1
|
Rankin MR, Smith JL. Serendipitous high-resolution structure of Escherichia coli carbonic anhydrase 2. Acta Crystallogr F Struct Biol Commun 2025; 81:47-52. [PMID: 39812168 PMCID: PMC11783180 DOI: 10.1107/s2053230x25000068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025] Open
Abstract
X-ray crystallography remains the dominant method of determining the three-dimensional structure of proteins. Nevertheless, this resource-intensive process may be hindered by the unintended crystallization of contaminant proteins from the expression source. Here, the serendipitous discovery of two novel crystal forms and one new, high-resolution structure of carbonic anhydrase 2 (CA2) from Escherichia coli that arose during a crystallization campaign for an unrelated target is reported. By comparing unit-cell parameters with those in the PDB, contaminants such as CA2 can be identified, preventing futile molecular-replacement attempts. Crystallographers can use these new lattice parameters to diagnose CA2 contamination in similar experiments.
Collapse
Affiliation(s)
- Michael R. Rankin
- Department of Biological ChemistryUniversity of MichiganAnn ArborMI48109USA
- Life Sciences InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Janet L. Smith
- Department of Biological ChemistryUniversity of MichiganAnn ArborMI48109USA
- Life Sciences InstituteUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
2
|
Ojima-Kato T. Advances in recombinant protein production in microorganisms and functional peptide tags. Biosci Biotechnol Biochem 2024; 89:1-10. [PMID: 39479788 DOI: 10.1093/bbb/zbae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/13/2024] [Indexed: 12/24/2024]
Abstract
Recombinant protein production in prokaryotic and eukaryotic cells is a fundamental technology for both research and industry. Achieving efficient protein synthesis is key to accelerating the discovery, characterization, and practical application of proteins. This review focuses on recent advances in recombinant protein production and strategies for more efficient protein production, especially using Escherichia coli and Saccharomyces cerevisiae. Additionally, this review summarizes the development of various functional peptide tags that can be employed for protein production, modification, and purification, including translation-enhancing peptide tags developed by our research group.
Collapse
Affiliation(s)
- Teruyo Ojima-Kato
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
3
|
Chisholm LO, Jeon CK, Prell JS, Harms MJ. Changing expression system alters oligomerization and proinflammatory activity of recombinant human S100A9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.608001. [PMID: 39185185 PMCID: PMC11343194 DOI: 10.1101/2024.08.14.608001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
S100A9 is a Damage Associated Molecular Pattern (DAMP) that activates the innate immune system via Toll-like receptor 4 (TLR4). Despite many years of study, the mechanism of activation remains unknown. To date, much of the biochemical characterization of S100A9 has been performed using recombinant S100A9 expressed in E. coli (S100A9ec). TLR4 is the canonical receptor for LPS, a molecule found in the outer membrane of E. coli, raising the possibility of artifacts due to LPS contamination. Here we report characterization of LPS-free recombinant S100A9 expressed in insect cells (S100A9in). We show that S100A9in does not activate TLR4. This difference does not appear to be due to LPS contamination, protein misfolding, purification artifacts, or differences in phosphorylation. We show instead that S100A9in adopts an altered oligomeric state compared to S100A9ec. Disrupting oligomer formation with the E. coli disaggregase SlyD restores activity to S100A9in. Our results also indicate that the oligomeric state of S100A9 is a major factor in its ability to activate TLR4 and that this can be altered in unexpected ways by the recombinant expression system used to produce the protein.
Collapse
Affiliation(s)
- Lauren O. Chisholm
- Department of Chemistry & Biochemistry, University of Oregon, Eugene OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Chae Kyung Jeon
- Department of Chemistry & Biochemistry, University of Oregon, Eugene OR 97403
- Materials Science Institute, University of Oregon, Eugene, OR 97403
| | - James S. Prell
- Department of Chemistry & Biochemistry, University of Oregon, Eugene OR 97403
- Materials Science Institute, University of Oregon, Eugene, OR 97403
| | - Michael J. Harms
- Department of Chemistry & Biochemistry, University of Oregon, Eugene OR 97403
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
4
|
Dorogin J, Benz MA, Moore CJ, Benoit DSW, Hettiaratchi MH. Recombinant and Synthetic Affibodies Function Comparably for Modulating Protein Release. Cell Mol Bioeng 2024; 17:305-312. [PMID: 39372554 PMCID: PMC11450113 DOI: 10.1007/s12195-024-00815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Affibodies are a class of versatile affinity proteins with a wide variety of therapeutic applications, ranging from contrast agents for imaging to cell-targeting therapeutics. We have identified several affibodies specific to bone morphogenetic protein-2 (BMP-2) with a range of binding affinities and demonstrated the ability to tune release rate of BMP-2 from affibody-conjugated poly(ethylene glycol) maleimide (PEG-mal) hydrogels based on affibody affinity strength. In this work, we compare the purity, structure, and activity of recombinant, bacterially-expressed BMP-2-specific affibodies with affibodies synthesized via solid-phase peptide synthesis. Methods High- and low-affinity BMP-2-specific affibodies were recombinantly expressed using BL21(DE3) E. coli and chemically synthesized using microwave-assisted solid-phase peptide synthesis with Fmoc-Gly-Wang resin. The secondary structures of the affibodies and dissociation constants of affibody-BMP-2 binding were characterized by circular dichroism and biolayer interferometry, respectively. Endotoxin levels were measured using chromogenic limulus amebocyte lysate (LAL) assays. Affibody-conjugated PEG-mal hydrogels were fabricated and loaded with BMP-2 to evaluate hydrogel capacity for controlled release, quantified by enzyme-linked immunosorbent assays (ELISA). Results Synthetic and recombinant affibodies were determined to be α-helical by circular dichroism. The synthetic high- and low-affinity BMP-2-specific affibodies demonstrated comparable BMP-2 binding dissociation constants to their recombinant counterparts. Recombinant affibodies retained some endotoxins after purification, while endotoxins were not detected in the synthetic affibodies above FDA permissible limits. High-affinity affibody-conjugated hydrogels reduced cumulative BMP-2 release compared to the low-affinity affibody-conjugated hydrogels and hydrogels without affibodies. Conclusions Synthetic affibodies demonstrate comparable structure and function to recombinant affibodies while reducing endotoxin contamination and increasing product yield, indicating that solid-phase peptide synthesis is a viable method of producing affibodies for controlled protein release and other applications.
Collapse
Affiliation(s)
- Jonathan Dorogin
- Department of Bioengineering, University of Oregon, Knight Campus, Eugene, Oregon USA
| | - Morrhyssey A. Benz
- Department of Bioengineering, University of Oregon, Knight Campus, Eugene, Oregon USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon USA
| | - Cameron J. Moore
- Department of Bioengineering, University of Oregon, Knight Campus, Eugene, Oregon USA
| | - Danielle S. W. Benoit
- Department of Bioengineering, University of Oregon, Knight Campus, Eugene, Oregon USA
| | - Marian H. Hettiaratchi
- Department of Bioengineering, University of Oregon, Knight Campus, Eugene, Oregon USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon USA
| |
Collapse
|
5
|
Smith M, Hernández JS, Messing S, Ramakrishnan N, Higgins B, Mehalko J, Perkins S, Wall VE, Grose C, Frank PH, Cregger J, Le PV, Johnson A, Sherekar M, Pagonis M, Drew M, Hong M, Widmeyer SRT, Denson JP, Snead K, Poon I, Waybright T, Champagne A, Esposito D, Jones J, Taylor T, Gillette W. Producing recombinant proteins in Vibrio natriegens. Microb Cell Fact 2024; 23:208. [PMID: 39049057 PMCID: PMC11267860 DOI: 10.1186/s12934-024-02455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/08/2024] [Indexed: 07/27/2024] Open
Abstract
The diversity of chemical and structural attributes of proteins makes it inherently difficult to produce a wide range of proteins in a single recombinant protein production system. The nature of the target proteins themselves, along with cost, ease of use, and speed, are typically cited as major factors to consider in production. Despite a wide variety of alternative expression systems, most recombinant proteins for research and therapeutics are produced in a limited number of systems: Escherichia coli, yeast, insect cells, and the mammalian cell lines HEK293 and CHO. Recent interest in Vibrio natriegens as a new bacterial recombinant protein expression host is due in part to its short doubling time of ≤ 10 min but also stems from the promise of compatibility with techniques and genetic systems developed for E. coli. We successfully incorporated V. natriegens as an additional bacterial expression system for recombinant protein production and report improvements to published protocols as well as new protocols that expand the versatility of the system. While not all proteins benefit from production in V. natriegens, we successfully produced several proteins that were difficult or impossible to produce in E. coli. We also show that in some cases, the increased yield is due to higher levels of properly folded protein. Additionally, we were able to adapt our enhanced isotope incorporation methods for use with V. natriegens. Taken together, these observations and improvements allowed production of proteins for structural biology, biochemistry, assay development, and structure-based drug design in V. natriegens that were impossible and/or unaffordable to produce in E. coli.
Collapse
Affiliation(s)
- Matthew Smith
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - José Sánchez Hernández
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Simon Messing
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Nitya Ramakrishnan
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Brianna Higgins
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jennifer Mehalko
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Shelley Perkins
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Vanessa E Wall
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Carissa Grose
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Peter H Frank
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Julia Cregger
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Phuong Vi Le
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Adam Johnson
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Mukul Sherekar
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Morgan Pagonis
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Matt Drew
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Min Hong
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Stephanie R T Widmeyer
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - John-Paul Denson
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Kelly Snead
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ivy Poon
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Timothy Waybright
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Allison Champagne
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Dominic Esposito
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jane Jones
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Troy Taylor
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - William Gillette
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
6
|
Yunus J, Wan Dagang WRZ, Jamaluddin H, Jemon K, Mohamad SE, Jonet MA. Bacterial biofilm growth and perturbation by serine protease from Bacillus sp. Arch Microbiol 2024; 206:138. [PMID: 38436775 DOI: 10.1007/s00203-024-03857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 03/05/2024]
Abstract
In nature, bacteria are ubiquitous and can be categorized as beneficial or harmless to humans, but most bacteria have one thing in common which is their ability to produce biofilm. Biofilm is encased within an extracellular polymeric substance (EPS) which provides resistance against antimicrobial agents. Protease enzymes have the potential to degrade or promote the growth of bacterial biofilms. In this study, the effects of a recombinant intracellular serine protease from Bacillus sp. (SPB) on biofilms from Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa were analyzed. SPB was purified using HisTrap HP column and concentrated using Amicon 30 ultra-centrifugal filter. SPB was added with varying enzyme activity and assay incubation period after biofilms were formed in 96-well plates. SPB was observed to have contrasting effects on different bacterial biofilms, where biofilm degradations were observed for both 7-day-old A. baumannii (37.26%) and S. aureus (71.51%) biofilms. Meanwhile, SPB promoted growth of P. aeruginosa biofilm up to 176.32%. Compatibility between protein components in S. aureus biofilm with SPB as well as a simpler membrane structure morphology led to higher biofilm degradation for S. aureus compared to A. baumannii. However, SPB promoted growth of P. aeruginosa biofilm due likely to its degrading protein factors that are responsible for biofilm detachment and dispersion, thus resulting in more multi-layered biofilm formation. Commercial protease Savinase which was used as a comparison showed degradation for all three bacterial biofilms. The results obtained are unique and will expand our understanding on the effects that bacterial proteases have toward biofilms.
Collapse
Affiliation(s)
- Julia Yunus
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Wan Rosmiza Zana Wan Dagang
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Haryati Jamaluddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Khairunadwa Jemon
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Shaza Eva Mohamad
- Department of Environmental Engineering and Green Technology (EGT), Malaysia Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Mohd Anuar Jonet
- Structural And Applied Genomics Centre, Malaysia Genome and Vaccine Institute (MGVI), National Institute of Biotechnology Malaysia (NIBM), Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
7
|
Jennings MR, Min S, Xu GS, Homayuni K, Suresh B, Haikal YA, Blazeck J. Optimized expression and purification of a human adenosine deaminase in E. coli and characterization of its Asp8Asn variant. Protein Expr Purif 2024; 213:106362. [PMID: 37683902 PMCID: PMC10664833 DOI: 10.1016/j.pep.2023.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Homo sapiens adenosine deaminase isoform 1 (HsADA1) hydrolyzes adenosine and 2-deoxyadenosine as a key step in the purine nucleoside salvage pathway. Some HsADA1 mutations have severe deleterious effects, as is the case in a severe combined immunodeficiency resulting from loss of enzyme activity (ADA-SCID). Other mutations that reduce enzyme activity, for instance the Asp8Asn (D8N) variant, do not cause ADA-SCID but are correlated with other consequences to health. To ease further study of HsADA1 and its variants, we optimized an inexpensive, recombinant expression process in an Escherichia coli host through multiplexed parameter testing enabled by a lysate-based microtiter plate assay. We demonstrate the importance of gene codon usage, induction time and temperature, and alcohol supplementation towards improving enzyme yield to a final titer of 5 mg per liter of culture. We further show that use of a double-histidine-tag (his-tag) system greatly improves purity. We then utilize our expression and purification framework to produce the HsADA1 D8N variant, which had previously not been purified to homogeneity. We confirm that the D8N variant is ∼30% less active than the wildtype HsADA1 and show that it better retains its activity in human serum. Additionally, we show that both HsADA1 and the D8N variant have heightened activity in serum, driven in part by a previously undescribed phenomenon involving albumin. Therefore, this work presents a valuable process to produce HsADA1 that allows for insights into it and its variants' behavior. We also confirm the utility of lysate-based activity assays towards finding optimal E. coli expression conditions for enzymes and show how fusing his-tags in tandem can enhance product purity.
Collapse
Affiliation(s)
- Maria Rain Jennings
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Soohyon Min
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Grace S Xu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kassandra Homayuni
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Bhavana Suresh
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yusef Amir Haikal
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - John Blazeck
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
8
|
Suo Y, Chen A, La Clair JJ, Burkart MD. Substrate Sequestration and Chain Flipping in Human Mitochondrial Acyl Carrier Protein. Biochemistry 2023; 62:3548-3553. [PMID: 38039071 DOI: 10.1021/acs.biochem.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Outside of their involvement in energy production, mitochondria play a critical role for the cell through their access to a discrete pathway for fatty acid biosynthesis. Despite decades of study in bacterial fatty acid synthases (the putative evolutionary mitochondrial precursor), our understanding of human mitochondrial fatty acid biosynthesis remains incomplete. In particular, the role of the key carrier protein, human mitochondrial acyl carrier protein (mACP), which shuttles the substrate intermediates through the pathway, has not been well-studied in part due to challenges in protein expression and purification. Herein, we report a reliable method for recombinant Escherichia coli expression and purification of mACP. Fundamental characteristics, including substrate sequestration and chain-flipping activity, are demonstrated in mACP using solvatochromic response. This study provides an efficient approach toward understanding the fundamental protein-protein interactions of mACP and its partner proteins, ultimately leading to a molecular understanding of human mitochondrial diseases such as mitochondrial fatty acid oxidation deficiencies.
Collapse
Affiliation(s)
- Yixing Suo
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Aochiu Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
9
|
Dorogin J, Hochstatter HB, Shepherd SO, Svendsen JE, Benz MA, Powers AC, Fear KM, Townsend JM, Prell JS, Hosseinzadeh P, Hettiaratchi MH. Moderate-Affinity Affibodies Modulate the Delivery and Bioactivity of Bone Morphogenetic Protein-2. Adv Healthc Mater 2023; 12:e2300793. [PMID: 37379021 PMCID: PMC10592408 DOI: 10.1002/adhm.202300793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/16/2023] [Indexed: 06/29/2023]
Abstract
Uncontrolled bone morphogenetic protein-2 (BMP-2) release can lead to off-target bone growth and other adverse events. To tackle this challenge, yeast surface display is used to identify unique BMP-2-specific protein binders known as affibodies that bind to BMP-2 with different affinities. Biolayer interferometry reveals an equilibrium dissociation constant of 10.7 nm for the interaction between BMP-2 and high-affinity affibody and 34.8 nm for the interaction between BMP-2 and the low-affinity affibody. The low-affinity affibody-BMP-2 interaction also exhibits an off-rate constant that is an order of magnitude higher. Computational modeling of affibody-BMP-2 binding predicts that the high- and low-affinity affibodies bind to two distinct sites on BMP-2 that function as different cell-receptor binding sites. BMP-2 binding to affibodies reduces expression of the osteogenic marker alkaline phosphatase (ALP) in C2C12 myoblasts. Affibody-conjugated polyethylene glycol-maleimide hydrogels increase uptake of BMP-2 compared to affibody-free hydrogels, and high-affinity hydrogels exhibit lower BMP-2 release into serum compared to low-affinity hydrogels and affibody-free hydrogels over four weeks. Loading BMP-2 into affibody-conjugated hydrogels prolongs ALP activity of C2C12 myoblasts compared to soluble BMP-2. This work demonstrates that affibodies with different affinities can modulate BMP-2 delivery and activity, creating a promising approach for controlling BMP-2 delivery in clinical applications.
Collapse
Affiliation(s)
- Jonathan Dorogin
- Department of BioengineeringKnight Campus for Accelerating Scientific ImpactUniversity of Oregon6231 University of OregonEugeneOR97403USA
| | - Henry B. Hochstatter
- Department of BioengineeringKnight Campus for Accelerating Scientific ImpactUniversity of Oregon6231 University of OregonEugeneOR97403USA
- Department of Human PhysiologyUniversity of Oregon1320 E 15th Ave.EugeneOR97403USA
| | - Samantha O. Shepherd
- Department of Chemistry and BiochemistryUniversity of Oregon1253 University of OregonEugeneOR97403USA
| | - Justin E. Svendsen
- Department of BioengineeringKnight Campus for Accelerating Scientific ImpactUniversity of Oregon6231 University of OregonEugeneOR97403USA
- Department of Chemistry and BiochemistryUniversity of Oregon1253 University of OregonEugeneOR97403USA
| | - Morrhyssey A. Benz
- Department of BioengineeringKnight Campus for Accelerating Scientific ImpactUniversity of Oregon6231 University of OregonEugeneOR97403USA
- Department of Chemistry and BiochemistryUniversity of Oregon1253 University of OregonEugeneOR97403USA
| | - Andrew C. Powers
- Department of BioengineeringKnight Campus for Accelerating Scientific ImpactUniversity of Oregon6231 University of OregonEugeneOR97403USA
| | - Karly M. Fear
- Department of BioengineeringKnight Campus for Accelerating Scientific ImpactUniversity of Oregon6231 University of OregonEugeneOR97403USA
| | - Jakob M. Townsend
- Department of BioengineeringKnight Campus for Accelerating Scientific ImpactUniversity of Oregon6231 University of OregonEugeneOR97403USA
| | - James S. Prell
- Department of Chemistry and BiochemistryUniversity of Oregon1253 University of OregonEugeneOR97403USA
| | - Parisa Hosseinzadeh
- Department of BioengineeringKnight Campus for Accelerating Scientific ImpactUniversity of Oregon6231 University of OregonEugeneOR97403USA
- Department of Chemistry and BiochemistryUniversity of Oregon1253 University of OregonEugeneOR97403USA
| | - Marian H. Hettiaratchi
- Department of BioengineeringKnight Campus for Accelerating Scientific ImpactUniversity of Oregon6231 University of OregonEugeneOR97403USA
- Department of Chemistry and BiochemistryUniversity of Oregon1253 University of OregonEugeneOR97403USA
| |
Collapse
|
10
|
Panwar D, Shrivastava D, Kumar A, Gupta LK, Kumar NSS, Chintagunta AD. Efficient strategy to isolate exosomes using anti-CD63 antibodies conjugated to gold nanoparticles. AMB Express 2023; 13:90. [PMID: 37639159 PMCID: PMC10462597 DOI: 10.1186/s13568-023-01592-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Exosomes, a subpopulation of Extracellular vesicles (EVs), are cell-secreted vesicles found in the majority of biological fluids, including breast milk, tears, sweat, blood and, urine. The density and size of these vesicles depend on a variety of factors, including age, gender and the biological condition of the individual. Researchers are now focusing on the selective extraction of exosomes from bodily fluids due to the unique biomolecule composition of exosomes, which is critical for diagnosis, disease, and regeneration. Furthermore, current approaches for exosome isolation have limitations, necessitating the development of a simpler and more effective technique to achieve this goal. In this study, we investigated a quick and effective strategy for isolating exosomes from serum using a bench-top centrifuge. This was accomplished by raising antibodies against exosome surface tetraspanins (CD9, CD63 & CD81) in Leghorn chickens due to their phylogenetic distance from humans and cost-effectiveness for commercial use. In order to separate exosomes from a complex biological fluid, the antibodies were further coupled with gold nanoparticles (AuNPs). The findings were validated using ELISA, spectrophotometry, and transmission electron microscopy (TEM). Using this technique, exosome isolation from serum was achieved rapidly and these were captured by using anti CD63 antibodies bound to AuNPs. To summarize, exosomes were purified from serum using anti-CD63 antibodies conjugated to gold nanoparticles (IgY@AuNPs). Consequently, the approach for exosome isolation from biological fluid could be useful for clinically monitoring the biological state of the patients.
Collapse
Affiliation(s)
- Dikshita Panwar
- Vignan's Foundation for Science, Technology and Research, Guntur -Tenali Rd, Vadlamudi, 522213, Andhra Pradesh, India
| | - Deepali Shrivastava
- Vignan's Foundation for Science, Technology and Research, Guntur -Tenali Rd, Vadlamudi, 522213, Andhra Pradesh, India
| | - Arvind Kumar
- IgY Immunologix India Private Limited, Narsingi, Rangareddy, Hyderabad, 500089, Telangana, India
| | - Lavleen Kumar Gupta
- IgY Immunologix India Private Limited, Narsingi, Rangareddy, Hyderabad, 500089, Telangana, India.
| | - N S Sampath Kumar
- Vignan's Foundation for Science, Technology and Research, Guntur -Tenali Rd, Vadlamudi, 522213, Andhra Pradesh, India
| | - Anjani Devi Chintagunta
- Vignan's Foundation for Science, Technology and Research, Guntur -Tenali Rd, Vadlamudi, 522213, Andhra Pradesh, India.
| |
Collapse
|
11
|
Nandavaram A, Nandakumar A, Kashif GM, Sagar AL, Shailaja G, Ramesh A, Siddavattam D. Unusual Relationship between Iron Deprivation and Organophosphate Hydrolase Expression. Appl Environ Microbiol 2023; 89:e0190322. [PMID: 37074175 PMCID: PMC10231211 DOI: 10.1128/aem.01903-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/08/2023] [Indexed: 04/20/2023] Open
Abstract
Organophosphate hydrolases (OPH), hitherto known to hydrolyze the third ester bond of organophosphate (OP) insecticides and nerve agents, have recently been shown to interact with outer membrane transport components, namely, TonB and ExbB/ExbD. In an OPH negative background, Sphingopyxis wildii cells failed to transport ferric enterobactin and showed retarded growth under iron-limiting conditions. We now show the OPH-encoding organophosphate degradation (opd) gene from Sphingobium fuliginis ATCC 27551 to be part of the iron regulon. A fur-box motif found to be overlapping with the transcription start site (TSS) of the opd gene coordinates with an iron responsive element (IRE) RNA motif identified in the 5' coding region of the opd mRNA to tightly regulate opd gene expression. The fur-box motif serves as a target for the Fur repressor in the presence of iron. A decrease in iron concentration leads to the derepression of opd. IRE RNA inhibits the translation of opd mRNA and serves as a target for apo-aconitase (IRP). The IRP recruited by the IRE RNA abrogates IRE-mediated translational inhibition. Our findings establish a novel, multilayered, iron-responsive regulation that is crucial for OPH function in the transport of siderophore-mediated iron uptake. IMPORTANCE Sphingobium fuliginis, a soil-dwelling microbe isolated from agricultural soils, was shown to degrade a variety of insecticides and pesticides. These synthetic chemicals function as potent neurotoxins, and they belong to a class of chemicals termed organophosphates. S. fuliginis codes for OPH, an enzyme that has been shown to be involved in the metabolism of several organophosphates and their derivatives. Interestingly, OPH has also been shown to facilitate siderophore-mediated iron uptake in S. fuliginis and in another Sphingomonad, namely, Sphingopyxis wildii, implying that this organophosphate-metabolizing protein has a role in iron homeostasis, as well. Our research dissects the underlying molecular mechanisms linking iron to the expression of OPH, prompting a reconsideration of the role of OPH in Sphingomonads and a reevaluation of the evolutionary origins of the OPH proteins from soil bacteria.
Collapse
Affiliation(s)
- Aparna Nandavaram
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anirudh Nandakumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
- The University of Trans-Disciplinary Health Sciences & Technology (TDU), Bengaluru, Karnataka, India
| | - G. M. Kashif
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - G. Shailaja
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Arati Ramesh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| | - Dayananda Siddavattam
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
- Department of Biochemistry, School of Sciences, GITAM University, Visakhapatnam, India
| |
Collapse
|
12
|
Völzke JL, Smatty S, Döring S, Ewald S, Oelze M, Fratzke F, Flemig S, Konthur Z, Weller MG. Efficient Purification of Polyhistidine-Tagged Recombinant Proteins Using Functionalized Corundum Particles. BIOTECH 2023; 12:biotech12020031. [PMID: 37218748 DOI: 10.3390/biotech12020031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Immobilized metal affinity chromatography (IMAC) is a popular and valuable method for the affinity purification of polyhistidine-tagged recombinant proteins. However, it often shows practical limitations, which might require cumbersome optimizations, additional polishing, and enrichment steps. Here, we present functionalized corundum particles for the efficient, economical, and fast purification of recombinant proteins in a column-free format. The corundum surface is first derivatized with the amino silane APTES, then EDTA dianhydride, and subsequently loaded with nickel ions. The Kaiser test, well known in solid-phase peptide synthesis, was used to monitor amino silanization and the reaction with EDTA dianhydride. In addition, ICP-MS was performed to quantify the metal-binding capacity. His-tagged protein A/G (PAG), mixed with bovine serum albumin (BSA), was used as a test system. The PAG binding capacity was around 3 mg protein per gram of corundum or 2.4 mg per 1 mL of corundum suspension. Cytoplasm obtained from different E. coli strains was examined as examples of a complex matrix. The imidazole concentration was varied in the loading and washing buffers. As expected, higher imidazole concentrations during loading are usually beneficial when higher purities are desired. Even when higher sample volumes, such as one liter, were used, recombinant protein down to a concentration of 1 µg/mL could be isolated selectively. Comparing the corundum material with standard Ni-NTA agarose beads indicated higher purities of proteins isolated using corundum. His6-MBP-mSA2, a fusion protein consisting of monomeric streptavidin and maltose-binding protein in the cytoplasm of E. coli, was purified successfully. To show that this method is also suitable for mammalian cell culture supernatants, purification of the SARS-CoV-2-S-RBD-His8 expressed in human Expi293F cells was performed. The material cost of the nickel-loaded corundum material (without regeneration) is estimated to be less than 30 cents for 1 g of functionalized support or 10 cents per milligram of isolated protein. Another advantage of the novel system is the corundum particles' extremely high physical and chemical stability. The new material should be applicable in small laboratories and large-scale industrial applications. In summary, we could show that this new material is an efficient, robust, and cost-effective purification platform for the purification of His-tagged proteins, even in challenging, complex matrices and large sample volumes of low product concentration.
Collapse
Affiliation(s)
- Jule L Völzke
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Sarah Smatty
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Sarah Döring
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Shireen Ewald
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Marcus Oelze
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Franziska Fratzke
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Sabine Flemig
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Zoltán Konthur
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Michael G Weller
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| |
Collapse
|
13
|
Pouresmaeil M, Azizi-Dargahlou S. Factors involved in heterologous expression of proteins in E. coli host. Arch Microbiol 2023; 205:212. [PMID: 37120438 PMCID: PMC10148705 DOI: 10.1007/s00203-023-03541-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
The production of recombinant proteins is one of the most significant achievements of biotechnology in the last century. These proteins are produced in the eukaryotic or prokaryotic heterologous hosts. By increasing the omics data especially related to different heterologous hosts as well as the presence of new amenable genetic engineering tools, we can artificially engineer heterologous hosts to produce recombinant proteins in sufficient quantities. Numerous recombinant proteins have been produced and applied in various industries, and the global recombinant proteins market size is expected to be cast to reach USD 2.4 billion by 2027. Therefore, identifying the weakness and strengths of heterologous hosts is critical to optimize the large-scale biosynthesis of recombinant proteins. E. coli is one of the popular hosts to produce recombinant proteins. Scientists reported some bottlenecks in this host, and due to the increasing demand for the production of recombinant proteins, there is an urgent need to improve this host. In this review, we first provide general information about the E. coli host and compare it with other hosts. In the next step, we describe the factors involved in the expression of the recombinant proteins in E. coli. Successful expression of recombinant proteins in E. coli requires a complete elucidation of these factors. Here, the characteristics of each factor will be fully described, and this information can help to improve the heterologous expression of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Mahin Pouresmaeil
- Agricultural Biotechnology, Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Shahnam Azizi-Dargahlou
- Agricultural Biotechnology, Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
14
|
Sun H, Wang H, Chen Q, Dong W, Gao C, Song H, Peng H, Li R, Wu H, Hou L, Chang Y, Luo H. Cation affinity purification of histidine-tagged proteins. Appl Microbiol Biotechnol 2023; 107:2639-2651. [PMID: 36810625 DOI: 10.1007/s00253-023-12425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023]
Abstract
Protein purification is a basic technology in both biological research and industrial production, and efficient, convenient, economical, and environmentally friendly purification methods have always been pursued. In this study, it was found that alkaline earth metal cations (Mg2+, Ca2+) and alkali metal cations (Li+, Na+, K+) and even nonmetal cations (e.g., NH4+, imidazole, guanidine, arginine, lysine) can precipitate multi-histidine-tagged proteins (at least two tags in a whole protein) at low salts concentrations that are 1-3 orders of magnitude lower than salting-out, and precipitated proteins could be dissolved at moderate concentration of corresponding cation. Based on this finding, a novel cation affinity purification method was developed, which requires only three centrifugal separations to obtain highly purified protein with purification fold similar to that of immobilized metal affinity chromatography. The study also provides a possible explanation for unexpected protein precipitation and reminds researchers to consider the influence of cations on the experimental results. The interaction between histidine-tagged proteins and cations may also have broad application prospects. KEY POINTS: • Histidine-tagged proteins can be precipitated by low-concentrations common cations • A novel nonchromatographic protein purification method was developed • Purified protein can be obtained in pellet form by only three centrifugations.
Collapse
Affiliation(s)
- Hongxu Sun
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083, China
| | - Hongrui Wang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083, China
| | - Qiwei Chen
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083, China
| | - Wenge Dong
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083, China
| | - Chao Gao
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083, China
| | - Haiyan Song
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology, Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hui Peng
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology, Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Ren Li
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology, Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hao Wu
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083, China
| | - Liangyu Hou
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083, China
| | - Yanhong Chang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology, Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Hui Luo
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083, China.
| |
Collapse
|
15
|
Russell BL, Ntwasa M. Expression, purification, and characterisation of the p53 binding domain of Retinoblastoma binding protein 6 (RBBP6). PLoS One 2023; 18:e0277478. [PMID: 36763571 PMCID: PMC9916574 DOI: 10.1371/journal.pone.0277478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/28/2022] [Indexed: 02/11/2023] Open
Abstract
RBBP6 is a 250 kDa eukaryotic protein known to be a negative regulator of p53 and essential for embryonic development. Furthermore, RBBP6 is a critical element in carcinogenesis and has been identified as a potential biomarker for certain cancers. RBBP6's ability to interact with p53 and cause its degradation makes it a potential drug target in cancer therapy. Therefore, a better understating of the p53 binding domain of RBBP6 is needed. This study presents a three-part purification protocol for the polyhistidine-tagged p53 binding domain of RBBP6, expressed in Escherichia coli bacterial cells. The purified recombinant domain was shown to have structure and is functional as it could bind endogenous p53. We characterized it using clear native PAGE and far-UV CD and found that it exists in a single form, most likely monomer. We predict that its secondary structure is predominantly random coil with 19% alpha-helices, 9% beta-strand and 14% turns. When we exposed the recombinant domain to increasing temperature or known denaturants, our investigation suggested that the domain undergoes relatively small structural changes, especially with increased temperature. Moreover, we notice a high percentage recovery after returning the domain close to starting conditions. The outcome of this study is a pure, stable, and functional recombinant RBBP6-p53BD that is primarily intrinsically disordered.
Collapse
Affiliation(s)
- Bonnie L. Russell
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida, Roodepoort, South Africa
- Innovation Hub, Buboo (Pty) Ltd, Pretoria, South Africa
| | - Monde Ntwasa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida, Roodepoort, South Africa
- * E-mail:
| |
Collapse
|
16
|
Dai S, Tang X, Zhang N, Li H, He C, Han Y, Wang Y. Lipid Giant Vesicles Engulf Living Bacteria Triggered by Minor Enhancement in Membrane Fluidity. NANO LETTERS 2023; 23:371-379. [PMID: 36441573 DOI: 10.1021/acs.nanolett.2c03475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Antibacterial amphiphiles normally kill bacteria by destroying the bacterial membrane. Whether and how antibacterial amphiphiles alter normal cell membrane and lead to subsequent effects on pathogen invasion into cells have been scarcely promulgated. Herein, by taking four antibacterial gemini amphiphiles with different spacer groups to modulate cell-mimic phospholipid giant unilamellar vesicles (GUVs), bacteria adhesion on the modified GUVs surface and bacteria engulfment process by the GUVs are clearly captured by confocal laser scanning microscopy. Further characterization shows that the enhanced cationic surface charge of GUVs by the amphiphiles determines the bacteria adhesion amount, while the involvement of amphiphile in GUVs results in looser molecular arrangement and concomitant higher fluidity in the bilayer membranes, facilitating the bacteria intruding into GUVs. This study sheds new light on the effect of amphiphiles on membrane bilayer and the concurrent effect on pathogen invasion into cell mimics and broadens the nonprotein-mediated endocytosis pathway for live bacteria.
Collapse
Affiliation(s)
- Shaoying Dai
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Na Zhang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haofei Li
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuchun Han
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yilin Wang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
He X, Zhang S, Dang D, Lin T, Ge Y, Chen X, Fan J. Detection of human annexin A1 as the novel N-terminal tag for separation and purification handle. Microb Cell Fact 2023; 22:2. [PMID: 36604649 PMCID: PMC9817314 DOI: 10.1186/s12934-022-02005-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/17/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Several fusion tags for separation handle have been developed, but the fused tag for simply and cheaply separating the target protein is still lacking. RESULTS Separation conditions for the human annexin A1 (hanA1) tagged emerald green fluorescent protein (EmGFP) in Escherichia coli were optimized via precipitation with calcium chloride (CaCl2) and resolubilization with ethylenediamine tetraacetic acid disodium salt (EDTA-Na2). The HanA1-EmGFP absorbing with other three affinity matrix was detected, only it was strongly bound to heparin Sepharose. The separation efficiency of the HanA1-EmGFP was comparable with purification efficiency of the His6-tagged HanA1-EmGFP via metal ion affinity chromatography. Three fluorescent proteins for the EmGFP, mCherry red fluorescent protein and flavin-binding cyan-green fluorescent protein LOV from Chlamydomonas reinhardtii were used for naked-eye detection of the separation and purification processes, and two colored proteins including a red protein for a Vitreoscilla hemoglobin (Vhb), and a brown protein for maize sirohydrochlorin ferrochelatase (mSF) were used for visualizing the separation process. The added EDTA-Na2 disrupted the Fe-S cluster in the mSF, but it showed little impact on heme in Vhb. CONCLUSIONS The selected five colored proteins were efficient for detecting the applicability of the highly selective hanA1 for fusion separation and purification handle. The fused hanA1 tag will be potentially used for simple and cheap affinity separation of the target proteins in industry and diagnosis.
Collapse
Affiliation(s)
- Xiaomei He
- grid.460134.40000 0004 1757 393XCollege of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, 237012 People’s Republic of China ,grid.411389.60000 0004 1760 4804School of Life Science, Anhui, Anhui Agricultural University, 130, Changjiang West Road, Hefei, 230036 People’s Republic of China
| | - Shuncheng Zhang
- grid.411389.60000 0004 1760 4804School of Life Science, Anhui, Anhui Agricultural University, 130, Changjiang West Road, Hefei, 230036 People’s Republic of China
| | - Dongya Dang
- grid.411389.60000 0004 1760 4804School of Life Science, Anhui, Anhui Agricultural University, 130, Changjiang West Road, Hefei, 230036 People’s Republic of China
| | - Tingting Lin
- grid.411389.60000 0004 1760 4804School of Life Science, Anhui, Anhui Agricultural University, 130, Changjiang West Road, Hefei, 230036 People’s Republic of China
| | - Yuanyuan Ge
- grid.411389.60000 0004 1760 4804School of Life Science, Anhui, Anhui Agricultural University, 130, Changjiang West Road, Hefei, 230036 People’s Republic of China
| | - Xiaofeng Chen
- grid.411389.60000 0004 1760 4804School of Life Science, Anhui, Anhui Agricultural University, 130, Changjiang West Road, Hefei, 230036 People’s Republic of China
| | - Jun Fan
- grid.411389.60000 0004 1760 4804School of Life Science, Anhui, Anhui Agricultural University, 130, Changjiang West Road, Hefei, 230036 People’s Republic of China
| |
Collapse
|
18
|
Ebrahimifard M, Forghanifard MM, Yamchi A, Zarrinpour V, Sharbatkhari M. A simple and efficient method for cytoplasmic production of human enterokinase light chain in E. coli. AMB Express 2022; 12:160. [PMID: 36574134 PMCID: PMC9794667 DOI: 10.1186/s13568-022-01504-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Human enterokinase light chain (hEKL) cDNA sequence was designed with the help of codon optimization towards Escherichia coli codon preference and ribosome binding site design and artificially synthesized with a thioredoxin fusion tag at the N-terminal and a five his-tag peptide at the C-terminal. The synthetic hEKL gene was cloned into the pET-15 expression vector and transferred into the three different expression strains of E. coli BL21(DE3), NiCo21, and SHuffle T7 Express. Different growth and induction conditions were studied using a statistical response surface methodology (RSM). Recombinant hEKL protein was expressed at high levels in soluble form with 0.71 mM IPTG after 4 h of induction at 25 °C. Autocatalytic process cleaved TRX tag with enterokinase recognition site by the impure hEKL and yielded the mature enzyme. The target protein was then purified to homogeneity (> 95%) by affinity chromatography. The activity of hEKL was comparable to the commercial enzyme. From 1 L culture, 80 mg pure active hEKL was obtained with the specific activity of 6.25 × 102 U/mg. Three main parameters that help us to produce the enzyme in the folded and active form are the type of strain, SHuffle T7 strain, TRX and histidine fusion tags, and growth conditions including the increase of OD of induction and IPTG concentration and the decrease of induction temperature.
Collapse
Affiliation(s)
- Mohammad Ebrahimifard
- grid.508789.b0000 0004 0493 998XDepartment of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mohammad Mahdi Forghanifard
- grid.508789.b0000 0004 0493 998XDepartment of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Ahad Yamchi
- grid.411765.00000 0000 9216 4846Department of Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Vajiheh Zarrinpour
- grid.508789.b0000 0004 0493 998XDepartment of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | |
Collapse
|
19
|
Hassell D, Denney A, Singer E, Benson A, Roth A, Ceglowski J, Steingesser M, McMurray M. Chaperone requirements for de novo folding of Saccharomyces cerevisiae septins. Mol Biol Cell 2022; 33:ar111. [PMID: 35947497 PMCID: PMC9635297 DOI: 10.1091/mbc.e22-07-0262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022] Open
Abstract
Polymers of septin protein complexes play cytoskeletal roles in eukaryotic cells. The specific subunit composition within complexes controls functions and higher-order structural properties. All septins have globular GTPase domains. The other eukaryotic cytoskeletal NTPases strictly require assistance from molecular chaperones of the cytosol, particularly the cage-like chaperonins, to fold into oligomerization-competent conformations. We previously identified cytosolic chaperones that bind septins and influence the oligomerization ability of septins carrying mutations linked to human disease, but it was unknown to what extent wild-type septins require chaperone assistance for their native folding. Here we use a combination of in vivo and in vitro approaches to demonstrate chaperone requirements for de novo folding and complex assembly by budding yeast septins. Individually purified septins adopted nonnative conformations and formed nonnative homodimers. In chaperonin- or Hsp70-deficient cells, septins folded slower and were unable to assemble posttranslationally into native complexes. One septin, Cdc12, was so dependent on cotranslational chaperonin assistance that translation failed without it. Our findings point to distinct translation elongation rates for different septins as a possible mechanism to direct a stepwise, cotranslational assembly pathway in which general cytosolic chaperones act as key intermediaries.
Collapse
Affiliation(s)
- Daniel Hassell
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ashley Denney
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Emily Singer
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Aleyna Benson
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew Roth
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Julia Ceglowski
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Marc Steingesser
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael McMurray
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
20
|
Liu Y, Song D, Hu H, Yang R, Lyu X. De Novo Production of Hydroxytyrosol by Saccharomyces cerevisiae-Escherichia coli Coculture Engineering. ACS Synth Biol 2022; 11:3067-3077. [PMID: 35952699 DOI: 10.1021/acssynbio.2c00300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hydroxytyrosol is a valuable plant-derived phenolic compound with excellent pharmacological activities for application in the food and health care industries. Microbial biosynthesis provides a promising approach for sustainable production of hydroxytyrosol via metabolic engineering. However, its efficient production is limited by the machinery and resources available in the commonly used individual microbial platform, for example, Escherichia coli, Saccharomyces cerevisiae. In this study, a S. cerevisiae-E. coli coculture system was designed for de novo biosynthesis of hydroxytyrosol by taking advantage of their inherent metabolic properties, whereby S. cerevisiae was engineered for de novo production of tyrosol based on an endogenous Ehrlich pathway, and E. coli was dedicated to converting tyrosol to hydroxytyrosol by use of native hydroxyphenylacetate 3-monooxygenase (EcHpaBC). To enhance hydroxytyrosol production, intra- and intermodule engineering was employed in this microbial consortium: (I) in the upstream S. cerevisiae strain, multipath regulations combining with a glucose-sensitive GAL regulation system were engineered to enhance the precursor supply, resulting in significant increase of tyrosol production (from 17.60 mg/L to 461.07 mg/L); (II) Echpabc was overexpressed in the downstream E. coli strain, improving the conversion rate of tyrosol to hydroxytyrosol from 0.03% to 86.02%; (III) and last, intermodule engineering with this coculture system was performed by optimization of the initial inoculation ratio of each population and fermentation conditions, achieving 435.32 mg/L of hydroxytyrosol. This S. cerevisiae-E. coli coculture strategy provides a new opportunity for de novo production of hydroxytyrosol from inexpensive feedstock.
Collapse
Affiliation(s)
- Yingjie Liu
- School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China
| | - Dong Song
- Jiangxi Baiyue Food Co. Ltd, Pingxiang, Jiangxi 337000, P. R. China
| | - Haitao Hu
- School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China
| | - Ruijin Yang
- School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China.,Jiangnan University (Rugao) Institute of Food Biotechnology, 226503, Nantong, P. R. China
| | - Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China.,Jiangnan University (Rugao) Institute of Food Biotechnology, 226503, Nantong, P. R. China
| |
Collapse
|
21
|
Razali R, Fahrudin FA, Subbiah VK, Takano K, Budiman C. Heterologous Expression and Catalytic Properties of Codon-Optimized Small-Sized Bromelain from MD2 Pineapple. Molecules 2022; 27:molecules27186031. [PMID: 36144767 PMCID: PMC9502857 DOI: 10.3390/molecules27186031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Bromelain is a unique enzyme-based bioactive complex containing a mixture of cysteine proteases specifically found in the stems and fruits of pineapple (Ananas comosus) with a wide range of applications. MD2 pineapple harbors a gene encoding a small bromelain cysteine protease with the size of about 19 kDa, which might possess unique properties compared to the other cysteine protease bromelain. This study aims to determine the expressibility and catalytic properties of small-sized (19 kDa) bromelain from MD2 pineapple (MD2-SBro). Accordingly, the gene encoding MD2-SBro was firstly optimized in its codon profile, synthesized, and inserted into the pGS-21a vector. The insolubly expressed MD2-SBro was then resolubilized and refolded using urea treatment, followed by purification by glutathione S-transferase (GST) affinity chromatography, yielding 14 mg of pure MD2-SBro from 1 L of culture. The specific activity and catalytic efficiency (kcat/Km) of MD2-SBro were 3.56 ± 0.08 U mg−1 and 4.75 ± 0.23 × 10−3 µM−1 s−1, respectively, where optimally active at 50 °C and pH 8.0, and modulated by divalent ions. The MD2-SBro also exhibited the ability to scavenge the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) with an IC50 of 0.022 mg mL−1. Altogether, this study provides the production feasibility of active and functional MD2-Bro as a bioactive compound.
Collapse
Affiliation(s)
- Rafida Razali
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Fikran Aranda Fahrudin
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Vijay Kumar Subbiah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Kazufumi Takano
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Cahyo Budiman
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence:
| |
Collapse
|
22
|
Aupič J, Lapenta F, Strmšek Ž, Merljak E, Plaper T, Jerala R. Metal ion-regulated assembly of designed modular protein cages. SCIENCE ADVANCES 2022; 8:eabm8243. [PMID: 35714197 PMCID: PMC9205593 DOI: 10.1126/sciadv.abm8243] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Coiled-coil (CC) dimers are versatile, customizable building modules for the design of diverse protein architectures unknown in nature. Incorporation of dynamic self-assembly, regulated by a selected chemical signal, represents an important challenge in the construction of functional polypeptide nanostructures. Here, we engineered metal binding sites to render an orthogonal set of CC heterodimers Zn(II)-responsive as a generally applicable principle. The designed peptides assemble into CC heterodimers only in the presence of Zn(II) ions, reversibly dissociate by metal ion sequestration, and additionally act as pH switches, with low pH triggering disassembly. The developed Zn(II)-responsive CC set is used to construct programmable folding of CC-based nanostructures, from protein triangles to a two-chain bipyramidal protein cage that closes and opens depending on the metal ion. This demonstrates that dynamic self-assembly can be designed into CC-based protein cages by incorporation of metal ion-responsive CC building modules that act as conformational switches and that could also be used in other contexts.
Collapse
Affiliation(s)
- Jana Aupič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Fabio Lapenta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
| | - Žiga Strmšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Estera Merljak
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- Interdisciplinary Doctoral Programme in Biomedicine, University of Ljubljana, Kongresni trg 12, SI-1000 Ljubljana, Slovenia
| | - Tjaša Plaper
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- Interdisciplinary Doctoral Programme in Biomedicine, University of Ljubljana, Kongresni trg 12, SI-1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Karsten L, Goett-Zink L, Schmitz J, Hoffrogge R, Grünberger A, Kottke T, Müller KM. Genetically Encoded Ratiometric pH Sensors for the Measurement of Intra- and Extracellular pH and Internalization Rates. BIOSENSORS 2022; 12:bios12050271. [PMID: 35624572 PMCID: PMC9138566 DOI: 10.3390/bios12050271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
Abstract
pH-sensitive fluorescent proteins as genetically encoded pH sensors are promising tools for monitoring intra- and extracellular pH. However, there is a lack of ratiometric pH sensors, which offer a good dynamic range and can be purified and applied extracellularly to investigate uptake. In our study, the bright fluorescent protein CoGFP_V0 was C-terminally fused to the ligand epidermal growth factor (EGF) and retained its dual-excitation and dual-emission properties as a purified protein. The tandem fluorescent variants EGF-CoGFP-mTagBFP2 (pK′ = 6.6) and EGF-CoGFP-mCRISPRed (pK′ = 6.1) revealed high dynamic ranges between pH 4.0 and 7.5. Using live-cell fluorescence microscopy, both pH sensor molecules permitted the conversion of fluorescence intensity ratios to detailed intracellular pH maps, which revealed pH gradients within endocytic vesicles. Additionally, extracellular binding of the pH sensors to cells expressing the EGF receptor (EGFR) enabled the tracking of pH shifts inside cultivation chambers of a microfluidic device. Furthermore, the dual-emission properties of EGF-CoGFP-mCRISPRed upon 488 nm excitation make this pH sensor a valuable tool for ratiometric flow cytometry. This high-throughput method allowed for the determination of internalization rates, which represents a promising kinetic parameter for the in vitro characterization of protein–drug conjugates in cancer therapy.
Collapse
Affiliation(s)
- Lennard Karsten
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Lukas Goett-Zink
- Biophysical Chemistry and Diagnostics, Medical School OWL, Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany; (L.G.-Z.); (T.K.)
| | - Julian Schmitz
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.G.)
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Raimund Hoffrogge
- Cell Culture Technology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.G.)
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Tilman Kottke
- Biophysical Chemistry and Diagnostics, Medical School OWL, Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany; (L.G.-Z.); (T.K.)
| | - Kristian M. Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany;
- Correspondence:
| |
Collapse
|
24
|
Ortega C, Oppezzo P, Correa A. Overcoming the Solubility Problem in E. coli: Available Approaches for Recombinant Protein Production. Methods Mol Biol 2022; 2406:35-64. [PMID: 35089549 DOI: 10.1007/978-1-0716-1859-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the importance of recombinant protein production in the academy and industrial fields, many issues concerning the expression of soluble and homogeneous products are still unsolved. Several strategies were developed to overcome these obstacles; however, at present, there is no magic bullet that can be applied for all cases. Indeed, several key expression parameters need to be evaluated for each protein. Among the different hosts for protein expression, Escherichia coli is by far the most widely used. In this chapter, we review many of the different tools employed to circumvent protein insolubility problems.
Collapse
Affiliation(s)
- Claudia Ortega
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Oppezzo
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
25
|
Cloning, Expression and Characterization of UDP-Glucose Dehydrogenases. Life (Basel) 2021; 11:life11111201. [PMID: 34833077 PMCID: PMC8617651 DOI: 10.3390/life11111201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/17/2023] Open
Abstract
Uridine diphosphate-glucose dehydrogenase (UGD) is an enzyme that produces uridine diphosphate-glucuronic acid (UDP-GlcA), which is an intermediate in glycosaminoglycans (GAGs) production pathways. GAGs are generally extracted from animal tissues. Efforts to produce GAGs in a safer way have been conducted by constructing artificial biosynthetic pathways in heterologous microbial hosts. This work characterizes novel enzymes with potential for UDP-GlcA biotechnological production. The UGD enzymes from Zymomonas mobilis (ZmUGD) and from Lactobacillus johnsonii (LbjUGD) were expressed in Escherichia coli. These two enzymes and an additional eukaryotic one from Capra hircus (ChUGD) were also expressed in Saccharomyces cerevisiae strains. The three enzymes herein studied represent different UGD phylogenetic groups. The UGD activity was evaluated through UDP-GlcA quantification in vivo and after in vitro reactions. Engineered E. coli strains expressing ZmUGD and LbjUGD were able to produce in vivo 28.4 µM and 14.9 µM UDP-GlcA, respectively. Using S. cerevisiae as the expression host, the highest in vivo UDP-GlcA production was obtained for the strain CEN.PK2-1C expressing ZmUGD (17.9 µM) or ChUGD (14.6 µM). Regarding the in vitro assays, under the optimal conditions, E. coli cell extract containing LbjUGD was able to produce about 1800 µM, while ZmUGD produced 407 µM UDP-GlcA, after 1 h of reaction. Using engineered yeasts, the in vitro production of UDP-GlcA reached a maximum of 533 µM using S. cerevisiae CEN.PK2-1C_pSP-GM_LbjUGD cell extract. The UGD enzymes were active in both prokaryotic and eukaryotic hosts, therefore the genes and expression chassis herein used can be valuable alternatives for further industrial applications.
Collapse
|
26
|
Gasan TA, Kuipers ME, Roberts GH, Padalino G, Forde-Thomas JE, Wilson S, Wawrzyniak J, Tukahebwa EM, Hoffmann KF, Chalmers IW. Schistosoma mansoni Larval Extracellular Vesicle protein 1 (SmLEV1) is an immunogenic antigen found in EVs released from pre-acetabular glands of invading cercariae. PLoS Negl Trop Dis 2021; 15:e0009981. [PMID: 34793443 PMCID: PMC8639091 DOI: 10.1371/journal.pntd.0009981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/02/2021] [Accepted: 11/06/2021] [Indexed: 01/10/2023] Open
Abstract
Extracellular Vesicles (EVs) are an integral component of cellular/organismal communication and have been found in the excreted/secreted (ES) products of both protozoan and metazoan parasites. Within the blood fluke schistosomes, EVs have been isolated from egg, schistosomula, and adult lifecycle stages. However, the role(s) that EVs have in shaping aspects of parasite biology and/or manipulating host interactions is poorly defined. Herein, we characterise the most abundant EV-enriched protein in Schistosoma mansoni tissue-migrating schistosomula (Schistosoma mansoni Larval Extracellular Vesicle protein 1 (SmLEV1)). Comparative sequence analysis demonstrates that lev1 orthologs are found in all published Schistosoma genomes, yet homologs are not found outside of the Schistosomatidae. Lifecycle expression analyses collectively reveal that smlev1 transcription peaks in cercariae, is male biased in adults, and is processed by alternative splicing in intra-mammalian lifecycle stages. Immunohistochemistry of cercariae using a polyclonal anti-recombinant SmLEV1 antiserum localises this protein to the pre-acetabular gland, with some disperse localisation to the surface of the parasite. S. mansoni-infected Ugandan fishermen exhibit a strong IgG1 response against SmLEV1 (dropping significantly after praziquantel treatment), with 11% of the cohort exhibiting an IgE response and minimal levels of detectable antigen-specific IgG4. Furthermore, mice vaccinated with rSmLEV1 show a slightly reduced parasite burden upon challenge infection and significantly reduced granuloma volumes, compared with control animals. Collectively, these results describe SmLEV1 as a Schistosomatidae-specific, EV-enriched immunogen. Further investigations are now necessary to uncover the full extent of SmLEV1's role in shaping schistosome EV function and definitive host relationships.
Collapse
Affiliation(s)
- Thomas A. Gasan
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Edward Llwyd Building, Aberystwyth, United Kingdom
| | - Marije E. Kuipers
- Department of Parasitology, Leiden University Medical Centre, Leiden, Netherlands
| | - Grisial H. Roberts
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Edward Llwyd Building, Aberystwyth, United Kingdom
| | - Gilda Padalino
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Edward Llwyd Building, Aberystwyth, United Kingdom
| | - Josephine E. Forde-Thomas
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Edward Llwyd Building, Aberystwyth, United Kingdom
| | - Shona Wilson
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, United Kingdom
| | - Jakub Wawrzyniak
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, United Kingdom
| | | | - Karl F. Hoffmann
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Edward Llwyd Building, Aberystwyth, United Kingdom
| | - Iain W. Chalmers
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Edward Llwyd Building, Aberystwyth, United Kingdom
| |
Collapse
|
27
|
Mehri N, Jamshidizad A, Ghanei Z, Karkhane AA, Shamsara M. Optimizing the Expression and Solubilization of an E. coli-Produced Leukemia Inhibitory Factor for Anti-LIF Antibody Production and Use Thereof for Contraception in Mice. Mol Biotechnol 2021; 63:1169-1182. [PMID: 34272681 DOI: 10.1007/s12033-021-00369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022]
Abstract
Leukemia inhibitory factor (LIF) is an essential cytokine for blastocyst implantation. This study evaluated the effect of LIF inhibition on the blockage of embryo implantation. A truncated mouse LIF (tmLIF) was designed and expressed in E. coli. The protein expression was optimized using different culture media and inducers. To block pregnancy, the mice were immunized by the purified protein via maternal injection of the protein or in utero injection of the anti-LIF serum. The expression of implantation-relevant genes was quantified in the uterine tissue. The results showed that the protein was expressed in aggregated form in E. coli. The highest yield of protein was produced in the M9 medium. The insoluble protein was completely dissociated by SDS and 2-ME combination, but not by urea. The maternal immunization reduced the number of offspring, but not significantly. Instead, in utero injection of the anti-LIF serum prevented the blastocyst implantation. Gene expression analyses showed decrease of Jam2, Msx1and HB-EGF genes and increase of Muc1 gene as the result of intrauterine administration of the anti-LIF serums. In conclusion, SDS-mediated solubilization of inclusion bodies was compatible with in vivo studies. The intrauterine administration of anti-LIF serum could prevent mouse pregnancy. This indicates that in utero application of LIF antibodies might be used as a contraceptive.
Collapse
Affiliation(s)
- Nahid Mehri
- Animal Biotechnology Group, Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Jamshidizad
- Animal Biotechnology Group, Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra Ghanei
- Animal Biotechnology Group, Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ali-Asghar Karkhane
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mehdi Shamsara
- Animal Biotechnology Group, Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
28
|
A pipeline to evaluate inhibitors of the Pseudomonas aeruginosa exotoxin U. Biochem J 2021; 478:647-668. [PMID: 33459338 PMCID: PMC7886320 DOI: 10.1042/bcj20200780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/07/2023]
Abstract
Pseudomonas aeruginosa has recently been highlighted by the World Health Organisation (WHO) as a major threat with high priority for the development of new therapies. In severe P. aeruginosa infections, the phospholipase activity of the type 3 secretion system toxin, ExoU, induces lysis of target host cells and results in the poorest clinical outcomes. We have developed an integrated pipeline to evaluate small molecule inhibitors of ExoU in vitro and in cultured cell models, including a disease-relevant corneal epithelial (HCE-T) scratch and infection model using florescence microscopy and cell viability assays. Compounds Pseudolipasin A, compound A and compound B were effective in vitro inhibitors of ExoU and mitigated P. aeruginosa ExoU-dependent cytotoxicity after infection of HCE-T cells at concentrations as low as 0.5 µM. Addition of the antimicrobial moxifloxacin controlled bacterial load, allowing these assays to be extended from 6 h to 24 h. P. aeruginosa remained cytotoxic to HCE-T cells with moxifloxacin, present at the minimal inhibitory concentration for 24 h, but, when used in combination with either Pseudolipasin A, compound A or compound B, a greater amount of viable cells and scratch healing were observed. Thus, our pipeline provides evidence that ExoU inhibitors could be used in combination with certain antimicrobials as a novel means to treat infections due to ExoU producing P. aeruginosa, as well as the means to identify more potent ExoU inhibitors for future therapeutics.
Collapse
|
29
|
Fatemi Motlagh M, Mousavi Gargari SL. A bivalent vaccine against avian necrotic enteritis and coccidiosis. J Appl Microbiol 2021; 132:113-125. [PMID: 34101942 DOI: 10.1111/jam.15178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/17/2021] [Accepted: 05/29/2021] [Indexed: 12/01/2022]
Abstract
AIMS In this study, we attempted to design a recombinant vaccine harbouring domain with a key role in enterocyte attachment and cell invasion in necrotic enteritis (NE) and coccidiosis. METHODS AND RESULTS In this study, we investigated whether a recombinant protein consisting of necrotic enteritis B-like toxin, C-terminal domain of alpha-toxin, apical membrane antigen 1 (AMA1), and Rhoptry neck protein 2 (RON2) which we call "NeCoVac" hereafter, can improve protection against both diseases compared to vaccination with each antigen in previous studies. Birds intestinal lesion scores and specific antibody levels were measured to determine protection after oral gavage challenges with virulent Clostridium perfringens and LIVACOX® T. Birds immunized with NeCoVac were protected up to 84% against NE and coccidiosis compared to unimmunized and even positive groups (groups treated with LIVACOX® T [coccidiosis live vaccine] and tylosin as routine veterinary interventions) (p < 0.05). CONCLUSIONS Our findings suggest that vaccination with NeCoVac is highly efficient in protecting birds from NE, coccidiosis and a combination of both diseases. SIGNIFICANCE AND IMPACT OF THE STUDY The present study is the first one to describe the combinatorial use of AMA1 and RON2 against coccidiosis, and the first report using NeCoVac against NE and coccidiosis together.
Collapse
|
30
|
Silva BB, Santos ENFN, Araújo LS, Bezerra AS, Marques LÉC, Tramontina Florean EOP, van Tilburg MF, Guedes MIF. Plant Expression of Hydrophobin Fused K39 Antigen for Visceral Leishmaniasis Immunodiagnosis. FRONTIERS IN PLANT SCIENCE 2021; 12:674015. [PMID: 34135929 PMCID: PMC8201991 DOI: 10.3389/fpls.2021.674015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Visceral leishmaniasis is a Neglected Tropical Disease of high mortality caused by the protozoan Leishmania infantum. Its transmission cycle is complex, and it has in the domestic dog its main reservoir. The diagnostic tests currently used rely on prokaryotic systems' proteins, but their low sensitivity increases the disease's burden. The plant transient expression of recombinant proteins allows the production of complex antigens. However, this system has limited competitiveness against the bacterial production of purified antigens. Thus, we have shown that the L. infantum K39 antigen's fusion to a hydrophobin allows its production for diagnostic tests without the need for intensive purification. The sera of naturally infected dogs specifically detect the semi-purified rK39-HFBI protein. The test validation against a panel of 158 clinical samples demonstrates the platform's viability, resulting in sensitivity and specificity of 90.7 and 97.5%, respectively. Thus, the use of semi-purified antigens fused to hydrophobins can become the standard platform for large-scale antigens production to expand diagnostic tests for other human and veterinary diseases worldwide.
Collapse
Affiliation(s)
- Bruno B. Silva
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceará, Fortaleza, Brazil
- Northeast Biotechnology Network (RENORBIO), State University of Ceará, Fortaleza, Brazil
| | - Eduarda N. F. N. Santos
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceará, Fortaleza, Brazil
- Northeast Biotechnology Network (RENORBIO), State University of Ceará, Fortaleza, Brazil
| | - Lucelina S. Araújo
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceará, Fortaleza, Brazil
| | - Arnaldo S. Bezerra
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceará, Fortaleza, Brazil
- Northeast Biotechnology Network (RENORBIO), State University of Ceará, Fortaleza, Brazil
| | - Lívia É. C. Marques
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceará, Fortaleza, Brazil
| | | | - Maurício F. van Tilburg
- Northeast Biotechnology Network (RENORBIO), State University of Ceará, Fortaleza, Brazil
- Department of Animal Sciences, Federal Rural University of the Semiarid, Mossoró, Brazil
| | - Maria Izabel F. Guedes
- Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceará, Fortaleza, Brazil
- Northeast Biotechnology Network (RENORBIO), State University of Ceará, Fortaleza, Brazil
| |
Collapse
|
31
|
Ramon J, Gonçalves V, Alvarenga A, Saez V, Nele M, Alves T. Integrated Lab-Scale Process Combining Purification and PEGylation of l-Asparaginase from Zymomonas mobilis. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jose Ramon
- Department of Biochemical Engineering, School of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Vinicius Gonçalves
- PEQ/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Aline Alvarenga
- PEQ/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Vivian Saez
- Department of Analytical Chemistry, Chemical Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Marcio Nele
- PEQ/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Tito Alves
- PEQ/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| |
Collapse
|
32
|
Karnaouri A, Zerva A, Christakopoulos P, Topakas E. Screening of Recombinant Lignocellulolytic Enzymes Through Rapid Plate Assays. Methods Mol Biol 2021; 2178:479-503. [PMID: 33128767 DOI: 10.1007/978-1-0716-0775-6_30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the search for novel biomass-degrading enzymes through mining microbial genomes, it is necessary to apply functional tests during high-throughput screenings, which are capable of detecting enzymatic activities directly by way of plate assay. Using the most efficient expression systems of Escherichia coli and Pichia pastoris, the production of a high amount of His-tagged recombinant proteins could be thrived, allowing the one-step isolation by affinity chromatography. Here, we describe simple and efficient assay techniques for the detection of various biomass-degrading enzymatic activities on agar plates, such as cellulolytic, hemicellulolytic, and ligninolytic activities and their isolation using immobilized-metal affinity chromatography.
Collapse
Affiliation(s)
- Anthi Karnaouri
- Industrial Biotechnology and Biocatalysis Group, Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Anastasia Zerva
- Industrial Biotechnology and Biocatalysis Group, Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Paul Christakopoulos
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Evangelos Topakas
- Industrial Biotechnology and Biocatalysis Group, Biotechnology Laboratory, Department of Synthesis and Development of Industrial Processes, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| |
Collapse
|
33
|
Uridine diphosphate N-acetylglucosamine orchestrates the interaction of GlmR with either YvcJ or GlmS in Bacillus subtilis. Sci Rep 2020; 10:15938. [PMID: 32994436 PMCID: PMC7525490 DOI: 10.1038/s41598-020-72854-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
In bacteria, glucosamine-6-phosphate (GlcN6P) synthase, GlmS, is an enzyme required for the synthesis of Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), a precursor of peptidoglycan. In Bacillus subtilis, an UDP-GlcNAc binding protein, GlmR (formerly YvcK), essential for growth on non-glycolytic carbon sources, has been proposed to stimulate GlmS activity; this activation could be antagonized by UDP-GlcNAc. Using purified proteins, we demonstrate that GlmR directly stimulates GlmS activity and the presence of UDP-GlcNAc (at concentrations above 0.1 mM) prevents this regulation. We also showed that YvcJ, whose gene is associated with yvcK (glmR), interacts with GlmR in an UDP-GlcNAc dependent manner. Strains producing GlmR variants unable to interact with YvcJ show decreased transformation efficiency similar to that of a yvcJ null mutant. We therefore propose that, depending on the intracellular concentration of UDP-GlcNAc, GlmR interacts with either YvcJ or GlmS. When UDP-GlcNAc concentration is high, this UDP-sugar binds to YvcJ and to GlmR, blocking the stimulation of GlmS activity and driving the interaction between GlmR and YvcJ to probably regulate the cellular role of the latter. When the UDP-GlcNAc level is low, GlmR does not interact with YvcJ and thus does not regulate its cellular role but interacts with GlmS to stimulate its activity.
Collapse
|
34
|
Barthet MM, Pierpont CL, Tavernier E. Unraveling the role of the enigmatic MatK maturase in chloroplast group IIA intron excision. PLANT DIRECT 2020; 4:e00208. [PMID: 32185246 PMCID: PMC7068846 DOI: 10.1002/pld3.208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 05/18/2023]
Abstract
Maturases are prokaryotic enzymes that aid self-excision of introns in precursor RNAs and have evolutionary ties to the nuclear spliceosome. Both the mitochondria and chloroplast, due to their prokaryotic origin, encode a single intron maturase, MatR for the mitochondria and MatK for the chloroplast. MatK is proposed to aid excision of seven different chloroplast group IIA introns that reside within precursor RNAs for essential elements of chloroplast function. We have developed an in vitro activity assay to test chloroplast group IIA intron excision. Using this assay, we demonstrate self-excision of the group IIA intron of the second intron of rps12 and the group IIA intron of rpl2. We further show that the addition of heterologously expressed MatK protein increases efficiency of group IIA intron self-splicing for the second intron of rps12 but not the group IIA intron of rpl2. These data, to our knowledge, provide the first direct evidence of MatK's maturase activity.
Collapse
Affiliation(s)
| | - Christopher L. Pierpont
- Department of BiologyCoastal Carolina UniversityConwaySCUSA
- Division of Biological SciencesUniversity of MontanaMissoulaMTUSA
| | - Emilie‐Katherine Tavernier
- Department of BiologyCoastal Carolina UniversityConwaySCUSA
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
35
|
Metzger KF, Padutsch W, Pekarsky A, Kopp J, Voloshin AM, Kühnel H, Maurer M. IGF1 inclusion bodies: A QbD based process approach for efficient USP as well as early DSP unit operations. J Biotechnol 2020; 312:23-34. [DOI: 10.1016/j.jbiotec.2020.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/04/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
|
36
|
Dziuba D, Hoffmann J, Hentze MW, Schultz C. A Genetically Encoded Diazirine Analogue for RNA-Protein Photo-crosslinking. Chembiochem 2020; 21:88-93. [PMID: 31658407 PMCID: PMC7003851 DOI: 10.1002/cbic.201900559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 01/05/2023]
Abstract
Ultraviolent crosslinking is a key experimental step in the numerous protocols that have been developed for capturing and dissecting RNA-protein interactions in living cells. UV crosslinking covalently stalls dynamic interactions between RNAs and the directly contacting RNA-binding proteins and enables stringent denaturing downstream purification conditions needed for the enrichment and biochemical analysis of RNA-protein complexes. Despite its popularity, conventional 254 nm UV crosslinking possesses a set of intrinsic drawbacks, with the low photochemical efficiency being the central caveat. Here we show that genetically encoded photoreactive unnatural amino acids bearing a dialkyl diazirine photoreactive group can address this problem. Using the human iron regulatory protein 1 (IRP1) as a model RNA-binding protein, we show that the photoreactive amino acids can be introduced into the protein without diminishing its RNA-binding properties. A sevenfold increase in the crosslinking efficiency compared to conventional 254 nm UV crosslinking was achieved using the diazirine-based unnatural amino acid DiAzKs. This finding opens an avenue for new applications of the unnatural amino acids in studying RNA-protein interactions.
Collapse
Affiliation(s)
- Dmytro Dziuba
- European Molecular Biology LaboratoryMeyerhofstrasse 169117HeidelbergGermany
| | - Jan‐Erik Hoffmann
- European Molecular Biology LaboratoryMeyerhofstrasse 169117HeidelbergGermany
- Department of Chemical Physiology and BiochemistryOregon Health and Science UniversityL334, 3181 SW Sam Jackson Park RoadPortlandOR97239-3098USA
| | - Matthias W. Hentze
- European Molecular Biology LaboratoryMeyerhofstrasse 169117HeidelbergGermany
| | - Carsten Schultz
- European Molecular Biology LaboratoryMeyerhofstrasse 169117HeidelbergGermany
- Department of Chemical Physiology and BiochemistryOregon Health and Science UniversityL334, 3181 SW Sam Jackson Park RoadPortlandOR97239-3098USA
| |
Collapse
|
37
|
Lopes C, dos Santos NV, Dupont J, Pedrolli DB, Valentini SR, Santos‐Ebinuma V, Pereira JFB. Improving the cost effectiveness of enhanced green fluorescent protein production using recombinantEscherichia coliBL21 (DE3): Decreasing the expression inducer concentration. Biotechnol Appl Biochem 2019; 66:527-536. [DOI: 10.1002/bab.1749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Camila Lopes
- Department of Bioprocesses and BiotechnologySchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
| | - Nathalia Vieira dos Santos
- Department of Bioprocesses and BiotechnologySchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
| | - Jana Dupont
- Department of Bioprocesses and BiotechnologySchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
- Faculty of Bioscience EngineeringGent University Gent Belgium
| | - Danielle Biscaro Pedrolli
- Department of Bioprocesses and BiotechnologySchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
| | - Sandro Roberto Valentini
- Department of Biological SciencesSchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
| | - Valéria Santos‐Ebinuma
- Department of Bioprocesses and BiotechnologySchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
| | - Jorge Fernando Brandão Pereira
- Department of Bioprocesses and BiotechnologySchool of Pharmaceutical Sciences, São Paulo State University (UNESP) Araraquara Brazil
| |
Collapse
|
38
|
Ghosh IN, Martien J, Hebert AS, Zhang Y, Coon JJ, Amador-Noguez D, Landick R. OptSSeq explores enzyme expression and function landscapes to maximize isobutanol production rate. Metab Eng 2019; 52:324-340. [DOI: 10.1016/j.ymben.2018.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/26/2018] [Accepted: 12/25/2018] [Indexed: 10/27/2022]
|
39
|
Orbegozo-Medina RA, Martínez-Sernández V, Perteguer MJ, Hernández-González A, Mezo M, González-Warleta M, Romarís F, Paniagua E, Gárate T, Ubeira FM. In-plate recapturing of a dual-tagged recombinant Fasciola antigen (FhLAP) by a monoclonal antibody (US9) prevents non-specific binding in ELISA. PLoS One 2019; 14:e0211035. [PMID: 30707711 PMCID: PMC6358068 DOI: 10.1371/journal.pone.0211035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/07/2019] [Indexed: 11/18/2022] Open
Abstract
Recombinant proteins expressed in E. coli are frequently purified by immobilized metal affinity chromatography (IMAC). By means of this technique, tagged proteins containing a polyhistidine sequence can be obtained up to 95% pure in a single step, but some host proteins also bind with great affinity to metal ions and contaminate the sample. A way to overcome this problem is to include a second tag that is recognized by a preexistent monoclonal antibody (mAb) in the gene encoding the target protein, allowing further purification. With this strategy, the recombinant protein can be directly used as target in capture ELISA using plates sensitized with the corresponding mAb. As a proof of concept, in this study we engineered a Trichinella-derived tag (MTFSVPIS, recognized by mAb US9) into a His-tagged recombinant Fasciola antigen (rFhLAP) to make a new chimeric recombinant protein (rUS9-FhLAP), and tested its specificity in capture and indirect ELISAs with sera from sheep and cattle. FhLAP was selected since it was previously reported to be immunogenic in ruminants and is expressed in soluble form in E. coli, which anticipates a higher contamination by host proteins than proteins expressed in inclusion bodies. Our results showed that a large number of sera from non-infected ruminants (mainly cattle) reacted in indirect ELISA with rUS9-FhLAP after single-step purification by IMAC, but that this reactivity disappeared testing the same antigen in capture ELISA with mAb US9. These results demonstrate that the 6XHis and US9 tags can be combined when double purification of recombinant proteins is required.
Collapse
Affiliation(s)
| | | | - María J. Perteguer
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ana Hernández-González
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Mercedes Mezo
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, INGACAL, Abegondo, A Coruña, Spain
| | - Marta González-Warleta
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, INGACAL, Abegondo, A Coruña, Spain
| | - Fernanda Romarís
- Laboratorio de Parasitología, Facultad de Farmacia, Santiago de Compostela, Spain
| | - Esperanza Paniagua
- Laboratorio de Parasitología, Facultad de Farmacia, Santiago de Compostela, Spain
| | - Teresa Gárate
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Florencio M. Ubeira
- Laboratorio de Parasitología, Facultad de Farmacia, Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|
40
|
ParST is a widespread toxin-antitoxin module that targets nucleotide metabolism. Proc Natl Acad Sci U S A 2018; 116:826-834. [PMID: 30598453 DOI: 10.1073/pnas.1814633116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Toxin-antitoxin (TA) systems interfere with essential cellular processes and are implicated in bacterial lifestyle adaptations such as persistence and the biofilm formation. Here, we present structural, biochemical, and functional data on an uncharacterized TA system, the COG5654-COG5642 pair. Bioinformatic analysis showed that this TA pair is found in 2,942 of the 16,286 distinct bacterial species in the RefSeq database. We solved a structure of the toxin bound to a fragment of the antitoxin to 1.50 Å. This structure suggested that the toxin is a mono-ADP-ribosyltransferase (mART). The toxin specifically modifies phosphoribosyl pyrophosphate synthetase (Prs), an essential enzyme in nucleotide biosynthesis conserved in all organisms. We propose renaming the toxin ParT for Prs ADP-ribosylating toxin and ParS for the cognate antitoxin. ParT is a unique example of an intracellular protein mART in bacteria and is the smallest known mART. This work demonstrates that TA systems can induce bacteriostasis through interference with nucleotide biosynthesis.
Collapse
|
41
|
Impact of glutamine on the effect of neopterin in methyl mercury-exposed neurons. Pteridines 2018. [DOI: 10.1515/pteridines-2018-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Exposure to methyl mercury (MeHg), induces blood-brain barrier damage leading to non-selective influx of cytotoxic agents, besides the entrance of inflammatory cells into the brain. However, there is no data available regarding the effects of co-treatment of neopterin and interferon-gamma (IFN-gamma) in MeHgexposed SH-SY5Y dopaminergic neurons. MeHg-exposed SH-SY5Y human neuroblastoma cells were treated with neopterin and IFN-gamma in the presence and absence of L-Glutamine. Cell viability was determined by MTT assay. Oxidative stress intensity coefficient was calculated by taking into consideration the amount of nitric oxide production per viable neuron. 5μM MeHg was found to be more toxic than 1μM or 2μM doses of MeHg for SH-SY5Y cells in glutamine-containing medium. Furthermore, 0.1μM neopterin supplementation significantly increased the neuronal cell viability while, oxidative stress significantly decreased. Glutamine supplementation in culture medium, not only enhanced the MeHg toxicity, but also supported the antioxidant effect of neopterin. These results indicate that neopterin has a protective effect on MeHg toxicity in SH-SY5Y neurons. Neopterin was more effective in improving the total mitochondrial metabolic activity of cells exposed to 5μM MeHg in comparison to IFN-gamma. Although IFN-gamma supplementation alone partially improved 5μM MeHg toxicity on neurons, it weakened the protective effect of neopterin.
Collapse
|
42
|
Affiliation(s)
- Paul D. Riggs
- New England Biolabs, Inc., Research; Ipswich Massachusetts
| |
Collapse
|
43
|
Abstract
The continuous flow synthesis of active pharmaceutical ingredients, value-added chemicals, and materials has grown tremendously over the past ten years. This revolution in chemical manufacturing has resulted from innovations in both new methodology and technology. This field, however, has been predominantly focused on synthetic organic chemistry, and the use of biocatalysts in continuous flow systems is only now becoming popular. Although immobilized enzymes and whole cells in batch systems are common, their continuous flow counterparts have grown rapidly over the past two years. With continuous flow systems offering improved mixing, mass transfer, thermal control, pressurized processing, decreased variation, automation, process analytical technology, and in-line purification, the combination of biocatalysis and flow chemistry opens powerful new process windows. This Review explores continuous flow biocatalysts with emphasis on new technology, enzymes, whole cells, co-factor recycling, and immobilization methods for the synthesis of pharmaceuticals, value-added chemicals, and materials.
Collapse
Affiliation(s)
- Joshua Britton
- Departments of Chemistry, Molecular Biology, and Biochemistry, University of California, Irvine, CA 92697-2025, USA.
| | | | | |
Collapse
|
44
|
McCloskey D, Xu J, Schrübbers L, Christensen HB, Herrgård MJ. RapidRIP quantifies the intracellular metabolome of 7 industrial strains of E. coli. Metab Eng 2018; 47:383-392. [PMID: 29702276 DOI: 10.1016/j.ymben.2018.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/27/2018] [Accepted: 04/12/2018] [Indexed: 11/20/2022]
Abstract
Fast metabolite quantification methods are required for high throughput screening of microbial strains obtained by combinatorial or evolutionary engineering approaches. In this study, a rapid RIP-LC-MS/MS (RapidRIP) method for high-throughput quantitative metabolomics was developed and validated that was capable of quantifying 102 metabolites from central, amino acid, energy, nucleotide, and cofactor metabolism in less than 5 minutes. The method was shown to have comparable sensitivity and resolving capability as compared to a full length RIP-LC-MS/MS method (FullRIP). The RapidRIP method was used to quantify the metabolome of seven industrial strains of E. coli revealing significant differences in glycolytic, pentose phosphate, TCA cycle, amino acid, and energy and cofactor metabolites were found. These differences translated to statistically and biologically significant differences in thermodynamics of biochemical reactions between strains that could have implications when choosing a host for bioprocessing.
Collapse
Affiliation(s)
- Douglas McCloskey
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Julia Xu
- Department of Bioengineering, University of California - San Diego, La Jolla, CA 92093, USA
| | - Lars Schrübbers
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Hanne B Christensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Markus J Herrgård
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark.
| |
Collapse
|
45
|
Mokhonov VV, Vasilenko EA, Gorshkova EN, Astrakhantseva IV, Novikov DV, Novikov VV. SlyD-deficient Escherichia coli strains: A highway to contaminant-free protein extraction. Biochem Biophys Res Commun 2018; 499:967-972. [PMID: 29626483 DOI: 10.1016/j.bbrc.2018.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
Binding of native bacterial protein SlyD to metal affinity matrices remains a major problem in affinity purification of His-tagged recombinant proteins from Escherichia coli cells. In this study, four novel E. coli strains that lack the expression of SlyD/SlyX, were engineered using λ-red mediated chromosomal deletion. The resultant mutant E. coli strains allow us to obtain SlyD-free proteins immediately after metal affinity chromatography, and eliminate additional purification processes. As a model protein, bispecific antibodies composed of anti-F4/80 VHH module and anti-TNF VHH module (MYSTI-2) were used. Using this protein we have shown that the SlyD/SlyX-deficient E. coli strains allow us to obtain a fully functional protein.
Collapse
Affiliation(s)
- Vladislav V Mokhonov
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod, Russia.
| | - Ekaterina A Vasilenko
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod, Russia
| | - Ekaterina N Gorshkova
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod, Russia
| | - Irina V Astrakhantseva
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod, Russia
| | - Dmitry V Novikov
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod, Russia
| | - Viktor V Novikov
- Center of Molecular Biology and Biomedicine, Institute of Biology and Biomedicine, Lobachevsky State University, Nizhniy Novgorod, Russia
| |
Collapse
|
46
|
Martínez-Sernández V, Perteguer MJ, Hernández-González A, Mezo M, González-Warleta M, Orbegozo-Medina RA, Romarís F, Paniagua E, Gárate T, Ubeira FM. Comparison of recombinant cathepsins L1, L2, and L5 as ELISA targets for serodiagnosis of bovine and ovine fascioliasis. Parasitol Res 2018; 117:1521-1534. [PMID: 29564626 PMCID: PMC7088297 DOI: 10.1007/s00436-018-5809-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
Infections caused by Fasciola hepatica are of great importance in the veterinary field, as they cause important economic losses to livestock producers. Serodiagnostic methods, typically ELISA (with either native or recombinant antigens), are often used for early diagnosis. The use of native antigens, as in the MM3-SERO ELISA (commercialized as BIO K 211, BIO-X Diagnostics), continues to be beneficial in terms of sensitivity and specificity; however, there is interest in developing ELISA tests based on recombinant antigens to avoid the need to culture parasites. Of the antigens secreted by adult flukes, recombinant procathepsin L1 (rFhpCL1) is the most commonly tested in ELISA to date. However, although adult flukes produce three different clades of CLs (FhCL1, FhCL2, and FhCL5), to our knowledge, the diagnostic value of recombinant FhCL2 and FhCL5 has not yet been investigated. In the present study, we developed and tested three indirect ELISAs using rFhpCL1, rFhpCL2, and rFhpCL5 and evaluated their recognition by sera from sheep and cattle naturally infected with F. hepatica. Although the overall antibody response to these three rFhpCLs was similar, some animals displayed preferential recognition for particular rFhpCLs. Moreover, for cattle sera, the highest sensitivity was obtained using rFhpCL2 (97%), being equal for both rFhpCL1 and rFhpCL5 (87.9%), after adjusting cut-offs for maximum specificity. By contrast, for sheep sera, the sensitivity was 100% for the three rFhpCLs. Finally, the presence of truncated and/or partially unfolded molecules in antigen preparations is postulated as a possible source of cross-reactivity.
Collapse
Affiliation(s)
- Victoria Martínez-Sernández
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - María J Perteguer
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Ana Hernández-González
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Mercedes Mezo
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, INGACAL, 15318, Abegondo, (A Coruña), Spain
| | - Marta González-Warleta
- Laboratorio de Parasitología, Centro de Investigaciones Agrarias de Mabegondo, INGACAL, 15318, Abegondo, (A Coruña), Spain
| | - Ricardo A Orbegozo-Medina
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Fernanda Romarís
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Esperanza Paniagua
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Teresa Gárate
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Florencio M Ubeira
- Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
47
|
Solubilisation and purification of recombinant bluetongue virus VP7 expressed in a bacterial system. Protein Expr Purif 2018; 147:85-93. [PMID: 29551716 DOI: 10.1016/j.pep.2018.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/17/2023]
Abstract
Bluetongue virus (BTV) is an Orbivirus that has a profound economic impact due to direct loss of livestock as well as movement bans in an attempt to prevent the spread of the disease to susceptible areas. BTV VP7, along with VP3, forms the inner capsid core of the virus where it acts as the barrier between the outer layer and the inner core housing the genetic material. Purification of BTV VP7 has proven to be problematic and expensive mainly due to its insolubility is several expression systems. To overcome this, in this paper we present a protocol for the solubilisation of BTV VP7 from inclusion bodies expressed in E.coli, and subsequent purification using nickel affinity chromatography. The purified protein was then characterised using native PAGE, far ultraviolet circular dichroism (far-UV CD) and intrinsic fluorescence and found to have both secondary and tertiary structure even in the presence of 5 M urea. Both tertiary and secondary structure was further shown to be to be maintained at least to 42 °C in 5 M urea.
Collapse
|
48
|
Multitalented EspB of enteropathogenic Escherichia coli (EPEC) enters cells autonomously and induces programmed cell death in human monocytic THP-1 cells. Int J Med Microbiol 2018; 308:387-404. [PMID: 29550166 DOI: 10.1016/j.ijmm.2018.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) subvert host cell signaling pathways by injecting effector proteins via a Type 3 Secretion System (T3SS). The T3SS-dependent EspB protein is a multi-functional effector protein, which contributes to adherence and translocator pore formation and after injection exhibits several intracellular activities. In addition, EspB is also secreted into the environment. Effects of secreted EspB have not been reported thus far. As a surrogate for secreted EspB we employed recombinant EspB (rEspB) derived from the prototype EPEC strain E2348/69 and investigated the interactions of the purified protein with different human epithelial and immune cells including monocytic THP-1 cells, macrophages, dendritic cells, U-937, epithelial T84, Caco-2, and HeLa cells. To assess whether these proteins might exert a cytotoxic effect we monitored the release of lactate dehydrogenase (LDH) as well as propidium iodide (PI) uptake. For comparison, we also investigated several homologs of EspB such as IpaD of Shigella, and SipC, SipD, SseB, and SseD of Salmonella as purified recombinant proteins. Interestingly, cytotoxicity was only observed in THP-1 cells and macrophages, whereas epithelial cells remained unaffected. Cell fractionation and immune fluorescence experiments showed that rEspB enters cells autonomously, which suggests that EspB might qualify as a novel cell-penetrating effector protein (CPE). Using specific organelle tracers and inhibitors of signaling pathways we found that rEspB destroys the mitochondrial membrane potential - an indication of programmed cell death induction in THP-1 cells. Here we show that EspB not only constitutes an essential part of the T3SS-nanomachine and contributes to the arsenal of injected effector proteins but, furthermore, that secreted (recombinant) EspB autonomously enters host cells and selectively induces cell death in immune cells.
Collapse
|
49
|
Flanagan LA, Chidwick HS, Walton J, Moir JWB, Parkin A. Conserved Histidine Adjacent to the Proximal Cluster Tunes the Anaerobic Reductive Activation of Escherichia coli Membrane-Bound [NiFe] Hydrogenase-1. ChemElectroChem 2018; 5:855-860. [PMID: 29696103 PMCID: PMC5900901 DOI: 10.1002/celc.201800047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 12/13/2022]
Abstract
[NiFe] hydrogenases are electrocatalysts that oxidize H2 at a rapid rate without the need for precious metals. All membrane-bound [NiFe] hydrogenases (MBH) possess a histidine residue that points to the electron-transfer iron sulfur cluster closest ("proximal") to the [NiFe] H2-binding active site. Replacement of this amino acid with alanine induces O2 sensitivity, and this has been attributed to the role of the histidine in enabling the reversible O2-induced over-oxidation of the [Fe4S3Cys2] proximal cluster possessed by all O2-tolerant MBH. We have created an Escherichia coli Hyd-1 His-to-Ala variant and report O2-free electrochemical measurements at high potential that indicate the histidine-mediated [Fe4S3Cys2] cluster-opening/closing mechanism also underpins anaerobic reactivation. We validate these experiments by comparing them to the impact of an analogous His-to-Ala replacement in Escherichia coli Hyd-2, a [NiFe]-MBH that contains a [Fe4S4] center.
Collapse
Affiliation(s)
| | | | - Julia Walton
- Department of ChemistryUniversity of YorkHeslington, York
| | | | - Alison Parkin
- Department of ChemistryUniversity of YorkHeslington, York
| |
Collapse
|
50
|
Cummings CS, Obermeyer AC. Phase Separation Behavior of Supercharged Proteins and Polyelectrolytes. Biochemistry 2017; 57:314-323. [PMID: 29210575 DOI: 10.1021/acs.biochem.7b00990] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membraneless organelles, like membrane-bound organelles, are essential to cell homeostasis and provide discrete cellular subcompartments. Unlike classical organelles, membraneless organelles possess no physical barrier but rather arise by phase separation of the organelle components from the surrounding cytoplasm or nucleoplasm. Complex coacervation, the liquid-liquid phase separation of oppositely charged polyelectrolytes, is one of several phenomena that are hypothesized to drive the formation and regulation of some membraneless organelles. Studies of the molecular properties of globular proteins that drive complex coacervation are limited as many proteins do not form complexes with oppositely charged macromolecules at neutral pH and moderate ionic strengths. Protein supercharging overcomes this problem and drives complexation with oppositely charged macromolecules. In this work, several distinct cationic supercharged green fluorescent protein (GFP) variants were designed to examine the phase behavior with oppositely charged polyanionic macromolecules. Cationic GFP variants phase separated with oppositely charged macromolecules at various mixing ratios, salt concentrations, and pH values. Efficient protein incorporation in the macromolecule rich phase occurred over a range of protein and polymer mass fractions, but the protein encapsulation efficiency was highest at the midpoint of the phase separation regime. More positively charged proteins phase separated over broader pH and salt ranges than those of proteins with a lower charge density. Interestingly, each GFP variant phase separated at higher salt concentrations with anionic synthetic macromolecules compared to anionic biological macromolecules. Optical microscopy revealed that most variants, depending on solution conditions, formed liquid-liquid phase separations, except for GFP/DNA pairs that formed solid aggregates under all tested conditions.
Collapse
Affiliation(s)
- Chad S Cummings
- Department of Chemical Engineering, Columbia University , New York, New York 10027, United States
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University , New York, New York 10027, United States
| |
Collapse
|