeenranta University of Technology, 53810, Finland
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
48
|
Dąbrowski JM. Reactive Oxygen Species in Photodynamic Therapy: Mechanisms of Their Generation and Potentiation. ADVANCES IN INORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.adioch.2017.03.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|