1
|
Puumala E, Fallah S, Robbins N, Cowen LE. Advancements and challenges in antifungal therapeutic development. Clin Microbiol Rev 2024; 37:e0014223. [PMID: 38294218 PMCID: PMC10938895 DOI: 10.1128/cmr.00142-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Over recent decades, the global burden of fungal disease has expanded dramatically. It is estimated that fungal disease kills approximately 1.5 million individuals annually; however, the true worldwide burden of fungal infection is thought to be higher due to existing gaps in diagnostics and clinical understanding of mycotic disease. The development of resistance to antifungals across diverse pathogenic fungal genera is an increasingly common and devastating phenomenon due to the dearth of available antifungal classes. These factors necessitate a coordinated response by researchers, clinicians, public health agencies, and the pharmaceutical industry to develop new antifungal strategies, as the burden of fungal disease continues to grow. This review provides a comprehensive overview of the new antifungal therapeutics currently in clinical trials, highlighting their spectra of activity and progress toward clinical implementation. We also profile up-and-coming intracellular proteins and pathways primed for the development of novel antifungals targeting their activity. Ultimately, we aim to emphasize the importance of increased investment into antifungal therapeutics in the current continually evolving landscape of infectious disease.
Collapse
Affiliation(s)
- Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sara Fallah
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Qureshi ZA, Ghazanfar H, Altaf F, Ghazanfar A, Hasan KZ, Kandhi S, Fortuzi K, Dileep A, Shrivastava S. Cryptococcosis and Cryptococcal Meningitis: A Narrative Review and the Up-to-Date Management Approach. Cureus 2024; 16:e55498. [PMID: 38571832 PMCID: PMC10990067 DOI: 10.7759/cureus.55498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Cryptococcosis is a fungal infectious disease that enormously impacts human health worldwide. Cryptococcal meningitis is the most severe disease caused by the fungus Cryptococcus, and can lead to death, if left untreated. Many patients develop resistance and progress to death even after treatment. It requires a prolonged treatment course in people with AIDS. This narrative review provides an evidence-based summary of the current treatment modalities and future trial options, including newer ones, namely, 18B7, T-2307, VT-1598, AR12, manogepix, and miltefosine. This review also evaluated the management and empiric treatment of cryptococcus meningitis. The disease can easily evade diagnosis with subacute presentation. Despite the severity of the disease, treatment options for cryptococcosis remain limited, and more research is needed.
Collapse
Affiliation(s)
- Zaheer A Qureshi
- Medicine, Frank H. Netter MD School of Medicine, Quinnipiac University, Bridgeport, USA
| | | | - Faryal Altaf
- Internal Medicine, BronxCare Health System, New York City, USA
| | - Ali Ghazanfar
- Internal Medicine, Federal Medical and Dental College, Islamabad, PAK
| | - Khushbu Z Hasan
- Internal Medicine, Mohtarma Benazir Bhutto Shaheed Medical College, Mirpur, PAK
| | - Sameer Kandhi
- Gastroenterology and Hepatology, BronxCare Health System, New York City, USA
| | - Ked Fortuzi
- Internal Medicine, BronxCare Health System, New York City, USA
| | | | - Shitij Shrivastava
- Internal Medicine, BronxCare Health System, New York City, USA
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
3
|
Malec K, Mikołajczyk A, Marciniak D, Gawin-Mikołajewicz A, Matera-Witkiewicz A, Karolewicz B, Nawrot U, Khimyak YZ, Nartowski KP. Pluronic F-127 Enhances the Antifungal Activity of Fluconazole against Resistant Candida Strains. ACS Infect Dis 2024; 10:215-231. [PMID: 38109184 PMCID: PMC10795414 DOI: 10.1021/acsinfecdis.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Candida strains as the most frequent causes of infections, along with their increased drug resistance, pose significant clinical and financial challenges to the healthcare system. Some polymeric excipients were reported to interfere with the multidrug resistance mechanism. Bearing in mind that there are a limited number of marketed products with fluconazole (FLU) for the topical route of administration, Pluronic F-127 (PLX)/FLU formulations were investigated in this work. The aims of this study were to investigate (i) whether PLX-based formulations can increase the susceptibility of resistant Candida strains to FLU, (ii) whether there is a correlation between block polymer concentration and the antifungal efficacy of the FLU-loaded PLX formulations, and (iii) what the potential mode of action of PLX assisting FLU is. The yeast growth inhibition upon incubation with PLX formulations loaded with FLU was statistically significant. The highest efficacy of the azole agent was observed in the presence of 5.0 and 10.0% w/v of PLX. The upregulation of the CDR1/CDR2 genes was detected in the investigated Candida strains, indicating that the efflux of the drug from the fungal cell was the main mechanism of the resistance.
Collapse
Affiliation(s)
- Katarzyna Malec
- Department of Drug Form Technology, Faculty of
Pharmacy, Wroclaw Medical University, 211a Borowska Str, 50-556
Wroclaw, Poland
| | - Aleksandra Mikołajczyk
- Screening Biological Activity Assays and Collection of
Biological Material Laboratory, Wroclaw Medical University,
211a Borowska Str, 50-556 Wroclaw, Poland
| | - Dominik Marciniak
- Department of Drug Form Technology, Faculty of
Pharmacy, Wroclaw Medical University, 211a Borowska Str, 50-556
Wroclaw, Poland
| | - Agnieszka Gawin-Mikołajewicz
- Department of Drug Form Technology, Faculty of
Pharmacy, Wroclaw Medical University, 211a Borowska Str, 50-556
Wroclaw, Poland
| | - Agnieszka Matera-Witkiewicz
- Screening Biological Activity Assays and Collection of
Biological Material Laboratory, Wroclaw Medical University,
211a Borowska Str, 50-556 Wroclaw, Poland
| | - Bożena Karolewicz
- Department of Drug Form Technology, Faculty of
Pharmacy, Wroclaw Medical University, 211a Borowska Str, 50-556
Wroclaw, Poland
| | - Urszula Nawrot
- Department of Pharmaceutical Microbiology and
Parasitology, Wroclaw Medical University, 211a Borowska Str,
50-556 Wroclaw, Poland
| | - Yaroslav Z. Khimyak
- Department of Drug Form Technology, Faculty of
Pharmacy, Wroclaw Medical University, 211a Borowska Str, 50-556
Wroclaw, Poland
- School of Pharmacy, University of East
Anglia, Chancellors Drive, NR4 7TJ Norwich, U.K.
| | - Karol P. Nartowski
- Department of Drug Form Technology, Faculty of
Pharmacy, Wroclaw Medical University, 211a Borowska Str, 50-556
Wroclaw, Poland
- School of Pharmacy, University of East
Anglia, Chancellors Drive, NR4 7TJ Norwich, U.K.
| |
Collapse
|
4
|
Ramage G, Borghi E, Rodrigues CF, Kean R, Williams C, Lopez-Ribot J. Our current clinical understanding of Candida biofilms: where are we two decades on? APMIS 2023; 131:636-653. [PMID: 36932821 DOI: 10.1111/apm.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
Clinically we have been aware of the concept of Candida biofilms for many decades, though perhaps without the formal designation. Just over 20 years ago the subject emerged on the back of progress made from the bacterial biofilms, and academic progress pace has continued to mirror the bacterial biofilm community, albeit at a decreased volume. It is apparent that Candida species have a considerable capacity to colonize surfaces and interfaces and form tenacious biofilm structures, either alone or in mixed species communities. From the oral cavity, to the respiratory and genitourinary tracts, wounds, or in and around a plethora of biomedical devices, the scope of these infections is vast. These are highly tolerant to antifungal therapies that has a measurable impact on clinical management. This review aims to provide a comprehensive overight of our current clinical understanding of where these biofilms cause infections, and we discuss existing and emerging antifungal therapies and strategies.
Collapse
Affiliation(s)
- Gordon Ramage
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
| | - Elisa Borghi
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Department of Health Sciences, San Paolo Medical School, Università Degli Studi di Milano, Milan, Italy
| | - Célia Fortuna Rodrigues
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- LEPABE-Department of Chemical Engineering, Faculty of Engineering, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
- TOXRUN-Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
| | - Ryan Kean
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Department of Biological Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Craig Williams
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Microbiology Department, Morecambe Bay NHS Trust, Lancaster, UK
| | - Jose Lopez-Ribot
- Department of Biology and the South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
5
|
Giamberardino CD, Tenor JL, Toffaletti DL, Palmucci JR, Schell W, Boua JVK, Marius C, Stott KE, Steele SL, Hope W, Cilla D, Perfect JR. Pharmacodynamics of ATI-2307 in a rabbit model of cryptococcal meningoencephalitis. Antimicrob Agents Chemother 2023; 67:e0081823. [PMID: 37728934 PMCID: PMC10583688 DOI: 10.1128/aac.00818-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/22/2023] [Indexed: 09/22/2023] Open
Abstract
Cryptococcal meningoencephalitis (CM) is a devastating fungal disease with high morbidity and mortality. The current regimen that is standard-of-care involves a combination of three different drugs administered for up to one year. There is a critical need for new therapies due to both toxicity and inadequate fungicidal activity of the currently available antifungal drugs. ATI-2307 is a novel aryl amidine that disrupts the mitochondrial membrane potential and inhibits the respiratory chain complexes of fungi-it thus represents a new mechanism for direct antifungal action. Furthermore, ATI-2307 selectively targets fungal mitochondria via a fungal-specific transporter that is not present in mammalian cells. It has very potent in vitro anticryptococcal activity. In this study, the efficacy of ATI-2307 was tested in a rabbit model of CM. ATI-2307 demonstrated significant fungicidal activity at dosages between 1 and 2 mg/kg/d, and these results were superior to fluconazole and similar to amphotericin B treatment. When ATI-2307 was combined with fluconazole, the antifungal effect was greater than either therapy alone. While ATI-2307 has potent anticryptococcal activity in the subarachnoid space, its ability to reduce yeasts in the brain parenchyma was relatively less over the same study period. This new drug, with its unique mechanism of fungicidal action and ability to positively interact with an azole, has demonstrated sufficient anticryptococcal potential in this experimental setting to be further evaluated in clinical studies.
Collapse
Affiliation(s)
- Charles D. Giamberardino
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Jennifer L. Tenor
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Dena L. Toffaletti
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Julia R. Palmucci
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Wiley Schell
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | | | - Choiselle Marius
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Katharine E. Stott
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | | | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Don Cilla
- Appili Therapeutics Inc., Halifax, Nova Scotia, Canada
| | - John R. Perfect
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| |
Collapse
|
6
|
Gupta AK, Talukder M, Carviel JL, Cooper EA, Piguet V. Combatting antifungal resistance: Paradigm shift in the diagnosis and management of onychomycosis and dermatomycosis. J Eur Acad Dermatol Venereol 2023; 37:1706-1717. [PMID: 37210652 DOI: 10.1111/jdv.19217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
Antifungal resistance has become prevalent worldwide. Understanding the factors involved in spread of resistance allows the formulation of strategies to slow resistance development and likewise identify solutions for the treatment of highly recalcitrant fungal infections. To investigate the recent explosion of resistant strains, a literature review was performed focusing on four main areas: mechanisms of resistance to antifungal agents, diagnosis of superficial fungal infections, management, and stewardship. The use of traditional diagnostic tools such as culture, KOH analysis and minimum inhibitory concentration values on treatment were investigated and compared to the newer techniques such as molecular methods including whole genome sequencing, and polymerase chain reaction. The management of terbinafine-resistant strains is discussed. We have emphasized the need for antifungal stewardship including increasing surveillance for resistant infection.
Collapse
Affiliation(s)
- Aditya K Gupta
- Mediprobe Research Inc., London, Ontario, Canada
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mesbah Talukder
- Mediprobe Research Inc., London, Ontario, Canada
- School of Pharmacy, BRAC University, Dhaka, Bangladesh
| | | | | | - Vincent Piguet
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Dermatology, Women's College Hospital, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Lu H, Hong T, Jiang Y, Whiteway M, Zhang S. Candidiasis: From cutaneous to systemic, new perspectives of potential targets and therapeutic strategies. Adv Drug Deliv Rev 2023; 199:114960. [PMID: 37307922 DOI: 10.1016/j.addr.2023.114960] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Candidiasis is an infection caused by fungi from a Candida species, most commonly Candida albicans. C. albicans is an opportunistic fungal pathogen typically residing on human skin and mucous membranes of the mouth, intestines or vagina. It can cause a wide variety of mucocutaneous barrier and systemic infections; and becomes a severe health problem in HIV/AIDS patients and in individuals who are immunocompromised following chemotherapy, treatment with immunosuppressive agents or after antibiotic-induced dysbiosis. However, the immune mechanism of host resistance to C. albicans infection is not fully understood, there are a limited number of therapeutic antifungal drugs for candidiasis, and these have disadvantages that limit their clinical application. Therefore, it is urgent to uncover the immune mechanisms of the host protecting against candidiasis and to develop new antifungal strategies. This review synthesizes current knowledge of host immune defense mechanisms from cutaneous candidiasis to invasive C. albicans infection and documents promising insights for treating candidiasis through inhibitors of potential antifungal target proteins.
Collapse
Affiliation(s)
- Hui Lu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Ting Hong
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC, Canada.
| | - Shiqun Zhang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Qin Y, Wang J, Lv Q, Han B. Recent Progress in Research on Mitochondrion-Targeted Antifungal Drugs: a Review. Antimicrob Agents Chemother 2023; 67:e0000323. [PMID: 37195189 PMCID: PMC10269089 DOI: 10.1128/aac.00003-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Fungal infections, which commonly occur in immunocompromised patients, can cause high morbidity and mortality. Antifungal agents act by disrupting the cell membrane, inhibiting nucleic acid synthesis and function, or inhibiting β-1,3-glucan synthase. Because the incidences of life-threatening fungal infections and antifungal drug resistance are continuously increasing, there is an urgent need for the development of new antifungal agents with novel mechanisms of action. Recent studies have focused on mitochondrial components as potential therapeutic drug targets, owing to their important roles in fungal viability and pathogenesis. In this review, we discuss novel antifungal drugs targeting mitochondrial components and highlight the unique fungal proteins involved in the electron transport chain, which is useful for investigating selective antifungal targets. Finally, we comprehensively summarize the efficacy and safety of lead compounds in clinical and preclinical development. Although fungus-specific proteins in the mitochondrion are involved in various processes, the majority of the antifungal agents target dysfunction of mitochondria, including mitochondrial respiration disturbance, increased intracellular ATP, reactive oxygen species generation, and others. Moreover, only a few drugs are under clinical trials, necessitating further exploration of possible targets and development of effective antifungal agents. The unique chemical structures and targets of these compounds will provide valuable hints for further exploiting new antifungals.
Collapse
Affiliation(s)
- Yulin Qin
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Jinxin Wang
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Quanzhen Lv
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
de Oliveira H, Bezerra BT, Rodrigues ML. Antifungal Development and the Urgency of Minimizing the Impact of Fungal Diseases on Public Health. ACS BIO & MED CHEM AU 2023; 3:137-146. [PMID: 37101810 PMCID: PMC10125384 DOI: 10.1021/acsbiomedchemau.2c00055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 04/28/2023]
Abstract
Fungal infections are a major public health problem resulting from the lack of public policies addressing these diseases, toxic and/or expensive therapeutic tools, scarce diagnostic tests, and unavailable vaccines. In this Perspective, we discuss the need for novel antifungal alternatives, highlighting new initiatives based on drug repurposing and the development of novel antifungals.
Collapse
Affiliation(s)
| | - Bárbara T. Bezerra
- Instituto
Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba81310-020, Brazil
| | - Marcio L. Rodrigues
- Instituto
Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba81310-020, Brazil
- Instituto
de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-902, Brazil
| |
Collapse
|
10
|
Rabaan AA, Sulaiman T, Al-Ahmed SH, Buhaliqah ZA, Buhaliqah AA, AlYuosof B, Alfaresi M, Al Fares MA, Alwarthan S, Alkathlan MS, Almaghrabi RS, Abuzaid AA, Altowaileb JA, Al Ibrahim M, AlSalman EM, Alsalman F, Alghounaim M, Bueid AS, Al-Omari A, Mohapatra RK. Potential Strategies to Control the Risk of Antifungal Resistance in Humans: A Comprehensive Review. Antibiotics (Basel) 2023; 12:antibiotics12030608. [PMID: 36978475 PMCID: PMC10045400 DOI: 10.3390/antibiotics12030608] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/30/2023] Open
Abstract
Fungal infections are becoming one of the main causes of morbidity and mortality in people with weakened immune systems. Mycoses are becoming more common, despite greater knowledge and better treatment methods, due to the regular emergence of resistance to the antifungal medications used in clinical settings. Antifungal therapy is the mainstay of patient management for acute and chronic mycoses. However, the limited availability of antifungal drug classes limits the range of available treatments. Additionally, several drawbacks to treating mycoses include unfavourable side effects, a limited activity spectrum, a paucity of targets, and fungal resistance, all of which continue to be significant issues in developing antifungal drugs. The emergence of antifungal drug resistance has eliminated accessible drug classes as treatment choices, which significantly compromises the clinical management of fungal illnesses. In some situations, the emergence of strains resistant to many antifungal medications is a major concern. Although new medications have been developed to address this issue, antifungal drug resistance has grown more pronounced, particularly in patients who need long-term care or are undergoing antifungal prophylaxis. Moreover, the mechanisms that cause resistance must be well understood, including modifications in drug target affinities and abundances, along with biofilms and efflux pumps that diminish intracellular drug levels, to find novel antifungal drugs and drug targets. In this review, different classes of antifungal agents, and their resistance mechanisms, have been discussed. The latter part of the review focuses on the strategies by which we can overcome this serious issue of antifungal resistance in humans.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Zainab A Buhaliqah
- Department of Family Medicine, Primary Healthcare Center, Dammam 32433, Saudi Arabia
| | - Ali A Buhaliqah
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Buthina AlYuosof
- Directorate of Public Health, Dammam Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Zayed Military Hospital, Abu Dhabi 3740, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mohammed S Alkathlan
- Infectious Diseases Department, King Fahad Specialist Hospital, Buraydah 52382, Saudi Arabia
| | - Reem S Almaghrabi
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Abdulmonem A Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Jaffar A Altowaileb
- Microbiology Laboratory, Laboratory Department, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Maha Al Ibrahim
- Microbiology Laboratory, Laboratory Department, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Eman M AlSalman
- Department of Family Medicine, Primary Health Care Centers, Qatif Health Network, Qatif 31911, Saudi Arabia
| | - Fatimah Alsalman
- Department of Emergency Medicine, Oyun City Hospital, Al-Ahsa 36312, Saudi Arabia
| | | | - Ahmed S Bueid
- Microbiology Laboratory, King Faisal General Hospital, Al-Ahsa 31982, Saudi Arabia
| | - Awad Al-Omari
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Research Center, Dr. Sulaiman Al Habib Medical Group, Riyadh 11372, Saudi Arabia
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, India
| |
Collapse
|
11
|
Cruz R, Wuest WM. Beyond Ergosterol: Strategies for Combatting Antifungal Resistance in Aspergillus fumigatus and Candida auris. Tetrahedron 2023; 133:133268. [PMID: 36938356 PMCID: PMC10022592 DOI: 10.1016/j.tet.2023.133268] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Aspergillus fumigatus and Candida auris are historically problematic fungal pathogens responsible for systemic infections and high mortality rates, especially in immunocompromised populations. The three antifungal classes that comprise our present day armamentarium have facilitated efficacious treatment of these fungal infections in past decades, but their potency has steadily declined over the years as resistance to these compounds has accumulated. Importantly, pan-resistant strains of Candida auris have been observed in clinical settings, leaving affected patients with no treatment options and a death sentence. Many compounds in the ongoing antifungal drug discovery pipeline, similar to those within our aforementioned trinity, are predicated on the binding or inhibition of ergosterol. Recurring accounts of resistance to antifungals targeting this pathway suggest optimization of ergosterol-dependent antifungals is likely not the best solution for the long-term. This review aims to present several natural products with novel or underexplored biological targets, as well as similarly underutilized drug discovery strategies to inspire future biological investigations and medicinal chemistry campaigns.
Collapse
Affiliation(s)
- Ricardo Cruz
- Department of Chemistry, Emory University, 1515 Dickey Dr. Atlanta GA 30322
| | - William M Wuest
- Department of Chemistry, Emory University, 1515 Dickey Dr. Atlanta GA 30322
| |
Collapse
|
12
|
Mitochondria in Cryptococcus: an update of mitochondrial transcriptional regulation in Cryptococcus. Curr Genet 2023; 69:1-6. [PMID: 36729179 DOI: 10.1007/s00294-023-01261-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Encapsulated Cryptococcus species are responsible for approximately 15% of AIDS-related mortality. Numerous intriguing investigations have demonstrated that mitochondria play a crucial role in the pathogen-host axis of microorganisms. Mitochondria are vital energy-generating organelles, but they also regulate a variety of cellular activities, such as fungal adaptability in the host and drug resistance. Mitochondria are also the source of reactive oxygen species, which serve as intracellular messengers but are harmful when produced in excess. Thus, precise and stringent regulation of mitochondrial activity, including oxidative phosphorylation and the ROS detoxification process, is essential to ensure that only the amount required to maintain basic biological activities and prevent ROS toxicity in the cell is maintained. However, the relationship between mitochondria and the pathogenicity of Cryptococcus remains poorly understood. In this review, we focus on transcription regulation and maintenance of mitochondrial function along the pathogen-host interaction axis, as well as prospective antifungal strategies that target mitochondria.
Collapse
|
13
|
Beardsley J, Dao A, Keighley C, Garnham K, Halliday C, Chen SCA, Sorrell TC. What's New in Cryptococcus gattii: From Bench to Bedside and Beyond. J Fungi (Basel) 2022; 9:jof9010041. [PMID: 36675862 PMCID: PMC9865494 DOI: 10.3390/jof9010041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Cryptococcus species are a major cause of life-threatening infections in immunocompromised and immunocompetent hosts. While most disease is caused by Cryptococcus neoformans, Cryptococcus gattii, a genotypically and phenotypically distinct species, is responsible for 11-33% of global cases of cryptococcosis. Despite best treatment, C. gattii infections are associated with early mortality rates of 10-25%. The World Health Organization's recently released Fungal Priority Pathogen List classified C. gattii as a medium-priority pathogen due to the lack of effective therapies and robust clinical and epidemiological data. This narrative review summarizes the latest research on the taxonomy, epidemiology, pathogenesis, laboratory testing, and management of C. gattii infections.
Collapse
Affiliation(s)
- Justin Beardsley
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, New South Wales Health, Sydney, NSW 2145, Australia
- Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- Correspondence:
| | - Aiken Dao
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, New South Wales Health, Sydney, NSW 2145, Australia
- Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Caitlin Keighley
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
| | - Katherine Garnham
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
- Sunshine Coast University Hospital, Sunshine Coast University, Birtinya, QLD 4575, Australia
| | - Catriona Halliday
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, New South Wales Health, Sydney, NSW 2145, Australia
- Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Sydney, NSW 2145, Australia
| | - Sharon C.-A. Chen
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, New South Wales Health, Sydney, NSW 2145, Australia
- Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Sydney, NSW 2145, Australia
| | - Tania C. Sorrell
- Sydney Infectious Disease Institute, University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, New South Wales Health, Sydney, NSW 2145, Australia
- Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| |
Collapse
|
14
|
The Arylamidine T-2307 as a Novel Treatment for the Prevention and Eradication of Candida tropicalis Biofilms. Int J Mol Sci 2022; 23:ijms232416042. [PMID: 36555687 PMCID: PMC9786618 DOI: 10.3390/ijms232416042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Candida tropicalis is an emerging pathogen with a high mortality rate due to its virulence factors, including biofilm formation, that has important repercussions on the public health system. The ability of C. tropicalis to form biofilms, which are potentially more resistant to antifungal drugs and the consequent increasing antimicrobial resistance, highlights an urgent need for the development of novel antifungal. The present study analyzed the antibiofilm capacity of the arylamidine T-2307 on two strains of Candida tropicalis. Antimicrobial activity and time-killing assays were performed to evaluate the anticandidal effects of T-2307, the antibiofilm ability on biomass inhibition and eradication was evaluated by the crystal violet (CV) method. Furthermore, in Galleria mellonella infected larvae an increased survival after pre-and post- treatment with T-2307 was observed. The MTT test was used to determine the viability of immortalized human prostate epithelial cells (PNT1A) after exposure to different concentrations of T-2307. Levels of interleukin IL-4, IL-8, IL-10 were quantified after Candida infection of PNT1A cells and treatment. Active doses of T-2307 did not affect the viability of PNT1A cells, and drug concentrations of 0.005 or 0.01 µg mL-1 inhibited the secretion of inflammatory cytokines. Taken together, these results provide new information on T-2307, indicating this drug as a new and promising alternative therapeutic option for the treatment of Candida infections.
Collapse
|
15
|
Punia A, Choudhary P, Sharma N, Dahiya S, Gulia P, Chhillar AK. Therapeutic Approaches for Combating Aspergillus Associated Infection. Curr Drug Targets 2022; 23:1465-1488. [PMID: 35748549 DOI: 10.2174/1389450123666220623164548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 01/25/2023]
Abstract
Now-a-days fungal infection emerges as a significant problem to healthcare management systems due to high frequency of associated morbidity, mortality toxicity, drug-drug interactions, and resistance of the antifungal agents. Aspergillus is the most common mold that cause infection in immunocompromised hosts. It's a hyaline mold that is cosmopolitan and ubiquitous in nature. Aspergillus infects around 10 million population each year with a mortality rate of 30-90%. Clinically available antifungal formulations are restricted to four classes (i.e., polyene, triazole, echinocandin, and allylamine), and each of them have their own limitations associated with the activity spectrum, the emergence of resistance, and toxicity. Consequently, novel antifungal agents with modified and altered chemical structures are required to combat these invasive fungal infections. To overcome these limitations, there is an urgent need for new antifungal agents that can act as potent drugs in near future. Currently, some compounds have shown effective antifungal activity. In this review article, we have discussed all potential antifungal therapies that contain old antifungal drugs, combination therapies, and recent novel antifungal formulations, with a focus on the Aspergillus associated infections.
Collapse
Affiliation(s)
- Aruna Punia
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Pooja Choudhary
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Namita Sharma
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Sweety Dahiya
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Prity Gulia
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| | - Anil K Chhillar
- Department of Biotechnology, Maharishi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
16
|
Howard-Jones AR, Sparks R, Pham D, Halliday C, Beardsley J, Chen SCA. Pulmonary Cryptococcosis. J Fungi (Basel) 2022; 8:1156. [PMID: 36354923 PMCID: PMC9696922 DOI: 10.3390/jof8111156] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 07/25/2023] Open
Abstract
Pulmonary cryptococcosis describes an invasive lung mycosis caused by Cryptococcus neoformans or Cryptococcus gattii complex. It is often a high-consequence disease in both immunocompromised and immunocompetent populations, and may be misdiagnosed as pulmonary malignancy, leading to a delay in therapy. Epidemiology follows that of cryptococcal meningoencephalitis, with C. gattii infection more common in certain geographic regions. Diagnostic tools include histopathology, microscopy and culture, and the detection of cryptococcal polysaccharide antigen or Cryptococcus-derived nucleic acids. All patients with lung cryptococcosis should have a lumbar puncture and cerebral imaging to exclude central nervous system disease. Radiology is key, both as an adjunct to laboratory testing and as the initial means of detection in asymptomatic patients or those with non-specific symptoms. Pulmonary cryptococcomas (single or multiple) may also be associated with disseminated disease and/or cryptococcal meningitis, requiring prolonged treatment regimens. Optimal management for severe disease requires extended induction (amphotericin B and flucytosine) and consolidation therapy (fluconazole) with close clinical monitoring. Susceptibility testing is of value for epidemiology and in regions where relatively high minimum inhibitory concentrations to azoles (particularly fluconazole) have been noted. Novel diagnostic tools and therapeutic agents promise to improve the detection and treatment of cryptococcosis, particularly in low-income settings where the disease burden is high.
Collapse
Affiliation(s)
- Annaleise R. Howard-Jones
- Centre for Infectious Diseases & Microbiology Laboratory Services, New South Wales Health Pathology—Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca Sparks
- Centre for Infectious Diseases & Microbiology Laboratory Services, New South Wales Health Pathology—Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - David Pham
- Centre for Infectious Diseases & Microbiology Laboratory Services, New South Wales Health Pathology—Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Catriona Halliday
- Centre for Infectious Diseases & Microbiology Laboratory Services, New South Wales Health Pathology—Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Justin Beardsley
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2006, Australia
- Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases & Microbiology Laboratory Services, New South Wales Health Pathology—Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
17
|
Ehemann K, Mantilla MJ, Mora-Restrepo F, Rios-Navarro A, Torres M, Celis Ramírez AM. Many ways, one microorganism: Several approaches to study Malassezia in interactions with model hosts. PLoS Pathog 2022; 18:e1010784. [PMID: 36074792 PMCID: PMC9455852 DOI: 10.1371/journal.ppat.1010784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malassezia, a lipophilic and lipid-dependent yeast, is a microorganism of current interest to mycobiologists because of its role as a commensal or pathogen in health conditions such as dermatological diseases, fungemia, and, as discovered recently, cancer and certain neurological disorders. Various novel approaches in the study of Malassezia have led to increased knowledge of the cellular and molecular mechanisms of this yeast. However, additional efforts are needed for more comprehensive understanding of the behavior of Malassezia in interactions with the host. This article reviews advances useful in the experimental field for Malassezia.
Collapse
Affiliation(s)
- Kevin Ehemann
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - María Juliana Mantilla
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Felipe Mora-Restrepo
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Andrea Rios-Navarro
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Maritza Torres
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
18
|
Wiederhold NP. Pharmacodynamics, Mechanisms of Action and Resistance, and Spectrum of Activity of New Antifungal Agents. J Fungi (Basel) 2022; 8:jof8080857. [PMID: 36012845 PMCID: PMC9410397 DOI: 10.3390/jof8080857] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/07/2022] [Accepted: 08/14/2022] [Indexed: 12/21/2022] Open
Abstract
Several new antifungals are currently in late-stage development, including those with novel pharmacodynamics/mechanisms of action that represent new antifungal classes (manogepix, olorofim, ATI-2307, GR-2397). Others include new agents within established classes or with mechanisms of action similar to clinically available antifungals (ibrexafungerp, rezafungin, oteseconazole, opelconazole, MAT2203) that have been modified in order to improve certain characteristics, including enhanced pharmacokinetics and greater specificity for fungal targets. Many of the antifungals under development also have activity against Candida and Aspergillus strains that have reduced susceptibility or acquired resistance to azoles and echinocandins, whereas others demonstrate activity against species that are intrinsically resistant to most clinically available antifungals. The tolerability and drug–drug interaction profiles of these new agents also appear to be promising, although the number of human subjects that have been exposed to many of these agents remains relatively small. Overall, these agents have the potential for expanding our antifungal armamentarium and improving clinical outcomes in patients with invasive mycoses.
Collapse
Affiliation(s)
- Nathan P Wiederhold
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
19
|
Donlin MJ, Meyers MJ. Repurposing and optimization of drugs for discovery of novel antifungals. Drug Discov Today 2022; 27:2008-2014. [PMID: 35489676 PMCID: PMC11182377 DOI: 10.1016/j.drudis.2022.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/17/2022]
Abstract
Although fungal diseases are a major and growing public health concern, there are only four major classes of drug to treat primary fungal pathogens. The pipeline of new antifungals in clinical development is relatively thin compared with other disease classes. One approach to rapidly identify and provide novel treatment options is to repurpose existing drugs as antifungals. However, such proposed drug-repurposing candidates often suffer suboptimal efficacy and pharmacokinetics (PK) for fungal diseases. Herein, we briefly review the current antifungal drug pipeline and recent approaches to optimize existing drugs into novel molecules with unique modes of action relative to existing antifungal drug classes.
Collapse
Affiliation(s)
- Maureen J Donlin
- Edward. A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA; Saint Louis University Institute for Drug and Biotherapeutic Innovation, USA.
| | - Marvin J Meyers
- Department of Chemistry, Saint Louis University, St Louis, MO, USA; Saint Louis University Institute for Drug and Biotherapeutic Innovation, USA
| |
Collapse
|
20
|
Hoenigl M, Sprute R, Arastehfar A, Perfect JR, Lass-Flörl C, Bellmann R, Prattes J, Thompson GR, Wiederhold NP, Al Obaidi MM, Willinger B, Arendrup MC, Koehler P, Oliverio M, Egger M, Schwartz IS, Cornely OA, Pappas PG, Krause R. Invasive candidiasis: Investigational drugs in the clinical development pipeline and mechanisms of action. Expert Opin Investig Drugs 2022; 31:795-812. [PMID: 35657026 PMCID: PMC9339492 DOI: 10.1080/13543784.2022.2086120] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The epidemiology of invasive Candida infections is evolving. Infections caused by non-albicans Candida spp. are increasing; however, the antifungal pipeline is more promising than ever and is enriched with repurposed drugs and agents that have new mechanisms of action. Despite progress, unmet needs in the treatment of invasive candidiasis remain and there are still too few antifungals that can be administered orally or that have CNS penetration. AREAS COVERED The authors shed light on those antifungal agents active against Candida that are in late-stage clinical development. Mechanisms of action and key pharmacokinetic and pharmacodynamic properties are discussed. Insights are offered on the potential future roles of the investigational agents MAT-2203, oteseconazole, ATI-2307, VL-2397, NP-339, and the repurposed drug miltefosine. EXPERT OPINION Ibrexafungerp and fosmanogepix have novel mechanisms of action and will provide effective options for the treatment of Candida infections (including those caused by multiresistant Candida spp). Rezafungin, an echinocandin with an extended half-life allowing for once weekly administration, will be particularly valuable for outpatient treatment and prophylaxis. Despite this, there is an urgent need to garner clinical data on investigational drugs, especially in the current rise of azole-resistant and multi-drug resistant Candida spp.
Collapse
Affiliation(s)
- Martin Hoenigl
- Division of Infectious Diseases, Excellence Center for Medical Mycology (ECMM), Medical University of Graz, Graz, Austria.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA.,Clinical and Translational Fungal - Working Group, University of California San Diego, La Jolla, CA
| | - Rosanne Sprute
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - John R Perfect
- Division of Infectious Diseases and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Excellence Center for Medical Mycology (ECMM), Medical University of Innsbruck, Innsbruck, Austria
| | - Romuald Bellmann
- Clinical Pharmacokinetics Unit, Division of Intensive Care and Emergency Medicine, Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, Excellence Center for Medical Mycology (ECMM), Medical University of Graz, Graz, Austria.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
| | - George R Thompson
- Department of Internal Medicine, Division of Infectious Diseases and Department of Medical Microbiology and Immunology, University of California Davis Medical Center
| | - Nathan P Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohanad M Al Obaidi
- Division of Infectious Diseases, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Maiken C Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Philipp Koehler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Matteo Oliverio
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Matthias Egger
- Division of Infectious Diseases, Excellence Center for Medical Mycology (ECMM), Medical University of Graz, Graz, Austria
| | - Ilan S Schwartz
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Peter G Pappas
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Krause
- Division of Infectious Diseases, Excellence Center for Medical Mycology (ECMM), Medical University of Graz, Graz, Austria
| |
Collapse
|
21
|
Murphy SE, Bicanic T. Drug Resistance and Novel Therapeutic Approaches in Invasive Candidiasis. Front Cell Infect Microbiol 2022; 11:759408. [PMID: 34970504 PMCID: PMC8713075 DOI: 10.3389/fcimb.2021.759408] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Candida species are the leading cause of invasive fungal infections worldwide and are associated with acute mortality rates of ~50%. Mortality rates are further augmented in the context of host immunosuppression and infection with drug-resistant Candida species. In this review, we outline antifungal drugs already in clinical use for invasive candidiasis and candidaemia, their targets and mechanisms of resistance in clinically relevant Candida species, encompassing not only classical resistance, but also heteroresistance and tolerance. We describe novel antifungal agents and targets in pre-clinical and clinical development, including their spectrum of activity, antifungal target, clinical trial data and potential in treatment of drug-resistant Candida. Lastly, we discuss the use of combination therapy between conventional and repurposed agents as a potential strategy to combat the threat of emerging resistance in Candida.
Collapse
Affiliation(s)
- Sarah E Murphy
- Institute of Infection & Immunity, St George's University of London, London, United Kingdom
| | - Tihana Bicanic
- Institute of Infection & Immunity, St George's University of London, London, United Kingdom.,Clinical Academic Group in Infection and Immunity, St. George's University Hospital National Health Service (NHS) Foundation Trust, London, United Kingdom
| |
Collapse
|
22
|
Liu T, Pyle AM. Discovery of highly reactive self-splicing group II introns within the mitochondrial genomes of human pathogenic fungi. Nucleic Acids Res 2021; 49:12422-12432. [PMID: 34850132 PMCID: PMC8643640 DOI: 10.1093/nar/gkab1077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
Fungal pathogens represent an expanding global health threat for which treatment options are limited. Self-splicing group II introns have emerged as promising drug targets, but their development has been limited by a lack of information on their distribution and architecture in pathogenic fungi. To meet this challenge, we developed a bioinformatic workflow for scanning sequence data to identify unique RNA structural signatures within group II introns. Using this approach, we discovered a set of ubiquitous introns within thermally dimorphic fungi (genera of Blastomyces, Coccidioides and Histoplasma). These introns are the most biochemically reactive group II introns ever reported, and they self-splice rapidly under near-physiological conditions without protein cofactors. Moreover, we demonstrated the small molecule targetability of these introns by showing that they can be inhibited by the FDA-approved drug mitoxantrone in vitro. Taken together, our results highlight the utility of structure-based informatic searches for identifying riboregulatory elements in pathogens, revealing a striking diversity of reactive self-splicing introns with great promise as antifungal drug targets.
Collapse
Affiliation(s)
- Tianshuo Liu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Anna M Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520, USA.,Department of Chemistry, Yale University, New Haven, CT, 06520, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
23
|
McCarty TP, Pappas PG. Antifungal Pipeline. Front Cell Infect Microbiol 2021; 11:732223. [PMID: 34552887 PMCID: PMC8450443 DOI: 10.3389/fcimb.2021.732223] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
In many ways, fungal diseases are forgotten or neglected. Given the significantly lower frequency compared to similar bacterial etiologies across the spectrum of infectious syndromes, it makes sense that anti-bacterial agents have seen the bulk of development in recent decades. The vast majority of new antifungal medications approved for use in the past 10 years have been new versions in the same class as existing agents. Clinical mycology is crying out for new mechanisms of action in the setting of rising resistance and emergence of new organisms. Fortunately, this trend appears to be reversing. There are numerous agents in advanced stages of development offering novel dosing regimens and mechanisms of action to combat these threats. Herein we review seven antifungal agents that we hope to see come to market in the coming years to aid physicians in the treatment of mucocutaneous and invasive fungal infections.
Collapse
Affiliation(s)
- Todd Patrick McCarty
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Medicine, Birmingham Veterans Affairs (VA) Medical Center, Birmingham, AL, United States
| | - Peter G Pappas
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
24
|
Stott KE, Loyse A, Jarvis JN, Alufandika M, Harrison TS, Mwandumba HC, Day JN, Lalloo DG, Bicanic T, Perfect JR, Hope W. Cryptococcal meningoencephalitis: time for action. THE LANCET. INFECTIOUS DISEASES 2021; 21:e259-e271. [PMID: 33872594 DOI: 10.1016/s1473-3099(20)30771-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
Cryptococcal meningoencephalitis was first described over a century ago. This fungal infection is preventable and treatable yet continues to be associated with excessive morbidity and mortality. The largest burden of disease resides in people living with HIV in low-income and middle-income countries. In this group, mortality with the best antifungal induction regimen (7 days of amphotericin B deoxycholate [1·0 mg/kg per day] and flucytosine [100·0 mg/kg per day]) in a clinical trial setting was 24% at 10 weeks. The world is now at an inflection point in terms of recognition, research, and action to address the burden of morbidity and mortality from cryptococcal meningoencephalitis. However, the scope of interventional programmes needs to increase, with particular attention to implementation science that is specific to individual countries. This Review summarises causes of excessive mortality, interventions with proven survival benefit, and gaps in knowledge and practice that contribute to the ongoing high death toll from cryptococcal meningoencephalitis. TRANSLATIONS: For the Vietnamese and Chichewa translations of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Katharine Elizabeth Stott
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Translational Medicine, University of Liverpool, Liverpool Health Partners, Liverpool, UK; Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi.
| | - Angela Loyse
- Institute of Infection and Immunity, St George's University and Hospital, London, UK
| | - Joe N Jarvis
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana; Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Melanie Alufandika
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | | | - Henry C Mwandumba
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi; Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jeremy N Day
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK
| | | | - Tihana Bicanic
- Institute of Infection and Immunity, St George's University and Hospital, London, UK
| | - John R Perfect
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC, USA
| | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Translational Medicine, University of Liverpool, Liverpool Health Partners, Liverpool, UK
| |
Collapse
|
25
|
Abstract
Anti-fungal therapies remain sub-optimal, and resistant pathogens are increasing. New therapies are desperately needed, especially options that are less toxic than most of the currently available selection. In this review, I will discuss anti-fungal therapies that are in at least phase I human trials. These include VT-1161 and VT-1598, modified azoles with a tetrazole metal-binding group; the echinocandin rezafugin; the novel β-1,3-d-glucan synthase inhibitor ibrexafungerp; fosmanogepix, a novel anti-fungal targeting Gwt1; the arylamidine T-2307; the dihydroorotate inhibitor olorofim; and the cyclic hexapeptide ASP2397. The available data including spectrum of activity, toxicity and stage of clinical development will be discussed for each of these so clinicians are aware of promising anti-fungal agents with a strong likelihood of clinical availability in the next 5–7 years.
Collapse
Affiliation(s)
- Grant Waterer
- University of Western Australia, Royal Perth Hospital, Level 3 Executive Corridor, Wellington St, Perth, 6000, Australia.
| |
Collapse
|
26
|
Abstract
Introduction: Invasive fungal infection carries a high morbidity, mortality and economic cost. In recent times, a rising incidence of fungal infection and antifungal resistance is occurring which has prompted the development of novel antifungal agents.Areas covered:In this perspective, the authors describe the current status of registered antifungals and their limitations in the treatment of invasive fungal infection. They also go on to describe the new antifungal agents that are in the clinical stage of development and how they might be best utilized in patient care in the future.Expert opinion: The antifungal drug development pipeline has responded to a growing need for new agents to effectively treat fungal disease without concomitant toxicity or issues with drug tolerance. Olorofim (F901318), ibrexafungerp (SCY-078), fosmanogepix (APX001), rezafungin (CD101), oteseconazole (VT-1161), encochleated amphotericin B (MAT2203), nikkomycin Z (NikZ) and ATI-2307 are all in the clinical stage of development and offer great promise in offering clinicians better agents to treat these difficult infections.
Collapse
Affiliation(s)
- Adam G Stewart
- Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia
| | - David L Paterson
- Department of Infectious Diseases, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Australia
| |
Collapse
|
27
|
Gerlach ES, Altamirano S, Yoder JM, Luggya TS, Akampurira A, Meya DB, Boulware DR, Rhein J, Nielsen K. ATI-2307 Exhibits Equivalent Antifungal Activity in Cryptococcus neoformans Clinical Isolates With High and Low Fluconazole IC 50. Front Cell Infect Microbiol 2021; 11:695240. [PMID: 34249782 PMCID: PMC8262267 DOI: 10.3389/fcimb.2021.695240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/10/2021] [Indexed: 01/16/2023] Open
Abstract
Half maximal inhibitory concentrations (IC50) to the experimental drug ATI-2307 and complete inhibition (IC90) of the common clinically used antifungal drug amphotericin B were determined by microbroth dilution assay for a collection of 69 clinical isolates of Cryptococcus neoformans from Uganda that had high fluconazole IC50 values. The majority of the clinical isolates tested had fluconazole IC50 at or above 8 µg/mL, but were susceptible to both amphotericin B (IC90 ≤1 μg/mL) and ATI-2307 (IC50 ≤0.0312 µg/mL). No correlation between increased fluconazole minimum inhibitory concentration (MIC) and ATI-2307 or amphotericin B MIC was observed, suggesting that the cellular changes impacting fluconazole susceptibility did not impact the effectiveness of ATI-2307. Our results suggest that ATI-2307 is a promising new antifungal drug for use in the context of high fluconazole or other antifungal drug MICs and/or in combination drug therapy regimens.
Collapse
Affiliation(s)
- Elliot S. Gerlach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Sophie Altamirano
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - J. Marina Yoder
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Tony S. Luggya
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Andrew Akampurira
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David B. Meya
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David R. Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Rhein
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
28
|
Pasula S, Chandrasekar PH. Azole resistance in Aspergillus species: promising therapeutic options. Expert Opin Pharmacother 2021; 22:2071-2078. [PMID: 34129410 DOI: 10.1080/14656566.2021.1940134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Azoles are the first-line antifungal agents used for the treatment of Aspergillus infection. There is an increasing concern for azole resistance all over the world mainly from agricultural fungicide use. Choosing safe and effective antifungal regimens has become a challenge. AREAS COVERED Here, the authors review the epidemiology, mechanisms, and detection of azole resistance along with management options for azole-resistant Aspergillus infection, including new antifungal agents under development. EXPERT OPINION Routine global epidemiological surveillance is required to understand azole resistance prevalence. Azole-resistant Aspergillus infections are associated with high mortality. No good therapeutic options are currently available. High index of suspicion of resistance is required if a patient is not responding to 4-7 days of azole therapy, particularly in the areas of resistance. Susceptibility testing for Aspergillus is not routinely available in many parts of the world, which makes it difficult to diagnose azole resistance in Aspergillus infection. There are several new antifungal classes with novel mechanisms of action; clinical trials are ongoing.
Collapse
Affiliation(s)
- Shirisha Pasula
- Department of Internal medicine, Division of Infectious diseases, Detroit Medical Center/Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
29
|
Investigational Agents for the Treatment of Resistant Yeasts and Molds. CURRENT FUNGAL INFECTION REPORTS 2021; 15:104-115. [PMID: 34075318 PMCID: PMC8162489 DOI: 10.1007/s12281-021-00419-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 12/17/2022]
Abstract
Purpose of Review This review summarizes the investigational antifungals in clinical development with the potential to address rising drug resistance patterns. The relevant pharmacodynamics, spectrum of activity, preclinical studies, and latest clinical trial data are described. Recent Findings Agricultural and medicinal antifungal use has been selected for inherently drug-resistant fungi and acquired resistance mechanisms. The rates of fungal infections and immunocompromised populations continue to grow as few new antifungals have hit the market. Several agents with the potential to address the emergence of multidrug-resistant (MDR) molds and yeasts are in clinical development. Summary Evolved formulations of echinocandins, polyenes, and triazoles offer less toxicity, convenient dosing, and greater potency, potentially expanding these classes’ indications. Ibrexafungerp, olorofim, oteseconazole, and fosmanogepix possess novel mechanisms of actions with potent activity against MDR fungi. Successful clinical development is neither easy nor guaranteed; thus, perpetual efforts to discover new antifungals are needed.
Collapse
|
30
|
Abstract
Invasive fungal diseases continue to cause substantial mortality in the enlarging immunocompromised population. It is fortunate that the field has moved past amphotericin B deoxycholate as the only available antifungal drug but despite new classes of antifungal agents both primary and secondary drug resistance in molds and yeasts abound. From the rise of multiple-drug-resistant Candida auris to the agrochemical selection of environmental azole-resistant Aspergillus fumigatus, it is and will be critical to understand antifungal drug resistance and both prevent and treat it with new strategies and agents.
Collapse
|
31
|
Billamboz M, Fatima Z, Hameed S, Jawhara S. Promising Drug Candidates and New Strategies for Fighting against the Emerging Superbug Candida auris. Microorganisms 2021; 9:microorganisms9030634. [PMID: 33803604 PMCID: PMC8003017 DOI: 10.3390/microorganisms9030634] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Invasive fungal infections represent an expanding threat to public health. During the past decade, a paradigm shift of candidiasis from Candida albicans to non-albicans Candida species has fundamentally increased with the advent of Candida auris. C. auris was identified in 2009 and is now recognized as an emerging species of concern and underscores the urgent need for novel drug development strategies. In this review, we discuss the genomic epidemiology and the main virulence factors of C. auris. We also focus on the different new strategies and results obtained during the past decade in the field of antifungal design against this emerging C. auris pathogen yeast, based on a medicinal chemist point of view. Critical analyses of chemical features and physicochemical descriptors will be carried out along with the description of reported strategies.
Collapse
Affiliation(s)
- Muriel Billamboz
- Inserm, CHU Lille, Institut Pasteur Lille, Université Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies liées au Vieillissement, F-59000 Lille, France
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
- Correspondence: (M.B.); (S.J.)
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram 122413, India; (Z.F.); (S.H.)
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram 122413, India; (Z.F.); (S.H.)
| | - Samir Jawhara
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Centre National de la Recherche Scientifique, INSERM U1285, University of Lille, F-59000 Lille, France
- Correspondence: (M.B.); (S.J.)
| |
Collapse
|
32
|
Review of T-2307, an Investigational Agent That Causes Collapse of Fungal Mitochondrial Membrane Potential. J Fungi (Basel) 2021; 7:jof7020130. [PMID: 33670132 PMCID: PMC7916847 DOI: 10.3390/jof7020130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
Invasive infections caused by Candida that are resistant to clinically available antifungals are of increasing concern. Increasing rates of fluconazole resistance in non-albicans Candida species have been documented in multiple countries on several continents. This situation has been further exacerbated over the last several years by Candida auris, as isolates of this emerging pathogen that are often resistant to multiple antifungals. T-2307 is an aromatic diamidine currently in development for the treatment of invasive fungal infections. This agent has been shown to selectively cause the collapse of the mitochondrial membrane potential in yeasts when compared to mammalian cells. In vitro activity has been demonstrated against Candida species, including C. albicans, C. glabrata, and C. auris strains, which are resistant to azole and echinocandin antifungals. Activity has also been reported against Cryptococcus species, and this has translated into in vivo efficacy in experimental models of invasive candidiasis and cryptococcosis. However, little is known regarding the clinical efficacy and safety of this agent, as published data from studies involving humans are not currently available.
Collapse
|
33
|
Scorzoni L, Fuchs BB, Junqueira JC, Mylonakis E. Current and promising pharmacotherapeutic options for candidiasis. Expert Opin Pharmacother 2021; 22:867-887. [PMID: 33538201 DOI: 10.1080/14656566.2021.1873951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Candida spp. are commensal yeasts capable of causing infections such as superficial, oral, vaginal, or systemic infections. Despite medical advances, the antifungal pharmacopeia remains limited and the development of alternative strategies is needed.Areas covered: We discuss available treatments for Candida spp. infections, highlighting advantages and limitations related to pharmacokinetics, cytotoxicity, and antimicrobial resistance. Moreover, we present new perspectives to improve the activity of the available antifungals, discussing their immunomodulatory potential and advances on drug delivery carriers. New therapeutic approaches are presented including recent synthesized antifungal compounds (Enchochleated-Amphotericin B, tetrazoles, rezafungin, enfumafungin, manogepix and arylamidine); drug repurposing using a diversity of antibacterial, antiviral and non-antimicrobial drugs; combination therapies with different compounds or photodynamic therapy; and innovations based on nano-particulate delivery systems.Expert opinion: With the lack of novel drugs, the available assets must be leveraged to their best advantage through modifications that enhance delivery, efficacy, and solubility. However, these efforts are met with continuous challenges presented by microbes in their infinite plight to resist and survive therapeutic drugs. The pharmacotherapeutic options in development need to focus on new antimicrobial targets. The success of each antimicrobial agent brings strategic insights to the next phased approach in treatingCandida spp. infections.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, SP Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI USA
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, SP Brazil
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI USA
| |
Collapse
|
34
|
The Future of Antifungal Drug Therapy: Novel Compounds and Targets. Antimicrob Agents Chemother 2021; 65:AAC.01719-20. [PMID: 33229427 DOI: 10.1128/aac.01719-20] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fungal infections are a universal problem and are routinely associated with high morbidity and mortality rates in immunocompromised patients. Existing therapies comprise five different classes of antifungal agents, four of which target the synthesis of ergosterol and cell wall glucans. However, the currently available antifungals have many limitations, including poor oral bioavailability, narrow therapeutic indices, and emerging drug resistance resulting from their use, thus making it essential to investigate the development of novel drugs which can overcome these limitations and add to the antifungal armamentarium. Advances have been made in antifungal drug discovery research and development over the past few years as evidenced by the presence of several new compounds currently in various stages of development. In the following minireview, we provide a comprehensive summary of compounds aimed at one or more novel molecular targets. We also briefly describe potential pathways relevant for fungal pathogenesis that can be considered for drug development in the near future.
Collapse
|
35
|
Vahedi-Shahandashti R, Lass-Flörl C. Novel Antifungal Agents and Their Activity against Aspergillus Species. J Fungi (Basel) 2020; 6:E213. [PMID: 33050302 PMCID: PMC7711508 DOI: 10.3390/jof6040213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
There is a need for new antifungal agents, mainly due to increased incidence of invasive fungal infections (IFI), high frequency of associated morbidity and mortality and limitations of the current antifungal agents (e.g., toxicity, drug-drug interactions, and resistance). The clinically available antifungals for IFI are restricted to four main classes: polyenes, flucytosine, triazoles, and echinocandins. Several antifungals are hampered by multiple resistance mechanisms being present in fungi. Consequently, novel antifungal agents with new targets and modified chemical structures are required to combat fungal infections. This review will describe novel antifungals, with a focus on the Aspergillus species.
Collapse
Affiliation(s)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
36
|
Yu Y, Albrecht K, Groll J, Beilhack A. Innovative therapies for invasive fungal infections in preclinical and clinical development. Expert Opin Investig Drugs 2020; 29:961-971. [DOI: 10.1080/13543784.2020.1791819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yidong Yu
- Interdisciplinary Center for Clinical Research Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital of Würzburg , Würzburg, Germany
| | - Krystyna Albrecht
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Würzburg, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Würzburg, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital of Würzburg , Würzburg, Germany
- Department of Pediatrics, University Hospital of Würzburg , Würzburg, Germany
| |
Collapse
|
37
|
Abe M, Nakamura S, Kinjo Y, Masuyama Y, Mitsuyama J, Kaku M, Miyazaki Y. Efficacy of T-2307, a novel arylamidine, against ocular complications of disseminated candidiasis in mice. J Antimicrob Chemother 2020; 74:1327-1332. [PMID: 30753506 DOI: 10.1093/jac/dkz020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES T-2307, a novel arylamidine, shows broad-spectrum activity against pathogenic fungi, including Candida albicans. Ocular candidiasis is one of the serious complications associated with Candida bloodstream infection and is known to be refractory to conventional antifungal agents. The aim of the present study was to clarify the effectiveness of T-2307 against ocular candidiasis using a mouse model. METHODS We evaluated ocular fungal burden in mice infected with C. albicans that received treatment with antifungal agents [T-2307, liposomal amphotericin B (LAMB) or fluconazole] for 3 consecutive days. We also assessed survival rates of mice after C. albicans infection followed by treatment for 7 consecutive days. In addition, ocular T-2307 concentrations and in vitro effectiveness against C. albicans biofilm formation were evaluated. RESULTS The ocular fungal burdens were significantly reduced after T-2307 treatment compared with the control group (no treatment received) and were comparable with those observed following treatment with LAMB or fluconazole in both early- and late-phase treatment experiments. In addition, all of the mice treated with antifungal agents survived for 3 weeks after infection, whereas mice in the control group died within 3 days. The ocular T-2307 trough concentration was maintained above the MIC in the infected mice. An in vitro biofilm inhibition experiment showed that T-2307 suppressed C. albicans biofilm formation at the sub-MIC level, which was comparable with amphotericin B. CONCLUSIONS Given these results in experimental disseminated candidiasis, T-2307 may be an effective treatment against the complication of ocular candidiasis.
Collapse
Affiliation(s)
- Masahiro Abe
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Infection Control and Laboratory Diagnostics, Tohoku University School of Medicine, Miyagi, Japan
| | - Shigeki Nakamura
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuki Kinjo
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan.,Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuka Masuyama
- Pharmaceutical & Healthcare Research Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | | | - Mitsuo Kaku
- Department of Infection Control and Laboratory Diagnostics, Tohoku University School of Medicine, Miyagi, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
38
|
Spadari CDC, Wirth F, Lopes LB, Ishida K. New Approaches for Cryptococcosis Treatment. Microorganisms 2020; 8:E613. [PMID: 32340403 PMCID: PMC7232457 DOI: 10.3390/microorganisms8040613] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
Cryptococcosis is an important opportunistic infection and a leading cause of meningitis in patients with HIV infection. The antifungal pharmacological treatment is limited to amphotericin B, fluconazole and 5- flucytosine. In addition to the limited pharmacological options, the high toxicity, increased resistance rate and difficulty of the currently available antifungal molecules to cross the blood-brain barrier hamper the treatment. Thus, the search for new alternatives for the treatment of cryptococcal meningitis is extremely necessary. In this review, we describe the therapeutic strategies currently available, discuss new molecules with antifungal potential in different phases of clinical trials and in advanced pre-clinical phase, and examine drug nanocarriers to improve delivery to the central nervous system.
Collapse
Affiliation(s)
- Cristina de Castro Spadari
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.d.C.S.); (F.W.)
| | - Fernanda Wirth
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.d.C.S.); (F.W.)
| | - Luciana Biagini Lopes
- Laboratory of Nanomedicine and Drug Delivery Systems, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Kelly Ishida
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.d.C.S.); (F.W.)
| |
Collapse
|
39
|
Coelho C, Farrer RA. Pathogen and host genetics underpinning cryptococcal disease. ADVANCES IN GENETICS 2020; 105:1-66. [PMID: 32560785 DOI: 10.1016/bs.adgen.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryptococcosis is a severe fungal disease causing 220,000 cases of cryptococcal meningitis yearly. The etiological agents of cryptococcosis are taxonomically grouped into at least two species complexes belonging to the genus Cryptococcus. All of these yeasts are environmentally ubiquitous fungi (often found in soil, leaves and decaying wood, tree hollows, and associated with bird feces especially pigeon guano). Infection in a range of animals including humans begins following inhalation of spores or aerosolized yeasts. Recent advances provide fundamental insights into the factors from both the pathogen and its hosts which influence pathogenesis and disease. The complex interactions leading to disease in mammalian hosts have also updated from the availability of better genomic tools and datasets. In this review, we discuss recent genetic research on Cryptococcus, covering the epidemiology, ecology, and evolution of Cryptococcus pathogenic species. We also discuss the insights into the host immune response obtained from the latest genetic modified host models as well as insights from monogenic disorders in humans. Finally we highlight outstanding questions that can be answered in the near future using bioinformatics and genomic tools.
Collapse
Affiliation(s)
- Carolina Coelho
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom
| | - Rhys A Farrer
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
40
|
The Novel Arylamidine T-2307 Demonstrates In Vitro and In Vivo Activity against Candida auris. Antimicrob Agents Chemother 2020; 64:AAC.02198-19. [PMID: 31844006 DOI: 10.1128/aac.02198-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022] Open
Abstract
The in vitro and in vivo activity of the arylamidine T-2307 against Candida auris was evaluated. T-2307 demonstrated in vitro activity (MIC ranges ≤ 0.008 to 0.015 μg/ml at 50% inhibition; 0.125 to >4 μg/ml at 100% inhibition). Treatment with T-2307 (3 mg/kg subcutaneous [SC] once daily) also significantly improved survival (70% at 21 days postinfection) and reduced kidney fungal burden (5.06 log10 CFU/g) compared to control (0% survival and 7.09 log10 CFU/g) (P < 0.01).
Collapse
|
41
|
Silva LN, de Mello TP, de Souza Ramos L, Branquinha MH, Dos Santos ALS. New and Promising Chemotherapeutics for Emerging Infections Involving Drug-resistant Non-albicans Candida Species. Curr Top Med Chem 2020; 19:2527-2553. [PMID: 31654512 DOI: 10.2174/1568026619666191025152412] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 02/06/2023]
Abstract
Fungal infections are a veritable public health problem worldwide. The increasing number of patient populations at risk (e.g. transplanted individuals, cancer patients, and HIV-infected people), as well as the use of antifungal agents for prophylaxis in medicine, have favored the emergence of previously rare or newly identified fungal species. Indeed, novel antifungal resistance patterns have been observed, including environmental sources and the emergence of simultaneous resistance to different antifungal classes, especially in Candida spp., which are known for the multidrug-resistance (MDR) profile. In order to circumvent this alarming scenario, the international researchers' community is engaged in discovering new, potent, and promising compounds to be used in a near future to treat resistant fungal infections in hospital settings on a global scale. In this context, many compounds with antifungal action from both natural and synthetic sources are currently under clinical development, including those that target either ergosterol or β(1,3)-D-glucan, presenting clear evidence of pharmacologic/pharmacokinetic advantages over currently available drugs against these two well-known fungal target structures. Among these are the tetrazoles VT-1129, VT-1161, and VT-1598, the echinocandin CD101, and the glucan synthase inhibitor SCY-078. In this review, we compiled the most recent antifungal compounds that are currently in clinical trials of development and described the potential outcomes against emerging and rare Candida species, with a focus on C. auris, C. dubliniensis, C. glabrata, C. guilliermondii, C. haemulonii, and C. rugosa. In addition to possibly overcoming the limitations of currently available antifungals, new investigational chemical agents that can enhance the classic antifungal activity, thereby reversing previously resistant phenotypes, were also highlighted. While novel and increasingly MDR non-albicans Candida species continue to emerge worldwide, novel strategies for rapid identification and treatment are needed to combat these life-threatening opportunistic fungal infections.
Collapse
Affiliation(s)
- Laura Nunes Silva
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaís Pereira de Mello
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia de Souza Ramos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta Helena Branquinha
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luis Souza Dos Santos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Rauseo AM, Coler-Reilly A, Larson L, Spec A. Hope on the Horizon: Novel Fungal Treatments in Development. Open Forum Infect Dis 2020; 7:ofaa016. [PMID: 32099843 PMCID: PMC7031074 DOI: 10.1093/ofid/ofaa016] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
The treatment of invasive fungal infections remains challenging due to limitations in currently available antifungal therapies including toxicity, interactions, restricted routes of administration, and drug resistance. This review focuses on novel therapies in clinical development, including drugs and a device. These drugs have novel mechanisms of action to overcome resistance, and some offer new formulations providing distinct advantages over current therapies to improve safety profiles and reduce interactions. Among agents that target the cell wall, 2 glucan synthesis inhibitors are discussed (rezafungin and ibrexafungerp), as well as fosmanogepix and nikkomycin Z. Agents that target the cell membrane include 3 fourth-generation azoles, oral encochleated amphotericin B, and aureobasidin A. Among agents with intracellular targets, we will review olorofim, VL-2397, T-2307, AR-12, and MGCD290. In addition, we will describe neurapheresis, a device used as adjunctive therapy for cryptococcosis. With a field full of novel treatments for fungal infections, the future looks promising.
Collapse
Affiliation(s)
- Adriana M Rauseo
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Lindsey Larson
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrej Spec
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
43
|
Al-Hatmi AMS, de Hoog GS, Meis JF. Multiresistant Fusarium Pathogens on Plants and Humans: Solutions in (from) the Antifungal Pipeline? Infect Drug Resist 2019; 12:3727-3737. [PMID: 31819555 PMCID: PMC6886543 DOI: 10.2147/idr.s180912] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022] Open
Abstract
The fungal genus Fusarium contains numerous plant pathogens causing considerable economic losses. In addition, Fusarium species are emerging as opportunistic human pathogens causing both superficial and systemic infections. Appropriate treatment of Fusarium infections in a clinical setting of neutropenia is currently not available. ESCMID and ECMM joint guidelines, following the majority of published studies, suggest early therapy with amphotericin B and voriconazole, in conjunction with surgical debridement and reversal of immunosuppression. In this review, we elaborate on the trans-kingdom pathogenicity of Fusarium. Intrinsic resistance to several antifungal drugs and the evolution of antifungal resistance over the years are highlighted. Recent studies present novel compounds that are effective against some pathogenic fungi including Fusarium. We discuss the robust and dynamic antifungal pipeline, including results from clinical trials as well as preclinical data that might appear beneficial for patients with invasive fusariosis.
Collapse
Affiliation(s)
- Abdullah MS Al-Hatmi
- Ministry of Health, Directorate General of Health Services, Ibri, Oman
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
- Centre of Expertise in Mycology Radboud University Medical Centre/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - G Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
- Centre of Expertise in Mycology Radboud University Medical Centre/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Jacques F Meis
- Centre of Expertise in Mycology Radboud University Medical Centre/Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| |
Collapse
|
44
|
The Novel Arylamidine T-2307 Selectively Disrupts Yeast Mitochondrial Function by Inhibiting Respiratory Chain Complexes. Antimicrob Agents Chemother 2019; 63:AAC.00374-19. [PMID: 31182539 PMCID: PMC6658782 DOI: 10.1128/aac.00374-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
The novel arylamidine T-2307 exhibits broad-spectrum in vitro and in vivo antifungal activities against clinically significant pathogens. Previous studies have shown that T-2307 accumulates in yeast cells via a specific polyamine transporter and disrupts yeast mitochondrial membrane potential. Further, it has little effect on rat liver mitochondrial function. The novel arylamidine T-2307 exhibits broad-spectrum in vitro and in vivo antifungal activities against clinically significant pathogens. Previous studies have shown that T-2307 accumulates in yeast cells via a specific polyamine transporter and disrupts yeast mitochondrial membrane potential. Further, it has little effect on rat liver mitochondrial function. The mechanism by which T-2307 disrupts yeast mitochondrial function is poorly understood, and its elucidation may provide important information for developing novel antifungal agents. This study aimed to determine how T-2307 promotes yeast mitochondrial dysfunction and to investigate the selectivity of this mechanism between fungi and mammals. T-2307 inhibited the respiration of yeast whole cells and isolated yeast mitochondria in a dose-dependent manner. The similarity of the effects of T-2307 and respiratory chain inhibitors on mitochondrial respiration prompted us to investigate the effect of T-2307 on mitochondrial respiratory chain complexes. T-2307 particularly inhibited respiratory chain complexes III and IV not only in Saccharomyces cerevisiae but also in Candida albicans, indicating that T-2307 acts against pathogenic fungi in a manner similar to that of yeast. Conversely, T-2307 showed little effect on bovine respiratory chain complexes. Additionally, we demonstrated that the inhibition of respiratory chain complexes by T-2307 resulted in a decrease in the intracellular ATP levels in yeast cells. These results indicate that inhibition of respiratory chain complexes III and IV is a key factor for selective disruption of yeast mitochondrial function and antifungal activity.
Collapse
|
45
|
Ashizawa N, Miyazaki T, Abe S, Takazono T, Saijo T, Obata Y, Shimamura S, Yamamoto K, Imamura Y, Koji T, Nishino T, Izumikawa K, Yanagihara K, Kohno S, Mukae H. Evaluation of Candida peritonitis with underlying peritoneal fibrosis and efficacy of micafungin in murine models of intra-abdominal candidiasis. Sci Rep 2019; 9:9331. [PMID: 31249356 PMCID: PMC6597535 DOI: 10.1038/s41598-019-45776-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/14/2019] [Indexed: 12/30/2022] Open
Abstract
Candida peritonitis is a crucial disease, however the optimal antifungal therapy regimen has not been clearly defined. Peritoneal fibrosis (PF) can be caused by abdominal surgery, intra-abdominal infection, and malignant diseases, and is also widely recognized as a crucial complication of long-term peritoneal dialysis. However, the influence of PF on Candida peritonitis prognosis remains unknown. Here, we evaluated the severity of Candida peritonitis within the context of PF and the efficacy of micafungin using mice. A PF mouse model was generated by intraperitoneally administering chlorhexidine gluconate. Candida peritonitis, induced by intraperitoneal inoculation of Candida albicans, was treated with a 7-day consecutive subcutaneous administration of micafungin. Candida infection caused a higher mortality rate in the PF mice compared with the control mice on day 7. Proliferative Candida invasion into the peritoneum and intra-abdominal organs was confirmed pathologically only in the PF mice. However, all mice in both groups treated with micafungin survived until day 20. Micafungin treatment tends to suppress inflammatory cytokines in the plasma 12 h after infection in both groups. Our results suggest that PF enhances early mortality in Candida peritonitis. Prompt initiation and sufficient doses of micafungin had good efficacy for Candida peritonitis, irrespective of the underlying PF.
Collapse
Affiliation(s)
- Nobuyuki Ashizawa
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan.,Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Taiga Miyazaki
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Japan. .,Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan.
| | - Shinichi Abe
- Department of Nephrology Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Takahiro Takazono
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Japan.,Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Tomomi Saijo
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Yoko Obata
- Department of Nephrology Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan.,Medical Education Development Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Shintaro Shimamura
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Kazuko Yamamoto
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Yoshifumi Imamura
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Takehiko Koji
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Japan
| | - Tomoya Nishino
- Department of Nephrology Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Shigeru Kohno
- Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan.,Department of Respiratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Japan
| |
Collapse
|
46
|
Silva LN, de Mello TP, de Souza Ramos L, Branquinha MH, dos Santos ALS. Current Challenges and Updates on the Therapy of Fungal Infections. Curr Top Med Chem 2019; 19:495-499. [DOI: 10.2174/156802661907190531093808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Laura Nunes Silva
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaís Pereira de Mello
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia de Souza Ramos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta Helena Branquinha
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luis Souza dos Santos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Almeida F, Rodrigues ML, Coelho C. The Still Underestimated Problem of Fungal Diseases Worldwide. Front Microbiol 2019; 10:214. [PMID: 30809213 PMCID: PMC6379264 DOI: 10.3389/fmicb.2019.00214] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
In the past few years, fungal diseases caused estimated over 1.6 million deaths annually and over one billion people suffer from severe fungal diseases (Brown et al., 2012; Anonymous, 2017b). Public health surveillance of fungal diseases is generally not compulsory, suggesting that most estimates are conservative (Casadevall, 2017; Anonymous, 2017a). Fungal disease can also damage plants and crops, causing major losses in agricultural activities and food production (Savary et al., 2012). Animal pathogenic fungi are threatening bats, amphibians and reptiles with extinction (Casadevall, 2017). It is estimated that fungi are the highest threat for animal-host and plant-host species, representing the major cause (approximately 65%) of pathogen-driven host loss (Fisher et al., 2012). In this complex scenario, it is now clear that the global warming and accompanying climate changes have resulted in increased incidence of many fungal diseases (Garcia-Solache and Casadevall, 2010). On the basis of all these factors, concerns on the occurrence of a pandemic of fungal origin in a near future have been raised (Casadevall, 2017). In this context, to stop forgetting and underestimating fungal diseases is mandatory.
Collapse
Affiliation(s)
- Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
48
|
Sakagami T, Kawano T, Yamashita K, Yamada E, Fujino N, Kaeriyama M, Fukuda Y, Nomura N, Mitsuyama J, Suematsu H, Watanabe H, Asai N, Koizumi Y, Yamagishi Y, Mikamo H. Antifungal susceptibility trend and analysis of resistance mechanism for Candida species isolated from bloodstream at a Japanese university hospital. J Infect Chemother 2018; 25:34-40. [PMID: 30401513 DOI: 10.1016/j.jiac.2018.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/01/2018] [Accepted: 10/09/2018] [Indexed: 11/15/2022]
Abstract
We compared the susceptibility of six commercially available antifungal agents (fluconazole, itraconazole, voriconazole, caspofungin, micafungin, and amphotericin B) against 133 Candida bloodstream isolates between 2008 and 2013 at Aichi Medical University Hospital. C. albicans was the most common isolate, followed by C. parapsilosis, C. glabrata, and C. tropicalis. MIC90s of voriconazole against C. albicans, C. parapsilosis, and C. tropicalis were the lowest and that of micafungin against C. glabrata was the lowest among the agents tested. Of the 133 isolates, two strains were identified as drug-resistant. One was a fluconazole-resistant C. glabrata strain, in which the ATP-binding cassette (ABC) transporter gene expression was upregulated. The other was a micafungin-resistant C. glabrata strain, that had 13 amino acid substitutions in FKS1 and FKS2, including a novel substitution V1342I in FKS1 hotspot 2. We also evaluated the susceptibility of T-2307, a novel class of antifungal agents used in clinical trials, against the fluconazole- and micafungin-resistant C. glabrata strain; the MICs of T-2307 were 0.0039 and 0.0078 μg/mL, respectively. In conclusion, the incidence of bloodstream infection caused by drug-resistant Candida spp. was rare from 2008 to 2013 at our hospital. Of 133 isolates, only two strains of C. glabrata were resistant to azoles or echinocandins, that upregulated the ABC transporter genes or had novel FKS mutations, respectively.
Collapse
Affiliation(s)
- Toru Sakagami
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan; Pharmaceutical & Healthcare Research Laboratories Research & Development Management Headquarters, FUJIFILM Corporation, 577 Ushijima, Kaisei-Machi, Ashigarakami-Gun, Kanagawa, 258-8577, Japan.
| | - Takaki Kawano
- Pharmaceutical & Healthcare Research Laboratories Research & Development Management Headquarters, FUJIFILM Corporation, 577 Ushijima, Kaisei-Machi, Ashigarakami-Gun, Kanagawa, 258-8577, Japan
| | - Kohei Yamashita
- Pharmaceutical & Healthcare Research Laboratories Research & Development Management Headquarters, FUJIFILM Corporation, 577 Ushijima, Kaisei-Machi, Ashigarakami-Gun, Kanagawa, 258-8577, Japan
| | - Eio Yamada
- Development Division, Toyama Chemical Co., Ltd., 3-2-5 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Noritomo Fujino
- Development Division, Toyama Chemical Co., Ltd., 3-2-5 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Makoto Kaeriyama
- Development Division, Toyama Chemical Co., Ltd., 3-2-5 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Yoshiko Fukuda
- Product Planning Division, Toyama Chemical Co., Ltd., 2-4-1 Shimookui, Toyama, 930-8508, Japan
| | - Nobuhiko Nomura
- Product Planning Division, Toyama Chemical Co., Ltd., 2-4-1 Shimookui, Toyama, 930-8508, Japan
| | - Junichi Mitsuyama
- Quality Assurance Division, Toyama Chemical Co., Ltd., 3-2-5 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Hiroyuki Suematsu
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Hiroki Watanabe
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Nobuhiro Asai
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yusuke Koizumi
- Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan; Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan; Department of Clinical Infectious Diseases, Aichi Medical University Hospital, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| |
Collapse
|
49
|
Santos-Gandelman J, Rodrigues ML, Machado Silva A. Future perspectives for cryptococcosis treatment. Expert Opin Ther Pat 2018; 28:625-634. [PMID: 30084284 DOI: 10.1080/13543776.2018.1503252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Cryptococcosis is one of the most devastating human fungal infections. Despite its impact, none of the standard antifungals were developed after 1990. New, improved, less toxic, affordable and widely available treatment is, therefore, imperative. AREAS COVERED This review offers an insight into technological developments for cryptococcosis disclosed in patent literature. From a broad search of patent documents claiming cryptococcosis treatment and having earliest priority between 1995 and 2015, we selected and summarized compounds/molecules (i) revealed in documents disclosing in vivo activity against Cryptococcus spp. or (ii) found in the pipeline of companies that appeared as assignees in our patent search. This information was complemented with data on compounds under development for this indication from the database Integrity (Clarivate Analytics). EXPERT OPINION This review demonstrates that drug development against cryptococcosis is discrete. However, it also shows that the existing development is not focused on a single class of molecules, but on different types of molecules with distinct fungal targets, reflecting the complexity of generating novel anti-cryptococcal tools. Given the intrinsic difficulties and high costs of drug development and the evident market failure in this field, we consider drug repurposing the most promising avenue for cryptococcosis treatment.
Collapse
Affiliation(s)
- Juliana Santos-Gandelman
- a Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças Negligenciadas (INCT-IDN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS) , Fundação Oswaldo Cruz (Fiocruz) , Rio de Janeiro/RJ , Brazil
| | - Márcio Lourenço Rodrigues
- b Instituto Carlos Chagas (ICC) , Fundação Oswaldo Cruz - Fiocruz. Rua Prof , Algacyr Munhoz Mader, Curitiba/PR , Brazil.,c Instituto de Microbiologia Paulo de Góes , Universidade Federal do Rio de Janeiro - UFRJ , Av. Carlos Chagas Filho, Rio de Janeiro/RJ , Brazil
| | - Alice Machado Silva
- a Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças Negligenciadas (INCT-IDN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS) , Fundação Oswaldo Cruz (Fiocruz) , Rio de Janeiro/RJ , Brazil.,d Instituto René Rachou , Fundação Oswaldo Cruz - Fiocruz Minas , Av. Augusto de Lima, Belo Horizonte , MG , Brazil
| |
Collapse
|
50
|
Martinez-Rossi NM, Bitencourt TA, Peres NTA, Lang EAS, Gomes EV, Quaresemin NR, Martins MP, Lopes L, Rossi A. Dermatophyte Resistance to Antifungal Drugs: Mechanisms and Prospectus. Front Microbiol 2018; 9:1108. [PMID: 29896175 PMCID: PMC5986900 DOI: 10.3389/fmicb.2018.01108] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/09/2018] [Indexed: 12/24/2022] Open
Abstract
Dermatophytes comprise pathogenic fungi that have a high affinity for the keratinized structures present in nails, skin, and hair, causing superficial infections known as dermatophytosis. A reasonable number of antifungal drugs currently exist on the pharmaceutical market to control mycoses; however, their cellular targets are restricted, and fungi may exhibit tolerance or resistance to these agents. For example, the stress caused by antifungal and cytotoxic drugs in sub-inhibitory concentrations promotes compensatory stress responses, with the over-expression of genes involved in cellular detoxification, drug efflux, and signaling pathways being among the various mechanisms that may contribute to drug tolerance. In addition, the ATP-binding cassette transporters in dermatophytes that are responsible for cellular efflux can act synergistically, allowing one to compensate for the absence of the other, revealing the complexity of drug tolerance phenomena. Moreover, mutations in genes coding for target enzymes could lead to substitutions in amino acids involved in the binding of antifungal agents, hindering their performance and leading to treatment failure. The relevance of each one of these mechanisms of resistance to fungal survival is hard to define, mainly because they can act simultaneously in the cell. However, an understanding of the molecular mechanisms involved in the resistance/tolerance processes, the identification of new antifungal targets, as well as the prospective of new antifungal compounds among natural or synthetic products, are expected to bring advances and new insights that facilitate the improvement or development of novel strategies for antifungal therapy.
Collapse
Affiliation(s)
- Nilce M Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Tamires A Bitencourt
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nalu T A Peres
- Department of Morphology, Federal University of Sergipe, Aracaju, Brazil
| | - Elza A S Lang
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Eriston V Gomes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Natalia R Quaresemin
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maíra P Martins
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lucia Lopes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|