1
|
Zohaib Ali M, Dutt TS, MacNeill A, Walz A, Pearce C, Lam H, Philp JS, Patterson J, Henao-Tamayo M, Lee R, Liu J, Robertson GT, Hickey AJ, Meibohm B, Gonzalez Juarrero M. A modified BPaL regimen for tuberculosis treatment replaces linezolid with inhaled spectinamides. eLife 2024; 13:RP96190. [PMID: 39378165 PMCID: PMC11460978 DOI: 10.7554/elife.96190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
The Nix-TB clinical trial evaluated a new 6 month regimen containing three oral drugs; bedaquiline (B), pretomanid (Pa), and linezolid (L) (BPaL regimen) for the treatment of tuberculosis (TB). This regimen achieved remarkable results as almost 90% of the multidrug-resistant or extensively drug-resistant TB participants were cured but many patients also developed severe adverse events (AEs). The AEs were associated with the long-term administration of the protein synthesis inhibitor linezolid. Spectinamide 1599 is also a protein synthesis inhibitor of Mycobacterium tuberculosis with an excellent safety profile, but it lacks oral bioavailability. Here, we propose to replace L in the BPaL regimen with spectinamide (S) administered via inhalation and we demonstrate that inhaled spectinamide 1599, combined with BPa --BPaS regimen--has similar efficacy to that of the BPaL regimen while simultaneously avoiding the L-associated AEs. The BPaL and BPaS regimens were compared in the BALB/c and C3HeB/FeJ murine chronic TB efficacy models. After 4-weeks of treatment, both regimens promoted equivalent bactericidal effects in both TB murine models. However, treatment with BPaL resulted in significant weight loss and the complete blood count suggested the development of anemia. These effects were not similarly observed in mice treated with BPaS. BPaL and BPa, but not the BPaS treatment, also decreased myeloid to erythroid ratio suggesting the S in the BPaS regimen was able to recover this effect. Moreover, the BPaL also increased concentration of proinflammatory cytokines in bone marrow compared to mice receiving BPaS regimen. These combined data suggest that inhaled spectinamide 1599 combined with BPa is an effective TB regimen without L-associated AEs.
Collapse
Affiliation(s)
- Malik Zohaib Ali
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
- Program in Cell & Molecular Biology, Colorado State UniversityFort CollinsUnited States
| | - Taru S Dutt
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Amy MacNeill
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Amanda Walz
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Camron Pearce
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
- Program in Cell & Molecular Biology, Colorado State UniversityFort CollinsUnited States
| | - Ha Lam
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Jamie S Philp
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Johnathan Patterson
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Marcela Henao-Tamayo
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Richard Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research HospitalMemphisUnited States
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research HospitalMemphisUnited States
| | - Gregory T Robertson
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Anthony J Hickey
- Technology Advancement and Commercialization, RTI InternationalResearch Triangle ParkUnited States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, University of Tennessee Health Science CenterMemphisUnited States
| | - Mercedes Gonzalez Juarrero
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| |
Collapse
|
2
|
Ali MZ, Dutt TS, MacNeill A, Walz A, Pearce C, Lam H, Philp J, Patterson J, Henao-Tamayo M, Lee RE, Liu J, Robertson GT, Hickey AJ, Meibohm B, Gonzalez-Juarrero M. A Modified BPaL Regimen for Tuberculosis Treatment replaces Linezolid with Inhaled Spectinamides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.16.567434. [PMID: 38014249 PMCID: PMC10680823 DOI: 10.1101/2023.11.16.567434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The Nix-TB clinical trial evaluated a new 6-month regimen containing three-oral- drugs; bedaquiline (B), pretomanid (Pa) and linezolid (L) (BPaL regimen) for treatment of tuberculosis (TB). This regimen achieved remarkable results as almost 90% of the multidrug resistant (MDR) or extensively drug resistant (XDR) TB participants were cured but many patients also developed severe adverse events (AEs). The AEs were associated with the long-term administration of the protein synthesis inhibitor linezolid. Spectinamide 1599 is also a protein synthesis inhibitor of Mycobacterium tuberculosis with an excellent safety profile but which lacks oral bioavailability. Here, we propose to replace L in the BPaL regimen with spectinamide (S) administered via inhalation and we demonstrate that inhaled spectinamide 1599, combined with BPa --BPaS regimen--has similar efficacy to that of BPaL regimen while simultaneously avoiding the L-associated AEs. The BPaL and BPaS regimens were compared in the BALB/c and C3HeB/FeJ murine chronic TB efficacy models. After 4-weeks of treatment, both regimens promoted equivalent bactericidal effect in both TB murine models. However, treatment with BPaL resulted in significant weight loss and the complete blood count suggested development of anemia. These effects were not similarly observed in mice treated with BPaS. BPaL and BPa, but no the BPaS treatment, also decreased myeloid to erythroid ratio suggesting the S in the BPaS regimen was able to recover this effect. Moreover, the BPaL also increased concentration of proinflammatory cytokines in bone marrow compared to mice receiving BPaS regimen. During therapy both regimens improved the lung lesion burden, reduced neutrophil and cytotoxic T cells counts while increased the number of B and helper and regulatory T cells. These combined data suggest that inhaled spectinamide 1599 combined with BPa is an effective TB regimen that avoids L-associated AEs. IMPORTANCE Tuberculosis (TB) is an airborne infectious disease that spreads via aerosols containing Mycobacterium tuberculosis (Mtb), the causative agent of TB. TB can be cured by administration of 3-4 drugs for 6-9 months but there are limited treatment options for patients infected with multidrug (MDR) and extensively resistant (XDR) strains of Mtb. BPaL is a new all-oral combination of drugs consisting of Bedaquiline (B), Pretomanid (Pa) and Linezolid (L). This regimen was able to cure ∼90% of MDR and XDR TB patients in clinical trials but many patients developed severe adverse events (AEs) associated to the long-term administration of linezolid. We evaluated a new regimen in which Linezolid in the BPaL regimen was replaced with inhaled spectinamide 1599. In the current study, we demonstrate that 4-weeks of treatment with inhaled spectinamide 1599 in combination with Bedaquiline and Pretomanid has equivalent efficacy to the BPaL drug combination and avoids the L-associated-AEs.
Collapse
|
3
|
Singh V. Tuberculosis treatment-shortening. Drug Discov Today 2024; 29:103955. [PMID: 38548262 DOI: 10.1016/j.drudis.2024.103955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
Tuberculosis (TB) presents a significant global health concern, with ∼10 million people developing TB and 1.3 million people dying from the disease each year. The standard treatment regimen for drug-susceptible TB was between 6 and 9 months until recently, presenting a prolonged therapeutic duration compared with other infectious diseases. This is a long time for patients to adhere to the medication, consequently increasing the risk of developing drug-resistant Mycobacterium tuberculosis - a significant challenge in TB management globally. Therefore, the primary objective of contemporary TB drug development research is to shorten the treatment duration. This review comprehensively explores the strategies aimed at shortening TB treatment.
Collapse
Affiliation(s)
- Vinayak Singh
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa; Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Observatory 7925, South Africa.
| |
Collapse
|
4
|
Salillas S, Raaijmakers J, Aarnoutse RE, Svensson EM, Asouit K, van den Hombergh E, te Brake L, Stemkens R, Wertheim HFL, Hoefsloot W, van Ingen J. Clofazimine as a substitute for rifampicin improves efficacy of Mycobacterium avium pulmonary disease treatment in the hollow-fiber model. Antimicrob Agents Chemother 2024; 68:e0115723. [PMID: 38259101 PMCID: PMC10916390 DOI: 10.1128/aac.01157-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Mycobacterium avium complex pulmonary disease is treated with an azithromycin, ethambutol, and rifampicin regimen, with limited efficacy. The role of rifampicin is controversial due to inactivity, adverse effects, and drug interactions. Here, we evaluated the efficacy of clofazimine as a substitute for rifampicin in an intracellular hollow-fiber infection model. THP-1 cells, which are monocytes isolated from peripheral blood from an acute monocytic leukemia patient, were infected with M. avium ATCC 700898 and exposed to a regimen of azithromycin and ethambutol with either rifampicin or clofazimine. Intrapulmonary pharmacokinetic profiles of azithromycin, ethambutol, and rifampicin were simulated. For clofazimine, a steady-state average concentration was targeted. Drug concentrations and bacterial densities were monitored over 21 days. Exposures to azithromycin and ethambutol were 20%-40% lower than targeted but within clinically observed ranges. Clofazimine exposures were 1.7 times higher than targeted. Until day 7, both regimens were able to maintain stasis. Thereafter, regrowth was observed for the rifampicin-containing regimen, while the clofazimine-containing regimen yielded a 2 Log10 colony forming unit (CFU) per mL decrease in bacterial load. The clofazimine regimen also successfully suppressed the emergence of macrolide tolerance. In summary, substitution of rifampicin with clofazimine in the hollow-fiber model improved the antimycobacterial activity of the regimen. Clofazimine-containing regimens merit investigation in clinical trials.
Collapse
Affiliation(s)
- Sandra Salillas
- Department of Microbiology, Pediatrics, Radiology and Public Health, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
- Radboudumc Community for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jelmer Raaijmakers
- Radboudumc Community for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rob E. Aarnoutse
- Radboudumc Community for Infectious Diseases, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elin M. Svensson
- Radboudumc Community for Infectious Diseases, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Khalid Asouit
- Radboudumc Community for Infectious Diseases, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erik van den Hombergh
- Radboudumc Community for Infectious Diseases, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lindsey te Brake
- Radboudumc Community for Infectious Diseases, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ralf Stemkens
- Radboudumc Community for Infectious Diseases, Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heiman F. L. Wertheim
- Radboudumc Community for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wouter Hoefsloot
- Radboudumc Community for Infectious Diseases, Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jakko van Ingen
- Radboudumc Community for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
5
|
Ramey ME, Kaya F, Bauman AA, Massoudi LM, Sarathy JP, Zimmerman MD, Scott DWL, Job AM, Miller-Dawson JA, Podell BK, Lyons MA, Dartois V, Lenaerts AJ, Robertson GT. Drug distribution and efficacy of the DprE1 inhibitor BTZ-043 in the C3HeB/FeJ mouse tuberculosis model. Antimicrob Agents Chemother 2023; 67:e0059723. [PMID: 37791784 PMCID: PMC10648937 DOI: 10.1128/aac.00597-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/04/2023] [Indexed: 10/05/2023] Open
Abstract
BTZ-043, a suicide inhibitor of the Mycobacterium tuberculosis cell wall synthesis decaprenylphosphoryl-beta-D-ribose 2' epimerase, is under clinical development as a potential new anti-tuberculosis agent. BTZ-043 is potent and bactericidal in vitro but has limited activity against non-growing bacilli in rabbit caseum. To better understand its behavior in vivo, BTZ-043 was evaluated for efficacy and spatial drug distribution as a single agent in the C3HeB/FeJ mouse model presenting with caseous necrotic pulmonary lesions upon Mycobacterium tuberculosis infection. BTZ-043 promoted significant reductions in lung and spleen bacterial burdens in the C3HeB/FeJ mouse model after 2 months of therapy. BTZ-043 penetrates cellular and necrotic lesions and was retained at levels above the serum-shifted minimal inhibitory concentration in caseum. The calculated rate of kill was found to be highest and dose-dependent during the second month of treatment. BTZ-043 treatment was associated with improved histology scores of pulmonary lesions, especially compared to control mice, which experienced advanced fulminant neutrophilic alveolitis in the absence of treatment. These positive treatment responses to BTZ-043 monotherapy in a mouse model of advanced pulmonary disease can be attributed to favorable distribution in tissues and lesions, retention in the caseum, and its high potency and bactericidal nature at drug concentrations achieved in necrotic lesions.
Collapse
Affiliation(s)
- Michelle E. Ramey
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Firat Kaya
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Allison A. Bauman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Lisa M. Massoudi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Jansy P. Sarathy
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Matthew D. Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Dashick W. L. Scott
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Alyx M. Job
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Jake A. Miller-Dawson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Brendan K. Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Michael A. Lyons
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Anne J. Lenaerts
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory T. Robertson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
6
|
Hunter L, Ruedas-Torres I, Agulló-Ros I, Rayner E, Salguero FJ. Comparative pathology of experimental pulmonary tuberculosis in animal models. Front Vet Sci 2023; 10:1264833. [PMID: 37901102 PMCID: PMC10602689 DOI: 10.3389/fvets.2023.1264833] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Research in human tuberculosis (TB) is limited by the availability of human tissues from patients, which is often altered by therapy and treatment. Thus, the use of animal models is a key tool in increasing our understanding of the pathogenesis, disease progression and preclinical evaluation of new therapies and vaccines. The granuloma is the hallmark lesion of pulmonary tuberculosis, regardless of the species or animal model used. Although animal models may not fully replicate all the histopathological characteristics observed in natural, human TB disease, each one brings its own attributes which enable researchers to answer specific questions regarding TB immunopathogenesis. This review delves into the pulmonary pathology induced by Mycobacterium tuberculosis complex (MTBC) bacteria in different animal models (non-human primates, rodents, guinea pigs, rabbits, cattle, goats, and others) and compares how they relate to the pulmonary disease described in humans. Although the described models have demonstrated some histopathological features in common with human pulmonary TB, these data should be considered carefully in the context of this disease. Further research is necessary to establish the most appropriate model for the study of TB, and to carry out a standard characterisation and score of pulmonary lesions.
Collapse
Affiliation(s)
- Laura Hunter
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Inés Ruedas-Torres
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus, Córdoba, Spain
| | - Irene Agulló-Ros
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
- Department of Anatomy and Comparative Pathology and Toxicology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, International Excellence Agrifood Campus, Córdoba, Spain
| | - Emma Rayner
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Francisco J. Salguero
- Pathology Department, UK Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| |
Collapse
|
7
|
Efficacy of Replacing Linezolid with OTB-658 in Anti-Tuberculosis Regimens in Murine Models. Antimicrob Agents Chemother 2023; 67:e0139922. [PMID: 36622240 PMCID: PMC9933650 DOI: 10.1128/aac.01399-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Linezolid (LZD) was the first oxazolidinone approved for treating drug-resistant tuberculosis. A newly approved regimen combining LZD with bedaquiline (BDQ) and pretomanid (PMD) (BPaL regimen) is the first 6-month oral regimen that is effective against multidrug- and extensively drug-resistant tuberculosis. However, LZD toxicity, primarily due to mitochondrial protein synthesis inhibition, may undermine the efficacy of LZD regimens, and oxazolidinones with higher efficacy and lower toxicity during prolonged administration are needed. OTB-658 is an oxazolidinone anti-TB candidate derived from LZD that could replace LZD in TB treatment. We previously found that OTB-658 had better anti-TB activity and safety than LZD in vitro and in vivo. In the present work, two murine TB models were used to evaluate replacing LZD with OTB-658 in LZD-containing regimens. In the C3HeB/FeJ murine model, replacing 100 mg/kg LZD with 50 mg/kg OTB-658 in the BDQ + PMD backbone significantly reduced lung and spleen CFU counts (P < 0.05), and there were few relapses at 8 weeks of treatment. Replacing 100 mg/kg LZD with 50 or 100 mg/kg OTB-658 in the pyrifazimine (previously called TBI-166) + BDQ backbone did not change the anti-TB efficacy and relapse rate. In BALB/c mice, replacing 100 mg/kg LZD with 100 mg/kg OTB-658 in the TBI-166 + BDQ backbone resulted in no culture-positive lungs at 4 and 8 weeks of treatment, and there were no significant differences in relapses rate between the groups. In conclusion, OTB-658 is a promising clinical candidate that could replace LZD in the BPaL or TBI-166 + BDQ + LZD regimens and should be studied further in clinical trials.
Collapse
|
8
|
Stadler JAM, Maartens G, Meintjes G, Wasserman S. Clofazimine for the treatment of tuberculosis. Front Pharmacol 2023; 14:1100488. [PMID: 36817137 PMCID: PMC9932205 DOI: 10.3389/fphar.2023.1100488] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Shorter (6-9 months), fully oral regimens containing new and repurposed drugs are now the first-choice option for the treatment of drug-resistant tuberculosis (DR-TB). Clofazimine, long used in the treatment of leprosy, is one such repurposed drug that has become a cornerstone of DR-TB treatment and ongoing trials are exploring novel, shorter clofazimine-containing regimens for drug-resistant as well as drug-susceptible tuberculosis. Clofazimine's repurposing was informed by evidence of potent activity against DR-TB strains in vitro and in mice and a treatment-shortening effect in DR-TB patients as part of a multidrug regimen. Clofazimine entered clinical use in the 1950s without the rigorous safety and pharmacokinetic evaluation which is part of modern drug development and current dosing is not evidence-based. Recent studies have begun to characterize clofazimine's exposure-response relationship for safety and efficacy in populations with TB. Despite being better tolerated than some other second-line TB drugs, the extent and impact of adverse effects including skin discolouration and cardiotoxicity are not well understood and together with emergent resistance, may undermine clofazimine use in DR-TB programmes. Furthermore, clofazimine's precise mechanism of action is not well established, as is the genetic basis of clofazimine resistance. In this narrative review, we present an overview of the evidence base underpinning the use and limitations of clofazimine as an antituberculosis drug and discuss advances in the understanding of clofazimine pharmacokinetics, toxicity, and resistance. The unusual pharmacokinetic properties of clofazimine and how these relate to its putative mechanism of action, antituberculosis activity, dosing considerations and adverse effects are highlighted. Finally, we discuss the development of novel riminophenazine analogues as antituberculosis drugs.
Collapse
Affiliation(s)
- Jacob A. M. Stadler
- Department of Medicine, University of Cape Town, Cape Town, South Africa,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,*Correspondence: Jacob A. M. Stadler,
| | - Gary Maartens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Graeme Meintjes
- Department of Medicine, University of Cape Town, Cape Town, South Africa,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Greenstein T, Aldridge BB. Tools to develop antibiotic combinations that target drug tolerance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2023; 12:1085946. [PMID: 36733851 PMCID: PMC9888313 DOI: 10.3389/fcimb.2022.1085946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/08/2023] Open
Abstract
Combination therapy is necessary to treat tuberculosis to decrease the rate of disease relapse and prevent the acquisition of drug resistance, and shorter regimens are urgently needed. The adaptation of Mycobacterium tuberculosis to various lesion microenvironments in infection induces various states of slow replication and non-replication and subsequent antibiotic tolerance. This non-heritable tolerance to treatment necessitates lengthy combination therapy. Therefore, it is critical to develop combination therapies that specifically target the different types of drug-tolerant cells in infection. As new tools to study drug combinations earlier in the drug development pipeline are being actively developed, we must consider how to best model the drug-tolerant cells to use these tools to design the best antibiotic combinations that target those cells and shorten tuberculosis therapy. In this review, we discuss the factors underlying types of drug tolerance, how combination therapy targets these populations of bacteria, and how drug tolerance is currently modeled for the development of tuberculosis multidrug therapy. We highlight areas for future studies to develop new tools that better model drug tolerance in tuberculosis infection specifically for combination therapy testing to bring the best drug regimens forward to the clinic.
Collapse
Affiliation(s)
- Talia Greenstein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA, United States
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, United States
| |
Collapse
|
10
|
Yao G, Zhu M, Nie Q, Chen N, Tu S, Zhou Y, Xiao F, Liu Y, Li X, Chen H. Improved outcomes following addition of bedaquiline and clofazimine to a treatment regimen for multidrug-resistant tuberculosis. J Int Med Res 2023; 51:3000605221148416. [PMID: 36719280 PMCID: PMC9893081 DOI: 10.1177/03000605221148416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/12/2022] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE To investigate if the addition of bedaquiline and clofazimine to a treatment regimen for multidrug-resistant tuberculosis (MDR-TB) could improve patient outcomes. METHODS A prospective, randomized, controlled study was conducted in patients with MDR-TB. Treatment was for 18 months. Patients in the experimental group received bedaquiline and clofazimine in addition to their regular treatment regimen whereas patients in the control group did not. RESULTS 68 patients with MDR-TB were randomised to treatment, 34 to each group. At the end of treatment, cure rates were statistically significantly greater for the experimental group compared with the control group (82% vs. 56%). There was no difference between groups in the number of severe adverse events (3[9%]) in both groups and none were skin-related. CONCLUSIONS The addition of bedaquiline and clofazimine to the treatment regimen significantly improves outcomes for patients with MDR-TB. Clinicians should be aware of the clinical benefits of this addition but be mindful of contraindications and adverse effects.
Collapse
Affiliation(s)
| | | | | | - Nanshan Chen
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Centre for Infectious Diseases; Wuhan Research Centre for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China
| | - Shengjin Tu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Centre for Infectious Diseases; Wuhan Research Centre for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China
| | - Yong Zhou
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Centre for Infectious Diseases; Wuhan Research Centre for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China
| | - Fan Xiao
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Centre for Infectious Diseases; Wuhan Research Centre for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China
| | - Yuan Liu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Centre for Infectious Diseases; Wuhan Research Centre for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China
| | - Xi Li
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Centre for Infectious Diseases; Wuhan Research Centre for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China
| | - Hua Chen
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Centre for Infectious Diseases; Wuhan Research Centre for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China
| |
Collapse
|
11
|
Mycobacterium tuberculosis Dormancy: How to Fight a Hidden Danger. Microorganisms 2022; 10:microorganisms10122334. [PMID: 36557586 PMCID: PMC9784227 DOI: 10.3390/microorganisms10122334] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Both latent and active TB infections are caused by a heterogeneous population of mycobacteria, which includes actively replicating and dormant bacilli in different proportions. Dormancy substantially affects M. tuberculosis drug tolerance and TB clinical management due to a significant decrease in the metabolic activity of bacilli, which leads to the complexity of both the diagnosis and the eradication of bacilli. Most diagnostic approaches to latent infection deal with a subpopulation of active M. tuberculosis, underestimating the contribution of dormant bacilli and leading to limited success in the fight against latent TB. Moreover, active TB appears not only as a primary form of infection but can also develop from latent TB, when resuscitation from dormancy is followed by bacterial multiplication, leading to disease progression. To win against latent infection, the identification of the Achilles' heel of dormant M. tuberculosis is urgently needed. Regulatory mechanisms and metabolic adaptation to growth arrest should be studied using in vitro and in vivo models that adequately imitate latent TB infection in macroorganisms. Understanding the mechanisms underlying M. tuberculosis dormancy and resuscitation may provide clues to help control latent infection, reduce disease severity in patients, and prevent pathogen transmission in the population.
Collapse
|
12
|
Brunaugh AD, Walz A, Warnken Z, Pearce C, Munoz Gutierrez J, Koleng JJ, Smyth HDC, Gonzalez-Juarrero M. Respirable Clofazimine Particles Produced by Air Jet Milling Technique Are Efficacious in Treatment of BALB/c Mice with Chronic Mycobacterium tuberculosis Infection. Antimicrob Agents Chemother 2022; 66:e0018622. [PMID: 35943265 PMCID: PMC9487480 DOI: 10.1128/aac.00186-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/17/2022] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis (TB) remains a major cause of morbidity and mortality, particularly in low- and middle-income countries where access to health care workers, cold-chain storage, and sterile water sources may be limited. Inhaled drug delivery is a promising alternative to systemic delivery of antimycobacterial drugs, as it enables rapid achievement of high infection-site drug concentrations. The off-patent drug clofazimine (CFZ) may be particularly suitable for this route, given its known systemic toxicities. In this study, micronized CFZ particles produced by air jet milling were assessed for shelf-stability, pharmacokinetics, and anti-TB efficacy by the oral and pulmonary routes in BALB/c mice. Intratracheal instillation of micronized CFZ particles produced several-fold higher lung concentrations after a single 30 mg/kg dose compared to delivery via oral gavage, and faster onset of bactericidal activity was observed in lungs of mice with chronic Mycobacterium tuberculosis infection compared to the oral route. Both infection status and administration route affected the multidose pharmacokinetics (PK) of micronized CFZ. Increased lung and spleen accumulation of the drug after pulmonary administration was noted in infected mice compared to naive mice, while the opposite trend was noted in the oral dosing groups. The infection-dependent PK of inhaled micronized CFZ may point to a role of macrophage trafficking in drug distribution, given the intracellular-targeting nature of the formulation. Lastly, air jet milled CFZ exhibited robustness to storage-induced chemical degradation and changes in aerosol performance, thereby indicating the suitability of the formulation for treatment of TB in regions with limited cold chain supply.
Collapse
Affiliation(s)
- Ashlee D. Brunaugh
- Via Therapeutics, LLC, Austin, Texas, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Amanda Walz
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Camron Pearce
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Juan Munoz Gutierrez
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Hugh D. C. Smyth
- Via Therapeutics, LLC, Austin, Texas, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas, Austin, Texas, USA
| | - Mercedes Gonzalez-Juarrero
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
13
|
Chung ES, Johnson WC, Aldridge BB. Types and functions of heterogeneity in mycobacteria. Nat Rev Microbiol 2022; 20:529-541. [PMID: 35365812 DOI: 10.1038/s41579-022-00721-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/24/2022]
Abstract
The remarkable ability of Mycobacterium tuberculosis to survive attacks from the host immune response and drug treatment is due to the resilience of a few bacilli rather than a result of survival of the entire population. Maintenance of mycobacterial subpopulations with distinct phenotypic characteristics is key for survival in the face of dynamic and variable stressors encountered during infection. Mycobacterial populations develop a wide range of phenotypes through an innate asymmetric growth pattern and adaptation to fluctuating microenvironments during infection that point to heterogeneity being a vital survival strategy. In this Review, we describe different types of mycobacterial heterogeneity and discuss how heterogeneity is generated and regulated in response to environmental cues. We discuss how this heterogeneity may have a key role in recording memory of their environment at both the single-cell level and the population level to give mycobacterial populations plasticity to withstand complex stressors.
Collapse
Affiliation(s)
- Eun Seon Chung
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - William C Johnson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Tufts University School of Graduate Biomedical Sciences, Boston, MA, USA
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA. .,Tufts University School of Graduate Biomedical Sciences, Boston, MA, USA. .,Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA, USA. .,Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, USA.
| |
Collapse
|
14
|
Kokesch-Himmelreich J, Treu A, Race AM, Walter K, Hölscher C, Römpp A. Do Anti-tuberculosis Drugs Reach Their Target?─High-Resolution Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Provides Information on Drug Penetration into Necrotic Granulomas. Anal Chem 2022; 94:5483-5492. [PMID: 35344339 DOI: 10.1021/acs.analchem.1c03462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB) is characterized by mycobacteria-harboring centrally necrotizing granulomas. The efficacy of anti-TB drugs depends on their ability to reach the bacteria in the center of these lesions. Therefore, we developed a mass spectrometry (MS) imaging workflow to evaluate drug penetration in tissue. We employed a specific mouse model that─in contrast to regular inbred mice─strongly resembles human TB pathology. Mycobacterium tuberculosis was inactivated in lung sections of these mice by γ-irradiation using a protocol that was optimized to be compatible with high spatial resolution MS imaging. Different distributions in necrotic granulomas could be observed for the anti-TB drugs clofazimine, pyrazinamide, and rifampicin at a pixel size of 30 μm. Clofazimine, imaged here for the first time in necrotic granulomas of mice, showed higher intensities in the surrounding tissue than in necrotic granulomas, confirming data observed in TB patients. Using high spatial resolution drug and lipid imaging (5 μm pixel size) in combination with a newly developed data analysis tool, we found that clofazimine does penetrate to some extent into necrotic granulomas and accumulates in the macrophages inside the granulomas. These results demonstrate that our imaging platform improves the predictive power of preclinical animal models. Our workflow is currently being applied in preclinical studies for novel anti-TB drugs within the German Center for Infection Research (DZIF). It can also be extended to other applications in drug development and beyond. In particular, our data analysis approach can be used to investigate diffusion processes by MS imaging in general.
Collapse
Affiliation(s)
- Julia Kokesch-Himmelreich
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth 95447, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| | - Axel Treu
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth 95447, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| | - Alan M Race
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth 95447, Germany
| | - Kerstin Walter
- Infection Immunology, Leibniz Lung Center, Research Center Borstel, Borstel 23845, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| | - Christoph Hölscher
- Infection Immunology, Leibniz Lung Center, Research Center Borstel, Borstel 23845, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| | - Andreas Römpp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth 95447, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| |
Collapse
|
15
|
Characterization of Clofazimine as a Potential Substrate of Drug Transporter. Antimicrob Agents Chemother 2022; 66:e0215821. [PMID: 35254089 DOI: 10.1128/aac.02158-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we explored clofazimine (CFZ) as a potential substrate of uptake and efflux transporters that might be involved in CFZ disposition, using transporter gene overexpressing cell lines in vitro. The intracellular concentrations of CFZ were significantly increased in the presence of selective inhibitors of P-gp and BCRP, which include verapamil, cyclosporine-A, PSC-833, quinidine, Ko143, and daunorubicin. In a bidirectional transport assay using transwell cultures of cell lines overexpressing P-gp and BCRP, the mean efflux ratios of CFZ were found to be 4.17 ± 0.63 and 3.37 ± 1.2, respectively. The Km and maximum rate of uptake (Vmax) were estimated to be 223.3 ± 14.73 μM and 548.8 ± 87.15 pmol/min/mg protein for P-gp and 381.9 ± 25.07 μM and 5.8 ± 1.22 pmol/min/mg protein for BCRP, respectively. Among the uptake transporters screened, the CFZ uptake rate was increased 1.93 and 3.09-fold in HEK293 cell lines overexpressing OAT1 and OAT3, respectively, compared to the control cell lines, but no significant uptake was observed in cell lines overexpressing OCT1, OCT2, OATP1B1, OATP1B3, OATP2B1, or NTCP. Both OAT1- and OAT3-mediated uptake was inhibited by the selective inhibitors diclofenac, probenecid, and butanesulfonic acid. The Km and Vmax values of CFZ were estimated to be 0.63 ± 0.15 μM and 8.23 ± 1.03 pmol/min/mg protein, respectively, for OAT1 and 0.47 ± 0.1 μM and 17.81 ± 2.19 pmol/min/mg protein, respectively, for OAT3. These findings suggest that CFZ is a novel substrate of BCRP, OAT1, and OAT3 and a known substrate of P-gp in vitro.
Collapse
|
16
|
Cronan MR. In the Thick of It: Formation of the Tuberculous Granuloma and Its Effects on Host and Therapeutic Responses. Front Immunol 2022; 13:820134. [PMID: 35320930 PMCID: PMC8934850 DOI: 10.3389/fimmu.2022.820134] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
The defining pathology of tuberculosis is the granuloma, an organized structure derived from host immune cells that surrounds infecting Mycobacterium tuberculosis. As the location of much of the bacteria in the infected host, the granuloma is a central point of interaction between the host and the infecting bacterium. This review describes the signals and cellular reprogramming that drive granuloma formation. Further, as a central point of host-bacterial interactions, the granuloma shapes disease outcome by altering host immune responses and bacterial susceptibility to antibiotic treatment, as discussed herein. This new understanding of granuloma biology and the signaling behind it highlights the potential for host-directed therapies targeting the granuloma to enhance antibiotic access and tuberculosis-specific immune responses.
Collapse
Affiliation(s)
- Mark R. Cronan
-
In Vivo Cell Biology of Infection Group, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
17
|
Lavin RC, Tan S. Spatial relationships of intra-lesion heterogeneity in Mycobacterium tuberculosis microenvironment, replication status, and drug efficacy. PLoS Pathog 2022; 18:e1010459. [PMID: 35344572 PMCID: PMC8989358 DOI: 10.1371/journal.ppat.1010459] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/07/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
A hallmark of Mycobacterium tuberculosis (Mtb) infection is the marked heterogeneity that exists, spanning lesion type differences to microenvironment changes as infection progresses. A mechanistic understanding of how this heterogeneity affects Mtb growth and treatment efficacy necessitates single bacterium level studies in the context of intact host tissue architecture; however, such an evaluation has been technically challenging. Here, we exploit fluorescent reporter Mtb strains and the C3HeB/FeJ murine model in an integrated imaging approach to study microenvironment heterogeneity within a single lesion in situ, and analyze how these differences relate to non-uniformity in Mtb replication state, activity, and drug efficacy. We show that the pH and chloride environments differ spatially even within a single caseous necrotic lesion, with increased acidity and chloride levels in the lesion cuff versus core. Strikingly, a higher percentage of Mtb in the lesion core versus cuff were in an actively replicating state, and correspondingly active in transcription/translation. Finally, examination of three first-line anti-tubercular drugs showed that isoniazid efficacy was conspicuously poor against Mtb in the lesion cuff. Our study reveals spatial relationships of intra-lesion heterogeneity, sheds light on important considerations in anti-tubercular treatment strategies, and establishes a foundational framework for Mtb infection heterogeneity analysis at the single bacterium level in situ.
Collapse
Affiliation(s)
- Richard C. Lavin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
18
|
Hirota K, Hirai Y, Nakajima T, Goto S, Makino K, Terada H. Uniformity and Efficacy of Dry Powders Delivered to the Lungs of a Mycobacterial-Surrogate Rat Model of Tuberculosis. Pharm Res 2021; 39:143-152. [PMID: 34950976 PMCID: PMC8837551 DOI: 10.1007/s11095-021-03146-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022]
Abstract
Purpose Pulmonary administration of dry drug powder is a considered promising strategy in the treatment of various lung diseases such as tuberculosis and is more effective than systemic medication. However, in the pre-clinical study phase, there is a lack of devices for effective delivery of dry powders to the lungs of small rodents. In this study, an administration device which utilizes Venturi effect to deliver dry powders to the lungs homogeneously was developed. Methods A Venturi-effect administration device which synchronizes with breathes by use of a ventilator and aerosolizes the dry powders was created. Pulmonary distribution of inhalable dry powders prepared by spray-drying poly(lactic-co-glycolic) acid and an antituberculosis agent rifampicin and anti-tuberculosis effect of the powders on mycobacteria infected rats by administration with the Venturi-effect administration device and a conventional insufflation device were evaluated. Results Homogeneous distribution of the dry powders in the lung was achieved by the Venturi-effect administration device due to efficient and recurring aerosolization of loaded dry powders while synchronizing with breathes. Amount of rifampicin delivered to the lungs by the Venturi-effect administration device was three times higher than that by a conventional insufflation device, demonstrating three times greater antimycobacterial activity. Conclusions The Venturi-effect administration device aerosolized inhalable antituberculosis dry powders efficiently, achieved uniform pulmonary distribution, and aided the dry powders to exert antituberculosis activity on lung-residing mycobacteria.
Collapse
Affiliation(s)
- Keiji Hirota
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan. .,Center for Drug Delivery Research, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan. .,Center for Physical Pharmaceutics, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan. .,Formulation Development Department, Chugai Pharmaceutical Co., Ltd., 5-5-1, Ukima, Kita-ku, Tokyo, 115-8543, Japan.
| | - Yutaka Hirai
- Center for Drug Delivery Research, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Takehisa Nakajima
- Center for Drug Delivery Research, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Satoru Goto
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Center for Drug Delivery Research, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Center for Physical Pharmaceutics, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hiroshi Terada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Center for Drug Delivery Research, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Center for Physical Pharmaceutics, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata, 956-8603, Japan
| |
Collapse
|
19
|
Interleukin-13 overexpressing mice represent an advanced pre-clinical model for detecting the distribution of anti-mycobacterial drugs within centrally necrotizing granulomas. Antimicrob Agents Chemother 2021; 66:e0158821. [PMID: 34871095 PMCID: PMC9211424 DOI: 10.1128/aac.01588-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Mycobacterium tuberculosis-harboring granuloma with a necrotic center surrounded by a fibrous capsule is the hallmark of tuberculosis (TB). For a successful treatment, antibiotics need to penetrate these complex structures to reach their bacterial targets. Hence, animal models reflecting the pulmonary pathology of TB patients are of particular importance to improve the preclinical validation of novel drug candidates. M. tuberculosis-infected interleukin-13-overexpressing (IL-13tg) mice develop a TB pathology very similar to patients and, in contrast to other mouse models, also share pathogenetic mechanisms. Accordingly, IL-13tg animals represent an ideal model for analyzing the penetration of novel anti-TB drugs into various compartments of necrotic granulomas by matrix-assisted laser desorption/ionization–mass spectrometry imaging (MALDI-MS imaging). In the present study, we evaluated the suitability of BALB/c IL-13tg mice for determining the antibiotic distribution within necrotizing lesions. To this end, we established a workflow based on the inactivation of M. tuberculosis by gamma irradiation while preserving lung tissue integrity and drug distribution, which is essential for correlating drug penetration with lesion pathology. MALDI-MS imaging analysis of clofazimine, pyrazinamide, and rifampicin revealed a drug-specific distribution within different lesion types, including cellular granulomas, developing in BALB/c wild-type mice, and necrotic granulomas in BALB/c IL-13tg animals, emphasizing the necessity of preclinical models reflecting human pathology. Most importantly, our study demonstrates that BALB/c IL-13tg mice recapitulate the penetration of antibiotics into human lesions. Therefore, our workflow in combination with the IL-13tg mouse model provides an improved and accelerated evaluation of novel anti-TB drugs and new regimens in the preclinical stage.
Collapse
|
20
|
Pharmacokinetics and pharmacodynamics of clofazimine for treatment of cryptosporidiosis. Antimicrob Agents Chemother 2021; 66:e0156021. [PMID: 34748385 PMCID: PMC8765308 DOI: 10.1128/aac.01560-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Infection with Cryptosporidium spp. can cause severe diarrhea, leading to long-term adverse impacts and even death in malnourished children and immunocompromised patients. The only FDA-approved drug for treating cryptosporidiosis, nitazoxanide, has limited efficacy in the populations impacted the most by the diarrheal disease, and safe, effective treatment options are urgently needed. Initially identified by a large-scale phenotypic screening campaign, the antimycobacterial therapeutic clofazimine demonstrated great promise in both in vitro and in vivo preclinical models of Cryptosporidium infection. Unfortunately, a phase 2a clinical trial in HIV-infected adults with cryptosporidiosis did not identify any clofazimine treatment effect on Cryptosporidium infection burden or clinical outcomes. To explore whether clofazimine’s lack of efficacy in the phase 2a trial may have been due to subtherapeutic clofazimine concentrations, a pharmacokinetic/pharmacodynamic modeling approach was undertaken to determine the relationship between clofazimine in vivo concentrations and treatment effects in multiple preclinical infection models. Exposure-response relationships were characterized using Emax and logistic models, which allowed predictions of efficacious clofazimine concentrations for the control and reduction of disease burden. After establishing exposure-response relationships for clofazimine treatment of Cryptosporidium infection in our preclinical model studies, it was unmistakable that the clofazimine levels observed in the phase 2a study participants were well below concentrations associated with anti-Cryptosporidium efficacy. Thus, despite a dosing regimen above the highest doses recommended for mycobacterial therapy, it is very likely the lack of treatment effect in the phase 2a trial was at least partially due to clofazimine concentrations below those required for efficacy against cryptosporidiosis. It is unlikely that clofazimine will provide a remedy for the large number of cryptosporidiosis patients currently without a viable treatment option unless alternative, safe clofazimine formulations with improved oral absorption are developed. (This study has been registered in ClinicalTrials.gov under identifier NCT03341767.)
Collapse
|
21
|
Comparative Analysis of Pharmacodynamics in the C3HeB/FeJ Mouse Tuberculosis Model for DprE1 inhibitors TBA-7371, PBTZ169 and OPC-167832. Antimicrob Agents Chemother 2021; 65:e0058321. [PMID: 34370580 PMCID: PMC8522729 DOI: 10.1128/aac.00583-21] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple drug discovery initiatives for tuberculosis are currently ongoing to identify and develop new potent drugs with novel targets in order to shorten treatment duration. One of the drug classes with a new mode of action are DprE1 inhibitors targeting an essential process in cell wall synthesis of Mycobacterium tuberculosis. In this investigation, three DprE1 inhibitors currently in clinical trials, TBA-7371, PBTZ169 and OPC-167832, were evaluated side-by-side as single agents in the C3HeB/FeJ mouse model presenting with caseous necrotic pulmonary lesions upon tuberculosis infection. The goal was to confirm the efficacy of the DprE1 inhibitors in a mouse tuberculosis model with advanced pulmonary pathology, and perform comprehensive analysis of plasma, lung and lesion-centric drug levels to establish pharmacokinetic-pharmacodynamic (PK-PD) parameters predicting efficacy at the site of infection. Results showed significant efficacy for all three DprE1 inhibitors in the C3HeB/FeJ mouse model after two months of treatment. Superior efficacy was observed for OPC-167832 even at low dose levels, which can be attributed to its low MIC, favorable distribution and sustained retention above the MIC throughout the dosing interval in caseous necrotic lesions where the majority of bacteria reside in C3HeB/FeJ mice. These results support further progression of the three drug candidates through clinical development for tuberculosis treatment.
Collapse
|
22
|
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is an infectious disease caused by Mycobacterium tuberculosis which is resistant to at least isoniazid and rifampicin. This disease is a worldwide threat and complicates the control of tuberculosis (TB). Long treatment duration, a combination of several drugs, and the adverse effects of these drugs are the factors that play a role in the poor outcomes of MDR-TB patients. There have been many studies with repurposed drugs to improve MDR-TB outcomes, including clofazimine. Clofazimine recently moved from group 5 to group B of drugs that are used to treat MDR-TB. This drug belongs to the riminophenazine class, which has lipophilic characteristics and was previously discovered to treat TB and approved for leprosy. This review discusses the role of clofazimine as a treatment component in patients with MDR-TB, and the drug’s properties. In addition, we discuss the efficacy, safety, and tolerability of clofazimine for treating MDR-TB. This study concludes that the clofazimine-containing regimen has better efficacy compared with the standard one and is also well-tolerated. Clofazimine has the potential to shorten the duration of MDR-TB treatment.
Collapse
|
23
|
Yang HJ, Wang D, Wen X, Weiner DM, Via LE. One Size Fits All? Not in In Vivo Modeling of Tuberculosis Chemotherapeutics. Front Cell Infect Microbiol 2021; 11:613149. [PMID: 33796474 PMCID: PMC8008060 DOI: 10.3389/fcimb.2021.613149] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) remains a global health problem despite almost universal efforts to provide patients with highly effective chemotherapy, in part, because many infected individuals are not diagnosed and treated, others do not complete treatment, and a small proportion harbor Mycobacterium tuberculosis (Mtb) strains that have become resistant to drugs in the standard regimen. Development and approval of new drugs for TB have accelerated in the last 10 years, but more drugs are needed due to both Mtb's development of resistance and the desire to shorten therapy to 4 months or less. The drug development process needs predictive animal models that recapitulate the complex pathology and bacterial burden distribution of human disease. The human host response to pulmonary infection with Mtb is granulomatous inflammation usually resulting in contained lesions and limited bacterial replication. In those who develop progressive or active disease, regions of necrosis and cavitation can develop leading to lasting lung damage and possible death. This review describes the major vertebrate animal models used in evaluating compound activity against Mtb and the disease presentation that develops. Each of the models, including the zebrafish, various mice, guinea pigs, rabbits, and non-human primates provides data on number of Mtb bacteria and pathology resolution. The models where individual lesions can be dissected from the tissue or sampled can also provide data on lesion-specific bacterial loads and lesion-specific drug concentrations. With the inclusion of medical imaging, a compound's effect on resolution of pathology within individual lesions and animals can also be determined over time. Incorporation of measurement of drug exposure and drug distribution within animals and their tissues is important for choosing the best compounds to push toward the clinic and to the development of better regimens. We review the practical aspects of each model and the advantages and limitations of each in order to promote choosing a rational combination of them for a compound's development.
Collapse
Affiliation(s)
- Hee-Jeong Yang
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Decheng Wang
- Medical College, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Xin Wen
- Medical College, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Danielle M Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, United States
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, United States.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
24
|
Chung I, Zhou K, Barrows C, Banyard J, Wilson A, Rummel N, Mizokami A, Basu S, Sengupta P, Shaikh B, Sengupta S, Bielenberg DR, Zetter BR. Unbiased Phenotype-Based Screen Identifies Therapeutic Agents Selective for Metastatic Prostate Cancer. Front Oncol 2021; 10:594141. [PMID: 33738243 PMCID: PMC7962607 DOI: 10.3389/fonc.2020.594141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/30/2020] [Indexed: 01/06/2023] Open
Abstract
In American men, prostate cancer is the second leading cause of cancer-related death. Dissemination of prostate cancer cells to distant organs significantly worsens patients' prognosis, and currently there are no effective treatment options that can cure advanced-stage prostate cancer. In an effort to identify compounds selective for metastatic prostate cancer cells over benign prostate cancer cells or normal prostate epithelial cells, we applied a phenotype-based in vitro drug screening method utilizing multiple prostate cancer cell lines to test 1,120 different compounds from a commercial drug library. Top drug candidates were then examined in multiple mouse xenograft models including subcutaneous tumor growth, experimental lung metastasis, and experimental bone metastasis assays. A subset of compounds including fenbendazole, fluspirilene, clofazimine, niclosamide, and suloctidil showed preferential cytotoxicity and apoptosis towards metastatic prostate cancer cells in vitro and in vivo. The bioavailability of the most discerning agents, especially fenbendazole and albendazole, was improved by formulating as micelles or nanoparticles. The enhanced forms of fenbendazole and albendazole significantly prolonged survival in mice bearing metastases, and albendazole-treated mice displayed significantly longer median survival times than paclitaxel-treated mice. Importantly, these drugs effectively targeted taxane-resistant tumors and bone metastases - two common clinical conditions in patients with aggressive prostate cancer. In summary, we find that metastatic prostate tumor cells differ from benign prostate tumor cells in their sensitivity to certain drug classes. Taken together, our results strongly suggest that albendazole, an anthelmintic medication, may represent a potential adjuvant or neoadjuvant to standard therapy in the treatment of disseminated prostate cancer.
Collapse
Affiliation(s)
- Ivy Chung
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Kun Zhou
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Courtney Barrows
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States
| | - Jacqueline Banyard
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Arianne Wilson
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States
| | - Nathan Rummel
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Washington, DC, United States
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Sudipta Basu
- Laboratory for Nanomedicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Poulomi Sengupta
- Laboratory for Nanomedicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Badaruddin Shaikh
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Washington, DC, United States
| | - Shiladitya Sengupta
- Laboratory for Nanomedicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Diane R. Bielenberg
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Bruce R. Zetter
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
Wang N, Dartois V, Carter CL. An optimized method for the detection and spatial distribution of aminoglycoside and vancomycin antibiotics in tissue sections by mass spectrometry imaging. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4708. [PMID: 33586279 PMCID: PMC8032321 DOI: 10.1002/jms.4708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 05/08/2023]
Abstract
Suboptimal antibiotic dosing has been identified as one of the key drivers in the development of multidrug-resistant (MDR) bacteria that have become a global health concern. Aminoglycosides and vancomycin are broad-spectrum antibiotics used to treat critically ill patients infected by a variety of MDR bacterial species. Resistance to these antibiotics is becoming more prevalent. In order to design proper antibiotic regimens that maximize efficacy and minimize the development of resistance, it is pivotal to obtain the in situ pharmacokinetic-pharmacodynamic profiles at the sites of infection. Mass spectrometry imaging (MSI) is the ideal technique to achieve this. Aminoglycosides, due to their structure, suffer from poor ionization efficiency. Additionally, ion suppression effects by endogenous molecules greatly inhibit the detection of aminoglycosides and vancomycin at therapeutic levels. In the current study, an optimized method was developed that enabled the detection of these antibiotics by MSI. Tissue spotting experiments demonstrated a 5-, 15-, 35-, and 54-fold increase in detection sensitivity in the washed samples for kanamycin, amikacin, streptomycin, and vancomycin, respectively. Tissue mimetic models were utilized to optimize the washing time and matrix additive concentration. These studies determined the improved limit of detection was 40 to 5 μg/g of tissue for vancomycin and streptomycin, and 40 to 10 μg/g of tissue for kanamycin and amikacin. The optimized protocol was applied to lung sections from mice dosed with therapeutic levels of kanamycin and vancomycin. The washing protocol enabled the first drug distribution investigations of aminoglycosides and vancomycin by MSI, paving the way for site-of-disease antibiotic penetration studies.
Collapse
Affiliation(s)
- Ning Wang
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack School of Medicine, Nutley, New Jersey, USA
| | - Claire L. Carter
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
26
|
Ernest JP, Strydom N, Wang Q, Zhang N, Nuermberger E, Dartois V, Savic RM. Development of New Tuberculosis Drugs: Translation to Regimen Composition for Drug-Sensitive and Multidrug-Resistant Tuberculosis. Annu Rev Pharmacol Toxicol 2021; 61:495-516. [PMID: 32806997 PMCID: PMC7790895 DOI: 10.1146/annurev-pharmtox-030920-011143] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) kills more people than any other infectious disease. Challenges for developing better treatments include the complex pathology due to within-host immune dynamics, interpatient variability in disease severity and drug pharmacokinetics-pharmacodynamics (PK-PD), and the growing emergence of resistance. Model-informed drug development using quantitative and translational pharmacology has become increasingly recognized as a method capable of drug prioritization and regimen optimization to efficiently progress compounds through TB drug development phases. In this review, we examine translational models and tools, including plasma PK scaling, site-of-disease lesion PK, host-immune and bacteria interplay, combination PK-PD models of multidrug regimens, resistance formation, and integration of data across nonclinical and clinical phases.We propose a workflow that integrates these tools with computational platforms to identify drug combinations that have the potential to accelerate sterilization, reduce relapse rates, and limit the emergence of resistance.
Collapse
Affiliation(s)
- Jacqueline P Ernest
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, USA;
| | - Natasha Strydom
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, USA;
| | - Qianwen Wang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, USA;
| | - Nan Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, USA;
| | - Eric Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersey 07110, USA
| | - Rada M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94158, USA;
| |
Collapse
|
27
|
Abdelwahab MT, Wasserman S, Brust JCM, Gandhi NR, Meintjes G, Everitt D, Diacon A, Dawson R, Wiesner L, Svensson EM, Maartens G, Denti P. Clofazimine pharmacokinetics in patients with TB: dosing implications. J Antimicrob Chemother 2020; 75:3269-3277. [PMID: 32747933 PMCID: PMC7566350 DOI: 10.1093/jac/dkaa310] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/21/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Clofazimine is in widespread use as a key component of drug-resistant TB regimens, but the recommended dose is not evidence based. Pharmacokinetic data from relevant patient populations are needed to inform dose optimization. OBJECTIVES To determine clofazimine exposure, evaluate covariate effects on variability, and simulate exposures for different dosing strategies in South African TB patients. PATIENTS AND METHODS Clinical and pharmacokinetic data were obtained from participants with pulmonary TB enrolled in two studies with intensive and sparse sampling for up to 6 months. Plasma concentrations were measured by LC-MS/MS and interpreted with non-linear mixed-effects modelling. Body size descriptors and other potential covariates were tested on pharmacokinetic parameters. We simulated different dosing regimens to safely shorten time to average daily concentration above a putative target concentration of 0.25 mg/L. RESULTS We analysed 1570 clofazimine concentrations from 139 participants; 79 (57%) had drug-resistant TB and 54 (39%) were HIV infected. Clofazimine pharmacokinetics were well characterized by a three-compartment model. Clearance was 11.5 L/h and peripheral volume 10 500 L for a typical participant. Lower plasma exposures were observed in women during the first few months of treatment, explained by higher body fat fraction. Model-based simulations estimated that a loading dose of 200 mg daily for 2 weeks would achieve average daily concentrations above a target efficacy concentration 37 days earlier in a typical TB participant. CONCLUSIONS Clofazimine was widely distributed with a long elimination half-life. Disposition was strongly influenced by body fat content, with potential dosing implications for women with TB.
Collapse
Affiliation(s)
- Mahmoud Tareq Abdelwahab
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Sean Wasserman
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - James C M Brust
- Divisions of General Internal Medicine and Infectious Diseases, Albert Einstein College of Medicine, New York, NY, USA
| | - Neel R Gandhi
- Departments of Epidemiology and Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Medicine (Infectious Diseases), Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Graeme Meintjes
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Daniel Everitt
- Global Alliance for TB Drug Development, New York, NY, USA
| | - Andreas Diacon
- Task Applied Science, Bellville, and Department of Medicine, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Rodney Dawson
- University of Cape Town Lung Institute and Division of Pulmonology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Elin M Svensson
- Department of Pharmacy, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
28
|
Umumararungu T, Mukazayire MJ, Mpenda M, Mukanyangezi MF, Nkuranga JB, Mukiza J, Olawode EO. A review of recent advances in anti-tubercular drug development. Indian J Tuberc 2020; 67:539-559. [PMID: 33077057 DOI: 10.1016/j.ijtb.2020.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/24/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Tuberculosis is a global threat but in particular affects people from developing countries. It is thought that nearly a third of the population of the world live with its causative bacteria in a dormant form. Although tuberculosis is a curable disease, the chances of cure become slim as the disease becomes multidrug-resistant and the situation gets even worse as the disease becomes extensively drug-resistant. After approximately 5 decades without any new TB drug in the pipeline, there has been some good news in the recent years with the discovery of new drugs such as bedaquiline and delamanid as well as the discovery of new classes of anti-tubercular drugs. Some old drugs such as clofazimine, linezolid and many others which were not previously indicated for tuberculosis have been also repurposed for tuberculosis and they are performing well.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda.
| | - Marie Jeanne Mukazayire
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Matabishi Mpenda
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Marie Françoise Mukanyangezi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Jean Bosco Nkuranga
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Janvier Mukiza
- Department of Mathematical Science and Physical Education, School of Education, College of Education, University of Rwanda, Rwanda
| | | |
Collapse
|
29
|
TB47 and clofazimine form a highly synergistic sterilizing block in a second-line regimen for tuberculosis in mice. Biomed Pharmacother 2020; 131:110782. [PMID: 33152940 DOI: 10.1016/j.biopha.2020.110782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/23/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) remains a serious public health threat worldwide. To date, the anti-TB activity of TB47 (T), an imidazopyridine amide class of antibiotics targeting QcrB in the electron transport chain, has not been systematically evaluated, especially in a new regimen against MDR-TB. This study employed both macrophage infection and a mouse model to test the activity of T alone or in combination with other antimicrobial agents. Different regimens containing amikacin (A), levofloxacin (L), ethambutol (E), and pyrazinamide (Z) + clofazimine (C)/T were evaluated in the mouse model. The bacterial burdens of mice from different groups were monitored at different time points while relapse was assessed 6 months after treatment cessation. Colonies obtained at relapse underwent drug susceptibility testing. We found that T exhibited highly synergistic bactericidal activity with C in all models. Adding T to ALEZC might shorten the MDR-TB treatment duration from ≥ 9 months to ≤ 5months, as five months of treatment with ALEZCT achieved zero relapse rates in 2 animal experiments. These findings indicate that T exhibits a highly synergistic sterilizing activity when combined with C. All isolates from relapsing mice remained sensitive to each drug, suggesting that the relapse was not due to drug resistance but rather associated with the type of regimen.
Collapse
|
30
|
Asay BC, Edwards BB, Andrews J, Ramey ME, Richard JD, Podell BK, Gutiérrez JFM, Frank CB, Magunda F, Robertson GT, Lyons M, Ben-Hur A, Lenaerts AJ. Digital Image Analysis of Heterogeneous Tuberculosis Pulmonary Pathology in Non-Clinical Animal Models using Deep Convolutional Neural Networks. Sci Rep 2020; 10:6047. [PMID: 32269234 PMCID: PMC7142129 DOI: 10.1038/s41598-020-62960-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/18/2020] [Indexed: 01/28/2023] Open
Abstract
Efforts to develop effective and safe drugs for treatment of tuberculosis require preclinical evaluation in animal models. Alongside efficacy testing of novel therapies, effects on pulmonary pathology and disease progression are monitored by using histopathology images from these infected animals. To compare the severity of disease across treatment cohorts, pathologists have historically assigned a semi-quantitative histopathology score that may be subjective in terms of their training, experience, and personal bias. Manual histopathology therefore has limitations regarding reproducibility between studies and pathologists, potentially masking successful treatments. This report describes a pathologist-assistive software tool that reduces these user limitations, while providing a rapid, quantitative scoring system for digital histopathology image analysis. The software, called 'Lesion Image Recognition and Analysis' (LIRA), employs convolutional neural networks to classify seven different pathology features, including three different lesion types from pulmonary tissues of the C3HeB/FeJ tuberculosis mouse model. LIRA was developed to improve the efficiency of histopathology analysis for mouse tuberculosis infection models, this approach has also broader applications to other disease models and tissues. The full source code and documentation is available from https://Github.com/TB-imaging/LIRA.
Collapse
Affiliation(s)
- Bryce C Asay
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Blake Blue Edwards
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jenna Andrews
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Michelle E Ramey
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jameson D Richard
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Juan F Muñoz Gutiérrez
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Chad B Frank
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Forgivemore Magunda
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gregory T Robertson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Michael Lyons
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, United States of America
| | - Anne J Lenaerts
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America.
| |
Collapse
|
31
|
Antitubercular nanocarrier monotherapy: Study of In Vivo efficacy and pharmacokinetics for rifampicin. J Control Release 2020; 321:312-323. [PMID: 32067995 DOI: 10.1016/j.jconrel.2020.02.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 02/08/2023]
Abstract
Tuberculosis represents a major global health problem for which improved approaches are needed to shorten the course of treatment and to combat the emergence of resistant strains. The development of effective and safe nanobead-based interventions can be particularly relevant for increasing the concentrations of antitubercular agents within the infected site and reducing the concentrations in the general circulation, thereby avoiding off-target toxic effects. In this work, rifampicin, a first-line antitubercular agent, was encapsulated into biocompatible and biodegradable polyester-based nanoparticles. In a well-established BALB/c mouse model of pulmonary tuberculosis, the nanoparticles provided improved pharmacokinetics and pharmacodynamics. The nanoparticles were well tolerated and much more efficient than an equivalent amount of free rifampicin.
Collapse
|
32
|
Animal Models of Tuberculosis Vaccine Research: An Important Component in the Fight against Tuberculosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4263079. [PMID: 32025519 PMCID: PMC6984742 DOI: 10.1155/2020/4263079] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, is one of the top ten infectious diseases worldwide, and is the leading cause of morbidity from a single infectious agent. M. tuberculosis can cause infection in several species of animals in addition to humans as the natural hosts. Although animal models of TB disease cannot completely simulate the occurrence and development of human TB, they play an important role in studying the pathogenesis, immune responses, and pathological changes as well as for vaccine research. This review summarizes the commonly employed animal models, including mouse, guinea pig, rabbit, rat, goat, cattle, and nonhuman primates, and their characteristics as used in TB vaccine research, and provides a basis for selecting appropriate animal models according to specific research needs. Furthermore, some of the newest animal models used for TB vaccine research (such as humanized animal models, zebrafish, Drosophila, and amoeba) are introduced, and their characteristics and research progress are discussed.
Collapse
|
33
|
Horwitz MA, Clemens DL, Lee B. AI‐Enabled Parabolic Response Surface Approach Identifies Ultra Short‐Course Near‐Universal TB Drug Regimens. ADVANCED THERAPEUTICS 2019. [PMCID: PMC6988120 DOI: 10.1002/adtp.201900086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) is a major health problem that causes more deaths worldwide than any other single infectious disease. Current multidrug therapy for tuberculosis is exceedingly lengthy, leading to poor drug adherence, and consequently the emergence of drug resistance. Hence, much more rapid treatments are needed. Experimentally identifying the most synergistic drug combinations among available drugs is complicated by the astronomical number of possible drug-dose combinations. This problem is dealt with by the use of an artificial-intelligence-enabled parabolic response surface platform in conjunction with an in vitro Mycobacterium tuberculosis–infected macrophage cell culture assay amenable to high-throughput screening. This strategy allows rapid identification of the most effective drug-dose combinations by testing only a small fraction of the total drug-dose efficacy response surface. The same platform is then used to optimize the in vivo doses of each drug in the most potent regimens. Thus, regimens are identified that are dramatically more effective than the Standard Regimen in treating TB in a mouse model—a model broadly predictive of drug efficacy in humans. The most effective regimens reported herein shorten the duration of treatment required to achieve relapse-free cure by 80% and are suitable for treating both drug-sensitive and most drug-resistant cases of tuberculosis.
Collapse
Affiliation(s)
- Marcus A. Horwitz
- Department of MedicineUCLA School of Medicine, University of California–Los Angeles, CHS 37‐121 Los Angeles CA 90095 USA
| | - Daniel L. Clemens
- Department of MedicineUCLA School of Medicine, University of California–Los Angeles, CHS 37‐121 Los Angeles CA 90095 USA
| | - Bai‐Yu Lee
- Department of MedicineUCLA School of Medicine, University of California–Los Angeles, CHS 37‐121 Los Angeles CA 90095 USA
| |
Collapse
|
34
|
Identifying Regimens Containing TBI-166, a New Drug Candidate against Mycobacterium tuberculosis In Vitro and In Vivo. Antimicrob Agents Chemother 2019; 63:AAC.02496-18. [PMID: 31061157 DOI: 10.1128/aac.02496-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/15/2019] [Indexed: 02/03/2023] Open
Abstract
TBI-166, derived from riminophenazine analogues, is under development in a phase I clinical trial in China. TBI-166 showed more potent anti-tuberculosis (anti-TB) activity than did clofazimine in in vitro and animal experiments. To identify potent regimens containing TBI-166 in TB chemotherapy, TBI-166 was assessed for pharmacological interactions in vitro and in vivo with several anti-TB drugs, including isoniazid (INH), rifampin (RFP), bedaquiline (BDQ), pretomanid (PMD), linezolid (LZD), and pyrazinamide (PZA). Using an in vitro checkerboard method, we found that TBI-166 did not show antagonism or synergy with the tested drugs. The interaction relationship between TBI-166 and each drug was indifferent. In in vivo experiments, aerosol infection models with BALB/c and C3HeB/FeJNju mice were established, testing drugs were administered either individually or combined in treatments containing TBI-166 and one, two, or three other drugs, and the bactericidal activities were determined after 4- and 8-week therapeutic treatments. In BALB/c mice, five TBI-166-containing regimens-TBI-166+BDQ, TBI-166+PZA, TBI-166+BDQ+LZD, TBI-166+BDQ+PMD, and TBI-166+BDQ+PMD+LZD-showed significantly more potent efficacy after 4 weeks of treatment compared to the control regimen, INH+RFP+PZA. At the end of an 8-week treatment, lung log CFU counts decreased to undetectable levels in mice treated with each of the five regimens. The rank order of the potency of the five regimens was as follows: TBI-166+BDQ+LZD > TBI-166+BDQ > TBI-166+PZA > TBI-166+BDQ+PMD+LZD > TBI-166+BDQ+PMD. In C3HeB/FeJNju mice, TBI-166+BDQ+LZD was also the most effective of the TBI-166-containing regimens. In conclusion, five potent chemotherapy regimens that included TBI-166 were identified. The TBI-166+BDQ+LZD regimen is recommended for further testing in a TBI-166 phase IIb clinical trial.
Collapse
|
35
|
Saini V, Ammerman NC, Chang YS, Tasneen R, Chaisson RE, Jain S, Nuermberger E, Grosset JH. Treatment-Shortening Effect of a Novel Regimen Combining Clofazimine and High-Dose Rifapentine in Pathologically Distinct Mouse Models of Tuberculosis. Antimicrob Agents Chemother 2019; 63:e00388-19. [PMID: 30936097 PMCID: PMC6535519 DOI: 10.1128/aac.00388-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/22/2019] [Indexed: 01/09/2023] Open
Abstract
Clofazimine and high-dose rifapentine have each separately been associated with treatment-shortening activity when incorporated into tuberculosis (TB) treatment regimens. We hypothesized that both modifications, i.e., the addition of clofazimine and the replacement of rifampin with high-dose rifapentine, in the first-line regimen for drug-susceptible TB would significantly shorten the duration of treatment necessary for cure. We tested this hypothesis in a well-established BALB/c mouse model of TB chemotherapy and also in a C3HeB/FeJ mouse model in which mice can develop caseous necrotic lesions, an environment where rifapentine and clofazimine may individually be less effective. In both mouse models, replacing rifampin with high-dose rifapentine and adding clofazimine in the first-line regimen resulted in greater bactericidal and sterilizing activity than either modification alone, suggesting that a rifapentine- and clofazimine-containing regimen may have the potential to significantly shorten the treatment duration for drug-susceptible TB. These data provide preclinical evidence supporting the evaluation of regimens combining high-dose rifapentine and clofazimine in clinical trials.
Collapse
Affiliation(s)
- Vikram Saini
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole C Ammerman
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yong Seok Chang
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rokeya Tasneen
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard E Chaisson
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjay Jain
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jacques H Grosset
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
36
|
Xu J, Li SY, Almeida DV, Tasneen R, Barnes-Boyle K, Converse PJ, Upton AM, Mdluli K, Fotouhi N, Nuermberger EL. Contribution of Pretomanid to Novel Regimens Containing Bedaquiline with either Linezolid or Moxifloxacin and Pyrazinamide in Murine Models of Tuberculosis. Antimicrob Agents Chemother 2019; 63:e00021-19. [PMID: 30833432 PMCID: PMC6496099 DOI: 10.1128/aac.00021-19] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 02/25/2019] [Indexed: 11/29/2022] Open
Abstract
Novel regimens combining bedaquiline and pretomanid with either linezolid (BPaL regimen) or moxifloxacin and pyrazinamide (BPaMZ regimen) shorten the treatment duration needed to cure tuberculosis (TB) in BALB/c mice compared to that of the first-line regimen and have yielded promising results in initial clinical trials. However, the independent contribution of the investigational new drug pretomanid to the efficacy of BPaMZ has not been examined, and its contribution to BPaL has been examined only over the first 2 months of treatment. In the present study, the addition of pretomanid to BL increased bactericidal activity, prevented emergence of bedaquiline resistance, and shortened the duration needed to prevent relapse with drug-susceptible isolates by at least 2 months in BALB/c mice. Addition of pretomanid to bedaquiline, moxifloxacin, and pyrazinamide (BMZ) resulted in a 1-log10 greater CFU reduction after 1 month of treatment and/or reduced the number of mice relapsing in each of 2 experiments in BALB/c mice and in immunocompromised nude mice. Bedaquiline-resistant isolates were found at relapse in only one BMZ-treated nude mouse. Treatment of infection with a pyrazinamide-resistant mutant in BALB/c mice with BPaMZ prevented selection of bedaquiline-resistant mutants and reduced the proportion of mice relapsing compared to that for BMZ treatment alone. Among severely ill C3HeB/FeJ mice with caseous pneumonia and cavitation, BPaMZ increased median survival (≥60 versus 21 days) and reduced median lung CFU by 2.4 log10 at 1 month compared to the level for BMZ. In conclusion, in 3 different mouse models, pretomanid contributed significantly to the efficacy of the BPaMZ and BPaL regimens, including restricting the selection of bedaquiline-resistant mutants.
Collapse
Affiliation(s)
- Jian Xu
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Si-Yang Li
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Deepak V Almeida
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rokeya Tasneen
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kala Barnes-Boyle
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul J Converse
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anna M Upton
- Global Alliance for Tuberculosis Drug Development, New York, New York, USA
| | - Khisimuzi Mdluli
- Global Alliance for Tuberculosis Drug Development, New York, New York, USA
| | - Nader Fotouhi
- Global Alliance for Tuberculosis Drug Development, New York, New York, USA
| | - Eric L Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Fluoroquinolone Efficacy against Tuberculosis Is Driven by Penetration into Lesions and Activity against Resident Bacterial Populations. Antimicrob Agents Chemother 2019; 63:AAC.02516-18. [PMID: 30803965 PMCID: PMC6496041 DOI: 10.1128/aac.02516-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/17/2019] [Indexed: 01/17/2023] Open
Abstract
Fluoroquinolones represent the pillar of multidrug-resistant tuberculosis (MDR-TB) treatment, with moxifloxacin, levofloxacin, or gatifloxacin being prescribed to MDR-TB patients. Recently, several clinical trials of “universal” drug regimens, aiming to treat drug-susceptible and drug-resistant TB, have included a fluoroquinolone. Fluoroquinolones represent the pillar of multidrug-resistant tuberculosis (MDR-TB) treatment, with moxifloxacin, levofloxacin, or gatifloxacin being prescribed to MDR-TB patients. Recently, several clinical trials of “universal” drug regimens, aiming to treat drug-susceptible and drug-resistant TB, have included a fluoroquinolone. In the absence of clinical data comparing their side-by-side efficacies in controlled MDR-TB trials, a pharmacological rationale is needed to guide the selection of the most efficacious fluoroquinolone. The present studies were designed to test the hypothesis that fluoroquinolone concentrations (pharmacokinetics) and activity (pharmacodynamics) at the site of infection are better predictors of efficacy than the plasma concentrations and potency measured in standard growth inhibition assays and are better suited to determinations of whether one of the fluoroquinolones outperforms the others in rabbits with active TB. We first measured the penetration of these fluoroquinolones in lung lesion compartments, and their potency against bacterial populations that reside in each compartment, to compute lesion-centric pharmacokinetic-pharmacodynamic (PK/PD) parameters. PK modeling methods were used to quantify drug penetration from plasma to tissues at human-equivalent doses. On the basis of these metrics, moxifloxacin emerged with a clear advantage, whereas plasma-based PK/PD favored levofloxacin (the ranges of the plasma AUC/MIC ratio [i.e., the area under the concentration-time curve over 24 h in the steady state divided by the MIC] are 46 to 86 for moxifloxacin and 74 to 258 for levofloxacin). A comparative efficacy trial in the rabbit model of active TB demonstrated the superiority of moxifloxacin in reducing bacterial burden at the lesion level and in sterilizing cellular and necrotic lesions. Collectively, these results show that PK/PD data obtained at the site of infection represent an adequate predictor of drug efficacy against TB and constitute the baseline required to explore synergies, antagonism, and drug-drug interactions in fluoroquinolone-containing regimens.
Collapse
|
38
|
In Vitro and In Vivo Activities of the Riminophenazine TBI-166 against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.02155-18. [PMID: 30782992 DOI: 10.1128/aac.02155-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/01/2019] [Indexed: 12/20/2022] Open
Abstract
The riminophenazine agent clofazimine (CFZ) is repurposed as an important component of the new short-course multidrug-resistant tuberculosis regimen and significantly shortens first-line regimen for drug-susceptible tuberculosis in mice. However, CFZ use is hampered by its unwelcome skin discoloration in patients. A new riminophenazine analog, TBI-166, was selected as a potential next-generation antituberculosis riminophenazine following an extensive medicinal chemistry effort. Here, we evaluated the activity of TBI-166 against Mycobacterium tuberculosis and its potential to accumulate and discolor skin. The in vitro activity of TBI-166 against both drug-sensitive and drug-resistant M. tuberculosis is more potent than that of CFZ. Spontaneous mutants resistant to TBI-166 were found at a frequency of 2.3 × 10-7 in wild strains of M. tuberculosis TBI-166 demonstrates activity at least equivalent to that of CFZ against intracellular M. tuberculosis and in low-dose aerosol infection models of acute and chronic murine tuberculosis. Most importantly, TBI-166 causes less skin discoloration than does CFZ despite its higher tissue accumulation. The efficacy of TBI-166, along with its decreased skin pigmentation, warrants further study and potential clinical use.
Collapse
|
39
|
Strydom N, Gupta SV, Fox WS, Via LE, Bang H, Lee M, Eum S, Shim T, Barry CE, Zimmerman M, Dartois V, Savic RM. Tuberculosis drugs' distribution and emergence of resistance in patient's lung lesions: A mechanistic model and tool for regimen and dose optimization. PLoS Med 2019; 16:e1002773. [PMID: 30939136 PMCID: PMC6445413 DOI: 10.1371/journal.pmed.1002773] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/28/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The sites of mycobacterial infection in the lungs of tuberculosis (TB) patients have complex structures and poor vascularization, which obstructs drug distribution to these hard-to-reach and hard-to-treat disease sites, further leading to suboptimal drug concentrations, resulting in compromised TB treatment response and resistance development. Quantifying lesion-specific drug uptake and pharmacokinetics (PKs) in TB patients is necessary to optimize treatment regimens at all infection sites, to identify patients at risk, to improve existing regimens, and to advance development of novel regimens. Using drug-level data in plasma and from 9 distinct pulmonary lesion types (vascular, avascular, and mixed) obtained from 15 hard-to-treat TB patients who failed TB treatments and therefore underwent lung resection surgery, we quantified the distribution and the penetration of 7 major TB drugs at these sites, and we provide novel tools for treatment optimization. METHODS AND FINDINGS A total of 329 plasma- and 1,362 tissue-specific drug concentrations from 9 distinct lung lesion types were obtained according to optimal PK sampling schema from 15 patients (10 men, 5 women, aged 23 to 58) undergoing lung resection surgery (clinical study NCT00816426 performed in South Korea between 9 June 2010 and 24 June 2014). Seven major TB drugs (rifampin [RIF], isoniazid [INH], linezolid [LZD], moxifloxacin [MFX], clofazimine [CFZ], pyrazinamide [PZA], and kanamycin [KAN]) were quantified. We developed and evaluated a site-of-action mechanistic PK model using nonlinear mixed effects methodology. We quantified population- and patient-specific lesion/plasma ratios (RPLs), dynamics, and variability of drug uptake into each lesion for each drug. CFZ and MFX had higher drug exposures in lesions compared to plasma (median RPL 2.37, range across lesions 1.26-22.03); RIF, PZA, and LZD showed moderate yet suboptimal lesion penetration (median RPL 0.61, range 0.21-2.4), while INH and KAN showed poor tissue penetration (median RPL 0.4, range 0.03-0.73). Stochastic PK/pharmacodynamic (PD) simulations were carried out to evaluate current regimen combinations and dosing guidelines in distinct patient strata. Patients receiving standard doses of RIF and INH, who are of the lower range of exposure distribution, spent substantial periods (>12 h/d) below effective concentrations in hard-to-treat lesions, such as caseous lesions and cavities. Standard doses of INH (300 mg) and KAN (1,000 mg) did not reach therapeutic thresholds in most lesions for a majority of the population. Drugs and doses that did reach target exposure in most subjects include 400 mg MFX and 100 mg CFZ. Patients with cavitary lesions, irrespective of drug choice, have an increased likelihood of subtherapeutic concentrations, leading to a higher risk of resistance acquisition while on treatment. A limitation of this study was the small sample size of 15 patients, performed in a unique study population of TB patients who failed treatment and underwent lung resection surgery. These results still need further exploration and validation in larger and more diverse cohorts. CONCLUSIONS Our results suggest that the ability to reach and maintain therapeutic concentrations is both lesion and drug specific, indicating that stratifying patients based on disease extent, lesion types, and individual drug-susceptibility profiles may eventually be useful for guiding the selection of patient-tailored drug regimens and may lead to improved TB treatment outcomes. We provide a web-based tool to further explore this model and results at http://saviclab.org/tb-lesion/.
Collapse
Affiliation(s)
- Natasha Strydom
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Sneha V. Gupta
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - William S. Fox
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Hyeeun Bang
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Myungsun Lee
- International Tuberculosis Research Center, Changwon, Republic of Korea
| | - Seokyong Eum
- International Tuberculosis Research Center, Changwon, Republic of Korea
| | - TaeSun Shim
- Asan Medical Center, Seoul, Republic of Korea
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Matthew Zimmerman
- Public Health Research Institute and New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Véronique Dartois
- Public Health Research Institute and New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Radojka M. Savic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
Tuberculosis (TB) remains a leading cause of death globally among infectious diseases that has killed more numbers of people than any other infectious diseases. Animal models have become the lynchpin for mimicking human infectious diseases. Research on TB could be facilitated by animal challenge models such as the guinea pig, mice, rabbit and non-human primates. No single model presents all aspects of disease pathogenesis due to considerable differences in disease resistance/susceptibility between these models. Availability of a wide range of animal strains, Mycobacterium tuberculosis strains, route of infection and doses affect the disease progression and intervention outcome. Different animal models have contributed significantly to the drug and vaccine development, identification of biomarkers, understanding of TB immunopathogenesis and host genetic influence on infection. In this review, the commonly used animal models in TB research are discussed along with their advantages and limitations.
Collapse
Affiliation(s)
- Amit Kumar Singh
- ICMR-National JALMA Institute of Leprosy & Other Mycobacterial Diseases, Agra, India
| | - Umesh D Gupta
- ICMR-National JALMA Institute of Leprosy & Other Mycobacterial Diseases, Agra, India
| |
Collapse
|
41
|
Blanc L, Daudelin IB, Podell BK, Chen PY, Zimmerman M, Martinot AJ, Savic RM, Prideaux B, Dartois V. High-resolution mapping of fluoroquinolones in TB rabbit lesions reveals specific distribution in immune cell types. eLife 2018; 7:e41115. [PMID: 30427309 PMCID: PMC6249001 DOI: 10.7554/elife.41115] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022] Open
Abstract
Understanding the distribution patterns of antibiotics at the site of infection is paramount to selecting adequate drug regimens and developing new antibiotics. Tuberculosis (TB) lung lesions are made of various immune cell types, some of which harbor persistent forms of the pathogen, Mycobacterium tuberculosis. By combining high resolution MALDI MSI with histology staining and quantitative image analysis in rabbits with active TB, we have mapped the distribution of a fluoroquinolone at high resolution, and identified the immune-pathological factors driving its heterogeneous penetration within TB lesions, in relation to where bacteria reside. We find that macrophage content, distance from lesion border and extent of necrosis drive the uneven fluoroquinolone penetration. Preferential uptake in macrophages and foamy macrophages, where persistent bacilli reside, compared to other immune cells present in TB granulomas, was recapitulated in vitro using primary human cells. A nonlinear modeling approach was developed to help predict the observed drug behavior in TB lesions. This work constitutes a methodological advance for the co-localization of drugs and infectious agents at high spatial resolution in diseased tissues, which can be applied to other diseases with complex immunopathology.
Collapse
Affiliation(s)
- Landry Blanc
- Public Health Research Institute, New Jersey Medical SchoolRutgers, The State University of New JerseyNewarkUnited States
| | - Isaac B Daudelin
- Public Health Research Institute, New Jersey Medical SchoolRutgers, The State University of New JerseyNewarkUnited States
| | - Brendan K Podell
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsUnited States
| | - Pei-Yu Chen
- Public Health Research Institute, New Jersey Medical SchoolRutgers, The State University of New JerseyNewarkUnited States
| | - Matthew Zimmerman
- Public Health Research Institute, New Jersey Medical SchoolRutgers, The State University of New JerseyNewarkUnited States
| | - Amanda J Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUnited States
| | - Rada M Savic
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and MedicineUniversity of California San FranciscoSan FranciscoCanada
| | - Brendan Prideaux
- Public Health Research Institute, New Jersey Medical SchoolRutgers, The State University of New JerseyNewarkUnited States
| | - Véronique Dartois
- Public Health Research Institute, New Jersey Medical SchoolRutgers, The State University of New JerseyNewarkUnited States
| |
Collapse
|
42
|
Lee BY, Clemens DL, Silva A, Dillon BJ, Masleša-Galić S, Nava S, Ho CM, Horwitz MA. Ultra-rapid near universal TB drug regimen identified via parabolic response surface platform cures mice of both conventional and high susceptibility. PLoS One 2018; 13:e0207469. [PMID: 30427938 PMCID: PMC6235396 DOI: 10.1371/journal.pone.0207469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/31/2018] [Indexed: 11/23/2022] Open
Abstract
As current treatment of tuberculosis is burdensomely long, provoking non-adherence and drug resistance, effective short-course treatments are needed. Using the output-driven parabolic response surface (PRS) platform, we have identified drug regimens that treat tuberculosis more rapidly in mice than the current Standard Regimen used in humans. We show that PRS Regimen III, comprising clofazimine, SQ109, bedaquiline and pyrazinamide, rapidly sterilizes the lung both in conventionally studied BALB/c mice and in C3HeB/FeJ mice, highly susceptible mice that develop massive necrotic granulomatous lung lesions akin to those in humans, achieving relapse-free cure in only 4 weeks (p<0.0001 versus Standard Regimen). In contrast, the Standard Regimen required 16 weeks to attain lung culture negative status and 20 weeks to achieve relapse-free cure. Thus, PRS Regimen III dramatically cuts by ~80% the time to relapse-free cure in mouse tuberculosis models. PRS Regimen III, with three nonstandard drugs, can potentially treat both drug-sensitive and most drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Bai-Yu Lee
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, California, United States of America
| | - Daniel L. Clemens
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, California, United States of America
| | - Aleidy Silva
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California, United States of America
| | - Barbara Jane Dillon
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, California, United States of America
| | - Saša Masleša-Galić
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, California, United States of America
| | - Susana Nava
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, California, United States of America
| | - Chih-Ming Ho
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California, United States of America
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
| | - Marcus A. Horwitz
- Division of Infectious Diseases, Department of Medicine, University of California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Drug targets exploited in Mycobacterium tuberculosis: Pitfalls and promises on the horizon. Biomed Pharmacother 2018; 103:1733-1747. [PMID: 29864964 DOI: 10.1016/j.biopha.2018.04.176] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 01/10/2023] Open
Abstract
Tuberculosis is an ever evolving infectious disease that still claims about 1.8 million human lives each year around the globe. Although modern chemotherapy has played a pivotal role in combating TB, the increasing emergence of drug-resistant TB aligned with HIV pandemic threaten its control. This highlights both the need to understand how our current drugs work and the need to develop new and more effective drugs. TB drug discovery is revisiting the clinically validated drug targets in Mycobacterium tuberculosis using whole-cell phenotypic assays in search of better therapeutic scaffolds. Herein, we review the promises of current TB drug regimens, major pitfalls faced, key drug targets exploited so far in M. tuberculosis along with the status of newly discovered drugs against drug resistant forms of TB. New antituberculosis regimens that use lesser number of drugs, require shorter duration of treatment, are equally effective against susceptible and resistant forms of disease, have acceptable toxicity profiles and behave friendly with anti-HIV regimens remains top most priority in TB drug discovery.
Collapse
|
44
|
Abstract
A growing body of research suggests bacterial metabolism and membrane bioenergetics affect the lethality of a broad spectrum of antibiotics. Electrochemical gradients spanning energy-transducing membranes are the foundation of the chemiosmotic hypothesis and are essential for life; accordingly, their dysfunction appears to be a critical factor in bacterial death. Proton flux across energy-transducing membranes is central for cellular homeostasis as vectorial proton translocation generates a proton motive force used for ATP synthesis, pH homeostasis, and maintenance of solute gradients. Our recent investigations indicate that maintenance of pH homeostasis is a critical factor in antibiotic killing and suggest an imbalance in proton flux initiates disruptions in chemiosmotic gradients that lead to cell death. The complex and interconnected relationships between electron transport systems, central carbon metabolism, oxidative stress generation, pH homeostasis, and electrochemical gradients provide challenging obstacles to deciphering the roles for each of these processes in antibiotic lethality. In this chapter, we will present evidence for the pH homeostasis hypothesis of antibiotic lethality that bactericidal activity flows from disruption of cellular energetics and loss of chemiosmotic homeostasis. A holistic understanding of the interconnection of energetic processes and antibiotic activity may direct future research toward the development of more effective therapeutic interventions.
Collapse
|
45
|
Impact of Clofazimine Dosing on Treatment Shortening of the First-Line Regimen in a Mouse Model of Tuberculosis. Antimicrob Agents Chemother 2018; 62:AAC.00636-18. [PMID: 29735562 DOI: 10.1128/aac.00636-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 04/30/2018] [Indexed: 01/17/2023] Open
Abstract
The antileprosy drug clofazimine was recently repurposed as part of a newly endorsed short-course regimen for multidrug-resistant tuberculosis. It also enables significant treatment shortening when added to the first-line regimen for drug-susceptible tuberculosis in a mouse model. However, clofazimine causes dose- and duration-dependent skin discoloration in patients, and the optimal clofazimine dosing strategy in the context of the first-line regimen is unknown. We utilized a well-established mouse model to systematically address the impacts of duration, dose, and companion drugs on the treatment-shortening activity of clofazimine in the first-line regimen. In all studies, the primary outcome was relapse-free cure (culture-negative lungs) 6 months after stopping treatment, and the secondary outcome was bactericidal activity, i.e., the decline in the lung bacterial burden during treatment. Our findings indicate that clofazimine activity is most potent when coadministered with first-line drugs continuously throughout treatment and that equivalent treatment-shortening results are obtained with half the dose commonly used in mice. However, our studies also suggest that clofazimine at low exposures may have negative impacts on treatment outcomes, an effect that was evident only after the first 3 months of treatment. These data provide a sound evidence base to inform clofazimine dosing strategies to optimize the antituberculosis effect while minimizing skin discoloration. The results also underscore the importance of conducting long-term studies to allow the full evaluation of drugs administered in combination over long durations.
Collapse
|
46
|
Srivastava S, Deshpande D, Pasipanodya JG, Thomas T, Swaminathan S, Nuermberger E, Gumbo T. A Combination Regimen Design Program Based on Pharmacodynamic Target Setting for Childhood Tuberculosis: Design Rules for the Playground. Clin Infect Dis 2017; 63:S75-S79. [PMID: 27742637 PMCID: PMC5064153 DOI: 10.1093/cid/ciw472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Children with tuberculosis are treated with drug regimens copied from adults despite significant differences in antibiotic pharmacokinetics, pathology, and the microbial burden between childhood and adult tuberculosis. We sought to develop a new and effective oral treatment regimen specific to children of different ages. We investigated and validated the concept that target drug concentrations associated with therapy failure and death in children are different from those of adults. On that basis, we proposed a 4-step program to rapidly develop treatment regimens for children. First, target drug concentrations for optimal efficacy are derived from preclinical models of disseminated tuberculosis that recapitulate pediatric pharmacokinetics, starting with monotherapy. Second, 2-drug combinations were examined for zones of synergy, antagonism, and additivity based on a whole exposure–response surface. Exposures associated with additivity or synergy were then combined and the regimen was compared to standard therapy. Third, several exposures of the third drug were added, and a 3-drug regimen was identified based on kill slopes in comparison to standard therapy. Fourth, computer-aided clinical trial simulations are used to identify clinical doses that achieve these kill rates in children in different age groups. The proposed program led to the development of a 3-drug combination regimen for children from scratch, independent of adult regimens, in <2 years. The regimens and doses can be tested in animal models and in clinical trials.
Collapse
Affiliation(s)
- Shashikant Srivastava
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Devyani Deshpande
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Jotam G Pasipanodya
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Tania Thomas
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| | | | - Eric Nuermberger
- Department of International Health, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas Department of Medicine, University of Cape Town, Observatory, South Africa
| |
Collapse
|
47
|
Schaible UE, Linnemann L, Redinger N, Patin EC, Dallenga T. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity. Front Immunol 2017; 8:1755. [PMID: 29312298 PMCID: PMC5732265 DOI: 10.3389/fimmu.2017.01755] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023] Open
Abstract
The global tuberculosis epidemic is the most common cause of death after infectious disease worldwide. Increasing numbers of infections with multi- and extensively drug-resistant variants of the Mycobacterium tuberculosis complex, resistant even to newly discovered and last resort antibiotics, highlight the urgent need for an efficient vaccine. The protective efficacy to pulmonary tuberculosis in adults of the only currently available vaccine, M. bovis BCG, is unsatisfactory and geographically diverse. More importantly, recent clinical studies on new vaccine candidates did not prove to be better than BCG, yet. Here, we propose and discuss novel strategies to improve efficacy of existing anti-tuberculosis vaccines. Modulation of innate immune responses upon vaccination already provided promising results in animal models of tuberculosis. For instance, neutrophils have been shown to influence vaccine efficacy, both, positively and negatively, and stimulate specific antibody secretion. Modulating immune regulatory properties after vaccination such as induction of different types of innate immune cell death, myeloid-derived suppressor or regulatory T cells, production of anti-inflammatory cytokines such as IL-10 may have beneficial effects on protection efficacy. Incorporation of lipid antigens presented via CD1 molecules to T cells have been discussed as a way to enhance vaccine efficacy. Finally, concepts of dendritic cell-based immunotherapies or training the innate immune memory may be exploitable for future vaccination strategies against tuberculosis. In this review, we put a spotlight on host immune networks as potential targets to boost protection by old and new tuberculosis vaccines.
Collapse
Affiliation(s)
- Ulrich E Schaible
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany.,Thematic Translation Unit Tuberculosis, German Center for Infection Research, Research Center Borstel, Borstel, Germany
| | - Lara Linnemann
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany
| | - Natalja Redinger
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany
| | - Emmanuel C Patin
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany.,Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
| | - Tobias Dallenga
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany.,Thematic Translation Unit Tuberculosis, German Center for Infection Research, Research Center Borstel, Borstel, Germany
| |
Collapse
|
48
|
Abstract
Monitoring response to treatment is a key element in the management of infectious diseases, yet controversies still persist on reliable biomarkers for noninvasive response evaluation. Considering the limitations of invasiveness of most diagnostic procedures and the issue of expression heterogeneity of pathology, molecular imaging is better able to assay in vivo biologic processes noninvasively and quantitatively. The usefulness of 18F-FDG-PET/CT in assessing treatment response in infectious diseases is more promising than for conventional imaging. However, there are currently no clinical criteria or recommended imaging modalities to objectively evaluate the effectiveness of antimicrobial treatment. Therapeutic effectiveness is currently gauged by the patient's subjective clinical response. In this review, we present the current studies for monitoring treatment response, with a focus on Mycobacterium tuberculosis, as it remains a major worldwide cause of morbidity and mortality. The role of molecular imaging in monitoring other infections including spondylodiscitis, infected prosthetic vascular grafts, invasive fungal infections, and a parasitic disease is highlighted. The role of functional imaging in monitoring lipodystrophy associated with highly active antiretroviral therapy for human immunodeficiency virus is considered. We also discuss the key challenges and emerging data in optimizing noninvasive response evaluation.
Collapse
Affiliation(s)
- Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa..
| | - Alfred O Ankrah
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa.; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Ismaheel Lawal
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa
| | - Mariza Vorster
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa
| |
Collapse
|
49
|
Robertson GT, Scherman MS, Bruhn DF, Liu J, Hastings C, McNeil MR, Butler MM, Bowlin TL, Lee RB, Lee RE, Lenaerts AJ. Spectinamides are effective partner agents for the treatment of tuberculosis in multiple mouse infection models. J Antimicrob Chemother 2017; 72:770-777. [PMID: 27999020 PMCID: PMC5400088 DOI: 10.1093/jac/dkw467] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022] Open
Abstract
Objectives: New drug regimens employing combinations of existing and experimental antimicrobial agents are needed to shorten treatment of tuberculosis (TB) in humans. The spectinamides are narrow-spectrum semisynthetic analogues of spectinomycin, modified to avoid intrinsic efflux by Mycobacterium tuberculosis. Spectinamides, including lead 1599, have been previously shown to exhibit a promising therapeutic profile in mice as single agents. Here we explore the in vivo activity of lead spectinamides when combined with other agents. Methods: The efficacy of 1599 or 1810 was tested in combination in three increasingly advanced TB mouse models. Mice were infected by aerosol and allowed to establish acute or chronic infection, followed by treatment (≤4 weeks) with the spectinamides alone or in two- and three-drug combination regimens with existing and novel therapeutic agents. Bacteria were enumerated from lungs by plating for cfu. Results: Herein we show the following: (i) 1599 exhibits additive or synergistic activity with most of the first-line agents; (ii) 1599 in combination with rifampicin and pyrazinamide or with bedaquiline and pyrazinamide promotes significantly improved efficacy in the high-dose aerosol model; (iii) 1599 enhances efficacy of rifampicin or pyrazinamide in chronically infected BALB/c mice; and (iv) 1599 is synergistic when administered in combination with rifampicin and pyrazinamide in the C3HeB/FeJ mouse model showing caseous necrotic pulmonary lesions. Conclusions: Spectinamides were effective partner agents for multiple anti-TB agents including bedaquiline, rifampicin and pyrazinamide. None of these in vivo synergistic interactions was predicted from in vitro MIC chequerboard assays. These data support further development of the spectinamides as combination partners with existing and experimental anti-TB agents.
Collapse
Affiliation(s)
- Gregory T Robertson
- Mycobacterial Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael S Scherman
- Mycobacterial Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - David F Bruhn
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, TN 28105, USA
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, TN 28105, USA
| | - Courtney Hastings
- Mycobacterial Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael R McNeil
- Mycobacterial Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | - Robin B Lee
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, TN 28105, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, TN 28105, USA
| | - Anne J Lenaerts
- Mycobacterial Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
50
|
Targeting neutrophils for host-directed therapy to treat tuberculosis. Int J Med Microbiol 2017; 308:142-147. [PMID: 29055689 DOI: 10.1016/j.ijmm.2017.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/26/2017] [Accepted: 10/01/2017] [Indexed: 01/08/2023] Open
Abstract
M. tuberculosis is one of the prime killers from infectious diseases worldwide. Infections with multidrug-resistant variants counting for almost half a million new cases per year are steadily on the rise. Tuberculosis caused by extensively drug-resistant variants that are even resistant against newly developed or last resort antibiotics have to be considered untreaTable Susceptible tuberculosis already requires a six-months combinational therapy which requires further prolongation to treat drug-resistant infections. Such long treatment schedules are often accompanied by serious adverse effects causing patients to stop therapy. To tackle the global tuberculosis emergency, novel approaches for treatment need to be urgently explored. Host-directed therapies that target components of the defense system represent such a novel approach. In this review, we put a spotlight on neutrophils and neutrophil-associated effectors as promising targets for adjunct host-directed therapies to improve antibiotic efficacy and reduce both, treatment time and long-term pathological sequelae.
Collapse
|