1
|
Islam MR, Mondol SM, Hossen MA, Khatun MP, Selim S, Amiruzzaman, Gomes DJ, Rahaman MM. First report on comprehensive genomic analysis of a multidrug-resistant Enterobacter asburiae isolated from diabetic foot infection from Bangladesh. Sci Rep 2025; 15:424. [PMID: 39748007 PMCID: PMC11696989 DOI: 10.1038/s41598-024-84870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
Enterobacter asburiae (E. asburiae) is a gram-negative rod-shaped bacterium which has emerging significance as an opportunistic pathogen having high virulence pattern and drug resistant properties. In this study, we present the detailed analysis of the whole genome sequence of a multidrug-resistant (MDR) E. asburiae strain BDW1M3 from Bangladesh. The isolate was collected from an infected foot wound of a diabetic foot ulcer patient. Through sophisticated genomic techniques encompassing whole genome sequencing and in-depth bioinformatic analyses, this research unveils a profound understanding of the isolate's antimicrobial resistance patterns, virulence determinants, biosynthetic gene clusters, metabolic pathways and pathogenic potential. The isolate displayed resistance to Ampicillin, Fosfomycin, Cefoxitin, Tigecycline, Meropenem, Linezolid, Vancomycin antibiotics and demonstrated the capacity for biofilm formation. Several antimicrobial resistance genes such as blaACT-2,fosA2, baeR, qnrE2, vanA and numbers of virulence genes including ybaJ, csrA, barA, uvrY, pgaD, hlyD, hlyC, terC, purD were detected. Metal resistance genes investigation revealed the presence of cusCFBA operon system, and many other genes including zntA, zitB, czrB. Prophage region of Myoviridae was detected. Comparative genomics with 47 whole genome sequence (n = 47) shed light on the genetic diversity of E. asburiae strains from diverse sources and countries, with a notable observation that strains from both human and non-human origins exhibited significant pathogenicity potential, genomic and phylogenomic relations hinting at potential cross-species transmission. Pangenome analysis indicated toward an expanding pangenome of E. asburiae. Further research and in-depth comprehensive studies are required to investigate the prevalence of E. asburiae in Bangladesh and emphasize towards unraveling the bacterium's inherent pathogenic potential and the intricate molecular mechanisms that underlie its resistance traits and virulence properties.
Collapse
Affiliation(s)
- Md Rafiul Islam
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | - Md Azad Hossen
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mst Poli Khatun
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shahjada Selim
- Department of Endocrinology, Bangabandhu Sheikh Mujib Medical University, Dhaka, 1000, Bangladesh
| | - Amiruzzaman
- Department of Medicine, Sir Salimullah Medical College, Dhaka, 1000, Bangladesh
| | - Donald James Gomes
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Mizanur Rahaman
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
2
|
Ramesh V, Sivakumar R, Annamanedi M, Chandrapriya S, Isloor S, Rajendhran J, Hegde NR. Genome sequencing and comparative genomic analysis of bovine mastitis-associated non-aureus staphylococci and mammaliicocci (NASM) strains from India. Sci Rep 2024; 14:29019. [PMID: 39578587 PMCID: PMC11584863 DOI: 10.1038/s41598-024-80533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024] Open
Abstract
We describe the whole-genome sequencing and comparative genomic analysis of 22 mastitis-associated NASM strains isolated from India. The mean genome size of the strains was 2.55 Mbp, with an average GC content of 32.2%. We identified 14 different sequence types (STs) among the 22 NASM strains. Of these, ST1 and ST6 of S. chromogenes were exclusively associated with bovine mastitis. Genome-wide SNP-based minimum spanning tree revealed the intricate phylogenetic relationships among NASM strains from India, categorizing them into five major clades. Interestingly, mastitis-associated strains formed separate subclades in all the NASM species studied, indicating distinct host-specific co-evolution. The study identified 32 antimicrobial resistance (AMR) genes and 53 virulence-associated genes, providing insights into the genetic factors that could contribute to the pathogenicity of NASM species. Some virulence and AMR genes were found in the predicted genomic islands, suggesting possible horizontal transfer events.
Collapse
Affiliation(s)
- Vishnukumar Ramesh
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India
| | - Ramamoorthy Sivakumar
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India
| | | | - S Chandrapriya
- Department of Veterinary Microbiology, Veterinary College, Karnataka Veterinary Animal and Fisheries Sciences University, Bengaluru, 560024, India
| | - Shrikrishna Isloor
- Department of Veterinary Microbiology, Veterinary College, Karnataka Veterinary Animal and Fisheries Sciences University, Bengaluru, 560024, India
| | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India.
| | - Nagendra R Hegde
- National Institute of Animal Biotechnology, Hyderabad, 500032, India.
| |
Collapse
|
3
|
Arndt F, Siems K, Walker SV, Bryan NC, Leuko S, Moeller R, Boschert AL. Systematic screening of 42 vancomycin-resistant Enterococcus faecium strains for resistance, biofilm, and desiccation in simulated microgravity. NPJ Microgravity 2024; 10:103. [PMID: 39537632 PMCID: PMC11561132 DOI: 10.1038/s41526-024-00447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Vancomycin-resistant Enterococcus faecium (VRE) presents significant challenges in healthcare, particularly for hospitalized and immunocompromised patients, including astronauts with dysregulated immune function. We investigated 42 clinical E. faecium isolates in simulated microgravity (sim. µg) using a 2-D Clinostat, with standard gravity conditions (1 g) as a control. Isolates were tested against 22 antibiotics and characterized for biofilm formation and desiccation tolerance. Results showed varied responses in minimum inhibitory concentration (MIC) values for seven antibiotics after sim. µg exposure. Additionally, 55% of isolates showed a trend of increased biofilm production, and 59% improved desiccation tolerance. This investigation provides initial insights into E. faecium's changes in response to simulated spaceflight, revealing shifts in antibiotic resistance, biofilm formation, and desiccation tolerance. The observed adaptability emphasizes the need to further understand VRE's resilience to microgravity, which is crucial for preventing infections and ensuring crew health on future long-duration space missions.
Collapse
Affiliation(s)
- Franca Arndt
- Institute of Aerospace Medicine, Aerospace Microbiology, German Aerospace Center (DLR), Cologne, Germany.
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany.
| | - Katharina Siems
- Institute of Aerospace Medicine, Aerospace Microbiology, German Aerospace Center (DLR), Cologne, Germany
| | - Sarah V Walker
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany
| | - Noelle C Bryan
- Department of Cardiac Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Stefan Leuko
- Institute of Aerospace Medicine, Aerospace Microbiology, German Aerospace Center (DLR), Cologne, Germany
| | - Ralf Moeller
- Institute of Aerospace Medicine, Aerospace Microbiology, German Aerospace Center (DLR), Cologne, Germany
| | - Alessa L Boschert
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Nijhuis RHT, Weersink AJL, Stegeman-Heining F, Smilde AE, Melles DC. Analysis of a persistent outbreak with vancomycin-resistant Enterococcus faecium revealed the need for an adapted diagnostic algorithm. J Hosp Infect 2024; 155:192-197. [PMID: 39515478 DOI: 10.1016/j.jhin.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/03/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES The study institute was challenged with an outbreak of different vancomycin-resistant Enterococcus faecium (VREfm), including vanA- and/or vanB-containing isolates. Remarkably, screening overnight enriched specimens using a vanA and vanB real-time polymerase chain reaction (PCR) gave positive results for vanB with very low cycle threshold values, whereas VREfm-specific enrichment cultures remained negative. This paper describes the analysis of the diagnostic results leading to adaptation of the diagnostic algorithm. METHODS The results of vanA and vanB screening PCR and VREfm-specific culture (Brilliance VRE) were collected and combined with genotyping data of the identified VREfm isolates. During the outbreak, a second VREfm-specific culture medium (CHROMagar VRE) was introduced, and the results were compared with the results obtained with Brilliance VRE agar. RESULTS Thirty-five patients were identified as VREfm carriers, in which four different strains were identified: vanA (STnew-CT7088) and/or vanB (ST80-CT1065, ST117-CT7117 and ST117-CT7118). Complementing the PCR results, culture and genotyping revealed that culture with Brilliance VRE agar was inadequate for detection of the vanB ST117 isolates identified, irrespective of the minimum inhibitory concentration of vancomycin. In contrast, CHROMagar VRE was able to detect the vanB ST117 isolates and other tested isolates correctly. CONCLUSIONS The vanB ST117 isolates were detected inadequately by the VREfm-specific culture media, possibly contributing to unnoticed spread of VREfm. For this reason, CHROMagar VRE was evaluated during the outbreak and subsequently implemented in routine diagnostics, replacing Brilliance VRE agar.
Collapse
Affiliation(s)
- R H T Nijhuis
- Laboratory for Medical Microbiology and Medical Immunology, Meander Medical Centre, Amersfoort, The Netherlands.
| | - A J L Weersink
- Laboratory for Medical Microbiology and Medical Immunology, Meander Medical Centre, Amersfoort, The Netherlands; Department of Hygiene and Infection Prevention, Meander Medical Centre, Amersfoort, The Netherlands
| | - F Stegeman-Heining
- Department of Hygiene and Infection Prevention, Meander Medical Centre, Amersfoort, The Netherlands
| | - A E Smilde
- Department of Hygiene and Infection Prevention, Meander Medical Centre, Amersfoort, The Netherlands
| | - D C Melles
- Laboratory for Medical Microbiology and Medical Immunology, Meander Medical Centre, Amersfoort, The Netherlands
| |
Collapse
|
5
|
Mahmud HA, Wakeman CA. Navigating collateral sensitivity: insights into the mechanisms and applications of antibiotic resistance trade-offs. Front Microbiol 2024; 15:1478789. [PMID: 39512935 PMCID: PMC11540712 DOI: 10.3389/fmicb.2024.1478789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
The swift rise of antibiotic resistance, coupled with limited new antibiotic discovery, presents a significant hurdle to global public health, demanding innovative therapeutic solutions. Recently, collateral sensitivity (CS), the phenomenon in which resistance to one antibiotic increases vulnerability to another, has come to light as a potential path forward in this attempt. Targeting either unidirectional or reciprocal CS holds promise for constraining the emergence of drug resistance and notably enhancing treatment outcomes. Typically, the alteration of bacterial physiology, such as bacterial membrane potential, expression of efflux pumps, cell wall structures, and endogenous enzymatic actions, are involved in evolved collateral sensitivity. In this review, we present a thorough overview of CS in antibiotic therapy, including its definition, importance, and underlying mechanisms. We describe how CS can be exploited to prevent the emergence of resistance and enhance the results of treatment, but we also discuss the challenges and restrictions that come with implementing this practice. Our review underscores the importance of continued exploration of CS mechanisms in the broad spectrum and clinical validation of therapeutic approaches, offering insights into its role as a valuable tool in combating antibiotic resistance.
Collapse
Affiliation(s)
- Hafij Al Mahmud
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Catherine A. Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
6
|
van Groesen E, Mons E, Kotsogianni I, Arts M, Tehrani KHME, Wade N, Lysenko V, Stel FM, Zwerus JT, De Benedetti S, Bakker A, Chakraborty P, van der Stelt M, Scheffers DJ, Gooskens J, Smits WK, Holden K, Gilmour PS, Willemse J, Hitchcock CA, van Hasselt JGC, Schneider T, Martin NI. Semisynthetic guanidino lipoglycopeptides with potent in vitro and in vivo antibacterial activity. Sci Transl Med 2024; 16:eabo4736. [PMID: 39110780 DOI: 10.1126/scitranslmed.abo4736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/23/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
Gram-positive bacterial infections present a major clinical challenge, with methicillin- and vancomycin-resistant strains continuing to be a cause for concern. In recent years, semisynthetic vancomycin derivatives have been developed to overcome this problem as exemplified by the clinically used telavancin, which exhibits increased antibacterial potency but has also raised toxicity concerns. Thus, glycopeptide antibiotics with enhanced antibacterial activities and improved safety profiles are still necessary. We describe the development of a class of highly potent semisynthetic glycopeptide antibiotics, the guanidino lipoglycopeptides, which contain a positively charged guanidino moiety bearing a variable lipid group. These glycopeptides exhibited enhanced in vitro activity against a panel of Gram-positive bacteria including clinically relevant methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant strains, showed minimal toxicity toward eukaryotic cells, and had a low propensity for resistance selection. Mechanistically, guanidino lipoglycopeptides engaged with bacterial cell wall precursor lipid II with a higher binding affinity than vancomycin. Binding to both wild-type d-Ala-d-Ala lipid II and the vancomycin-resistant d-Ala-d-Lac variant was confirmed, providing insight into the enhanced activity of guanidino lipoglycopeptides against vancomycin-resistant isolates. The in vivo efficacy of guanidino lipoglycopeptide EVG7 was evaluated in a S. aureus murine thigh infection model and a 7-day sepsis survival study, both of which demonstrated superiority to vancomycin. Moreover, the minimal to mild kidney effects at supratherapeutic doses of EVG7 indicate an improved therapeutic safety profile compared with vancomycin. These findings position guanidino lipoglycopeptides as candidates for further development as antibacterial agents for the treatment of clinically relevant multidrug-resistant Gram-positive infections.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Elma Mons
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Ioli Kotsogianni
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Melina Arts
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53113 Bonn, Germany
| | - Kamaleddin H M E Tehrani
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Nicola Wade
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Vladyslav Lysenko
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Florence M Stel
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Jordy T Zwerus
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Stefania De Benedetti
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53113 Bonn, Germany
| | - Alexander Bakker
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, Netherlands
| | - Parichita Chakraborty
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, Netherlands
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, Netherlands
| | - Jairo Gooskens
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Wiep Klaas Smits
- Experimental Bacteriology, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Kirsty Holden
- Evotec (U.K.) Ltd., Alderley Park, Macclesfield, Cheshire, SK10 4TG UK
| | | | - Joost Willemse
- Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | | | - J G Coen van Hasselt
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, Netherlands
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53113 Bonn, Germany
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| |
Collapse
|
7
|
Pannullo AG, Zbylicki BR, Ellermeier CD. Identification of DraRS in Clostridioides difficile, a Two-Component Regulatory System That Responds to Lipid II-Interacting Antibiotics. J Bacteriol 2023; 205:e0016423. [PMID: 37439672 PMCID: PMC10601625 DOI: 10.1128/jb.00164-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Clostridioides difficile is a Gram-positive opportunistic pathogen that results in 220,000 infections, 12,000 deaths, and upwards of $1 billion in medical costs in the United States each year. C. difficile is highly resistant to a variety of antibiotics, but we have a poor understanding of how C. difficile senses and responds to antibiotic stress and how such sensory systems affect clinical outcomes. We have identified a spontaneous C. difficile mutant that displays increased daptomycin resistance. We performed whole-genome sequencing and found a nonsense mutation, S605*, in draS, which encodes a putative sensor histidine kinase of a two-component system (TCS). The draSS605* mutant has an ~4- to 8-fold increase in the daptomycin MIC compared to the wild type (WT). We found that the expression of constitutively active DraRD54E in the WT increases daptomycin resistance 8- to 16-fold and increases bacitracin resistance ~4-fold. We found that a selection of lipid II-inhibiting compounds leads to the increased activity of the luciferase-based reporter PdraR-slucopt, including vancomycin, bacitracin, ramoplanin, and daptomycin. Using RNA sequencing (RNA-seq), we identified the DraRS regulon. Interestingly, we found that DraRS can induce the expression of the previously identified hex locus required for the synthesis of a novel glycolipid produced in C. difficile. Our data suggest that the induction of the hex locus by DraR explains some, but not all, of the DraR-induced daptomycin and bacitracin resistance. IMPORTANCE Clostridioides difficile is a major cause of hospital-acquired diarrhea and represents an urgent concern due to the prevalence of antibiotic resistance and the rate of recurrent infections. C. difficile encodes ~50 annotated two-component systems (TCSs); however, only a few have been studied. The function of these unstudied TCSs is not known. Here, we show that the TCS DraRS plays a role in responding to a subset of lipid II-inhibiting antibiotics and mediates resistance to daptomycin and bacitracin in part by inducing the expression of the recently identified hex locus, which encodes enzymes required for the production of a novel glycolipid in C. difficile.
Collapse
Affiliation(s)
- Anthony G. Pannullo
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Brianne R. Zbylicki
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
8
|
V J, A.S SG, Gunasekaran S, J VP. Characterization of Vancomycin Resistant Enterococci and Drug Ligand Interaction between vanA of E. faecalis with the Bio-Compounds from Aegles marmelos. J Pharmacopuncture 2023; 26:247-256. [PMID: 37799618 PMCID: PMC10547814 DOI: 10.3831/kpi.2023.26.3.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Objectives Enterococcus faecalis is a gram positive diplococci, highly versatile and a normal commensal of the gut microbiome. Resistance to vancomycin is a serious issue in various health-care setting exhibited by vancomycin resistant Enterococci (VRE) due to the alteration in the peptidoglycan synthesis pathway. This study is thus aimed to detect the VRE from the patients with root caries from the clinical isolates of E. faecalis and to evaluate the in-silico interactions between vanA and the Aegles marmelos bio-compounds. Methods E. faecalis was phenotypically characterized from 20 root caries samples and the frequency of vanA and vanB genes was detected by polymerase chain reaction (PCR). Further crude methanolic extracts from the dried leaves of A. marmelos was assessed for its antimicrobial activity. This is followed by the selection of five A. marmelos bio-compounds for the computational approach towards the drug ligand interactions. Results 12 strains (60%) of E. faecalis was identified from the root caries samples and vanA was detected from two strains (16%). Both the stains showed the presence of vanA and none of the strains possessed vanB. Crude extract of A. marmelos showed promising antibacterial activity against the VRE strains. In-silico analysis of the A. marmelos bio-compounds revealed Imperatonin as the best compound with high docking energy (-8.11) and hydrogen bonds with < 140 TPSA (Topological polar surface area) and zero violations. Conclusion The present study records the VRE strains among the root caries with imperatorin from A. marmelos as a promising drug candidate. However the study requires further experimentation and validation.
Collapse
Affiliation(s)
- Jayavarsha V
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Smiline Girija A.S
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Shoba Gunasekaran
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai, Tamil Nadu, India
| | - Vijayashree Priyadharsini J
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Zhang B, Phetsang W, Stone MRL, Kc S, Butler MS, Cooper MA, Elliott AG, Łapińska U, Voliotis M, Tsaneva-Atanasova K, Pagliara S, Blaskovich MAT. Synthesis of vancomycin fluorescent probes that retain antimicrobial activity, identify Gram-positive bacteria, and detect Gram-negative outer membrane damage. Commun Biol 2023; 6:409. [PMID: 37055536 PMCID: PMC10102067 DOI: 10.1038/s42003-023-04745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/22/2023] [Indexed: 04/15/2023] Open
Abstract
Antimicrobial resistance is an urgent threat to human health, and new antibacterial drugs are desperately needed, as are research tools to aid in their discovery and development. Vancomycin is a glycopeptide antibiotic that is widely used for the treatment of Gram-positive infections, such as life-threatening systemic diseases caused by methicillin-resistant Staphylococcus aureus (MRSA). Here we demonstrate that modification of vancomycin by introduction of an azide substituent provides a versatile intermediate that can undergo copper-catalysed azide-alkyne cycloaddition (CuAAC) reaction with various alkynes to readily prepare vancomycin fluorescent probes. We describe the facile synthesis of three probes that retain similar antibacterial profiles to the parent vancomycin antibiotic. We demonstrate the versatility of these probes for the detection and visualisation of Gram-positive bacteria by a range of methods, including plate reader quantification, flow cytometry analysis, high-resolution microscopy imaging, and single cell microfluidics analysis. In parallel, we demonstrate their utility in measuring outer-membrane permeabilisation of Gram-negative bacteria. The probes are useful tools that may facilitate detection of infections and development of new antibiotics.
Collapse
Affiliation(s)
- Bing Zhang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Wanida Phetsang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - M Rhia L Stone
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sanjaya Kc
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mark S Butler
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Matthew A Cooper
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alysha G Elliott
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Urszula Łapińska
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4Q, UK
| | - Margaritis Voliotis
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Department of Mathematics, University of Exeter, Stocker Road, Exeter, UK
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Department of Mathematics, University of Exeter, Stocker Road, Exeter, UK
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, EX4 4QJ, UK
- Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Street, 1113, Sofia, Bulgaria
| | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4Q, UK
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
10
|
Boschert AL, Arndt F, Hamprecht A, Wolke M, Walker SV. Comparison of Five Different Selective Agar for the Detection of Vancomycin-Resistant Enterococcus faecium. Antibiotics (Basel) 2023; 12:antibiotics12040666. [PMID: 37107028 PMCID: PMC10135216 DOI: 10.3390/antibiotics12040666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Five commercially available selective agar were evaluated regarding sensitivity and specificity to detect vancomycin-resistant Enterococcus (E.) faecium. Altogether 187 E. faecium strains were included, comprising 119 van-carrying strains (phenotypically vancomycin-resistant n = 105; phenotypically vancomycin-susceptible VVE-B n = 14) and 68 vancomycin-susceptible isolates. Limit of detection was calculated for each selective agar for pure cultures, stool suspensions and artificial rectal swabs. After 24-h incubation sensitivity ranged between 91.6% and 95.0%. It increased in 2 out of 5 agar after 48-h incubation. Specificity ranged between 94.1% and 100% and was highest after 24 h in 4 out of the 5 agar. Sensitivity of van-carrying phenotypically vancomycin-resistant strains was higher after 24 h (97.1–100%) and 48 h (99.1–100%) when compared to van-carrying strains that tested vancomycin-susceptible (50.0–57.1% after both incubation periods). Overall, chromID VRE, CHROMagar VRE and Brilliance VRE demonstrated the highest detection rates after 24 h. Detection rates of Chromatic VRE and VRESelect improved after 48 h. Adjustment of incubation time depending on the applied media may be advised. As detection of VVE-B was impeded with all selective agar, screening for vancomycin-resistant enterococci relying solely on selective media would not be recommended for critical clinical samples, but rather in combination with molecular methods to improve detection of these strains. Furthermore, stool samples were demonstrated to be superior to rectal swabs and should be favoured, if possible, in screening strategies.
Collapse
Affiliation(s)
- Alessa L. Boschert
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, 50935 Cologne, Germany
| | - Franca Arndt
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, 50935 Cologne, Germany
- German Aerospace Center (DLR), Institute of Aerospace Medicine, 51147 Cologne, Germany
| | - Axel Hamprecht
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, 50935 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 50441 Cologne, Germany
- Institute for Medical Microbiology and Virology, University of Oldenburg, 26001 Oldenburg, Germany
| | - Martina Wolke
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, 50935 Cologne, Germany
| | - Sarah V. Walker
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, 50935 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 50441 Cologne, Germany
- Institute for Clinical Microbiology and Hospital Hygiene, Klinikum Ludwigsburg, 71634 Ludwigsburg, Germany
- Correspondence:
| |
Collapse
|
11
|
HexSDF Is Required for Synthesis of a Novel Glycolipid That Mediates Daptomycin and Bacitracin Resistance in C. difficile. mBio 2023; 14:e0339722. [PMID: 36786594 PMCID: PMC10128005 DOI: 10.1128/mbio.03397-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Clostridioides difficile is a Gram-positive opportunistic pathogen responsible for 250,000 hospital-associated infections, 12,000 hospital-associated deaths, and $1 billion in medical costs in the United States each year. There has been recent interest in using a daptomycin analog, surotomycin, to treat C. difficile infections. Daptomycin interacts with phosphatidylglycerol and lipid II to disrupt the membrane and halt peptidoglycan synthesis. C. difficile has an unusual lipid membrane composition, as it has no phosphatidylserine or phosphatidylethanolamine, and ~50% of its membrane is composed of glycolipids, including the unique C. difficile lipid aminohexosyl-hexosyldiradylglycerol (HNHDRG). We identified a two-component system (TCS), HexRK, that is required for C. difficile resistance to daptomycin. Using transcriptome sequencing (RNA-seq), we found that HexRK regulates expression of hexSDF, a three-gene operon of unknown function. Based on bioinformatic predictions, hexS encodes a monogalactosyldiacylglycerol synthase, hexD encodes a polysaccharide deacetylase, and hexF encodes an MprF-like flippase. Deletion of hexRK leads to a 4-fold decrease in daptomycin MIC, and that deletion of hexSDF leads to an 8- to 16-fold decrease in daptomycin MIC. The ΔhexSDF mutant is also 4-fold less resistant to bacitracin but no other cell wall-active antibiotics. Our data indicate that in the absence of HexSDF, the phospholipid membrane composition is altered. In wild-type (WT) C. difficile, the unique glycolipid HNHDRG makes up ~17% of the lipids in the membrane. However, in a ΔhexSDF mutant, HNHDRG is completely absent. While it is unclear how HNHDRG contributes to daptomycin resistance, the requirement for bacitracin resistance suggests it has a general role in cell membrane biogenesis. IMPORTANCE Clostridioides difficile is a major cause of hospital-acquired diarrhea and represents an urgent concern due to the prevalence of antibiotic resistance and the rate of recurrent infections. Little is understood about C. difficile membrane lipids, but a unique glycolipid, HNHDRG, has been previously identified in C. difficile and, currently, has not been identified in other organisms. Here, we show that HexSDF and HexRK are required for synthesis of HNHDRG and that production of HNHDRG impacts resistance to daptomycin and bacitracin.
Collapse
|
12
|
The Regulations of Essential WalRK Two-Component System on Enterococcus faecalis. J Clin Med 2023; 12:jcm12030767. [PMID: 36769415 PMCID: PMC9917794 DOI: 10.3390/jcm12030767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Enterococcus faecalis (E. faecalis) is a Gram-positive, facultative anaerobic bacterium that is highly adaptable to its environment. In humans, it can cause serious infections with biofilm formation. With increasing attention on its health threat, prevention and control of biofilm formation in E. faecalis have been observed. Many factors including polysaccharides as well as autolysis, proteases, and eDNA regulate biofilm formation. Those contributors are regulated by several important regulatory systems involving the two-component signal transduction system (TCS) for its adaptation to the environment. Highly conserved WalRK as one of 17 TCSs is the only essential TCS in E. faecalis. In addition to biofilm formation, various metabolisms, including cell wall construction, drug resistance, as well as interactions among regulatory systems and resistance to the host immune system, can be modulated by the WalRK system. Therefore, WalRK has been identified as a key target for E. faecalis infection control. In the present review, the regulation of WalRK on E. faecalis pathogenesis and associated therapeutic strategies are demonstrated.
Collapse
|
13
|
Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022; 11:microorganisms11010024. [PMID: 36677316 PMCID: PMC9866002 DOI: 10.3390/microorganisms11010024] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.
Collapse
|
14
|
Heterologous Expression Reveals Ancient Properties of Tei3—A VanS Ortholog from the Teicoplanin Producer Actinoplanes teichomyceticus. Int J Mol Sci 2022; 23:ijms232415713. [PMID: 36555354 PMCID: PMC9779433 DOI: 10.3390/ijms232415713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Glycopeptide antibiotics (GPAs) are among the most clinically successful antimicrobials. GPAs inhibit cell-wall biosynthesis in Gram-positive bacteria via binding to lipid II. Natural GPAs are produced by various actinobacteria. Being themselves Gram-positives, the GPA producers evolved sophisticated mechanisms of self-resistance to avoid suicide during antibiotic production. These self-resistance genes are considered the primary source of GPA resistance genes actually spreading among pathogenic enterococci and staphylococci. The GPA-resistance mechanism in Actinoplanes teichomyceticus—the producer of the last-resort-drug teicoplanin—has been intensively studied in recent years, posing relevant questions about the role of Tei3 sensor histidine kinase. In the current work, the molecular properties of Tei3 were investigated. The setup of a GPA-responsive assay system in the model Streptomyces coelicolor allowed us to demonstrate that Tei3 functions as a non-inducible kinase, conferring high levels of GPA resistance in A. teichomyceticus. The expression of different truncated versions of tei3 in S. coelicolor indicated that both the transmembrane helices of Tei3 are crucial for proper functioning. Finally, a hybrid gene was constructed, coding for a chimera protein combining the Tei3 sensor domain with the kinase domain of VanS, with the latter being the inducible Tei3 ortholog from S. coelicolor. Surprisingly, such a chimera did not respond to teicoplanin, but indeed to the related GPA A40926. Coupling these experimental results with a further in silico analysis, a novel scenario on GPA-resistance and biosynthetic genes co-evolution in A. teichomyceticus was hereby proposed.
Collapse
|
15
|
Aqib AI, Alsayeqh AF. Vancomycin drug resistance, an emerging threat to animal and public health. Front Vet Sci 2022; 9:1010728. [PMID: 36387389 PMCID: PMC9664514 DOI: 10.3389/fvets.2022.1010728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 11/03/2023] Open
Abstract
The need to supply quality food for the growing human population has led to the revolutionization of food production and processing in recent years. Meanwhile, food production sources are at risk of microbial attack, while the use of antibiotics to counter them is posing another threat to food safety and security. Vancomycin was used as the first line of defense against multiple drug-resistant bacteria salient of which is methicillin-resistant S. aureus. The emergence of the vancomycin resistance gene in bacteria impairs the efficacy of antibiotics on the one hand while its harmful residues impart food safety concerns on the other. Currently, a novel set of resistance genes "Van cluster" is circulating in a wider range of bacteria. Considerable economic losses in terms of low production and food safety are associated with this emerging resistance. The current review focuses on the emergence of vancomycin resistance and its impact on food safety. The review proposes the need for further research on the probable routes, mechanisms, and implications of vancomycin resistance from animals to humans and vice versa.
Collapse
Affiliation(s)
- Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Abdullah F. Alsayeqh
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Qassim, Saudi Arabia
| |
Collapse
|
16
|
van Groesen E, Innocenti P, Martin NI. Recent Advances in the Development of Semisynthetic Glycopeptide Antibiotics: 2014-2022. ACS Infect Dis 2022; 8:1381-1407. [PMID: 35895325 PMCID: PMC9379927 DOI: 10.1021/acsinfecdis.2c00253] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accelerated appearance of drug-resistant bacteria poses an ever-growing threat to modern medicine's capacity to fight infectious diseases. Gram-positive species such as methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae continue to contribute significantly to the global burden of antimicrobial resistance. For decades, the treatment of serious Gram-positive infections relied upon the glycopeptide family of antibiotics, typified by vancomycin, as a last line of defense. With the emergence of vancomycin resistance, the semisynthetic glycopeptides telavancin, dalbavancin, and oritavancin were developed. The clinical use of these compounds is somewhat limited due to toxicity concerns and their unusual pharmacokinetics, highlighting the importance of developing next-generation semisynthetic glycopeptides with enhanced antibacterial activities and improved safety profiles. This Review provides an updated overview of recent advancements made in the development of novel semisynthetic glycopeptides, spanning the period from 2014 to today. A wide range of approaches are covered, encompassing innovative strategies that have delivered semisynthetic glycopeptides with potent activities against Gram-positive bacteria, including drug-resistant strains. We also address recent efforts aimed at developing targeted therapies and advances made in extending the activity of the glycopeptides toward Gram-negative organisms.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| |
Collapse
|
17
|
Muntean M, Muntean AA, Preda M, Manolescu L, Dragomirescu C, Popa MI, Popa G. Phenotypic and genotypic detection methods for antimicrobial resistance in ESKAPE pathogens (Review). Exp Ther Med 2022; 24:508. [PMID: 35837033 PMCID: PMC9257796 DOI: 10.3892/etm.2022.11435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/05/2021] [Indexed: 11/10/2022] Open
Abstract
Antimicrobial resistance (AMR) represents a growing public health problem worldwide. Infections with such bacteria lead to longer hospitalization times, higher healthcare costs and greater morbidity and mortality. Thus, there is a greater need for rapid detection methods in order to limit their spread. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) are a series of epidemiologically-important microorganisms of great concern due to their high levels of resistance. This review aimed to update the background information on the ESKAPE pathogens as well as to provide a summary of the numerous phenotypic and molecular methods used to detect their AMR mechanisms. While they are usually linked to hospital acquired infections, AMR is also spreading in the veterinary and the environmental sectors. Yet, the epidemiological loop closes with patients which, when infected with such pathogens, often lack therapeutic options. Thus, it was aimed to give the article a One Health perspective.
Collapse
Affiliation(s)
- Mădălina Muntean
- Department of Microbiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Andrei-Alexandru Muntean
- Department of Microbiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mădălina Preda
- Department of Microbiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Loredana Manolescu
- Department of Microbiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cerasella Dragomirescu
- Department of Microbiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mircea-Ioan Popa
- Department of Microbiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Gabriela Popa
- Department of Microbiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
18
|
Gurnani M, Chauhan A, Ranjan A, Tuli HS, Alkhanani MF, Haque S, Dhama K, Lal R, Jindal T. Filamentous Thermosensitive Mutant Z: An Appealing Target for Emerging Pathogens and a Trek on Its Natural Inhibitors. BIOLOGY 2022; 11:624. [PMID: 35625352 PMCID: PMC9138142 DOI: 10.3390/biology11050624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
Antibiotic resistance is a major emerging issue in the health care sector, as highlighted by the WHO. Filamentous Thermosensitive mutant Z (Fts-Z) is gaining significant attention in the scientific community as a potential anti-bacterial target for fighting antibiotic resistance among several pathogenic bacteria. The Fts-Z plays a key role in bacterial cell division by allowing Z ring formation. Several in vitro and in silico experiments have demonstrated that inhibition of Fts-Z can lead to filamentous growth of the cells, and finally, cell death occurs. Many natural compounds that have successfully inhibited Fts-Z are also studied. This review article intended to highlight the structural-functional aspect of Fts-Z that leads to Z-ring formation and its contribution to the biochemistry and physiology of cells. The current trend of natural inhibitors of Fts-Z protein is also covered.
Collapse
Affiliation(s)
- Manisha Gurnani
- Amity Institute of Environmental Science, Amity University, Noida 201301, India;
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India;
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India;
| | - Mustfa F. Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Faculty of Medicine, Görükle Campus, Bursa Uludağ University, Nilüfer, Bursa 16059, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR—Indian Veterinary Research Institute, Bareilly 243122, India;
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi 110021, India;
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India;
| |
Collapse
|
19
|
González D, Robas M, Fernández V, Bárcena M, Probanza A, Jiménez PA. Comparative Metagenomic Study of Rhizospheric and Bulk Mercury-Contaminated Soils in the Mining District of Almadén. Front Microbiol 2022; 13:797444. [PMID: 35330761 PMCID: PMC8940170 DOI: 10.3389/fmicb.2022.797444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Soil contamination by heavy metals, particularly mercury (Hg), is a problem that can seriously affect the environment, animals, and human health. Hg has the capacity to biomagnify in the food chain. That fact can lead to pathologies, of those which affect the central nervous system being the most severe. It is convenient to know the biological environmental indicators that alert of the effects of Hg contamination as well as the biological mechanisms that can help in its remediation. To contribute to this knowledge, this study conducted comparative analysis by the use of Shotgun metagenomics of the microbial communities in rhizospheric soils and bulk soil of the mining region of Almadén (Ciudad Real, Spain), one of the most affected areas by Hg in the world The sequences obtained was analyzed with MetaPhlAn2 tool and SUPER-FOCUS. The most abundant taxa in the taxonomic analysis in bulk soil were those of Actinobateria and Alphaproteobacteria. On the contrary, in the rhizospheric soil microorganisms belonging to the phylum Proteobacteria were abundant, evidencing that roots have a selective effect on the rhizospheric communities. In order to analyze possible indicators of biological contamination, a functional potential analysis was performed. The results point to a co-selection of the mechanisms of resistance to Hg and the mechanisms of resistance to antibiotics or other toxic compounds in environments contaminated by Hg. Likewise, the finding of antibiotic resistance mechanisms typical of the human clinic, such as resistance to beta-lactams and glycopeptics (vancomycin), suggests that these environments can behave as reservoirs. The sequences involved in Hg resistance (operon mer and efflux pumps) have a similar abundance in both soil types. However, the response to abiotic stress (salinity, desiccation, and contaminants) is more prevalent in rhizospheric soil. Finally, sequences involved in nitrogen fixation and metabolism and plant growth promotion (PGP genes) were identified, with higher relative abundances in rhizospheric soils. These findings can be the starting point for the targeted search for microorganisms suitable for further use in bioremediation processes in Hg-contaminated environments.
Collapse
Affiliation(s)
- Daniel González
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Marina Robas
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Vanesa Fernández
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Marta Bárcena
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Agustín Probanza
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Pedro A Jiménez
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| |
Collapse
|
20
|
Selim S. Mechanisms of gram-positive vancomycin resistance (Review). Biomed Rep 2021; 16:7. [PMID: 34938536 DOI: 10.3892/br.2021.1490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 11/05/2022] Open
Abstract
Vancomycin-resistant bacteria (VRB) are important consideration in medicine and public health as they can cause life-threatening infections that appear to be resistant to therapy and persist in the body after medication. A wide spectrum of antimicrobial resistance characteristics, as well as various environmental and animal settings underlie the evolution of the most prevalent the most prevalent van genes in the VRB genome, indicating significant gene flow. As illnesses caused by VRB have become increasingly complex, several previously effective therapeutic techniques have become ineffective, complicating clinical care further. The focus of this review is the mechanism of vancomycin resistance in Enterococci, Staphylococci and Lactobacilli.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Kingdom of Saudi Arabia
| |
Collapse
|
21
|
Andreo-Vidal A, Binda E, Fedorenko V, Marinelli F, Yushchuk O. Genomic Insights into the Distribution and Phylogeny of Glycopeptide Resistance Determinants within the Actinobacteria Phylum. Antibiotics (Basel) 2021; 10:1533. [PMID: 34943745 PMCID: PMC8698665 DOI: 10.3390/antibiotics10121533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022] Open
Abstract
The spread of antimicrobial resistance (AMR) creates a challenge for global health security, rendering many previously successful classes of antibiotics useless. Unfortunately, this also includes glycopeptide antibiotics (GPAs), such as vancomycin and teicoplanin, which are currently being considered last-resort drugs. Emerging resistance towards GPAs risks limiting the clinical use of this class of antibiotics-our ultimate line of defense against multidrug-resistant (MDR) Gram-positive pathogens. But where does this resistance come from? It is widely recognized that the GPA resistance determinants-van genes-might have originated from GPA producers, such as soil-dwelling Gram-positive actinobacteria, that use them for self-protection. In the current work, we present a comprehensive bioinformatics study on the distribution and phylogeny of GPA resistance determinants within the Actinobacteria phylum. Interestingly, van-like genes (vlgs) were found distributed in different arrangements not only among GPA-producing actinobacteria but also in the non-producers: more than 10% of the screened actinobacterial genomes contained one or multiple vlgs, while less than 1% encoded for a biosynthetic gene cluster (BGC). By phylogenetic reconstructions, our results highlight the co-evolution of the different vlgs, indicating that the most diffused are the ones coding for putative VanY carboxypeptidases, which can be found alone in the genomes or associated with a vanS/R regulatory pair.
Collapse
Affiliation(s)
- Andrés Andreo-Vidal
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.A.-V.); (E.B.); (O.Y.)
| | - Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.A.-V.); (E.B.); (O.Y.)
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine;
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.A.-V.); (E.B.); (O.Y.)
| | - Oleksandr Yushchuk
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.A.-V.); (E.B.); (O.Y.)
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine;
| |
Collapse
|
22
|
Ma P, Phillips-Jones MK. Membrane Sensor Histidine Kinases: Insights from Structural, Ligand and Inhibitor Studies of Full-Length Proteins and Signalling Domains for Antibiotic Discovery. Molecules 2021; 26:molecules26165110. [PMID: 34443697 PMCID: PMC8399564 DOI: 10.3390/molecules26165110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
There is an urgent need to find new antibacterial agents to combat bacterial infections, including agents that inhibit novel, hitherto unexploited targets in bacterial cells. Amongst novel targets are two-component signal transduction systems (TCSs) which are the main mechanism by which bacteria sense and respond to environmental changes. TCSs typically comprise a membrane-embedded sensory protein (the sensor histidine kinase, SHK) and a partner response regulator protein. Amongst promising targets within SHKs are those involved in environmental signal detection (useful for targeting specific SHKs) and the common themes of signal transmission across the membrane and propagation to catalytic domains (for targeting multiple SHKs). However, the nature of environmental signals for the vast majority of SHKs is still lacking, and there is a paucity of structural information based on full-length membrane-bound SHKs with and without ligand. Reasons for this lack of knowledge lie in the technical challenges associated with investigations of these relatively hydrophobic membrane proteins and the inherent flexibility of these multidomain proteins that reduces the chances of successful crystallisation for structural determination by X-ray crystallography. However, in recent years there has been an explosion of information published on (a) methodology for producing active forms of full-length detergent-, liposome- and nanodisc-solubilised membrane SHKs and their use in structural studies and identification of signalling ligands and inhibitors; and (b) mechanisms of signal sensing and transduction across the membrane obtained using sensory and transmembrane domains in isolation, which reveal some commonalities as well as unique features. Here we review the most recent advances in these areas and highlight those of potential use in future strategies for antibiotic discovery. This Review is part of a Special Issue entitled “Interactions of Bacterial Molecules with Their Ligands and Other Chemical Agents” edited by Mary K. Phillips-Jones.
Collapse
Affiliation(s)
- Pikyee Ma
- Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland;
| | - Mary K. Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
- Correspondence:
| |
Collapse
|
23
|
Kankalil George S, Suseela MR, El Safi S, Ali Elnagi E, Al-Naam YA, Adlan Mohammed Adam A, Mary Jacob A, Al-Maqati T, Kumar Ks H. Molecular determination of van genes among clinical isolates of enterococci at a hospital setting. Saudi J Biol Sci 2021; 28:2895-2899. [PMID: 34012328 PMCID: PMC8116964 DOI: 10.1016/j.sjbs.2021.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/22/2020] [Accepted: 02/04/2021] [Indexed: 11/25/2022] Open
Abstract
Vancomycin-resistant enterococci (VRE) poses a formidable challenge to public health due to its inherent resistance to multiple antibiotics coupled with the ability to transfer genetic determinants to dangerous pathogens like Methicillin-resistant Staphylococcus aureus (MRSA). The purpose of this study was to investigate the incidence of vancomycin resistance in enterococci among clinical isolates at a tertiary care military hospital in the eastern region of Saudi Arabia and to detect van genes using multiplex-PCR. Overall, 246 isolates of enterococci were collected from various clinical specimens. The isolates were identified, and antimicrobial susceptibility testing was done using the Vitek 2 system. Multiplex PCR was performed on the VRE isolates, thus identified to determine the van genes harbored. A total of 15 VRE were identified, of which 14 (93.3%) were Enterococcus faecium, and 1(6.7%) was Enterococcus casseliflavus with intrinsic vanC resistance. Of the 14 vancomycin-resistant Enterococcus faecium, 8 (57.1%) harbored vanB genes, while 6 (42.8%) harbored vanA genes. All the VRE were susceptible to linezolid and tigecycline. Our study detected a low prevalence (6.1%) of VRE among clinical isolates of enterococci and that the vanB gene predominates in such strains. Susceptibility profiles indicated that linezolid and tigecycline are still effective against these multidrug-resistant pathogens. Pus specimens yielded the highest percentage (53.3%) of isolates from which VRE was obtained, and this finding is novel among studies done in Saudi Arabia.
Collapse
Affiliation(s)
- Siju Kankalil George
- Department of Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - M R Suseela
- Department of Microbiology, Rajah Muthiah Medical College, Annamalai University, Tamil Nadu, India
| | - Saleh El Safi
- Department of Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Elmoeiz Ali Elnagi
- Department of Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Yaser A Al-Naam
- Department of Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Ahmed Adlan Mohammed Adam
- Department of Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Ashly Mary Jacob
- Department of Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Thekra Al-Maqati
- Department of Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Harish Kumar Ks
- Department of Medical Microbiology, School of Medical Education, Mahatma Gandhi University, Kerala, India
| |
Collapse
|
24
|
Sadowy E. Mobile genetic elements beyond the VanB-resistance dissemination among hospital-associated enterococci and other Gram-positive bacteria. Plasmid 2021; 114:102558. [PMID: 33472048 DOI: 10.1016/j.plasmid.2021.102558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022]
Abstract
An increasing resistance to vancomycin among clinically relevant enterococci, such as Enterococcus faecalis and Enterococcus faecium is a cause of a great concern, as it seriously limits treatment options. The vanB operon is one of most common determinants of this type of resistance. Genes constituting the operon are located in conjugative transposons, such as Tn1549-type transposons or, more rarely, in ICEEfaV583-type structures. Such elements show differences in structure and size, and reside in various sites of bacterial chromosome or, in the case of Tn1549-type transposons, are also occasionally associated with plasmids of divergent replicon types. While conjugative transposition contributes to the acquisition of Tn1549-type transposons from anaerobic gut commensals by enterococci, chromosomal recombination and conjugal transfer of plasmids appear to represent main mechanisms responsible for horizontal dissemination of vanB determinants among hospital E. faecalis and E. faecium. This review focuses on diversity of genetic elements harbouring vanB determinants in hospital-associated strains of E. faecium and E. faecalis, the mechanisms beyond vanB spread in populations of these bacteria, and provides an overview of the vanB-MGE distribution among other enterococci and Gram-positive bacteria as potential reservoirs of vanB genes.
Collapse
Affiliation(s)
- Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland.
| |
Collapse
|
25
|
Nguyen P, Khicher S, Osman H, Patel N. A Rare Case of Enterococcus gallinarum-Associated Peritonitis and Literature Review. Cureus 2020; 12:e12328. [PMID: 33520526 PMCID: PMC7839278 DOI: 10.7759/cureus.12328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Peritonitis is a well-known complication seen with peritoneal dialysis. Peritonitis is associated with increased mortality risk and is commonly caused by gram-positive and gram-negative bacteria, but it can also be the result of fungal or viral infections. Therefore, it is imperative to obtain a peritoneal fluid sample to send for cell count with differential, gram stain, and culture prior to starting empiric antibiotic therapy. We report a case of peritoneal dialysis-related peritonitis caused by Enterococcus gallinarum, for which there has only been one other reported case in the medical literature. Our patient was initially placed on vancomycin and cefepime but continued to deteriorate until peritoneal fluid cultures revealed E. gallinarum. Based on sensitivities, the patient was treated with daptomycin and cefazolin, which resolved her peritonitis.
Collapse
Affiliation(s)
- Paul Nguyen
- Internal Medicine, Wayne State University School of Medicine, Detroit, USA
| | - Suman Khicher
- Rheumatology, Wayne State University School of Medicine, Detroit, USA
| | - Heba Osman
- Internal Medicine, Wayne State University School of Medicine, Detroit, USA
| | - Neel Patel
- Internal Medicine, Wayne State University School of Medicine, Detroit, USA
| |
Collapse
|
26
|
Werner G, Neumann B, Weber RE, Kresken M, Wendt C, Bender JK. Thirty years of VRE in Germany - "expect the unexpected": The view from the National Reference Centre for Staphylococci and Enterococci. Drug Resist Updat 2020; 53:100732. [PMID: 33189998 DOI: 10.1016/j.drup.2020.100732] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
Enterococci are commensals of the intestinal tract of many animals and humans. Of the various known and still unnamed new enterococcal species, only isolates of Enterococcus faecium and Enterococcus faecalis have received increased medical and public health attention. According to textbook knowledge, the majority of infections are caused by E. faecalis. In recent decades, the number of enterococcal infections has increased, with the increase being exclusively associated with a rising number of nosocomial E. faecium infections. This increase has been accompanied by the dissemination of certain hospital-acquired strain variants and an alarming progress in the development of antibiotic resistance namely vancomycin resistance. With this review we focus on a description of the specific situation of vancomycin resistance among clinical E. faecium isolates in Germany over the past 30 years. The present review describes three VRE episodes in Germany, each of which is framed by the beginning and end of the respective decade. The first episode is specified by the first appearance of VRE in 1990 and a country-wide spread of specific vanA-type VRE strains (ST117/CT24) until the late 1990s. The second decade was initially marked by regional clusters and VRE outbreaks in hospitals in South-Western Germany in 2004 and 2005, mainly caused by vanA-type VRE of ST203. Against the background of a certain "basic level" of VRE prevalence throughout Germany, an early shift from the vanA genotype to the vanB genotype in clinical isolates already occurred at the end of the 2000s without much notice. With the beginning of the third decade in 2010, VRE rates in Germany have permanently increased, first in some federal states and soon after country-wide. Besides an increase in VRE prevalence, this decade was marked by a sharp increase in vanB-type resistance and a dominance of a few, novel strain variants like ST192 and later on ST117 (CT71, CT469) and ST80 (CT1065). The largest VRE outbreak, which involved about 2,900 patients and lasted over three years, was caused by a novel and until that time, unknown strain type of ST80/CT1013 (vanB). Across all periods, VRE outbreaks were mainly oligoclonal and strain types varied over space (hospital wards) and time. The spread of VRE strains obviously respects political borders; for instance, both vancomycin-variable enterococci which were highly prevalent in Denmark and ST796 VRE which successfully disseminated in Australia and Switzerland, were still completely absent among German hospital patients, until to date.
Collapse
Affiliation(s)
- Guido Werner
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Germany.
| | - Bernd Neumann
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Germany
| | - Robert E Weber
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Germany
| | | | | | - Jennifer K Bender
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Germany
| |
Collapse
|
27
|
Pinto L, Torres C, Gil C, Santos HM, Capelo JL, Borges V, Gomes JP, Silva C, Vieira L, Poeta P, Igrejas G. Multiomics Substrates of Resistance to Emerging Pathogens? Transcriptome and Proteome Profile of a Vancomycin-Resistant Enterococcus faecalis Clinical Strain. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:81-95. [PMID: 32073998 DOI: 10.1089/omi.2019.0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Antibiotic resistance and hospital acquired infections are on the rise worldwide. Vancomycin-resistant enterococci have been reported in clinical settings in recent decades. In this multiomics study, we provide comprehensive proteomic and transcriptomic analyses of a vancomycin-resistant Enterococcus faecalis clinical isolate from a patient with a urinary tract infection. The previous genotypic profile of the strain C2620 indicated the presence of antibiotic resistance genes characteristic of the vanB cluster. To further investigate the transcriptome of this pathogenic strain, we used whole genome sequencing and RNA-sequencing to detect and quantify the genes expressed. In parallel, we used two-dimensional gel electrophoresis followed by MALDI-TOF/MS (Matrix-assisted laser desorption/ionization-Time-of-flight/Mass spectrometry) to identify the proteins in the proteome. We studied the membrane and cytoplasm subproteomes separately. From a total of 207 analysis spots, we identified 118 proteins. The protein list was compared to the results obtained from the full transcriptome assay. Several genes and proteins related to stress and cellular response were identified, as well as some linked to antibiotic and drug responses, which is consistent with the known state of multiresistance. Even though the correlation between transcriptome and proteome data is not yet fully understood, the use of multiomics approaches has proven to be increasingly relevant to achieve deeper insights into the survival ability of pathogenic bacteria found in health care facilities.
Collapse
Affiliation(s)
- Luís Pinto
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Concha Gil
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Hugo M Santos
- LAQV-REQUIMTE, Faculty of Science and Technology, Nova University of Lisbon, Lisbon, Portugal
| | - José Luís Capelo
- LAQV-REQUIMTE, Faculty of Science and Technology, Nova University of Lisbon, Lisbon, Portugal
| | - Vítor Borges
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Catarina Silva
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health, Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health, Lisbon, Portugal
| | - Patrícia Poeta
- Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, Nova University of Lisbon, Lisbon, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, Nova University of Lisbon, Lisbon, Portugal
| |
Collapse
|
28
|
Gallego S, Barkay T, Fahrenfeld NL. Tagging the vanA gene in wastewater microbial communities for cell sorting and taxonomy of vanA carrying cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:138865. [PMID: 32417556 DOI: 10.1016/j.scitotenv.2020.138865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Failure to understand the microbial ecology driving the proliferation of antibiotic resistance in the environment prevents us from developing strategies to limit the spread of antibiotic resistant infectious disease. In this study, we developed for the first time a tyramide signal amplification-fluorescence in situ hybridization-fluorescence-activated cell sorting protocol (TSA-FISH-FACS) for the characterization of all vanA carrying bacteria in wastewater samples. Firstly, we validated the TSA-FISH protocol through microscopy in pure cultures and wastewater influent. Then, samples were sorted and quantified by FACS and qPCR. Significantly higher percentage tagging of cells was detected in vanA carrying pure cultures and wastewater samples spiked with vanA carrying cells as compared to vanA negative Gram positive strains and non-spiked wastewater samples respectively. qPCR analysis targeting vanZ, a regulating gene in the vanA cluster, showed its relative abundance was significantly greater in Enterococcus faecium ATCC 700221-spiked and positively sorted samples compared to the E. faecium spiked and negatively sorted samples. Phylogenetic analysis was then performed. Although further efforts are needed to overcome technical problems, we have, for the first time, demonstrated sorting bacterial-cells carrying antibiotic resistance genes from wastewater samples through a TSA-FISH-FACS protocol and provided insight into the microbial ecology of vancomycin resistant bacteria. Future potential applications using this approach will include the separation of members of an environmental microbial community (cultured and hard-to-culture) to allow for metagenomics on single cells or, in the case of clumping, targeting a smaller portion of the community with a priori knowledge that the target gene is present.
Collapse
Affiliation(s)
- Sara Gallego
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Rd., Piscataway, NJ 08854, United States of America
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, 76 Lipman Dr, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States of America
| | - N L Fahrenfeld
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Rd., Piscataway, NJ 08854, United States of America.
| |
Collapse
|
29
|
Thomas JC, Oladeinde A, Kieran TJ, Finger JW, Bayona‐Vásquez NJ, Cartee JC, Beasley JC, Seaman JC, McArthur JV, Rhodes OE, Glenn TC. Co-occurrence of antibiotic, biocide, and heavy metal resistance genes in bacteria from metal and radionuclide contaminated soils at the Savannah River Site. Microb Biotechnol 2020; 13:1179-1200. [PMID: 32363769 PMCID: PMC7264878 DOI: 10.1111/1751-7915.13578] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/20/2023] Open
Abstract
Contaminants such as heavy metals may contribute to the dissemination of antimicrobial resistance (AMR) by enriching resistance gene determinants via co-selection mechanisms. In the present study, a survey was performed on soils collected from four areas at the Savannah River Site (SRS), South Carolina, USA, with varying contaminant profiles: relatively pristine (Upper Three Runs), heavy metals (Ash Basins), radionuclides (Pond B) and heavy metal and radionuclides (Tim's Branch). Using 16S rRNA gene amplicon sequencing, we explored the structure and diversity of soil bacterial communities. Sites with legacies of metal and/or radionuclide contamination displayed significantly lower bacterial diversity compared to the reference site. Metagenomic analysis indicated that multidrug and vancomycin antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) including those associated with copper, arsenic, iron, nickel and zinc were prominent in all soils including the reference site. However, significant differences were found in the relative abundance and diversity of certain ARGs and MRGs in soils with metal/radionuclide contaminated soils compared to the reference site. Co-occurrence patterns revealed significant ARG/MRG subtypes in predominant soil taxa including Acidobacteriaceae, Bradyrhizobium, Mycobacterium, Streptomyces, Verrumicrobium, Actinomadura and Solirubacterales. Overall, the study emphasizes the potential risk of human activities on the dissemination of AMR in the environment.
Collapse
Affiliation(s)
- Jesse C. Thomas
- Department of Environmental Health ScienceUniversity of GeorgiaAthensGA30602USA
| | - Adelumola Oladeinde
- Bacterial Epidemiology and Antimicrobial Resistance Research UnitUnited States Department of AgricultureAthensGA30605USA
| | - Troy J. Kieran
- Department of Environmental Health ScienceUniversity of GeorgiaAthensGA30602USA
| | - John W. Finger
- Department of Biological SciencesAuburn UniversityAuburnAL36849USA
| | - Natalia J. Bayona‐Vásquez
- Department of Environmental Health ScienceUniversity of GeorgiaAthensGA30602USA
- Institute of BioinformaticsUniversity of GeorgiaAthensGA30602USA
| | - John C. Cartee
- Division of STD PreventionCenters for Disease Control and PreventionAtlantaGA30329USA
| | - James C. Beasley
- Savannah River Ecology LaboratoryUniversity of GeorgiaPO Drawer EAikenSC29802USA
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGA30602USA
| | - John C. Seaman
- Savannah River Ecology LaboratoryUniversity of GeorgiaPO Drawer EAikenSC29802USA
| | - J Vuan McArthur
- Savannah River Ecology LaboratoryUniversity of GeorgiaPO Drawer EAikenSC29802USA
| | - Olin E. Rhodes
- Savannah River Ecology LaboratoryUniversity of GeorgiaPO Drawer EAikenSC29802USA
- Odum School of EcologyUniversity of GeorgiaAthensGA30602USA
| | - Travis C. Glenn
- Department of Environmental Health ScienceUniversity of GeorgiaAthensGA30602USA
- Institute of BioinformaticsUniversity of GeorgiaAthensGA30602USA
| |
Collapse
|
30
|
Yushchuk O, Binda E, Marinelli F. Glycopeptide Antibiotic Resistance Genes: Distribution and Function in the Producer Actinomycetes. Front Microbiol 2020; 11:1173. [PMID: 32655512 PMCID: PMC7325946 DOI: 10.3389/fmicb.2020.01173] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Glycopeptide antibiotics (GPAs) are considered drugs of "last resort" for the treatment of life-threatening infections caused by relevant Gram-positive pathogens (enterococci, staphylococci, and clostridia). Driven by the issue of the never-stopping evolution of bacterial antibiotic resistance, research on GPA biosynthesis and resistance is developing fast in modern "post-genomic" era. It is today widely accepted that resistance mechanisms emerging in pathogens have been acquired from the soil-dwelling antibiotic-producing actinomycetes, which use them to avoid suicide during production, rather than being orchestrated de novo by pathogen bacteria upon continued treatment. Actually, more and more genomes of GPA producers are being unraveled, carrying a broad collection of differently arranged GPA resistance (named van) genes. In the producer actinomycetes, van genes are generally associated with the antibiotic biosynthetic gene clusters (BGCs) deputed to GPA biosynthesis, being probably transferred/arranged together, favoring a possible co-regulation between antibiotic production and self-resistance. GPA BGC-associated van genes have been also found mining public databases of bacterial genomic and metagenomic sequences. Interestingly, some BGCs for antibiotics, seemingly unrelated to GPAs (e.g., feglymycin), carry van gene homologues. Herein, we would like to cover the recent advances on the distribution of GPA resistance genes in genomic and metagenomics datasets related to GPA potential/proved producer microorganisms. A thorough understanding of GPA resistance in the producing microorganisms may prove useful in the future surveillance of emerging mechanisms of resistance to this clinically relevant antibiotic class.
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
31
|
Krawczyk B, Wysocka M, Kotłowski R, Bronk M, Michalik M, Samet A. Linezolid-resistant Enterococcus faecium strains isolated from one hospital in Poland -commensals or hospital-adapted pathogens? PLoS One 2020; 15:e0233504. [PMID: 32453777 PMCID: PMC7250452 DOI: 10.1371/journal.pone.0233504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/06/2020] [Indexed: 12/30/2022] Open
Abstract
One of the most pressing problems of enterococci infections is occurring resistance to linezolid, which is an antibiotic used in the treatment of infections caused by vancomycin-resistant strains (VRE). The main objective of our research was to investigate the relationship of 19 linezolid-resistant E. faecium isolates from 18 patients hospitalized at Clinical Hospital in Gdansk (Poland). One of the LZDREF was isolated in 2003 (K2003), and another 18 were collected from 2013 to 2017. Genotyping with PCR MP method indicated 14 main unrelated genetic profiles and no association with K2003 strain. Two isolates with the same genotype and genetically closely related two sub-types (2 isolates for each sub-type) were hospital-derived colonizations of patients. The other unrelated genotypes were discussed in the context of colonization, nosocomial infections, and commensal origin, taking into account prior exposure to linezolid. We determined the presence of a point mutation G2576T in six loci of 23S rDNA. There was also a significant correlation (p<0.0015) between the presence of MIC>32 value and the presence of G2576T point mutation on the sixth rrn. We also detected 5 virulence genes for all isolates: gelE, cylA, asa1, hyl, esp. Correlation (p≤0.0001) was observed between the presence of gelE gene encoding gelatinase and two other genes: cylA and asa1 encoding cytolysin and collagen binding protein responsible for aggregation of bacterial cells, respectively. Significant correlation was also observed between asa1 and cfr genes encoding 23S rRNA rybonuclease responsible for resistance to PhLOPSA antibiotics (p = 0.0004). The multidimensional analysis has also shown the correlation between cfr gene and GI-tract (p = 0, 0491), which suggests horizontal gene transfer inside the gut microbiota and the risk of colonization with linezolid-resistant strains without previously being treated with the antibiotic. The patient could have been colonized with LZDRVREF strains which in the absence of competitive microbiota quickly settle in ecological niches favourable for them and pose a risk for the patient.
Collapse
Affiliation(s)
- Beata Krawczyk
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Magdalena Wysocka
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Roman Kotłowski
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Marek Bronk
- Department of Clinical Microbiology, Clinical Hospital No 1, Medical University of Gdańsk, Gdańsk, Poland
| | | | | |
Collapse
|
32
|
Tu R, Jin W, Han SF, Zhou X, Wang T, Gao SH, Wang Q, Chen C, Xie GJ, Wang Q. Rapid enrichment and ammonia oxidation performance of ammonia-oxidizing archaea from an urban polluted river of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113258. [PMID: 31669955 DOI: 10.1016/j.envpol.2019.113258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/07/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Ammonia oxidation is the rate-limiting step in nitrification process and dominated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). In the present study, a highly enriched culture of AOA was obtained from urban polluted water in Shahe River, Shenzhen, China. The optimum growth conditions were identified by orthogonal analysis as 37 °C, with pH 7.0 and initial ammonia concentration of 1.0 mM. Under these conditions, the highest abundance of AOA was obtained as 4.6 × 107 copies/ng DNA. Growth of AOA in polluted river water showed significant reduction in ammonia concentration in AOA-enriched cultures without antibiotics after 10 days of incubation, while synchronous increase in nitrate concentration was up to 12.7 mg/L. However, AOA-enriched by antibiotic showed insignificant changes in ammonia or nitrite concentration. This study showed that AOB play an important role in ammonia oxidation of polluted river water, and AOA alone showed insignificant changes in ammonia or nitrite concentrations. Therefore, the ammonia oxidation performance of natural water could not be improved by adding high concentration AOA bacterial liquid.
Collapse
Affiliation(s)
- Renjie Tu
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Wenbiao Jin
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Song-Fang Han
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China.
| | - Tianqiang Wang
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Shu-Hong Gao
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Qing Wang
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 150001, Harbin, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 150001, Harbin, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
33
|
Athamanolap P, Hsieh K, O'Keefe CM, Zhang Y, Yang S, Wang TH. Nanoarray Digital Polymerase Chain Reaction with High-Resolution Melt for Enabling Broad Bacteria Identification and Pheno-Molecular Antimicrobial Susceptibility Test. Anal Chem 2019; 91:12784-12792. [PMID: 31525952 DOI: 10.1021/acs.analchem.9b02344] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Toward combating infectious diseases caused by pathogenic bacteria, there remains an unmet need for diagnostic tools that can broadly identify the causative bacteria and determine their antimicrobial susceptibilities from complex and even polymicrobial samples in a timely manner. To address this need, a microfluidic and machine-learning-based platform that performs broad bacteria identification (ID) and rapid yet reliable antimicrobial susceptibility testing (AST) is developed. Specifically, this platform builds on "pheno-molecular AST", a strategy that transforms nucleic acid amplification tests (NAATs) into phenotypic AST through quantitative detection of bacterial genomic replication, and utilizes digital polymerase chain reaction (PCR) and digital high-resolution melt (HRM) to quantify and identify bacterial DNA molecules. Bacterial species are identified using integrated experiment-machine learning algorithm via HRM profiles. Digital DNA quantification allows for rapid growth measurement that reflects susceptibility profiles of each bacterial species within only 30 min of antibiotic exposure. As a demonstration, multiple bacterial species and their susceptibility profiles in a spiked-in polymicrobial urine specimen were correctly identified with a total turnaround time of ∼4 h. With further development and clinical validation, this platform holds the potential for improving clinical diagnostics and enabling targeted antibiotic treatments.
Collapse
Affiliation(s)
- Pornpat Athamanolap
- Department of Biomedical Engineering , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States
| | | | - Christine M O'Keefe
- Department of Biomedical Engineering , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States
| | - Ye Zhang
- Department of Biomedical Engineering , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States
| | - Samuel Yang
- Department of Emergency Medicine , Stanford University , Stanford , California 94304 , United States
| | - Tza-Huei Wang
- Department of Biomedical Engineering , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States.,The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , Maryland 21287 , United States
| |
Collapse
|
34
|
Abstract
Vancomycin-resistant Enterococcus faecium (VREfm) is a globally significant public health threat and was listed on the World Health Organization's 2017 list of high-priority pathogens for which new treatments are urgently needed. Treatment options for invasive VREfm infections are very limited, and outcomes are often poor. Whole-genome sequencing is providing important new insights into VREfm evolution, drug resistance and hospital adaptation, and is increasingly being used to track VREfm transmission within hospitals to detect outbreaks and inform infection control practices. This mini-review provides an overview of recent data on the use of genomics to understand and respond to the global problem of VREfm.
Collapse
Affiliation(s)
- Claire Gorrie
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Charlie Higgs
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Glen Carter
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Timothy P Stinear
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Benjamin Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Department of Infectious Diseases, Austin Health, Heidelberg, Australia.,Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
35
|
Singh H, Das S, Yadav J, Srivastava VK, Jyoti A, Kaushik S. In search of novel protein drug targets for treatment of Enterococcus faecalis infections. Chem Biol Drug Des 2019; 94:1721-1739. [PMID: 31260188 DOI: 10.1111/cbdd.13582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/08/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022]
Abstract
Enterococcus faecalis (Ef) is one of the major pathogens involved in hospital-acquired infections. It can cause nosocomial bacteremia, surgical wound infection, and urinary tract infection. It is important to mention here that Ef is developing resistance against many commonly occurring antibiotics. The occurrence of multidrug resistance (MDR) and extensive-drug resistance (XDR) is now posing a major challenge to the medical community. In this regard, to combat the infections caused by Ef, we have to look for an alternative. Rational structure-based drug design exploits the three-dimensional structure of the target protein, which can be unraveled by various techniques such as X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. In this review, we have discussed the complete picture of Ef infections, the possible treatment available at present, and the alternative treatment options to be explored. This study will help in better understanding of novel biological targets against Ef and the compounds, which are likely to bind with these targets. Using these detailed structural informations, rational structure-based drug design is achievable and tight inhibitors against Ef can be prepared.
Collapse
Affiliation(s)
- Harpreet Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Satyajeet Das
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Jyoti Yadav
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | | - Anupam Jyoti
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| |
Collapse
|
36
|
Abstract
The study of the genetics of enterococci has focused heavily on mobile genetic elements present in these organisms, the complex regulatory circuits used to control their mobility, and the antibiotic resistance genes they frequently carry. Recently, more focus has been placed on the regulation of genes involved in the virulence of the opportunistic pathogenic species Enterococcus faecalis and Enterococcus faecium. Little information is available concerning fundamental aspects of DNA replication, partition, and division; this article begins with a brief overview of what little is known about these issues, primarily by comparison with better-studied model organisms. A variety of transcriptional and posttranscriptional mechanisms of regulation of gene expression are then discussed, including a section on the genetics and regulation of vancomycin resistance in enterococci. The article then provides extensive coverage of the pheromone-responsive conjugation plasmids, including sections on regulation of the pheromone response, the conjugative apparatus, and replication and stable inheritance. The article then focuses on conjugative transposons, now referred to as integrated, conjugative elements, or ICEs, and concludes with several smaller sections covering emerging areas of interest concerning the enterococcal mobilome, including nonpheromone plasmids of particular interest, toxin-antitoxin systems, pathogenicity islands, bacteriophages, and genome defense.
Collapse
Affiliation(s)
- Keith E Weaver
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| |
Collapse
|
37
|
Dhanda G, Sarkar P, Samaddar S, Haldar J. Battle against Vancomycin-Resistant Bacteria: Recent Developments in Chemical Strategies. J Med Chem 2018; 62:3184-3205. [DOI: 10.1021/acs.jmedchem.8b01093] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Sandip Samaddar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
38
|
Lee T, Pang S, Abraham S, Coombs GW. Antimicrobial-resistant CC17 Enterococcus faecium: The past, the present and the future. J Glob Antimicrob Resist 2018; 16:36-47. [PMID: 30149193 DOI: 10.1016/j.jgar.2018.08.016] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 01/23/2023] Open
Abstract
Enterococcus faecium is a robust opportunistic pathogen that is most commonly found as a commensal of the human and animal gut but can also survive in the environment. Since the introduction and use of antimicrobials, E. faecium has been found to rapidly acquire resistance genes that, when expressed, can effectively circumvent the effects of most antimicrobials. The rapid acquisition of multiple antimicrobial resistances has led to the adaptation of specific E. faecium clones in the hospital environment, collectively known as clonal complex 17 (CC17). CC17 E. faecium are responsible for a significant proportion of hospital-associated infections, which can cause severe morbidity and mortality. Here we review the history of E. faecium from commensal to a significant hospital-associated pathogen, its robust phenotypic characteristics, commonly used laboratory typing schemes, and antimicrobial resistances with a focus on vancomycin and its associated mechanism of resistance. Finally, we review the global epidemiology of vancomycin-resistant E. faecium and potential solutions to problems faced in public health.
Collapse
Affiliation(s)
- Terence Lee
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Perth, WA, Australia
| | - Stanley Pang
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Perth, WA, Australia; PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Perth, WA, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Perth, WA, Australia; PathWest Laboratory Medicine, Nedlands, WA, Australia.
| |
Collapse
|
39
|
Cacaci M, Giraud C, Leger L, Torelli R, Martini C, Posteraro B, Palmieri V, Sanguinetti M, Bugli F, Hartke A. Expression profiling in a mammalian host reveals the strong induction of genes encoding LysM domain-containing proteins in Enterococcus faecium. Sci Rep 2018; 8:12412. [PMID: 30120332 PMCID: PMC6098018 DOI: 10.1038/s41598-018-30882-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
Enterococcus faecium is an important health care-associated pathogen that is difficult to treat due to the high level of antibiotic resistance of clinical isolates. The identification of new potential therapeutic targets or vaccination strategies is therefore urgently needed. In this regard, we carried out a transcriptomic analysis of the E. faecium vancomycin-resistant strain AUS0004, comparing the gene expression of bacteria grown under laboratory conditions and bacteria isolated from an infection site. This analysis highlighted more than 360 genes potentially induced under infection conditions. Owing to their expression profiles, four LysM domain-containing proteins were characterized in more detail. The EFAU004_01059, 1150 and 494 proteins are highly homologous, whereas EFAU004_01209 has a unique domain-architecture and sequence. The analysis of corresponding mutants showed that all LysM proteins played relevant roles in the infection process of E. faecium in mice. The EFAU004_01209 mutant also displayed profound morphological modifications, suggesting it has a role in cell wall synthesis or cell division. Furthermore, the adhesion to kidney cells and growth of the mutant was affected in human urine. All these phenotypes and the surface exposure of EFAU004_01209 identify this protein as an interesting new drug target in E. faecium.
Collapse
Affiliation(s)
- Margherita Cacaci
- Normandie Univ, UNICAEN, U2RM-Stress and Virulence, 14000, Caen, France.,Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS Agostino Gemelli, 00168, Rome, Italy
| | - Caroline Giraud
- Normandie Univ, UNICAEN, U2RM-Stress and Virulence, 14000, Caen, France
| | - Loic Leger
- Normandie Univ, UNICAEN, U2RM-Stress and Virulence, 14000, Caen, France
| | - Riccardo Torelli
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS Agostino Gemelli, 00168, Rome, Italy
| | - Cecilia Martini
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS Agostino Gemelli, 00168, Rome, Italy
| | - Brunella Posteraro
- Institute of Public Health (Section of Hygiene), Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS Agostino Gemelli, 00168, Rome, Italy
| | - Valentina Palmieri
- Physics Institute, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS Agostino Gemelli, 00168, Rome, Italy
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS Agostino Gemelli, 00168, Rome, Italy.
| | - Francesca Bugli
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario IRCCS Agostino Gemelli, 00168, Rome, Italy
| | - Axel Hartke
- Normandie Univ, UNICAEN, U2RM-Stress and Virulence, 14000, Caen, France.
| |
Collapse
|
40
|
Torres C, Alonso CA, Ruiz-Ripa L, León-Sampedro R, Del Campo R, Coque TM. Antimicrobial Resistance in Enterococcus spp. of animal origin. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0032-2018. [PMID: 30051804 PMCID: PMC11633606 DOI: 10.1128/microbiolspec.arba-0032-2018] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Indexed: 12/21/2022] Open
Abstract
Enterococci are natural inhabitants of the intestinal tract in humans and many animals, including food-producing and companion animals. They can easily contaminate the food and the environment, entering the food chain. Moreover, Enterococcus is an important opportunistic pathogen, especially the species E. faecalis and E. faecium, causing a wide variety of infections. This microorganism not only contains intrinsic resistance mechanisms to several antimicrobial agents, but also has the capacity to acquire new mechanisms of antimicrobial resistance. In this review we analyze the diversity of enterococcal species and their distribution in the intestinal tract of animals. Moreover, resistance mechanisms for different classes of antimicrobials of clinical relevance are reviewed, as well as the epidemiology of multidrug-resistant enterococci of animal origin, with special attention given to beta-lactams, glycopeptides, and linezolid. The emergence of new antimicrobial resistance genes in enterococci of animal origin, such as optrA and cfr, is highlighted. The molecular epidemiology and the population structure of E. faecalis and E. faecium isolates in farm and companion animals is presented. Moreover, the types of plasmids that carry the antimicrobial resistance genes in enterococci of animal origin are reviewed.
Collapse
Affiliation(s)
- Carmen Torres
- Biochemistry and Molecular Biology Unit, University of La Rioja, 26006 Logroño, Spain
| | - Carla Andrea Alonso
- Biochemistry and Molecular Biology Unit, University of La Rioja, 26006 Logroño, Spain
| | - Laura Ruiz-Ripa
- Biochemistry and Molecular Biology Unit, University of La Rioja, 26006 Logroño, Spain
| | - Ricardo León-Sampedro
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain
| | - Rosa Del Campo
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa M Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain
| |
Collapse
|
41
|
Binda E, Cappelletti P, Marinelli F, Marcone GL. Specificity of Induction of Glycopeptide Antibiotic Resistance in the Producing Actinomycetes. Antibiotics (Basel) 2018; 7:antibiotics7020036. [PMID: 29693566 PMCID: PMC6022977 DOI: 10.3390/antibiotics7020036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/21/2022] Open
Abstract
Glycopeptide antibiotics are drugs of last resort for treating severe infections caused by Gram-positive pathogens. It is widely believed that glycopeptide-resistance determinants (van genes) are ultimately derived from the producing actinomycetes. We hereby investigated the relationship between the antimicrobial activity of vancomycin and teicoplanins and their differential ability to induce van gene expression in Actinoplanes teichomyceticus—the producer of teicoplanin—and Nonomuraea gerenzanensis—the producer of the teicoplanin-like A40926. As a control, we used the well-characterized resistance model Streptomyces coelicolor. The enzyme activities of a cytoplasmic-soluble d,d-dipeptidase and of a membrane-associated d,d-carboxypeptidase (corresponding to VanX and VanY respectively) involved in resistant cell wall remodeling were measured in the actinomycetes grown in the presence or absence of subinhibitory concentrations of vancomycin, teicoplanin, and A40926. Results indicated that actinomycetes possess diverse self-resistance mechanisms, and that each of them responds differently to glycopeptide induction. Gene swapping among teicoplanins-producing actinomycetes indicated that cross-talking is possible and provides useful information for predicting the evolution of future resistance gene combinations emerging in pathogens.
Collapse
Affiliation(s)
- Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
- The Protein Factory Research Center, Politecnico di Milano and University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Pamela Cappelletti
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
- The Protein Factory Research Center, Politecnico di Milano and University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
- The Protein Factory Research Center, Politecnico di Milano and University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Giorgia Letizia Marcone
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
- The Protein Factory Research Center, Politecnico di Milano and University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
42
|
Machine Learning Leveraging Genomes from Metagenomes Identifies Influential Antibiotic Resistance Genes in the Infant Gut Microbiome. mSystems 2018; 3:mSystems00123-17. [PMID: 29359195 PMCID: PMC5758725 DOI: 10.1128/msystems.00123-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/14/2017] [Indexed: 01/08/2023] Open
Abstract
The process of reconstructing genomes from environmental sequence data (genome-resolved metagenomics) allows unique insight into microbial systems. We apply this technique to investigate how the antibiotic resistance genes of bacteria affect their ability to flourish in the gut under various conditions. Our analysis reveals that strain-level selection in formula-fed infants drives enrichment of beta-lactamase genes in the gut resistome. Using genomes from metagenomes, we built a machine learning model to predict how organisms in the gut microbial community respond to perturbation by antibiotics. This may eventually have clinical applications. Antibiotic resistance in pathogens is extensively studied, and yet little is known about how antibiotic resistance genes of typical gut bacteria influence microbiome dynamics. Here, we leveraged genomes from metagenomes to investigate how genes of the premature infant gut resistome correspond to the ability of bacteria to survive under certain environmental and clinical conditions. We found that formula feeding impacts the resistome. Random forest models corroborated by statistical tests revealed that the gut resistome of formula-fed infants is enriched in class D beta-lactamase genes. Interestingly, Clostridium difficile strains harboring this gene are at higher abundance in formula-fed infants than C. difficile strains lacking this gene. Organisms with genes for major facilitator superfamily drug efflux pumps have higher replication rates under all conditions, even in the absence of antibiotic therapy. Using a machine learning approach, we identified genes that are predictive of an organism’s direction of change in relative abundance after administration of vancomycin and cephalosporin antibiotics. The most accurate results were obtained by reducing annotated genomic data to five principal components classified by boosted decision trees. Among the genes involved in predicting whether an organism increased in relative abundance after treatment are those that encode subclass B2 beta-lactamases and transcriptional regulators of vancomycin resistance. This demonstrates that machine learning applied to genome-resolved metagenomics data can identify key genes for survival after antibiotics treatment and predict how organisms in the gut microbiome will respond to antibiotic administration. IMPORTANCE The process of reconstructing genomes from environmental sequence data (genome-resolved metagenomics) allows unique insight into microbial systems. We apply this technique to investigate how the antibiotic resistance genes of bacteria affect their ability to flourish in the gut under various conditions. Our analysis reveals that strain-level selection in formula-fed infants drives enrichment of beta-lactamase genes in the gut resistome. Using genomes from metagenomes, we built a machine learning model to predict how organisms in the gut microbial community respond to perturbation by antibiotics. This may eventually have clinical applications.
Collapse
|
43
|
Gao W, Howden BP, Stinear TP. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr Opin Microbiol 2017; 41:76-82. [PMID: 29227922 DOI: 10.1016/j.mib.2017.11.030] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/29/2022]
Abstract
Enterococci are long-standing members of the human microbiome and they are also widely distributed in nature. However, with the surge of antibiotic-resistance in recent decades, two enterococcal species (Enterococcus faecalis and Enterococcus faecium) have emerged to become significant nosocomial pathogens, acquiring extensive antibiotic resistance. In this review, we summarize what is known about the evolution of virulence in E. faecium, highlighting a specific clone of E. faecium called ST796 that has emerged recently and spread globally.
Collapse
Affiliation(s)
- Wei Gao
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia; Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia; Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
44
|
Ahmed MO, Baptiste KE. Vancomycin-Resistant Enterococci: A Review of Antimicrobial Resistance Mechanisms and Perspectives of Human and Animal Health. Microb Drug Resist 2017; 24:590-606. [PMID: 29058560 DOI: 10.1089/mdr.2017.0147] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are both of medical and public health importance associated with serious multidrug-resistant infections and persistent colonization. Enterococci are opportunistic environmental inhabitants with a remarkable adaptive capacity to evolve and transmit antimicrobial-resistant determinants. The VRE gene operons show distinct genetic variability and apparently continued evolution leading to a variety of antimicrobial resistance phenotypes and various environmental and livestock reservoirs for the most common van genes. Such complex diversity renders a number of important therapeutic options including "last resort antibiotics" ineffective and poses a particular challenge for clinical management. Enterococci resistance to glycopeptides and multidrug resistance warrants attention and continuous monitoring.
Collapse
Affiliation(s)
- Mohamed O Ahmed
- 1 Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli , Tripoli, Libya
| | - Keith E Baptiste
- 2 Department of Veterinary Medicine, Danish Medicines Agency , Copenhagen South, Denmark
| |
Collapse
|
45
|
Hughes CS, Longo E, Phillips-Jones MK, Hussain R. Characterisation of the selective binding of antibiotics vancomycin and teicoplanin by the VanS receptor regulating type A vancomycin resistance in the enterococci. Biochim Biophys Acta Gen Subj 2017; 1861:1951-1959. [PMID: 28511809 PMCID: PMC5482315 DOI: 10.1016/j.bbagen.2017.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 02/04/2023]
Abstract
A-type resistance towards "last-line" glycopeptide antibiotic vancomycin in the leading hospital acquired infectious agent, the enterococci, is the most common in the UK. Resistance is regulated by the VanRASA two-component system, comprising the histidine sensor kinase VanSA and the partner response regulator VanRA. The nature of the activating ligand for VanSA has not been identified, therefore this work sought to identify and characterise ligand(s) for VanSA. In vitro approaches were used to screen the structural and activity effects of a range of potential ligands with purified VanSA protein. Of the screened ligands (glycopeptide antibiotics vancomycin and teicoplanin, and peptidoglycan components N-acetylmuramic acid, D-Ala-D-Ala and Ala-D-y-Glu-Lys-D-Ala-D-Ala) only glycopeptide antibiotics vancomycin and teicoplanin were found to bind VanSA with different affinities (vancomycin 70μM; teicoplanin 30 and 170μM), and were proposed to bind via exposed aromatic residues tryptophan and tyrosine. Furthermore, binding of the antibiotics induced quicker, longer-lived phosphorylation states for VanSA, proposing them as activators of type A vancomycin resistance in the enterococci.
Collapse
Affiliation(s)
- C S Hughes
- Diamond Light Source, Harwell Research & Innovation Campus, Chilton, Didcot OX11 0DE, United Kingdom; Membranes, Membrane Proteins & Peptides Research Group, School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - E Longo
- Diamond Light Source, Harwell Research & Innovation Campus, Chilton, Didcot OX11 0DE, United Kingdom
| | - M K Phillips-Jones
- Membranes, Membrane Proteins & Peptides Research Group, School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom.
| | - R Hussain
- Diamond Light Source, Harwell Research & Innovation Campus, Chilton, Didcot OX11 0DE, United Kingdom.
| |
Collapse
|
46
|
Pidgeon SE, Pires MM. Cell Wall Remodeling by a Synthetic Analog Reveals Metabolic Adaptation in Vancomycin Resistant Enterococci. ACS Chem Biol 2017; 12:1913-1918. [PMID: 28574692 DOI: 10.1021/acschembio.7b00412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drug-resistant bacterial infections threaten to overburden our healthcare system and disrupt modern medicine. A large class of potent antibiotics, including vancomycin, operate by interfering with bacterial cell wall biosynthesis. Vancomycin-resistant enterococci (VRE) evade the blockage of cell wall biosynthesis by altering cell wall precursors, rendering them drug insensitive. Herein, we reveal the phenotypic plasticity and cell wall remodeling of VRE in response to vancomycin in live bacterial cells via a metabolic probe. A synthetic cell wall analog was designed and constructed to monitor cell wall structural alterations. Our results demonstrate that the biosynthetic pathway for vancomycin-resistant precursors can be hijacked by synthetic analogs to track the kinetics of phenotype induction. In addition, we leveraged this probe to interrogate the response of VRE cells to vancomycin analogs and a series of cell wall-targeted antibiotics. Finally, we describe a proof-of-principle strategy to visually inspect drug resistance induction. Based on our findings, we anticipate that our metabolic probe will play an important role in further elucidating the interplay among the enzymes involved in the VRE biosynthetic rewiring.
Collapse
Affiliation(s)
- Sean E. Pidgeon
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Marcos M. Pires
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
47
|
Ibsen M, Fernando DM, Kumar A, Kirkwood AE. Prevalence of antibiotic resistance genes in bacterial communities associated with Cladophora glomerata mats along the nearshore of Lake Ontario. Can J Microbiol 2017; 63:439-449. [PMID: 28192677 DOI: 10.1139/cjm-2016-0803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The alga Cladophora glomerata can erupt in nuisance blooms throughout the lower Great Lakes. Since bacterial abundance increases with the emergence and decay of Cladophora, we investigated the prevalence of antibiotic resistance (ABR) in Cladophora-associated bacterial communities up-gradient and down-gradient from a large sewage treatment plant (STP) on Lake Ontario. Although STPs are well-known sources of ABR, we also expected detectable ABR from up-gradient wetland communities, since they receive surface run-off from urban and agricultural sources. Statistically significant differences in aquatic bacterial abundance and ABR were found between down-gradient beach samples and up-gradient coastal wetland samples (ANOVA, Holm-Sidak test, p < 0.05). Decaying and free-floating Cladophora sampled near the STP had the highest bacterial densities overall, including on ampicillin- and vancomycin-treated plates. However, quantitative polymerase chain reaction analysis of the ABR genes ampC, tetA, tetB, and vanA from environmental communities showed a different pattern. Some of the highest ABR gene levels occurred at the 2 coastal wetland sites (vanA). Overall, bacterial ABR profiles from environmental samples were distinguishable between living and decaying Cladophora, inferring that Cladophora may control bacterial ABR depending on its life-cycle stage. Our results also show how spatially and temporally dynamic ABR is in nearshore aquatic bacteria, which warrants further research.
Collapse
Affiliation(s)
- Michael Ibsen
- a Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street N., Oshawa, ON L1H 7K4, Canada
| | - Dinesh M Fernando
- a Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street N., Oshawa, ON L1H 7K4, Canada.,b Department of Microbiology, University of Manitoba, 414E Buller Building, Winnipeg, MB R3T 2N2, Canada.,c Department of Chemical Biology and Therapeutics, IRC Building, Mail Stop: 1000, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ayush Kumar
- a Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street N., Oshawa, ON L1H 7K4, Canada.,b Department of Microbiology, University of Manitoba, 414E Buller Building, Winnipeg, MB R3T 2N2, Canada
| | - Andrea E Kirkwood
- a Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street N., Oshawa, ON L1H 7K4, Canada
| |
Collapse
|
48
|
Abstract
Enterococci belong to the group of lactic acid bacteria (LAB), and inhabit the gastrointestinal tracts of a wide variety of animals from insects and to human, and the commensal organism in humans and animals. The commensal/probiotic role of enterococci has evolved through thousands of years in mutual coexistence. Enterococcus have many favorable traits that have been appreciated in food fermentation and preservation, and many serve as probiotics to promote health. While lactobacillus have been shown to confer numerous benefits on and often regarded as health bringing organisms, enterococci have become more recognized as emerging human pathogens in recent years. Mac Callum and Hastings characterized an organism, now known to be Enterococcal faecalis, which was isolated from a lethal case of endocarditis on 1899. The report was the first detailed description of its pathogenic capabilities. Over the past few decades, multi-drug resistance enterococci have become as important health-care associated pathogen, and leading causes of drug resistance infection. The modern life style including the broad use of antibiotics in medical practice and animal husbandry have selected for the convergence of potential virulence factors to the specific enterococcus species such as E. faecium and E. faecalis. The development of modern medical care of intensive and invasive medical therapies and treatments for human disease, and existence of severe compromised patients in hospitals has contributed to the increased prevalence of these opportunistic organisms. The virulence factors converged in E. faecalis and E. faecium which have been isolated in nosocomial infections, include antibiotic resistance, extracellular proteins (toxins), extrachromosome and mobile genetic elements, cell wall components, biofilm formation, adherence factors, and colonization factor such as bacteriocin, etc. In these potential virulence factors, I presented characteristics of enterococcal conjugative plasmid, cytolysin, collagen binding protein of adhesion, bacteriocins, and drug resistances. I made reference to our original reports, and review books for this review. The review books are "Enterococci: from Commensals to Leading Causes of Drug Resistant Infection, NCBI Bookshelf. A service of the National Library of Medicine, National Institute of Health. Ed. by Michael S Gilmore, Don B Clewell, Yasuyoshi Ike, and Nathan Shankar", and "The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance, Gilmore M., Clewell D., Courvadin P., Dunny G., Murray B., Rice L., (ed) 2002. ASM Press".
Collapse
Affiliation(s)
- Yasuyoshi Ike
- Professor Emeritus, Gunma University Graduate School of Medicine
- Representative Director, Association for Education in Bacterial Drug Resistance
| |
Collapse
|
49
|
Park AJ, Krieger JR, Khursigara CM. Survival proteomes: the emerging proteotype of antimicrobial resistance. FEMS Microbiol Rev 2016; 40:323-42. [PMID: 26790948 DOI: 10.1093/femsre/fuv051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial resistance is one of the greatest challenges in modern medicine. Infectious diseases that have historically been eliminated with routine antibiotic therapy are now re-emerging as life threatening illnesses. A better understanding of the specific mechanisms that contribute to resistance are required to optimize the treatment of infectious microorganisms and limit the survival of recalcitrant populations. This challenging area of research is made more problematic by the observation that multiple, overlapping, and/or compensatory resistance mechanism are often present within a single bacterial species. High-resolution proteomics has emerged as an effective tool to study antimicrobial resistance as it allows for the quantitative investigation of multiple systems concurrently. Furthermore, the ability to examine extracellular mechanisms of resistance and important post-translational modifications make this research tool well suited for the challenge. This review discusses how proteomics has contributed to the understanding of antimicrobial resistance and focuses on advances afforded by the more recent development of technologies that produce quantitative high-resolution proteomic information. We discuss current strategies for studying resistance, including comparative analysis of resistant and susceptible strains and protein-based responses to antimicrobial challenge. Lastly, we suggest specific experimental approaches aimed at advancing our understanding of protein-based resistance mechanisms and maximizing therapeutic outcomes in the future.
Collapse
Affiliation(s)
- Amber J Park
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jonathan R Krieger
- SPARC BioCentre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
50
|
Detection of Vancomycin-Resistant Enterococci. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|