1
|
Chimatahalli Shanthakumar K, Sridhara PG, Rajabathar JR, Al-lohedan HA, Lokanath NK, Mylnahalli Krishnegowda H. Unveiling a Novel Solvatomorphism of Anti-inflammatory Flufenamic Acid: X-ray Structure, Quantum Chemical, and In Silico Studies. ACS OMEGA 2024; 9:20753-20772. [PMID: 38764648 PMCID: PMC11097344 DOI: 10.1021/acsomega.3c07520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
This paper delves into the polymorphism of 2-[3-(trifluoromethyl)anilino]benzoic acid, commonly referred to as flufenamic acid (FA), a pharmaceutical agent employed in treating inflammatory conditions. The central focus of the study is on a newly unearthed solvatomorphic structure of FA in methanol (FAM), and a thorough comparison is conducted with the commercially available standard structure. Employing a comprehensive approach, including X-ray crystallography, Hirshfeld surface analysis, density functional theory (DFT), molecular docking, and molecular dynamics (MD) simulations, the research aims to unravel the structural and functional implications of solvatomorphism. The X-ray crystal structure analysis brings to light notable differences between the standard FA and solvatomorphic FAM, showcasing variations in intermolecular interactions and crystal packing. Key features such as hydrogen bonding, π···π stacking, and C-H···π interactions are identified as influential factors shaping the stability and conformation of the compounds. Hirshfeld surface analysis further quantifies the nature and contribution of intermolecular interactions, providing a comprehensive perspective on molecular stability. Density functional theory offers valuable electronic structure insights, highlighting disparities in frontier molecular orbitals between FA and FAM. Molecular docking studies against prostaglandin D2 11-ketoreductase explore potential drug interactions, unveiling distinct binding modes and hydrogen bonding patterns that shed light on how the solvatomorphic structure may impact drug-target interactions. In-depth molecular dynamics simulations over 100 ns investigate the stability of the protein-ligand complex, with root mean square deviation and root mean square fluctuation analyses revealing minimal deviations and affirming the stability of FAM within the active site of the target protein.
Collapse
Affiliation(s)
| | | | - Jothi Ramalingam Rajabathar
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box. 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Hamad A. Al-lohedan
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box. 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | | | | |
Collapse
|
2
|
Singh S, Singh PK, Sachan K, Kumar M, Bhardwaj P. Automation of Drug Discovery through Cutting-edge In-silico Research in Pharmaceuticals: Challenges and Future Scope. Curr Comput Aided Drug Des 2024; 20:723-735. [PMID: 37807412 DOI: 10.2174/0115734099260187230921073932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023]
Abstract
The rapidity and high-throughput nature of in silico technologies make them advantageous for predicting the properties of a large array of substances. In silico approaches can be used for compounds intended for synthesis at the beginning of drug development when there is either no or very little compound available. In silico approaches can be used for impurities or degradation products. Quantifying drugs and related substances (RS) with pharmaceutical drug analysis (PDA) can also improve drug discovery (DD) by providing additional avenues to pursue. Potential future applications of PDA include combining it with other methods to make insilico predictions about drugs and RS. One possible outcome of this is a determination of the drug potential of nontoxic RS. ADME estimation, QSAR research, molecular docking, bioactivity prediction, and toxicity testing all involve impurity profiling. Before committing to DD, RS with minimal toxicity can be utilised in silico. The efficacy of molecular docking in getting a medication to market is still debated despite its refinement and improvement. Biomedical labs and pharmaceutical companies were hesitant to adopt molecular docking algorithms for drug screening despite their decades of development and improvement. Despite the widespread use of "force fields" to represent the energy exerted within and between molecules, it has been impossible to reliably predict or compute the binding affinities between proteins and potential binding medications.
Collapse
Affiliation(s)
- Smita Singh
- Department of Pharmaceutics, SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi NCR Campus, Modinagar, Ghaziabad, India
| | - Pranjal Kumar Singh
- Department of Pharmaceutics, SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi NCR Campus, Modinagar, Ghaziabad, India
| | - Kapil Sachan
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
| | - Mukesh Kumar
- IIMT College of Medical Sciences, IIMT University, Ganga Nagar, Meerut, India
| | - Poonam Bhardwaj
- NKBR College of Pharmacy and Research Center, Phaphunda, Meerut, India
| |
Collapse
|
3
|
Ren P, Li S, Wang S, Zhang X, Bai F. Computer-Aided Prediction of the Interactions of Viral Proteases with Antiviral Drugs: Antiviral Potential of Broad-Spectrum Drugs. Molecules 2023; 29:225. [PMID: 38202808 PMCID: PMC10780089 DOI: 10.3390/molecules29010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Human society is facing the threat of various viruses. Proteases are promising targets for the treatment of viral infections. In this study, we collected and profiled 170 protease sequences from 125 viruses that infect humans. Approximately 73 of them are viral 3-chymotrypsin-like proteases (3CLpro), and 11 are pepsin-like aspartic proteases (PAPs). Their sequences, structures, and substrate characteristics were carefully analyzed to identify their conserved nature for proposing a pan-3CLpro or pan-PAPs inhibitor design strategy. To achieve this, we used computational prediction and modeling methods to predict the binding complex structures for those 73 3CLpro with 4 protease inhibitors of SARS-CoV-2 and 11 protease inhibitors of HCV. Similarly, the complex structures for the 11 viral PAPs with 9 protease inhibitors of HIV were also obtained. The binding affinities between these compounds and proteins were also evaluated to assess their pan-protease inhibition via MM-GBSA. Based on the drugs targeting viral 3CLpro and PAPs, repositioning of the active compounds identified several potential uses for these drug molecules. As a result, Compounds 1-2, modified based on the structures of Ray1216 and Asunaprevir, indicate potential inhibition of DENV protease according to our computational simulation results. These studies offer ideas and insights for future research in the design of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Pengxuan Ren
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
| | - Shiwei Li
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
| | - Shihang Wang
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
| | - Xianglei Zhang
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
| | - Fang Bai
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
4
|
Dakshinamoorthy A, Asmita A, Senapati S. Comprehending the Structure, Dynamics, and Mechanism of Action of Drug-Resistant HIV Protease. ACS OMEGA 2023; 8:9748-9763. [PMID: 36969469 PMCID: PMC10034783 DOI: 10.1021/acsomega.2c08279] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Since the emergence of the Human Immunodeficiency Virus (HIV) in the 1980s, strategies to combat HIV-AIDS are continuously evolving. Among the many tested targets to tackle this virus, its protease enzyme (PR) was proven to be an attractive option that brought about numerous research publications and ten FDA-approved drugs to inhibit the PR activity. However, the drug-induced mutations in the enzyme made these small molecule inhibitors ineffective with prolonged usage. The research on HIV PR, therefore, remains a thrust area even today. Through this review, we reiterate the importance of understanding the various structural and functional components of HIV PR in redesigning the structure-based small molecule inhibitors. We also discuss at length the currently available FDA-approved drugs and how these drug molecules induced mutations in the enzyme structure. We then recapitulate the reported mechanisms on how these drug-resistant variants remain sufficiently active to cleave the natural substrates. We end with the future scope covering the recently proposed strategies that show promise to deal with the mutations.
Collapse
|
5
|
Sultan A, Ali R, Ishrat R, Ali S. Anti-HIV and anti-HCV small molecule protease inhibitors in-silico repurposing against SARS-CoV-2 M pro for the treatment of COVID-19. J Biomol Struct Dyn 2022; 40:12848-12862. [PMID: 34569411 DOI: 10.1080/07391102.2021.1979097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is a global health emergency warranting development and implementation of targeted treatment. The enzyme main protease (Mpro; also known as 3C-like protease) is emerging as an attractive drug target. This enzyme plays an indispensable role in processing the translated polyproteins of viral RNA. Inhibiting the activity of Mpro would wedge viral replication. To facilitate the discovery of targeted therapy for COVID-19, we carried out the structure-assisted repurposing of existing protease inhibiting small molecules to target SARS-CoV-2 Mpro. Based on the structure of SARS-CoV-2 Mpro, here we report the small drug molecule namely saquinavir as its potent inhibitor. Findings support the premise that this promising antiviral protease inhibiting small drug molecule can be validated and implemented for the treatment and clinical management of COVID-19 pandemic disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Armiya Sultan
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Rafat Ali
- Computational Laboratory, Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Romana Ishrat
- Computational Laboratory, Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Sher Ali
- Department of Life Sciences, Sharda University, Greater Noida, UP, India
| |
Collapse
|
6
|
Maiti A, Hedger AK, Myint W, Balachandran V, Watts JK, Schiffer CA, Matsuo H. Structure of the catalytically active APOBEC3G bound to a DNA oligonucleotide inhibitor reveals tetrahedral geometry of the transition state. Nat Commun 2022; 13:7117. [PMID: 36402773 PMCID: PMC9675756 DOI: 10.1038/s41467-022-34752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022] Open
Abstract
APOBEC3 proteins (A3s) are enzymes that catalyze the deamination of cytidine to uridine in single-stranded DNA (ssDNA) substrates, thus playing a key role in innate antiviral immunity. However, the APOBEC3 family has also been linked to many mutational signatures in cancer cells, which has led to an intense interest to develop inhibitors of A3's catalytic activity as therapeutics as well as tools to study A3's biochemistry, structure, and cellular function. Recent studies have shown that ssDNA containing 2'-deoxy-zebularine (dZ-ssDNA) is an inhibitor of A3s such as A3A, A3B, and A3G, although the atomic determinants of this activity have remained unknown. To fill this knowledge gap, we determined a 1.5 Å resolution structure of a dZ-ssDNA inhibitor bound to active A3G. The crystal structure revealed that the activated dZ-H2O mimics the transition state by coordinating the active site Zn2+ and engaging in additional stabilizing interactions, such as the one with the catalytic residue E259. Therefore, this structure allowed us to capture a snapshot of the A3's transition state and suggests that developing transition-state mimicking inhibitors may provide a new opportunity to design more targeted molecules for A3s in the future.
Collapse
Affiliation(s)
- Atanu Maiti
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Adam K. Hedger
- grid.168645.80000 0001 0742 0364Institute for Drug Resistance, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Wazo Myint
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Vanivilasini Balachandran
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Jonathan K. Watts
- grid.168645.80000 0001 0742 0364RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Celia A. Schiffer
- grid.168645.80000 0001 0742 0364Institute for Drug Resistance, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Hiroshi Matsuo
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| |
Collapse
|
7
|
Alikhani A, Ghazaiean M, Ghasemian R, Khademloo M. Atazanavir versus lopinavir on Covid-19 infection: A retrospective protease inhibitors comparative study 2020. CASPIAN JOURNAL OF INTERNAL MEDICINE 2022; 13:173-179. [PMID: 35872684 PMCID: PMC9272962 DOI: 10.22088/cjim.13.0.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 11/07/2022]
Abstract
Background Evaluation of protease inhibitors (PIs) is important in terms of prescribing an effective regimen for reducing mortality and hospitalization in Covid-19. Therefore, follow-up of patients better determines the characteristics of existing regimens. Methods We retrospectively evaluated the demographic, co-morbidities, gastrointestinal (GI) and liver complications of patients at two teaching hospitals from the first of March to the end of July 2020. All patients received one of two recommended regimens including hydroxychloroquine (HCQ) (400 mg BD on the first day and then 200 mg BD) plus atazanavir/ritonavir (ATV) (300/100 mg daily) or HCQ with the same dose plus lopinavir/ritonavir (Kaletra) (400/100 mg BD) for 5-7 days. Results We chose 170 cases that received 2 different regimens. In group one, 85(57.6% males) patients received Kaletra and HCQ and group two, 85 (55.3% males) patients received ATV and HCQ. The study of hospitalization in both groups showed no difference in more or less than 5 days hospitalization. (P=0.757) Comparison of mortality rates has not shown a significant difference including 19 (22.4%) deaths in group 1 and 15(17.6%) deaths in group 2 (P=0.443). Nausea followed by diarrhea was the most common side effects in group 1. But no side effects were reported in group 2 (P=0.000). Abnormal liver function tests (LFTs) were seen in both groups. Conclusion Comparison of hospitalization and mortality were not statistically significant. It seems that a respect to similar effect on mortality and hospitalization. ATV regimen is superior to Kaletra especially for better GI tolerance and less daily pills.
Collapse
Affiliation(s)
- Ahmad Alikhani
- Department of Infectious Diseases, Antimicrobial Resistance Research Center and Communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mobin Ghazaiean
- School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roya Ghasemian
- Department of Infectious Diseases, Antimicrobial Resistance Research Center and Communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran,Correspondence: Roya Ghasemian, Department of Infectious Diseases, Antimicrobial Resistance Research Center and Communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran. E-mail: , Tel: 0098 1133378840, Fax: 0098 1133378840
| | - Mohammad Khademloo
- Department of Community Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Shaker B, Ahmad S, Lee J, Jung C, Na D. In silico methods and tools for drug discovery. Comput Biol Med 2021; 137:104851. [PMID: 34520990 DOI: 10.1016/j.compbiomed.2021.104851] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 12/28/2022]
Abstract
In the past, conventional drug discovery strategies have been successfully employed to develop new drugs, but the process from lead identification to clinical trials takes more than 12 years and costs approximately $1.8 billion USD on average. Recently, in silico approaches have been attracting considerable interest because of their potential to accelerate drug discovery in terms of time, labor, and costs. Many new drug compounds have been successfully developed using computational methods. In this review, we briefly introduce computational drug discovery strategies and outline up-to-date tools to perform the strategies as well as available knowledge bases for those who develop their own computational models. Finally, we introduce successful examples of anti-bacterial, anti-viral, and anti-cancer drug discoveries that were made using computational methods.
Collapse
Affiliation(s)
- Bilal Shaker
- Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Jingyu Lee
- Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chanjin Jung
- Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
9
|
DFT investigation of atazanavir as potential inhibitor for 2019-nCoV coronavirus M protease. J Mol Struct 2021; 1228:129461. [PMID: 33100379 PMCID: PMC7568473 DOI: 10.1016/j.molstruc.2020.129461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/01/2022]
Abstract
Atazanavir (ATZ) is an antiviral drug synthesized.ATZ is being investigated for potential application against the Coronavirus 2019-nCoV. To find candidate drugs for 2019-nCoV, we have carried out a computational study to screen for effective available drug ATZ which may work as an inhibitor for the Mpro of 2019-nCoV. In the present work, the first time the molecular structure of ATZ molecule has been studied using Density Functional Theory (CAMB3LYP/6-31G*) in solvent water. The electronic properties, atomic charges, MEP, NBO analysis, and excitation energies of ATZ have also been studied. The interaction of ATZ compound with the Coronavirus was performed by molecular docking studies.
Collapse
|
10
|
Xu L, Wang LC, Su BM, Xu XQ, Lin J. Multi-enzyme cascade for improving β-hydroxy-α-amino acids production by engineering L-threonine transaldolase and combining acetaldehyde elimination system. BIORESOURCE TECHNOLOGY 2020; 310:123439. [PMID: 32361648 DOI: 10.1016/j.biortech.2020.123439] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
L-threonine transaldolase(PsLTTA) could asymmetric synthesize β-hydroxy-α-amino acids (HAAs) with excellentstereoselectivity, while the poor yield limited its further application. Here we provided a combinatorial strategy to improve HAAs production, by directed evolution of PsLTTA towards enhanced activity and introducing an acetaldehyde elimination system to avoid acetaldehyde over-accumulation. A novel high throughput screening (HTS) method for evaluating PsLTTA activity was developed andapplied for directed evolution of PsLTTA. Subsequently, we co-expressedalcohol dehydrogenase andformate dehydrogenase to construct an acetaldehyde elimination system toremove acetaldehyde inhibition.Moreover, the above positive strategies were integrated. As a result,the (2S,3R)-p-methylsulfonyl phenylserine yield reached 154.0 mM andwith 94.6% devalue, the highest productivity and stereoselectivity of (2S,3R)-HAAs reported by enzymatic synthesis so far. Taken together, our studies provided an efficient and green route for chiral synthesis of (2S,3R)-HAAs, which might contribute to the industrialization production of these useful building blocks.
Collapse
Affiliation(s)
- Lian Xu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Li-Chao Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Bing-Mei Su
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xin-Qi Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Juan Lin
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
11
|
Giacomelli A, Pezzati L, Rusconi S. The crosstalk between antiretrovirals pharmacology and HIV drug resistance. Expert Rev Clin Pharmacol 2020; 13:739-760. [PMID: 32538221 DOI: 10.1080/17512433.2020.1782737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The clinical development of antiretroviral drugs has been followed by a rapid and concomitant development of HIV drug resistance. The development and spread of HIV drug resistance is due on the one hand to the within-host intrinsic HIV evolutionary rate and on the other to the wide use of low genetic barrier antiretrovirals. AREAS COVERED We searched PubMed and Embase on 31 January 2020, for studies reporting antiretroviral resistance and pharmacology. In this review, we assessed the molecular target and mechanism of drug resistance development of the different antiretroviral classes focusing on the currently approved antiretroviral drugs. Then, we assessed the main pharmacokinetic/pharmacodynamic of the antiretrovirals. Finally, we retraced the history of antiretroviral treatment and its interconnection with antiretroviral worldwide resistance development both in , and middle-income countries in the perspective of 90-90-90 World Health Organization target. EXPERT OPINION Drug resistance development is an invariably evolutionary driven phenomenon, which challenge the 90-90-90 target. In high-income countries, the antiretroviral drug resistance seems to be stable since the last decade. On the contrary, multi-intervention strategies comprehensive of broad availability of high genetic barrier regimens should be implemented in resource-limited setting to curb the rise of drug resistance.
Collapse
Affiliation(s)
- Andrea Giacomelli
- III Infectious Disease Unit, ASST-FBF-Sacco , Milan, Italy.,Department of Biomedical and Clinical Sciences DIBIC L. Sacco, University of Milan , Milan, Italy
| | - Laura Pezzati
- III Infectious Disease Unit, ASST-FBF-Sacco , Milan, Italy.,Department of Biomedical and Clinical Sciences DIBIC L. Sacco, University of Milan , Milan, Italy
| | - Stefano Rusconi
- III Infectious Disease Unit, ASST-FBF-Sacco , Milan, Italy.,Department of Biomedical and Clinical Sciences DIBIC L. Sacco, University of Milan , Milan, Italy
| |
Collapse
|
12
|
Synthesizing Chiral Drug Intermediates by Biocatalysis. Appl Biochem Biotechnol 2020; 192:146-179. [DOI: 10.1007/s12010-020-03272-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/13/2020] [Indexed: 01/16/2023]
|
13
|
Shee PK, Ratnayake ND, Walter T, Goethe O, Onyeozili EN, Walker KD. Exploring the Scope of an α/β-Aminomutase for the Amination of Cinnamate Epoxides to Arylserines and Arylisoserines. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | | | | | - Edith Ndubuaku Onyeozili
- Department of Chemistry, Florida Agricultural & Mechanical University, Tallahassee, Florida 32307, United States
| | | |
Collapse
|
14
|
Perazzolo S, Shireman LM, Koehn J, McConnachie LA, Kraft JC, Shen DD, Ho RJY. Three HIV Drugs, Atazanavir, Ritonavir, and Tenofovir, Coformulated in Drug-Combination Nanoparticles Exhibit Long-Acting and Lymphocyte-Targeting Properties in Nonhuman Primates. J Pharm Sci 2018; 107:3153-3162. [PMID: 30121315 DOI: 10.1016/j.xphs.2018.07.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022]
Abstract
Drug-combination nanoparticles (DcNPs) administered subcutaneously represent a potential long-acting lymphatic-targeting treatment for HIV infection. The DcNP containing lopinavir (LPV)-ritonavir (RTV)-tenofovir (TFV), Targeted-Long-Acting-Antiretroviral-Therapy product candidate 101 (TLC-ART 101), has shown to provide long-acting lymphocyte-targeting performance in nonhuman primates. To extend the TLC-ART platform, we replaced TLC-ART 101 LPV with second-generation protease inhibitor, atazanavir (ATV). Pharmacokinetics of the ATV-RTV-TFV DcNP was assessed in macaques, in comparison to the equivalent free drug formulation and to the TLC-ART 101. After single subcutaneous administration of the DcNP formulation, ATV, RTV, and TFV concentrations were sustained in plasma for up to 14 days, and in peripheral blood mononuclear cells for 8 to 14 days, compared with 1 to 2 days in those macaques treated with free drug combination. By 1 week, lymph node mononuclear cells showed significant levels for all 3 drugs from DcNPs, whereas the free controls were undetectable. Compared with TLC-ART 101, the ATV-RTV-TFV DcNP exhibited similar lymphocyte-targeted long-acting features for all 3 drugs and similar pharmacokinetics for RTV and TFV, whereas some pharmacokinetic differences were observed for ATV versus LPV. The present study demonstrated the flexibility of the TLC-ART's DcNP platform to include different antiretroviral combinations that produce targeted long-acting effects on both plasma and cells.
Collapse
Affiliation(s)
- Simone Perazzolo
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195
| | - Laura M Shireman
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195
| | - Josefin Koehn
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195
| | - Lisa A McConnachie
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195
| | - John C Kraft
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195
| | - Danny D Shen
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195; Department of Bioengineering, University of Washington, Seattle, Washington 98195.
| |
Collapse
|
15
|
Humpolíčková J, Weber J, Starková J, Mašínová E, Günterová J, Flaisigová I, Konvalinka J, Majerová T. Inhibition of the precursor and mature forms of HIV-1 protease as a tool for drug evaluation. Sci Rep 2018; 8:10438. [PMID: 29992979 PMCID: PMC6041310 DOI: 10.1038/s41598-018-28638-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022] Open
Abstract
HIV-1 protease (PR) is a homodimeric enzyme that is autocatalytically cleaved from the Gag-Pol precursor. Known PR inhibitors bind the mature enzyme several orders of magnitude more strongly than the PR precursor. Inhibition of PR at the precursor level, however, may stop the process at its rate-limiting step before the proteolytic cascade is initiated. Due to its structural heterogeneity, limited solubility and autoprocessing, the PR precursor is difficult to access by classical methods, and limited knowledge regarding precursor inhibition is available. Here, we describe a cell-based assay addressing precursor inhibition. We used a reporter molecule containing the transframe (TFP) and p6* peptides, PR, and N-terminal fragment of reverse transcriptase flanked by the fluorescent proteins mCherry and EGFP on its N- and C- termini, respectively. The level of FRET between EGFP and mCherry indicates the amount of unprocessed reporter, allowing specific monitoring of precursor inhibition. The inhibition can be quantified by flow cytometry. Additionally, two microscopy techniques confirmed that the reporter remains unprocessed within individual cells upon inhibition. We tested darunavir, atazanavir and nelfinavir and their combinations against wild-type PR. Shedding light on an inhibitor’s ability to act on non-mature forms of PR may aid novel strategies for next-generation drug design.
Collapse
Affiliation(s)
- Jana Humpolíčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Jana Starková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Eva Mašínová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Jana Günterová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Iva Flaisigová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University in Prague, 12843, Prague, Czech Republic
| | - Taťána Majerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610, Prague 6, Czech Republic.
| |
Collapse
|
16
|
Sharma MC. Structural requirements ofN-aryl-oxazolidinone-5-carboxamide derivatives for anti-HIV protease activity using molecular modelling techniques. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2013.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mukesh C. Sharma
- Drug Research Laboratory, School of Pharmacy, Devi Ahilya University, Takshila Campus, Khandwa Road, Indore, Madhya Pradesh 452001, India
| |
Collapse
|
17
|
Abstract
Chirality is a key factor in the safety and efficacy of many drug products and thus the production of single enantiomers of drug intermediates and drugs has become important and state of the art in the pharmaceutical industry. There has been an increasing awareness of the enormous potential of microorganisms and enzymes (biocatalysts) for the transformation of synthetic chemicals with high chemo-, regio- and enatioselectivities providing products in high yields and purity. In this article, biocatalytic processes are described for the synthesis of key chiral intermediates for development pharmaceuticals.
Collapse
Affiliation(s)
- Ramesh N Patel
- SLRP Associates, LLC, Consultation in Biocatalysis and Biotechnology, 572 Cabot Hill Road, Bridgewater, NJ 08807, USA.
| |
Collapse
|
18
|
Application of computational methods for anticancer drug discovery, design, and optimization. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2016; 73:411-423. [PMID: 29421286 PMCID: PMC7110968 DOI: 10.1016/j.bmhimx.2016.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 10/17/2016] [Indexed: 02/05/2023] Open
Abstract
Developing a novel drug is a complex, risky, expensive and time-consuming venture. It is estimated that the conventional drug discovery process ending with a new medicine ready for the market can take up to 15 years and more than a billion USD. Fortunately, this scenario has recently changed with the arrival of new approaches. Many novel technologies and methodologies have been developed to increase the efficiency of the drug discovery process, and computational methodologies have become a crucial component of many drug discovery programs. From hit identification to lead optimization, techniques such as ligand- or structure-based virtual screening are widely used in many discovery efforts. It is the case for designing potential anticancer drugs and drug candidates, where these computational approaches have had a major impact over the years and have provided fruitful insights into the field of cancer. In this paper, we review the concept of rational design presenting some of the most representative examples of molecules identified by means of it. Key principles are illustrated through case studies including specifically successful achievements in the field of anticancer drug design to demonstrate that research advances, with the aid of in silico drug design, have the potential to create novel anticancer drugs.
Collapse
|
19
|
Prada-Gracia D, Huerta-Yépez S, Moreno-Vargas LM. Application of computational methods for anticancer drug discovery, design, and optimization. ACTA ACUST UNITED AC 2016. [PMCID: PMC7154613 DOI: 10.1016/j.bmhime.2017.11.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Developing a novel drug is a complex, risky, expensive and time-consuming venture. It is estimated that the conventional drug discovery process ending with a new medicine ready for the market can take up to 15 years and more than a billion USD. Fortunately, this scenario has recently changed with the arrival of new approaches. Many novel technologies and methodologies have been developed to increase the efficiency of the drug discovery process, and computational methodologies have become a crucial component of many drug discovery programs. From hit identification to lead optimization, techniques such as ligand- or structure-based virtual screening are widely used in many discovery efforts. It is the case for designing potential anticancer drugs and drug candidates, where these computational approaches have had a major impact over the years and have provided fruitful insights into the field of cancer. In this paper, we review the concept of rational design presenting some of the most representative examples of molecules identified by means of it. Key principles are illustrated through case studies including specifically successful achievements in the field of anticancer drug design to demonstrate that research advances, with the aid of in silico drug design, have the potential to create novel anticancer drugs.
Collapse
Affiliation(s)
- Diego Prada-Gracia
- Department of Pharmacological Sciences, Icahn Medical Institute Building, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sara Huerta-Yépez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Liliana M. Moreno-Vargas
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- Corresponding author.
| |
Collapse
|
20
|
Hardes K, Becker GL, Lu Y, Dahms SO, Köhler S, Beyer W, Sandvig K, Yamamoto H, Lindberg I, Walz L, von Messling V, Than ME, Garten W, Steinmetzer T. Novel Furin Inhibitors with Potent Anti-infectious Activity. ChemMedChem 2015; 10:1218-31. [PMID: 25974265 DOI: 10.1002/cmdc.201500103] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 11/10/2022]
Abstract
New peptidomimetic furin inhibitors with unnatural amino acid residues in the P3 position were synthesized. The most potent compound 4-guanidinomethyl-phenylacteyl-Arg-Tle-Arg-4-amidinobenzylamide (MI-1148) inhibits furin with a Ki value of 5.5 pM. The derivatives also strongly inhibit PC1/3, whereas PC2 is less affected. Selected inhibitors were tested in cell culture for antibacterial and antiviral activity against infectious agents known to be dependent on furin activity. A significant protective effect against anthrax and diphtheria toxin was observed in the presence of the furin inhibitors. Furthermore, the spread of the highly pathogenic H5N1 and H7N1 avian influenza viruses and propagation of canine distemper virus was strongly inhibited. Inhibitor MI-1148 was crystallized in complex with human furin. Its N-terminal guanidinomethyl group in the para position of the P5 phenyl ring occupies the same position as that found previously for a structurally related inhibitor containing this substitution in the meta position, thereby maintaining all of the important P5 interactions. Our results confirm that the inhibition of furin is a promising strategy for a short-term treatment of acute infectious diseases.
Collapse
Affiliation(s)
- Kornelia Hardes
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg (Germany)
| | - Gero L Becker
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg (Germany)
| | - Yinghui Lu
- Institute of Virology, Philipps University, Hans-Meerwein-Strasse 2, Marburg (Germany)
| | - Sven O Dahms
- Protein Crystallography Group, Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena (Germany)
| | - Susanne Köhler
- Institute of Environmental and Animal Hygiene, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart (Germany)
| | - Wolfgang Beyer
- Institute of Environmental and Animal Hygiene, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart (Germany)
| | - Kirsten Sandvig
- Department of Biochemistry and Centre for Cancer Biomedicine, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo (Norway)
| | - Hiroyuki Yamamoto
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, Maryland 21201 (USA)
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, Maryland 21201 (USA)
| | - Lisa Walz
- Veterinary Medicine Division, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Germany)
| | - Veronika von Messling
- Veterinary Medicine Division, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Germany)
| | - Manuel E Than
- Protein Crystallography Group, Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena (Germany)
| | - Wolfgang Garten
- Institute of Virology, Philipps University, Hans-Meerwein-Strasse 2, Marburg (Germany)
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg (Germany).
| |
Collapse
|
21
|
Abstract
The carbamate group is a key structural motif in many approved drugs and prodrugs. There is an increasing use of carbamates in medicinal chemistry and many derivatives are specifically designed to make drug-target interactions through their carbamate moiety. In this Perspective, we present properties and stabilities of carbamates, reagents and chemical methodologies for the synthesis of carbamates, and recent applications of carbamates in drug design and medicinal chemistry.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and
Department of Medicinal Chemistry, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Margherita Brindisi
- Department of Chemistry and
Department of Medicinal Chemistry, Purdue
University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
22
|
Barreiro P, Rendón A, Rodríguez-Nóvoa S, Soriano V. Atazanavir: The Advent of a New Generation of More Convenient Protease Inhibitors. HIV CLINICAL TRIALS 2015; 6:50-61. [PMID: 15765311 DOI: 10.1310/nbl2-r2g6-6v09-ll4c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protease inhibitors (PIs) have created a new future for many HIV-infected patients. After the initial enthusiasm following its first approval, complex drug schedules and frequent toxicities of PIs prompted researchers to find alternative drugs. However, it is now clear that not all triple combinations are equally valid. Certain regimens based on the association of only reverse transcriptase inhibitors have shown high rates of virological failure, with the selection of cross-resistance mutations. The availability of new generation PIs, such as atazanavir, with improved safety profiles and more convenient administration schedules returns this drug family to the front of the HIV therapeutic armamentarium. Recent clinical studies support the assertion that atazanavir may display excellent behavior as part of first-line regimens in rescue interventions or in simplification strategies.
Collapse
Affiliation(s)
- Pablo Barreiro
- Department of Infectious Diseases, Hospital Carlos III, Madrid, Spain
| | | | | | | |
Collapse
|
23
|
Barrios A, Rendón AL, Gallego O, Martín-Carbonero L, Valer L, Ríos P, Maida I, García-Benayas T, Jiménez-Nácher I, González-Lahoz J, Soriano V. Predictors of Virological Response to Atazanavir in Protease Inhibitor-Experienced Patients. HIV CLINICAL TRIALS 2015; 5:201-5. [PMID: 15472794 DOI: 10.1310/3hl3-hhbd-wklr-xell] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Atazanavir (ATV) is the latest approved HIV protease inhibitor (PI). Even though it is very convenient (only two capsules once a day), concerns have risen about its potency. METHOD The clinical performance of ATV 400 mg once a day was examined in all PI-experienced patients who were included in the ATV expanded access program conducted in a single institution. The predictive value of baseline drug resistance HIV genotypes, ATV plasma trough levels, and the genotypic inhibitory quotient (GIQ) on the virological response at week 24 was assessed. RESULTS Data from 92 patients were analyzed. ATV was prescribed as part of a rescue intervention (45%), a simplification strategy (11%), or an attempt to ameliorate hyperlipidemias (23%) or other toxicities (16%). Tenofovir (TDF) was concomitantly used with ATV in 78% of patients. None received ritonavir boosting. In patients with detectable viremia at baseline (65%), the median HIV RNA drop was 0.7 logs. The median ATV Cmin was 0.12 microg/mL (IQR, 0.05-0.22 microg/mL), which is clearly above the IC90 (90% inhibitory concentration) for ATV in wild-type viruses. The virological response did not correlate significantly with ATV Cmin. The median number of protease resistance mutations was lower in patients showing virological response than in nonresponders (1 vs. 5; p=.07). A higher HIV RNA drop was associated with a higher GIQ (p=.02; beta=-5.4; 95% CI, -10 to -1). Only 4 patients (4%) discontinued treatment due to ATV-related toxicities (hyperbilirubinemia in 1). Bilirubin levels were associated with ATV plasma concentrations (p=.05; beta=3.2; 95% CI, -0.1 to 6.5). The rate of hypertriglyceridemia and hypercholesterolemia declined significantly with respect to baseline. CONCLUSION ATV is relatively safe and provides significant virological response in PI-experienced patients, mainly among those with a low number of protease resistance mutations. The GIQ predicts accurately the virological response in patients receiving ATV. Hyperbilirubinemia is associated with higher ATV plasma levels.
Collapse
Affiliation(s)
- Ana Barrios
- Service of Infectious Diseases, Hospital Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
De Rosa M, Unge J, Motwani HV, Rosenquist Å, Vrang L, Wallberg H, Larhed M. Synthesis of P1'-functionalized macrocyclic transition-state mimicking HIV-1 protease inhibitors encompassing a tertiary alcohol. J Med Chem 2014; 57:6444-57. [PMID: 25054811 DOI: 10.1021/jm500434q] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Seven novel tertiary alcohol containing linear HIV-1 protease inhibitors (PIs), decorated at the para position of the benzyl group in the P1' side with (hetero)aromatic moieties, were synthesized and biologically evaluated. To study the inhibition and antiviral activity effect of P1-P3 macrocyclization, 14- and 15-membered macrocyclic PIs were prepared by ring-closing metathesis of the corresponding linear PIs. The macrocycles were more active than the linear precursors and compound 10f, with a 2-thiazolyl group in the P1' position, was the most potent PI of this new series (Ki 2.2 nM, EC50 0.2 μM). Co-crystallized complexes of both linear and macrocyclic PIs with the HIV-1 protease enzyme were prepared and analyzed.
Collapse
Affiliation(s)
- Maria De Rosa
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University , P.O. Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
25
|
Recent patents and emerging therapeutics for HIV infections: a focus on protease inhibitors. Pharm Pat Anal 2014; 2:513-38. [PMID: 24237127 DOI: 10.4155/ppa.13.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inclusion of protease inhibitors (PIs) in highly active antiretroviral therapy has significantly improved clinical outcomes in HIV-1-infected patients. To date, PIs are considered to be the most important therapeutic agents for the treatment of HIV infections. Despite high anti-HIV-1 potency, poor oral bioavailability of PIs has been a major concern. For achieving therapeutic concentrations, large doses of PIs are administered, which results in unacceptable systemic toxicities. Such severe and long-term toxicities necessitate the development of safer and potentially promising PIs. Recently, considerable attention has been paid to the development of newer compounds capable of inhibiting wild-type and resistant HIV-1 protease. Some of these PIs have displayed potent HIV-1 protease inhibitory activity. In this review, we have made an attempt to provide an overview on clinically approved and newly developing PIs, and related recent patents in the development of novel PIs.
Collapse
|
26
|
Inhibitors of the Human Immunodeficiency Virus Protease. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Inhibitors of the tick-borne, hemorrhagic fever-associated flaviviruses. Antimicrob Agents Chemother 2014; 58:3206-16. [PMID: 24663025 DOI: 10.1128/aac.02393-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
No antiviral therapies are available for the tick-borne flaviviruses associated with hemorrhagic fevers: Kyasanur Forest disease virus (KFDV), both classical and the Alkhurma hemorrhagic fever virus (AHFV) subtype, and Omsk hemorrhagic fever virus (OHFV). We tested compounds reported to have antiviral activity against members of the Flaviviridae family for their ability to inhibit AHFV replication. 6-Azauridine (6-azaU), 2'-C-methylcytidine (2'-CMC), and interferon alpha 2a (IFN-α2a) inhibited the replication of AHFV and also KFDV, OHFV, and Powassan virus. The combination of IFN-α2a and 2'-CMC exerted an additive antiviral effect on AHFV, and the combination of IFN-α2a and 6-azaU was moderately synergistic. The combination of 2'-CMC and 6-azaU was complex, being strongly synergistic but with a moderate level of antagonism. The antiviral activity of 6-azaU was reduced by the addition of cytidine but not guanosine, suggesting that it acted by inhibiting pyrimidine biosynthesis. To investigate the mechanism of action of 2'-CMC, AHFV variants with reduced susceptibility to 2'-CMC were selected. We used a replicon system to assess the substitutions present in the selected AHFV population. A double NS5 mutant, S603T/C666S, and a triple mutant, S603T/C666S/M644V, were more resistant to 2'-CMC than the wild-type replicon. The S603T/C666S mutant had a reduced level of replication which was increased when M644V was also present, although the replication of this triple mutant was still below that of the wild type. The S603 and C666 residues were predicted to lie in the active site of the AHFV NS5 polymerase, implicating the catalytic center of the enzyme as the binding site for 2'-CMC.
Collapse
|
28
|
Cella LN, Biswas P, Yates MV, Mulchandani A, Chen W. Quantitative assessment of in vivo HIV protease activity using genetically engineered QD-based FRET probes. Biotechnol Bioeng 2014; 111:1082-7. [PMID: 24473897 DOI: 10.1002/bit.25199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/09/2014] [Accepted: 01/21/2014] [Indexed: 11/09/2022]
Abstract
HIV protease plays a central role in its life cycle leading to release of functional viral particles. It has been successfully used as a therapeutic target to block HIV infection. Several protease inhibitors (PIs) are currently being employed as a part of anti-HIV therapy. However, the constant genetic drift in the virus leads to accumulation of mutations in both cleavage site and the protease, resulting in resistance and failure of therapy. We reported the use of a quantum dot (QD)-based protein probe for the in vivo monitoring of HIV-1 protease activity based on fluorescence resonance energy transfer. In the current study, we demonstrate the utility of this approach by quantifying the in vivo cleavage rates of three known protease and cleavage site mutations in the presence or absence of different PIs. The changes in IC50 values for the different PIs were similar to that observed in patients, validating our assay as a rapid platform for PI screening.
Collapse
Affiliation(s)
- Lakshmi N Cella
- Department of Chemical and Environmental Engineering, University of California, Riverside, California
| | | | | | | | | |
Collapse
|
29
|
Turpin JA. The next generation of HIV/AIDS drugs: novel and developmental antiHIV drugs and targets. Expert Rev Anti Infect Ther 2014; 1:97-128. [PMID: 15482105 DOI: 10.1586/14787210.1.1.97] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are presently 42 million people worldwide living with HIV/AIDS, the majority of which have limited access to antiretrovirals. Even if worldwide penetration was possible, our current chemotherapeutic strategies still suffer from issues of cost, patient compliance, deleterious acute and chronic side effects, emerging single and multidrug resistance, and generalized treatment and economic issues. Even our best antiretroviral therapeutic strategy, highly active antiretroviral therapy (HAART), falls short of completely suppressing HIV replication. Therefore, expansion of current therapeutic options by discovering new antiretrovirals and targets will be critical in the coming years. This review addresses the current status of reverse transcriptase and protease inhibitor development, and summarizes the progress in emerging classes of HIV inhibitors, including entry (T-20, T-1249), coreceptor (SCH-C, SCH-D), integrase (beta-Diketos) and p7 nucleocapsid Zn finger inhibitors (thioesters and PATEs). In addition, the processes of virus entry, PIC transport to the nucleus, HIV interaction with nuclear pores, Tat function, Rev function and virus budding (Tsg101 and ubiquitination) are examined, and proof of concept inhibitors and potential antiviral targets discussed.
Collapse
Affiliation(s)
- Jim A Turpin
- HowPin Consulting International, PO Box B Frederick, MD 21705, USA.
| |
Collapse
|
30
|
Shen Y, Altman MD, Ali A, Nalam MNL, Cao H, Rana TM, Schiffer CA, Tidor B. Testing the substrate-envelope hypothesis with designed pairs of compounds. ACS Chem Biol 2013; 8:2433-41. [PMID: 23952265 PMCID: PMC3833293 DOI: 10.1021/cb400468c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Acquired resistance to therapeutic
agents is a significant barrier to the development of clinically effective
treatments for diseases in which evolution occurs on clinical time
scales, frequently arising from target mutations. We previously reported
a general strategy to design effective inhibitors for rapidly mutating
enzyme targets, which we demonstrated for HIV-1 protease inhibition
[Altman et al. J. Am. Chem. Soc. 2008, 130, 6099–6113]. Specifically, we developed a computational inverse
design procedure with the added constraint that designed inhibitors
bind entirely inside the substrate envelope, a consensus volume occupied
by natural substrates. The rationale for the substrate-envelope constraint
is that it prevents designed inhibitors from making interactions beyond
those required by substrates and thus limits the availability of mutations
tolerated by substrates but not by designed inhibitors. The strategy
resulted in subnanomolar inhibitors that bind robustly across a clinically
derived panel of drug-resistant variants. To further test the substrate-envelope
hypothesis, here we have designed, synthesized, and assayed derivatives
of our original compounds that are larger and extend outside the substrate
envelope. Our designs resulted in pairs of compounds that are very
similar to one another, but one respects and one violates the substrate
envelope. The envelope-respecting inhibitor demonstrates robust binding
across a panel of drug-resistant protease variants, whereas the envelope-violating
one binds tightly to wild type but loses affinity to at least one
variant. This study provides strong support for the substrate-envelope
hypothesis as a design strategy for inhibitors that reduce susceptibility
to resistance mutations.
Collapse
Affiliation(s)
| | | | | | | | | | - Tariq M. Rana
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037, United States
| | | | | |
Collapse
|
31
|
Patel RN. Biocatalytic synthesis of chiral alcohols and amino acids for development of pharmaceuticals. Biomolecules 2013; 3:741-77. [PMID: 24970190 PMCID: PMC4030968 DOI: 10.3390/biom3040741] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/22/2013] [Accepted: 09/23/2013] [Indexed: 01/18/2023] Open
Abstract
Chirality is a key factor in the safety and efficacy of many drug products and thus the production of single enantiomers of drug intermediates and drugs has become increasingly important in the pharmaceutical industry. There has been an increasing awareness of the enormous potential of microorganisms and enzymes derived there from for the transformation of synthetic chemicals with high chemo-, regio- and enatioselectivities. In this article, biocatalytic processes are described for the synthesis of chiral alcohols and unntural aminoacids for pharmaceuticals.
Collapse
Affiliation(s)
- Ramesh N Patel
- SLRP Associates Consultation in Biotechnology, 572 Cabot Hill Road, Bridgewater, NJ 08807, USA.
| |
Collapse
|
32
|
Preclinical pharmacokinetics and tissue distribution of long-acting nanoformulated antiretroviral therapy. Antimicrob Agents Chemother 2013; 57:3110-20. [PMID: 23612193 DOI: 10.1128/aac.00267-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Long-acting injectable nanoformulated antiretroviral therapy (nanoART) was developed with the explicit goal of improving medicine compliance and for drug targeting of viral tissue reservoirs. Prior nanoART studies completed in humanized virus-infected mice demonstrated sustained antiretroviral responses. However, the pharmacokinetics (PK) and tissue distribution of nanoART were not characterized. To this end, the PK and tissue distribution of nanoformulated atazanavir (ATV) and ritonavir (RTV) injected subcutaneously or intramuscularly in mice and monkeys were evaluated. Fourteen days after injection, ATV and RTV levels were up to 13-, 41-, and 4,500-fold higher than those resulting from native-drug administration in plasma, tissues, and at the site of injection, respectively. At nanoART doses of 10, 50, 100, and 250 mg/kg of body weight, relationships of more- and less-than-proportional increases in plasma and tissue levels with dose increases were demonstrated with ATV and RTV. Multiple-dose regimens showed serum and tissue concentrations up to 270-fold higher than native-drug concentrations throughout 8 weeks of study. Importantly, nanoART was localized in nonlysosomal compartments in tissue macrophages, creating intracellular depot sites. Reflective data were obtained in representative rhesus macaque studies. We conclude that nanoART demonstrates blood and tissue antiretroviral drug levels that are enhanced compared to those of native drugs. The sustained and enhanced PK profile of nanoART is, at least in part, the result of the sustained release of ATV and RTV from tissue macrophases and at the site of injection.
Collapse
|
33
|
Identification of rtl1, a retrotransposon-derived imprinted gene, as a novel driver of hepatocarcinogenesis. PLoS Genet 2013; 9:e1003441. [PMID: 23593033 PMCID: PMC3616914 DOI: 10.1371/journal.pgen.1003441] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/22/2013] [Indexed: 12/23/2022] Open
Abstract
We previously utilized a Sleeping Beauty (SB) transposon mutagenesis screen to discover novel drivers of HCC. This approach identified recurrent mutations within the Dlk1-Dio3 imprinted domain, indicating that alteration of one or more elements within the domain provides a selective advantage to cells during the process of hepatocarcinogenesis. For the current study, we performed transcriptome and small RNA sequencing to profile gene expression in SB–induced HCCs in an attempt to clarify the genetic element(s) contributing to tumorigenesis. We identified strong induction of Retrotransposon-like 1 (Rtl1) expression as the only consistent alteration detected in all SB–induced tumors with Dlk1-Dio3 integrations, suggesting that Rtl1 activation serves as a driver of HCC. While previous studies have identified correlations between disrupted expression of multiple Dlk1-Dio3 domain members and HCC, we show here that direct modulation of a single domain member, Rtl1, can promote hepatocarcinogenesis in vivo. Overexpression of Rtl1 in the livers of adult mice using a hydrodynamic gene delivery technique resulted in highly penetrant (86%) tumor formation. Additionally, we detected overexpression of RTL1 in 30% of analyzed human HCC samples, indicating the potential relevance of this locus as a therapeutic target for patients. The Rtl1 locus is evolutionarily derived from the domestication of a retrotransposon. In addition to identifying Rtl1 as a novel driver of HCC, our study represents one of the first direct in vivo demonstrations of a role for such a co-opted genetic element in promoting carcinogenesis. HCC is the third deadliest cancer worldwide, largely due to a lack of effective treatment options. Therapeutic approaches targeted at the molecular mechanisms underlying tumor formation and progression have shown great efficacy for treating other tumor types. Unfortunately, however, much remains to be learned about the molecular pathogenesis of HCC. There is an urgent need to identify and characterize genetic alterations that drive HCC in order to facilitate the development of more effective targeted therapeutics for patients. Here, we present data showing that recurrent mutations identified in a mouse model of HCC result in overexpression of the Rtl1 gene. We have validated Rtl1 as a driver of HCC by demonstrating that its overexpression in mouse liver causes tumor formation. We also detected overexpression of this gene in a significant proportion of human HCC samples, suggesting that it may be a relevant therapeutic target for patients with this disease.
Collapse
|
34
|
Abstract
BACKGROUND The AIDS epidemic has spread around the world at an alarming rate. Although the first generation of HIV protease inhibitors, including indinavir, nelfinavir, saquinavir, ritonavir and amprenavir, were initially effective against HIV infection, the fast emerging resistance to these agents has been a substantial and persistent problem in the treatment of AIDS. Attempts to address the resistance issue with 'salvage therapy' consisting of high doses of multiple protease inhibitors have only been moderately successful owing to the high level of cross-resistance and toxicities associated with the protease inhibitors. OBJECTIVE To study the second generation HIV protease inhibitors against resistant virus. METHOD This review highlights new developments achieved by various organizations to address the challenge of high level resistance of current therapies since 2000. CONCLUSION All second generation protease inhibitors used in patients who experienced extensive treatment require ritonavir as a pharmacological boosting agent to increase the drug level in the plasma, but there is toxicity associated with such a practice. Accordingly, there remains a need for new protease inhibitors with improved effectiveness against the resistant viral variants. A third generation protease inhibitor will require no boosting agent while maintaining high potency against resistant virus.
Collapse
Affiliation(s)
- Zhijian Lu
- Merck & Co., Inc., Merck Research Laboratories, Department of Medicinal Chemistry, R800-C307, PO Box 2000, Rahway, NJ 08809, USA +1 732 594 4392 ; +1 732 594 9473 ;
| |
Collapse
|
35
|
King JR, Kakuda TN, Paul S, Tse MM, Acosta EP, Becker SL. Pharmacokinetics of Saquinavir With Atazanavir or Low-Dose Ritonavir Administered Once Daily (ASPIRE I) or Twice Daily (ASPIRE II) in Seronegative Volunteers. J Clin Pharmacol 2013; 47:201-8. [PMID: 17244771 DOI: 10.1177/0091270006296763] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ASPIRE I and II were prospective, 3-way sequential crossover studies in healthy volunteers to compare the safety and pharmacokinetics of saquinavir/ritonavir (SQV/RTV) with saquinavir/atazanavir (SQV/ATV) administered either once daily (QD, ASPIRE I) or twice daily (BID, ASPIRE II). Treatments were separated by 10 days, and pharmacokinetic analyses were performed on days 11, 32, and 53. SQV pharmacokinetics were significantly higher when dosed with RTV compared to ATV (P < .05 for all comparisons). ATV pharmacokinetics were similar within treatment arms. ATV Cmin increased approximately 60%, and Cmax decreased approximately 35% with BID dosing compared with QD dosing. Women had higher exposure for all 3 protease inhibitors (PIs) compared with men after adjusting for weight. Adverse effects were primarily gastrointestinal-related with SQV/RTV and hyperbilirubinemia with SQV/ATV. Although SQV plasma concentrations were higher when coadministered with RTV, a combination of SQV/ATV administered BID may be a viable alternative in HIV-infected, PI-naive subjects intolerant to RTV.
Collapse
Affiliation(s)
- Jennifer R King
- PharmD, University of Alabama at Birmingham, Division of Clinical Pharmacology, 1530 3rd Avenue South, VH 116, Birmingham, AL 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
36
|
Zhu L, Persson A, Mahnke L, Eley T, Li T, Xu X, Agarwala S, Dragone J, Bertz R. Effect of Low-Dose Omeprazole (20 mg Daily) on the Pharmacokinetics of Multiple-Dose Atazanavir With Ritonavir in Healthy Subjects. J Clin Pharmacol 2013; 51:368-77. [DOI: 10.1177/0091270010367651] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Structural and thermodynamic basis of amprenavir/darunavir and atazanavir resistance in HIV-1 protease with mutations at residue 50. J Virol 2013; 87:4176-84. [PMID: 23365446 DOI: 10.1128/jvi.03486-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drug resistance occurs through a series of subtle changes that maintain substrate recognition but no longer permit inhibitor binding. In HIV-1 protease, mutations at I50 are associated with such subtle changes that confer differential resistance to specific inhibitors. Residue I50 is located at the protease flap tips, closing the active site upon ligand binding. Under selective drug pressure, I50V/L substitutions emerge in patients, compromising drug susceptibility and leading to treatment failure. The I50V substitution is often associated with amprenavir (APV) and darunavir (DRV) resistance, while the I50L substitution is observed in patients failing atazanavir (ATV) therapy. To explain how APV, DRV, and ATV susceptibility are influenced by mutations at residue 50 in HIV-1 protease, structural and binding thermodynamics studies were carried out on I50V/L-substituted protease variants in the compensatory mutation A71V background. Reduced affinity to both I50V/A71V and I50L/A71V double mutants is largely due to decreased binding entropy, which is compensated for by enhanced enthalpy for ATV binding to I50V variants and APV binding to I50L variants, leading to hypersusceptibility in these two cases. Analysis of the crystal structures showed that the substitutions at residue 50 affect how APV, DRV, and ATV bind the protease with altered van der Waals interactions and that the selection of I50V versus I50L is greatly influenced by the chemical moieties at the P1 position for APV/DRV and the P2 position for ATV. Thus, the varied inhibitor susceptibilities of I50V/L protease variants are largely a direct consequence of the interdependent changes in protease inhibitor interactions.
Collapse
|
38
|
Novel PCU cage diol peptides as potential targets against wild-type CSA HIV-1 protease: synthesis, biological screening and molecular modelling studies. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0350-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Fun A, Wensing AMJ, Verheyen J, Nijhuis M. Human Immunodeficiency Virus Gag and protease: partners in resistance. Retrovirology 2012; 9:63. [PMID: 22867298 PMCID: PMC3422997 DOI: 10.1186/1742-4690-9-63] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/17/2012] [Indexed: 12/26/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) maturation plays an essential role in the viral life cycle by enabling the generation of mature infectious virus particles through proteolytic processing of the viral Gag and GagPol precursor proteins. An impaired polyprotein processing results in the production of non-infectious virus particles. Consequently, particle maturation is an excellent drug target as exemplified by inhibitors specifically targeting the viral protease (protease inhibitors; PIs) and the experimental class of maturation inhibitors that target the precursor Gag and GagPol polyproteins. Considering the different target sites of the two drug classes, direct cross-resistance may seem unlikely. However, coevolution of protease and its substrate Gag during PI exposure has been observed both in vivo and in vitro. This review addresses in detail all mutations in Gag that are selected under PI pressure. We evaluate how polymorphisms and mutations in Gag affect PI therapy, an aspect of PI resistance that is currently not included in standard genotypic PI resistance testing. In addition, we consider the consequences of Gag mutations for the development and positioning of future maturation inhibitors.
Collapse
Affiliation(s)
- Axel Fun
- Department of Virology, Medical Microbiology, University Medical Center Utrecht, HP G04,614, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | | | | | | |
Collapse
|
40
|
Protease-Mediated Maturation of HIV: Inhibitors of Protease and the Maturation Process. Mol Biol Int 2012; 2012:604261. [PMID: 22888428 PMCID: PMC3410323 DOI: 10.1155/2012/604261] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/30/2012] [Indexed: 12/04/2022] Open
Abstract
Protease-mediated maturation of HIV-1 virus particles is essential for virus infectivity. Maturation occurs concomitant with immature virus particle release and is mediated by the viral protease (PR), which sequentially cleaves the Gag and Gag-Pol polyproteins into mature protein domains. Maturation triggers a second assembly event that generates a condensed conical capsid core. The capsid core organizes the viral RNA genome and viral proteins to facilitate viral replication in the next round of infection. The fundamental role of proteolytic maturation in the generation of mature infectious particles has made it an attractive target for therapeutic intervention. Development of small molecules that target the PR active site has been highly successful and nine protease inhibitors (PIs) have been approved for clinical use. This paper provides an overview of their development and clinical use together with a discussion of problems associated with drug resistance. The second-half of the paper discusses a novel class of antiretroviral drug termed maturation inhibitors, which target cleavage sites in Gag not PR itself. The paper focuses on bevirimat (BVM) the first-in-class maturation inhibitor: its mechanism of action and the implications of naturally occurring polymorphisms that confer reduced susceptibility to BVM in phase II clinical trials.
Collapse
|
41
|
Roy U, McMillan J, Alnouti Y, Gautum N, Smith N, Balkundi S, Dash P, Gorantla S, Martinez-Skinner A, Meza J, Kanmogne G, Swindells S, Cohen SM, Mosley RL, Poluektova L, Gendelman HE. Pharmacodynamic and antiretroviral activities of combination nanoformulated antiretrovirals in HIV-1-infected human peripheral blood lymphocyte-reconstituted mice. J Infect Dis 2012; 206:1577-88. [PMID: 22811299 DOI: 10.1093/infdis/jis395] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lack of adherence, inaccessibility to viral reservoirs, long-term drug toxicities, and treatment failures are limitations of current antiretroviral therapy (ART). These limitations lead to increased viral loads, medicine resistance, immunocompromise, and comorbid conditions. To this end, we developed long-acting nanoformulated ART (nanoART) through modifications of existing atazanavir, ritonavir, and efavirenz suspensions in order to establish cell and tissue drug depots to achieve sustained antiretroviral responses. NanoART's abilities to affect immune and antiviral responses, before or following human immunodeficiency virus type 1 infection were tested in nonobese severe combined immune-deficient mice reconstituted with human peripheral blood lymphocytes. Weekly subcutaneous injections of drug nanoformulations at doses from 80 mg/kg to 250 mg/kg, 1 day before and/or 1 and 7 days after viral exposure, elicited drug levels that paralleled the human median effective concentration, and with limited toxicities. NanoART treatment attenuated viral replication and preserved CD4(+) Tcell numbers beyond that seen with orally administered native drugs. These investigations bring us one step closer toward using long-acting antiretrovirals in humans.
Collapse
Affiliation(s)
- Upal Roy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Atazanavir is a selective and potent inhibitor of the HIV-1 protease. The drug is administered in combination with low-dose ritonavir, to boost atazanavir pharmacokinetics (i.e. ritonavir-boosted atazanavir), and other antiretroviral agents. The efficacy of once-daily ritonavir-boosted atazanavir plus background therapy (BT) in establishing virologic suppression in treatment-naive pediatric patients (aged 6 to <18 years) infected with HIV-1 was demonstrated in an ongoing, open-label, multicenter, phase I/II trial (PACTG 1020A). HIV-1 RNA levels of <50 or <400 copies/mL were achieved by the majority of patients (>70%) after 24 weeks' therapy, with these benefits maintained at week 48. Some treatment-experienced pediatric patients (aged 6 to <18 years) also achieved HIV-1 RNA levels of <50 or <400 copies/mL in the PACTG 1020A trial after 24 (≤45% of patients) and 48 (≤32%) weeks of treatment with ritonavir-boosted atazanavir plus BT, although the benefits of the regimen in this patient population appeared to be limited by as few as one or two protease inhibitor resistance mutations. Treatment-experienced pediatric patients (aged 10-19 years) infected with HIV-1 had mixed success in establishing/maintaining virologic suppression when they were switched from their current antiretroviral treatment regimen to once-daily ritonavir-boosted atazanavir plus BT in a small, single-center, observational study. However, some patients may have received atazanavir at a suboptimal dosage or had suboptimal susceptibility to BT agents. In the PACTG 1020A trial, use of atazanavir (with or without ritonavir) in pediatric patients aged 6 to <18 years was associated with a similar safety profile to that reported in adults.
Collapse
|
43
|
Wu X, Ohrngren P, Joshi AA, Trejos A, Persson M, Arvela RK, Wallberg H, Vrang L, Rosenquist A, Samuelsson BB, Unge J, Larhed M. Synthesis, X-ray analysis, and biological evaluation of a new class of stereopure lactam-based HIV-1 protease inhibitors. J Med Chem 2012; 55:2724-36. [PMID: 22376008 PMCID: PMC3310203 DOI: 10.1021/jm201620t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
In an effort to identify a new class of druglike HIV-1
protease
inhibitors, four different stereopure β-hydroxy γ-lactam-containing
inhibitors have been synthesized, biologically evaluated, and cocrystallized.
The impact of the tether length of the central spacer (two or three
carbons) was also investigated. A compound with a shorter tether and
(3R,4S) absolute configuration exhibited
high activity with a Ki of 2.1 nM and
an EC50 of 0.64 μM. Further optimization by decoration
of the P1′ side chain furnished an even more potent HIV-1 protease
inhibitor (Ki = 0.8 nM, EC50 = 0.04 μM). According to X-ray analysis, the new class of
inhibitors did not fully succeed in forming two symmetric hydrogen
bonds to the catalytic aspartates. The crystal structures of the complexes
further explain the difference in potency between the shorter inhibitors
(two-carbon spacer) and the longer inhibitors (three-carbon spacer).
Collapse
Affiliation(s)
- Xiongyu Wu
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
ZHANG DAW, HUANG PHILIPLIN, LEE-HUANG SYLVIA, ZHANG JOHNZH. DESIGN OF HYBRID INHIBITORS TO HIV-1 PROTEASE. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633608003915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A series of HIV-1 protease (PR) inhibitors are designed to increase the binding affinity with PR subsites based on the quantum analysis of the contributions of molecular fragments in six FDA-approved PR drugs to the total binding interaction. The binding free energies were estimated by modified linear interaction energy approach [Zoete H, Michielin O, Karplus M, J Comput Aided Mol Des17:861, 2003], in which the binding free energy is written as a linear combination of the electrostatic interaction energy between PR and the ligand, Eelec, the van der Waals interaction energy between PR and the ligand, E vdW , and the difference of the solvation free energies of the complex, the receptor and the isolated ligand, ΔG solv . The parameters of these energy terms were fitted for a training set of 14 HIV-1 protease–inhibitor complexes of known 3D structure with a correlation coefficient of 0.91 and an unsigned mean error of 0.83 kcal/mol.
Collapse
Affiliation(s)
- DA W. ZHANG
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | | | - SYLVIA LEE-HUANG
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | - JOHN Z. H. ZHANG
- Department of Chemistry, New York University, New York, NY 10003, USA
| |
Collapse
|
45
|
Patel RN. Biocatalysis: Synthesis of Key Intermediates for Development of Pharmaceuticals. ACS Catal 2011. [DOI: 10.1021/cs200219b] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ramesh N. Patel
- Biotechnology Department, Unimark Remedies, Ltd., Mumbai, India
- SLRP Associates, LLC, 572 Cabot Hill Road, Bridgewater, New Jersey 08807, United States
| |
Collapse
|
46
|
Castro HC, Abreu PA, Geraldo RB, Martins RCA, dos Santos R, Loureiro NIV, Cabral LM, Rodrigues CR. Looking at the proteases from a simple perspective. J Mol Recognit 2011; 24:165-81. [PMID: 21360607 DOI: 10.1002/jmr.1091] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteases have received enormous interest from the research and medical communities because of their significant roles in several human diseases. Some examples include the involvement of thrombin in thrombosis, HIV-1 protease in Acquired Immune Deficiency Syndrome, cruzain in Trypanosoma cruzi infection, and membrane-type 1 matrix metalloproteinase in tumor invasion and metastasis. Many efforts has been undertaken to design effective inhibitors featuring potent inhibitory activity, specificity, and metabolic stability to those proteases involved in such pathologies. Protease inhibitors usually target the active site, but some of them act by other inhibitory mechanisms. The understanding of the structure-function relationships of proteases and inhibitors has an impact on new inhibitor drugs designing. In this paper, the structures of four proteases (thrombin, HIV-protease, cruzain, and a matrix metalloproteinase) are briefly reviewed, and used as examples of the importance of proteases for the development of new treatment strategies, leading to a longer and healthier life.
Collapse
Affiliation(s)
- Helena C Castro
- LABioMol, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, 24001-970, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Achenbach CJ, Darin KM, Murphy RL, Katlama C. Atazanavir/ritonavir-based combination antiretroviral therapy for treatment of HIV-1 infection in adults. Future Virol 2011; 6:157-177. [PMID: 21731578 DOI: 10.2217/fvl.10.89] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the past 15 years, improvements in the management of HIV infection have dramatically reduced morbidity and mortality. Similarly, rapid advances in antiretroviral medications have resulted in the possibility of life-long therapy with simple and tolerable regimens. Protease inhibitors have been important medications in regimens of combination antiretroviral therapy for the treatment of HIV. One of the recommended and commonly used therapies in this class is once-daily-administered atazanavir, pharmacologically boosted with ritonavir (atazanavir/r). Clinical studies and practice have shown these drugs, in combination with other antiretroviral agents, to be potent, safe and easy to use in a variety of settings. Atazanavir/r has minimal short-term toxicity, including benign bilirubin elevation, and has less potential for long-term complications of hyperlipidemia and insulin resistance compared with other protease inhibitors. A high genetic barrier to resistance and a favorable resistance profile make it an excellent option for initial HIV treatment or as the first drug utilized in the protease inhibitors class. Atazanavir/r is also currently being studied in novel treatment strategies, including combinations with new classes of antiretrovirals to assess nucleoside reverse transcriptase inhibitor-sparing regimens. In this article we review atazanavir/r as a treatment for HIV infection and discuss the latest information on its pharmacology, efficacy and toxicity.
Collapse
Affiliation(s)
- Chad J Achenbach
- Feinberg School of Medicine & Center for Global Health, Northwestern University, Chicago, USA
| | | | | | | |
Collapse
|
48
|
Resistant mechanism against nelfinavir of subtype C human immunodeficiency virus type 1 proteases. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2010.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
In vitro characterization of GS-8374, a novel phosphonate-containing inhibitor of HIV-1 protease with a favorable resistance profile. Antimicrob Agents Chemother 2011; 55:1366-76. [PMID: 21245449 DOI: 10.1128/aac.01183-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GS-8374 is a novel bis-tetrahydrofuran HIV-1 protease (PR) inhibitor (PI) with a unique diethylphosphonate moiety. It was selected from a series of analogs containing various di(alkyl)phosphonate substitutions connected via a linker to the para position of a P-1 phenyl ring. GS-8374 inhibits HIV-1 PR with high potency (K(i) = 8.1 pM) and with no known effect on host proteases. Kinetic and thermodynamic analysis of GS-8374 binding to PR demonstrated an extremely slow off rate for the inhibitor and favorable contributions of both the enthalpic and entropic components to the total free binding energy. GS-8374 showed potent antiretroviral activity in T-cell lines, primary CD4(+) T cells (50% effective concentration [EC(50)] = 3.4 to 11.5 nM), and macrophages (EC(50) = 25.5 nM) and exhibited low cytotoxicity in multiple human cell types. The antiviral potency of GS-8374 was only moderately affected by human serum protein binding, and its combination with multiple approved antiretrovirals showed synergistic effects. When it was tested in a PhenoSense assay against a panel of 24 patient-derived viruses with high-level PI resistance, GS-8374 showed lower mean EC(50)s and lower fold resistance than any of the clinically approved PIs. Similar to other PIs, in vitro hepatic microsomal metabolism of GS-8374 was efficiently blocked by ritonavir, suggesting a potential for effective pharmacokinetic boosting in vivo. In summary, results from this broad in vitro pharmacological profiling indicate that GS-8374 is a promising candidate to be further assessed as a new antiretroviral agent with potential for clinical efficacy in both treatment-naïve and -experienced patients.
Collapse
|
50
|
Öhrngren P, Wu X, Persson M, Ekegren JK, Wallberg H, Vrang L, Rosenquist Å, Samuelsson B, Unge T, Larhed M. HIV-1 protease inhibitors with a tertiary alcohol containing transition-state mimic and various P2 and P1′ substituents. MEDCHEMCOMM 2011. [DOI: 10.1039/c1md00077b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|