1
|
Nakata S, Takase R, Kawai S, Ogura K, Hashimoto W. Potential role of alginate in marine bacteria-yeast interactions. Appl Environ Microbiol 2024; 90:e0168324. [PMID: 39513721 DOI: 10.1128/aem.01683-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
The ability of microorganisms to decompose brown algae has attracted attention. This study aims to clarify the characteristics of marine microbial communities in which prokaryotic and eukaryotic microorganisms interact via the metabolism of brown algae carbohydrates. Amplicon-based microbiome analysis revealed the predominance of the genera Marinomonas and Vibrio in seawater and seaweed samples mixed with alginate and mannitol, which are the primary carbohydrates in brown algae. Three Vibrio species and Candida intermedia were isolated via alginate enrichment culture. Although C. intermedia did not utilize alginate as a nutrient source, the yeast grew in the spent alginate medium in which Vibrio algivorus had been cultured. Coculture with C. intermedia and the Vibrio isolates, especially V. algivorus, also enhanced the growth of the yeast on alginate. These results suggested that C. intermedia grew because of the supply of nutrients via alginate metabolism by Vibrio species. In the coculture medium, the amount of phosphatidylserine increased in the early phase but decreased with the growth of C. intermedia, indicating that phosphatidylserine secreted by Vibrio is involved in the putative mutualistic interaction. We examined whether such interaction is applicable to the production of useful substances and succeeded in lipid production by oleaginous marine yeast Yarrowia lipolytica through coculture with V. algivorus. Our study suggested the potential of mutualistic interaction via degradation of alginate by marine Vibrio for production of industrially useful substances in yeast cells.IMPORTANCEIn this study, we analyzed the microbiome of seawater and seaweed in the presence of brown algae carbohydrates and reconstructed the putative mutualistic relationship of marine Vibrio and Candida intermedia mediated by metabolism of brown algae in the ocean.
Collapse
Affiliation(s)
- Shota Nakata
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Ryuichi Takase
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Shigeyuki Kawai
- Laboratory for Environmental Biotechnology, Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi, Ishikawa, Japan
| | - Kohei Ogura
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
2
|
Hu S, Lu P, Feng Y, Chen A, Han G. Elucidating the role of the genus Pseudomonas involved in coumarin degradation. ENVIRONMENTAL RESEARCH 2024; 266:120603. [PMID: 39667481 DOI: 10.1016/j.envres.2024.120603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Coumarin, a synthetic chemical and phytotoxin, exhibits hepatotoxicity and carcinogenicity, posing threats to both human health and environmental safety. Microbial degradation effectively mitigates environmental contamination. In this study, a coumarin-degrading bacterial consortium designated as XDS-7 with Pseudomonas as the key degrader was obtained. However, there is a lack of comprehensive perspective on the key role of the genus Pseudomonas involved in coumarin degradation. We employed the consortium XDS-7 as a model system to investigate the critical role of the genus Pseudomonas involved in coumarin degradation. Metagenomic binning analysis indicated that bin 14 (Pseudomonas sp.) contains the full complement of genes required for coumarin degradation. A coumarin-degrading bacterium, Pseudomonas sp. strain X4, was isolated from consortium XDS-7 using a traditional enrichment method supplemented with chloramphenicol. Genomic analysis demonstrated that strain X4 carries a suite of genes to completely degrade coumarin. Bioinformatics analysis revealed that putative coumarin-degrading bacteria are widely distributed across diverse bacteria of the genus Pseudomonas. In addition, strain X4 completely removed 100 mg kg-1 of coumarin from contaminated soil within 48 h and 100 mg L-1 of coumarin from contaminated wastewater within 4 h. This study will greatly enhance our understanding and utilization of these valuable bioresources.
Collapse
Affiliation(s)
- Shunli Hu
- School of Life Sciences, Anhui Agricultural University, 230036, Hefei, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036, Hefei, China.
| | - Peicheng Lu
- School of Life Sciences, Anhui Agricultural University, 230036, Hefei, China
| | - Youhui Feng
- School of Life Sciences, Anhui Agricultural University, 230036, Hefei, China
| | - Anqi Chen
- School of Life Sciences, Anhui Agricultural University, 230036, Hefei, China
| | - Guomin Han
- School of Life Sciences, Anhui Agricultural University, 230036, Hefei, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036, Hefei, China.
| |
Collapse
|
3
|
Xu F, Chen XL, Zhang YZ. Alginate catabolic systems in marine bacteria. Curr Opin Microbiol 2024; 83:102564. [PMID: 39657303 DOI: 10.1016/j.mib.2024.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024]
Abstract
Brown algae, constituting the second largest group of marine macroalgae, fix significant amounts of inorganic carbon into alginate, the most abundant polysaccharide found in their cell walls. Alginate serves as an important macromolecular carbon source for marine bacteria. The catabolism of alginate by bacteria is an important step in the marine carbon cycle, and this area of research has attracted growing interests over the past decade. Here, we provide an overview of the recent advances in our understanding of marine bacterial alginate catabolic systems, both in individual organisms and within bacterial consortia, discuss the possibility of additional alginate metabolic pathways in light of the present findings, and highlight the future research foci.
Collapse
Affiliation(s)
- Fei Xu
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
4
|
Skliros D, Kostakou M, Kokkari C, Tsertou MI, Pavloudi C, Zafeiropoulos H, Katharios P, Flemetakis E. Unveiling Emerging Opportunistic Fish Pathogens in Aquaculture: A Comprehensive Seasonal Study of Microbial Composition in Mediterranean Fish Hatcheries. Microorganisms 2024; 12:2281. [PMID: 39597671 PMCID: PMC11596916 DOI: 10.3390/microorganisms12112281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
The importance of microbial communities in fish hatcheries for fish health and welfare has been recognized, with several studies mapping these communities during healthy rearing conditions and disease outbreaks. In this study, we analyzed the bacteriome of the live feeds, such as microalgae, rotifers, and Artemia, used in fish hatcheries that produce Mediterranean species. Our goal was to provide baseline information about their structure, emphasizing in environmental putative fish pathogenic bacteria. We conducted 16S rRNA amplicon Novaseq sequencing for our analysis, and we inferred 46,745 taxonomically annotated ASVs. Results showed that incoming environmental water plays a significant role in the presence of important taxa that constitute presumptive pathogens. Bio-statistical analyses revealed a relatively stable bacteriome among seasonal samplings for every hatchery but a diverse bacteriome between sampling stations and a distinct core bacteriome for each hatchery. Analysis of putative opportunistic fish pathogenic genera revealed some co-occurrence correlation events and a high average relative abundance of Vibrio, Tenacibaculum, and Photobacterium genera in live feeds, reaching a grand mean average of up to 7.3% for the hatchery of the Hellenic Center of Marine Research (HCMR), 12% for Hatchery A, and 11.5% for Hatchery B. Mapping the bacteriome in live feeds is pivotal for understanding the marine environment and distinct aquaculture practices and can guide improvements in hatchery management, enhancing fish health and sustainability in the Mediterranean region.
Collapse
Affiliation(s)
- Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (D.S.)
| | - Maria Kostakou
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (D.S.)
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Constantina Kokkari
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece; (C.K.); (M.I.T.); (P.K.)
| | - Maria Ioanna Tsertou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece; (C.K.); (M.I.T.); (P.K.)
| | - Christina Pavloudi
- European Marine Biological Resource Centre—European Research Infrastructure Consortium (EMBRC-ERIC), 75252 Paris, France;
| | - Haris Zafeiropoulos
- Laboratory of Molecular Bacteriology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium;
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece; (C.K.); (M.I.T.); (P.K.)
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (D.S.)
| |
Collapse
|
5
|
Wang Y, Xie J, Feng Z, Ma L, Wu W, Guo C, He J. Genomic insights into the cold adaptation and secondary metabolite potential of Pseudoalteromonas sp. WY3 from Antarctic krill. Front Microbiol 2024; 15:1459716. [PMID: 39564484 PMCID: PMC11573776 DOI: 10.3389/fmicb.2024.1459716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
In the Antarctic marine ecosystem, krill play a pivotal role, yet the intricate microbial community intertwined with these diminutive crustaceans remains largely unmapped. In this study, we successfully isolated and characterized a unique bacterial strain, Pseudoalteromonas sp. WY3, from Antarctic krill. Genomic analysis revealed that WY3 harbors a multitude of genes associated with cold shock proteins, oxidoreductases, and enzymes involved in the osmotic stress response, equipping it with a robust molecular arsenal to withstand frigid Antarctic conditions. Furthermore, the presence of two distinct biosynthesis-related gene clusters suggests that WY3 has the potential to synthesize diverse secondary metabolites, including aryl polyenes and ribosomally synthesized and post-translationally modified peptides. Notably, the identification of genes encoding enzymes crucial for biological immunity pathways, such as apeH and ubiC, hints at a complex symbiotic relationship between WY3 and its krill host. This comprehensive study highlights the robust potential of WY3 for secondary metabolite production and its remarkable ability to thrive at extremely low temperatures in the Antarctic ecosystem, shedding light on the interplay between culturable microorganisms and their hosts in harsh environments, and providing insights into the underexplored microbial communities associated with Antarctic marine organisms and their role in environmental adaptation and biotechnological applications.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jinxuan Xie
- State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhengqi Feng
- State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Linbo Ma
- Key Laboratory of the East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Shanghai, China
| | - Wenbo Wu
- State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Changjun Guo
- State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Zhao S, Hu X, Li H, Zhang H, Lu J, Li Y, Chen Z, Bao M. Diversity and structure of pelagic microbial community in Kuroshio Extension. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106697. [PMID: 39205358 DOI: 10.1016/j.marenvres.2024.106697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/27/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Kuroshio Extension (KE) is the most active region of oceanic change in the North Pacific Ocean, which provides an essential place for the survival of marine microorganisms. However, Vertical changes in microbial communities in the Kuroshio Extension and the mechanisms by which environmental factors drive vertical changes in community structure remain unclear. In this work, microbial diversity, abundance, and community structure of 12 water layers (from surface to bottom) at five stations were uncovered by 16S rRNA gene high-throughput sequencing. Microbial diversity and richness decreased with increasing seawater depth. Microorganisms in the euphotic zone can be well separated from other zones based on NMDS analysis. Proteobacteria (65.20%), Bacteroidota (8.48%), Actinobacteriota (5.76%), and Crenarchaeota (4.49%) accounted for a relatively large proportion and their distribution is similar in four zones. Most of microorganisms were significantly (Spearman test, p < 0.05) correlated with salinity, density, pressure, and temperature. This work enhances our understanding of vertical microbial diversity and provides insights into the pelagic microbial community structure.
Collapse
Affiliation(s)
- Shanshan Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Xin Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Honghai Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Jinren Lu
- College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Zhaohui Chen
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China; Laoshan Laboratory, Qingdao, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| |
Collapse
|
7
|
Rønne ME, Dybdahl Andersen C, Teze D, Petersen AB, Fredslund F, Stender EGP, Chaberski EK, Holck J, Aachmann FL, Welner DH, Svensson B. Action and cooperation in alginate degradation by three enzymes from the human gut bacterium Bacteroides eggerthii DSM 20697. J Biol Chem 2024; 300:107596. [PMID: 39032652 PMCID: PMC11381880 DOI: 10.1016/j.jbc.2024.107596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Alginate is a polysaccharide consumed by humans in edible seaweed and different foods where it is applied as a texturizing hydrocolloid or in encapsulations of drugs and probiotics. While gut bacteria are found to utilize and ferment alginate to health-beneficial short-chain fatty acids, knowledge on the details of the molecular reactions is sparse. Alginates are composed of mannuronic acid (M) and its C-5 epimer guluronic acid (G). An alginate-related polysaccharide utilization locus (PUL) has been identified in the gut bacterium Bacteroides eggerthii DSM 20697. The PUL encodes two polysaccharide lyases (PLs) from the PL6 (BePL6) and PL17 (BePL17) families as well as a KdgF-like metalloprotein (BeKdgF) known to catalyze ring-opening of 4,5-unsaturated monouronates yielding 4-deoxy-l-erythro-5-hexoseulose uronate (DEH). B. eggerthii DSM 20697 does not grow on alginate, but readily proliferates with a lag phase of a few hours in the presence of an endo-acting alginate lyase A1-I from the marine bacterium Sphingomonas sp. A1. The B. eggerthii lyases are both exo-acting and while BePL6 is strictly G-block specific, BePL17 prefers M-blocks. BeKdgF retained 10-27% activity in the presence of 0.1-1 mM EDTA. X-ray crystallography was used to investigate the three-dimensional structure of BeKdgF, based on which a catalytic mechanism was proposed to involve Asp102, acting as acid/base having pKa of 5.9 as determined by NMR pH titration. BePL6 and BePL17 cooperate in alginate degradation with BeKdgF linearizing producing 4,5-unsaturated monouronates. Their efficiency of alginate degradation was much enhanced by the addition of the A1-I alginate lyase.
Collapse
Affiliation(s)
- Mette E Rønne
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian Dybdahl Andersen
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - David Teze
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Agnes Beenfeldt Petersen
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Folmer Fredslund
- Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Emil G P Stender
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Evan Kirk Chaberski
- Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Jesper Holck
- Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Finn L Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Ditte Hededam Welner
- Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
8
|
Videau P, Shlafstein MD, Oline DK, Givan SA, Chapman LF, Strangman WK, Hahnke RL, Saw JH, Ushijima B. Genome-based taxonomic analysis of the genus Pseudoalteromonas reveals heterotypic synonyms. Environ Microbiol 2024; 26:e16672. [PMID: 39040020 DOI: 10.1111/1462-2920.16672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/31/2024] [Indexed: 07/24/2024]
Abstract
The Pseudoalteromonas genus comprises members that have been demonstrated to play significant ecological roles and produce enzymes, natural products, and activities that are beneficial to the environment and economy. A comprehensive evaluation of the genus revealed that the genomes of several Pseudoalteromonas species are highly similar to each other, exceeding species cutoff values. This evaluation involved determining and comparing the average nucleotide identity, in silico DNA-DNA hybridization, average amino acid identity, and the difference in G + C% between Pseudoalteromonas type strains with publicly available genomes. The genome of the Pseudoalteromonas elyakovii type strain was further assessed through additional sequencing and genomic comparisons to historical sequences. These findings suggest that six Pseudoalteromonas species, namely P. mariniglutinosa, P. donghaensis, P. maricaloris, P. elyakovii, P. profundi, and P. issachenkonii, should be reclassified as later heterotypic synonyms of the following validly published species: P. haloplanktis, P. lipolytica, P. flavipulchra, P. distincta, P. gelatinilytica, and P. tetraodonis. Furthermore, two names without valid standing, 'P. telluritireducens' and 'P. spiralis', should be associated with the validly published Pseudoalteromonas species P. agarivorans and P. tetraodonis, respectively.
Collapse
Affiliation(s)
- Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, Oregon, USA
| | | | - David K Oline
- Department of Biology, Southern Oregon University, Ashland, Oregon, USA
| | - Scott A Givan
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Linda Fleet Chapman
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Wendy K Strangman
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Richard L Hahnke
- Department of Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jimmy H Saw
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| |
Collapse
|
9
|
Ma XQ, Wang B, Wei W, Tan FC, Su H, Zhang JZ, Zhao CY, Zheng HJ, Feng YQ, Shen W, Yang JB, Li FL. Alginate oligosaccharide assimilation by gut microorganisms and the potential role in gut inflammation alleviation. Appl Environ Microbiol 2024; 90:e0004624. [PMID: 38563787 PMCID: PMC11107165 DOI: 10.1128/aem.00046-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
Dietary fiber metabolism by gut microorganisms plays important roles in host physiology and health. Alginate, the major dietary fiber of daily diet seaweeds, is drawing more attention because of multiple biological activities. To advance the understanding of alginate assimilation mechanism in the gut, we show the presence of unsaturated alginate oligosaccharides (uAOS)-specific alginate utilization loci (AUL) in human gut microbiome. As a representative example, a working model of the AUL from the gut microorganism Bacteroides clarus was reconstructed from biochemistry and transcriptome data. The fermentation of resulting monosaccharides through Entner-Doudoroff pathway tunes the metabolism of short-chain fatty acids and amino acids. Furthermore, we show that uAOS feeding protects the mice against dextran sulfate sodium-induced acute colitis probably by remodeling gut microbiota and metabolome. IMPORTANCE Alginate has been included in traditional Chinese medicine and daily diet for centuries. Recently discovered biological activities suggested that alginate-derived alginate oligosaccharides (AOS) might be an active ingredient in traditional Chinese medicine, but how these AOS are metabolized in the gut and how it affects health need more information. The study on the working mechanism of alginate utilization loci (AUL) by the gut microorganism uncovers the role of unsaturated alginate oligosaccharides (uAOS) assimilation in tuning short-chain fatty acids and amino acids metabolism and demonstrates that uAOS metabolism by gut microorganisms results in a variation of cell metabolites, which potentially contributes to the physiology and health of gut.
Collapse
Affiliation(s)
- Xiao-Qing Ma
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Bing Wang
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wei
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fang-Cheng Tan
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Hang Su
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Jun-Zhe Zhang
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chen-Yang Zhao
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hua-Jun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Yan-Qin Feng
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jin-Bo Yang
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fu-Li Li
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| |
Collapse
|
10
|
Zhang Y, Nair S, Zhang Z, Zhao J, Zhao H, Lu L, Chang L, Jiao N. Adverse Environmental Perturbations May Threaten Kelp Farming Sustainability by Exacerbating Enterobacterales Diseases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5796-5810. [PMID: 38507562 DOI: 10.1021/acs.est.3c09921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Globally kelp farming is gaining attention to mitigate land-use pressures and achieve carbon neutrality. However, the influence of environmental perturbations on kelp farming remains largely unknown. Recently, a severe disease outbreak caused extensive kelp mortality in Sanggou Bay, China, one of the world's largest high-density kelp farming areas. Here, through in situ investigations and simulation experiments, we find indications that an anomalously dramatic increase in elevated coastal seawater light penetration may have contributed to dysbiosis in the kelp Saccharina japonica's microbiome. This dysbiosis promoted the proliferation of opportunistic pathogenic Enterobacterales, mainly including the genera Colwellia and Pseudoalteromonas. Using transcriptomic analyses, we revealed that high-light conditions likely induced oxidative stress in kelp, potentially facilitating opportunistic bacterial Enterobacterales attack that activates a terrestrial plant-like pattern recognition receptor system in kelp. Furthermore, we uncover crucial genotypic determinants of Enterobacterales dominance and pathogenicity within kelp tissue, including pathogen-associated molecular patterns, potential membrane-damaging toxins, and alginate and mannitol lysis capability. Finally, through analysis of kelp-associated microbiome data sets under the influence of ocean warming and acidification, we conclude that such Enterobacterales favoring microbiome shifts are likely to become more prevalent in future environmental conditions. Our study highlights the need for understanding complex environmental influences on kelp health and associated microbiomes for the sustainable development of seaweed farming.
Collapse
Affiliation(s)
- Yongyu Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, Shandong, China
| | - Shailesh Nair
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, Shandong, China
| | - Zenghu Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, Shandong, China
| | - Jiulong Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, Shandong, China
| | - Hanshuang Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longfei Lu
- Weihai Changqing Ocean Science Technology Co., Ltd., Rongcheng 264300, China
| | - Lirong Chang
- Weihai Changqing Ocean Science Technology Co., Ltd., Rongcheng 264300, China
| | - Nianzhi Jiao
- Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361100, China
| |
Collapse
|
11
|
Messer LF, Lee CE, Wattiez R, Matallana-Surget S. Novel functional insights into the microbiome inhabiting marine plastic debris: critical considerations to counteract the challenges of thin biofilms using multi-omics and comparative metaproteomics. MICROBIOME 2024; 12:36. [PMID: 38389111 PMCID: PMC10882806 DOI: 10.1186/s40168-024-01751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/03/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Microbial functioning on marine plastic surfaces has been poorly documented, especially within cold climates where temperature likely impacts microbial activity and the presence of hydrocarbonoclastic microorganisms. To date, only two studies have used metaproteomics to unravel microbial genotype-phenotype linkages in the marine 'plastisphere', and these have revealed the dominance of photosynthetic microorganisms within warm climates. Advancing the functional representation of the marine plastisphere is vital for the development of specific databases cataloging the functional diversity of the associated microorganisms and their peptide and protein sequences, to fuel biotechnological discoveries. Here, we provide a comprehensive assessment for plastisphere metaproteomics, using multi-omics and data mining on thin plastic biofilms to provide unique insights into plastisphere metabolism. Our robust experimental design assessed DNA/protein co-extraction and cell lysis strategies, proteomics workflows, and diverse protein search databases, to resolve the active plastisphere taxa and their expressed functions from an understudied cold environment. RESULTS For the first time, we demonstrate the predominance and activity of hydrocarbonoclastic genera (Psychrobacter, Flavobacterium, Pseudomonas) within a primarily heterotrophic plastisphere. Correspondingly, oxidative phosphorylation, the citrate cycle, and carbohydrate metabolism were the dominant pathways expressed. Quorum sensing and toxin-associated proteins of Streptomyces were indicative of inter-community interactions. Stress response proteins expressed by Psychrobacter, Planococcus, and Pseudoalteromonas and proteins mediating xenobiotics degradation in Psychrobacter and Pseudoalteromonas suggested phenotypic adaptations to the toxic chemical microenvironment of the plastisphere. Interestingly, a targeted search strategy identified plastic biodegradation enzymes, including polyamidase, hydrolase, and depolymerase, expressed by rare taxa. The expression of virulence factors and mechanisms of antimicrobial resistance suggested pathogenic genera were active, despite representing a minor component of the plastisphere community. CONCLUSION Our study addresses a critical gap in understanding the functioning of the marine plastisphere, contributing new insights into the function and ecology of an emerging and important microbial niche. Our comprehensive multi-omics and comparative metaproteomics experimental design enhances biological interpretations to provide new perspectives on microorganisms of potential biotechnological significance beyond biodegradation and to improve the assessment of the risks associated with microorganisms colonizing marine plastic pollution. Video Abstract.
Collapse
Affiliation(s)
- Lauren F Messer
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland
| | - Charlotte E Lee
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Mons, 7000, Belgium
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland.
| |
Collapse
|
12
|
Ren Y, Liu R, Zheng Y, Wang H, Meng Q, Zhu T, Yin J, Cao X, Yu Z. Biosynthetic mechanism of the yellow pigments in the marine bacterium Pseudoalteromonas sp. strain T1lg65. Appl Environ Microbiol 2024; 90:e0177923. [PMID: 38193673 PMCID: PMC10880671 DOI: 10.1128/aem.01779-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
The Pseudoalteromonas genus marine bacteria have attracted increasing interest because of their abilities to produce bioactive metabolites. The pigmented Pseudoalteromonas group encodes more secondary metabolite biosynthetic gene clusters (BGCs) than the non-pigmented group. Here, we report a yellow pigmented bacterium Pseudoalteromonas sp. strain T1lg65, which was isolated from a mangrove forest sediment. We showed that the yellow pigments of T1lg65 belong to the group of lipopeptide alterochromides. Further genetic analyses of the alterochromide BGC revealed that the yellow pigments are biosynthesized by aryl-polyene synthases and nonribosomal peptide synthases. Within the gene cluster, altA encodes a tyrosine ammonia acid lyase, which catalyzes synthesis of the precursor 4-hydroxycinnamic acid (4-HCA) from tyrosine in the alterochromide biosynthetic pathway. In addition, altN, encoding a putative flavin-dependent halogenase, was proven to be responsible for the bromination of alterochromides based on gene deletion, molecular docking, and site mutagenesis analyses. In summary, the biosynthetic pathway, precursor synthesis, and bromination mechanism of the lipopeptide alterochromides were studied in-depth. Our results expand the knowledge on biosynthesis of Pseudoalteromonas pigments and could promote the development of active pigments in the future.IMPORTANCEThe marine bacteria Pseudoalteromonas spp. are important biological resources because they are producers of bioactive natural products, including antibiotics, pigments, enzymes, and antimicrobial peptides. One group of the microbial pigments, alterochromides, holds a great value for their novel lipopeptide structures and antimicrobial activities. Previous studies were limited to the structural characterization of alterochromides and genome mining for the alterochromide biosynthesis. This work focused on the biosynthetic mechanism for alterochromide production, especially revealing functions of two key genes within the gene cluster for the alterochromide biosynthesis. On the one hand, our study provides a target for metabolic engineering of the alterochromide biosynthesis; on the other hand, the 4-HCA synthase AltA and brominase AltN show potential in the biocatalyst industry.
Collapse
Affiliation(s)
- Yixuan Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ruoyu Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yifan Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiu Meng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Tingheng Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xueqiang Cao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
13
|
Zhang YS, Zhang YQ, Zhao XM, Liu XL, Qin QL, Liu NH, Xu F, Chen XL, Zhang YZ, Li PY. Metagenomic insights into the dynamic degradation of brown algal polysaccharides by kelp-associated microbiota. Appl Environ Microbiol 2024; 90:e0202523. [PMID: 38259074 PMCID: PMC10880675 DOI: 10.1128/aem.02025-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Marine bacteria play important roles in the degradation and cycling of algal polysaccharides. However, the dynamics of epiphytic bacterial communities and their roles in algal polysaccharide degradation during kelp decay are still unclear. Here, we performed metagenomic analyses to investigate the identities and predicted metabolic abilities of epiphytic bacterial communities during the early and late decay stages of the kelp Saccharina japonica. During kelp decay, the dominant epiphytic bacterial communities shifted from Gammaproteobacteria to Verrucomicrobia and Bacteroidetes. In the early decay stage of S. japonica, epiphytic bacteria primarily targeted kelp-derived labile alginate for degradation, among which the gammaproteobacterial Vibrionaceae (particularly Vibrio) and Psychromonadaceae (particularly Psychromonas), abundant in alginate lyases belonging to the polysaccharide lyase (PL) families PL6, PL7, and PL17, were key alginate degraders. More complex fucoidan was preferred to be degraded in the late decay stage of S. japonica by epiphytic bacteria, predominantly from Verrucomicrobia (particularly Lentimonas), Pirellulaceae of Planctomycetes (particularly Rhodopirellula), Pontiellaceae of Kiritimatiellota, and Flavobacteriaceae of Bacteroidetes, which depended on using glycoside hydrolases (GHs) from the GH29, GH95, and GH141 families and sulfatases from the S1_15, S1_16, S1_17, and S1_25 families to depolymerize fucoidan. The pathways for algal polysaccharide degradation in dominant epiphytic bacterial groups were reconstructed based on analyses of metagenome-assembled genomes. This study sheds light on the roles of different epiphytic bacteria in the degradation of brown algal polysaccharides.IMPORTANCEKelps are important primary producers in coastal marine ecosystems. Polysaccharides, as major components of brown algal biomass, constitute a large fraction of organic carbon in the ocean. However, knowledge of the identities and pathways of epiphytic bacteria involved in the degradation process of brown algal polysaccharides during kelp decay is still elusive. Here, based on metagenomic analyses, the succession of epiphytic bacterial communities and their metabolic potential were investigated during the early and late decay stages of Saccharina japonica. Our study revealed a transition in algal polysaccharide-degrading bacteria during kelp decay, shifting from alginate-degrading Gammaproteobacteria to fucoidan-degrading Verrucomicrobia, Planctomycetes, Kiritimatiellota, and Bacteroidetes. A model for the dynamic degradation of algal cell wall polysaccharides, a complex organic carbon, by epiphytic microbiota during kelp decay was proposed. This study deepens our understanding of the role of epiphytic bacteria in marine algal carbon cycling as well as pathogen control in algal culture.
Collapse
Affiliation(s)
- Yi-Shuo Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yu-Qi Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiang-Ming Zhao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Lei Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Ning-Hua Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Joint Research Center for Marine Microbiol Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Joint Research Center for Marine Microbiol Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| |
Collapse
|
14
|
Xiao Z, Li K, Li T, Zhang F, Xue J, Zhao M, Yin H. Characterization and Mechanism Study of a Novel PL7 Family Exolytic Alginate Lyase from Marine Bacteria Vibrio sp. W13. Appl Biochem Biotechnol 2024; 196:68-84. [PMID: 37099125 DOI: 10.1007/s12010-023-04483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/27/2023]
Abstract
Alginate lyase can degrade alginate into oligosaccharides through β-elimination for various biological, biorefinery, and agricultural purposes. Here, we report a novel PL7 family exolytic alginate lyase VwAlg7A from marine bacteria Vibrio sp. W13 and achieve the heterologous expression in E. coli BL21 (DE3). VwAlg7A is 348aa with a calculated molecular weight of 36 kDa, containing an alginate lyase 2 domain. VwAlg7A exhibits specificity towards poly-guluronate. The optimal temperature and pH of VwAlg7A are 30 °C and 7.0, respectively. The activity of VwAlg7A can be significantly inhibited by the Ni2+, Zn2+, and NaCl. The Km and Vmax of VwAlg7A are 36.9 mg/ml and 395.6 μM/min, respectively. The ESI and HPAEC-PAD results indicate that VwAlg7A cleaves the sugar bond in an exolytic mode. Based on the molecular docking and mutagenesis results, we further confirmed that R98, H169, and Y303 are important catalytic residues.
Collapse
Affiliation(s)
- Zhongbin Xiao
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Department of Materials and Chemicals, Dalian Polytechnic University, Dalian, 116023, China
| | - Kuikui Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tang Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fanxing Zhang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Department of Materials and Chemicals, Dalian Polytechnic University, Dalian, 116023, China
| | - Jiayi Xue
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Department of Materials and Chemicals, Dalian Polytechnic University, Dalian, 116023, China
| | - Miao Zhao
- Department of Materials and Chemicals, Dalian Polytechnic University, Dalian, 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
15
|
Zhang Z, Xue H, Xiong Y, Geng Y, Panayi AC, Knoedler S, Dai G, Shahbazi MA, Mi B, Liu G. Copper incorporated biomaterial-based technologies for multifunctional wound repair. Theranostics 2024; 14:547-570. [PMID: 38169658 PMCID: PMC10758067 DOI: 10.7150/thno.87193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
The treatment of wounds is a worldwide challenge, and wound infection can affect the effectiveness of wound treatment and further increase the disease burden. Copper is an essential trace element that has been shown to have broad-spectrum antibacterial effects and to be involved in the inflammation, proliferation, and remodeling stages of wound healing. Compared to treatments such as bioactive factors and skin grafts, copper has the advantage of being low-cost and easily available, and has received a lot of attention in wound healing. Recently, biomaterials made by incorporating copper into bioactive glasses, polymeric scaffolds and hydrogels have been used to promote wound healing by the release of copper ions. In addition, copper-incorporated biomaterials with catalytic, photothermal, and photosensitive properties can also accelerate wound healing through antibacterial and wound microenvironment regulation. This review summarizes the antibacterial mechanisms of copper- incorporated biomaterials and their roles in wound healing, and discusses the current challenges. A comprehensive understanding of the role of copper in wounds will help to facilitate new preclinical and clinical studies, thus leading to the development of novel therapeutic tools.
Collapse
Affiliation(s)
- Zhenhe Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Hang Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yongtao Geng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02152, USA
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071 Ludwigshafen/Rhine, Germany
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02152, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Guandong Dai
- Department of Orthopaedics, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 Groningen AV, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 Groningen AV, The Netherlands
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Gouhui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
16
|
Cha QQ, Liu SS, Dang YR, Ren XB, Xu F, Li PY, Chen XL, Wang P, Zhang XY, Zhang YZ, Qin QL. Ecological function and interaction of different bacterial groups during alginate processing in coastal seawater community. ENVIRONMENT INTERNATIONAL 2023; 182:108325. [PMID: 37995388 DOI: 10.1016/j.envint.2023.108325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023]
Abstract
The degradation of high molecular weight organic matter (HMWOM) is a core process of oceanic carbon cycle, which is determined by the activity of microbial communities harboring hundreds of different species. Illustrating the active microbes and their interactions during HMWOM processing can provide key information for revealing the relationship between community composition and its ecological functions. In this study, the genomic and transcriptional responses of microbial communities to the availability of alginate, an abundant HMWOM in coastal ecosystem, were elucidated. The main degraders transcribing alginate lyase (Aly) genes came from genera Alteromonas, Psychrosphaera and Colwellia. Meanwhile, some strains, mainly from the Rhodobacteraceae family, did not transcribe Aly gene but could utilize monosaccharides to grow. The co-culture experiment showed that the activity of Aly-producing strain could promote the growth of Aly-non-producing strain when alginate was the sole carbon source. Interestingly, this interaction did not reduce the alginate degradation rate, possibly due to the easily degradable nature of alginate. This study can improve our understanding of the relationship between microbial community activity and alginate metabolism function as well as further manipulation of microbial community structure for alginate processing.
Collapse
Affiliation(s)
- Qian-Qian Cha
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Sha-Sha Liu
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Yan-Ru Dang
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Xue-Bing Ren
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peng Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China; MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
17
|
He X, Hao P, Wang Y, Wu C, Yin W, Shahid MA, Wu S, Nawaz S, Du W, Xu Y, Yu Y, Wu Y, Ye Y, Fan J, Mehmood K, Li K, Ju J. Swertia bimaculata moderated liver damage in mice by regulating intestine microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115223. [PMID: 37418941 DOI: 10.1016/j.ecoenv.2023.115223] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
Swertia bimaculata (SB) is a medicinal herb in China having an array of therapeutic and biological properties. This study aimed to explore the attenuating effect of SB on carbon tetrachloride (CCl4) induced hepato-toxicity by regulation of gut microbiome in ICR mice. For this purpose, CCl4 was injected intraperitoneally in different mice groups (B, C, D and E) every 4th day for a period of 47 days. Additionally, C, D, and E groups received a daily dose (50 mg/kg, 100 mg/kg, and 200 mg/kg respectively) of Ether extract of SB via gavage for the whole study period. The results of serum biochemistry analysis, ELISA, H&E staining, and sequencing of the gut microbiome, indicated that SB significantly alleviates the CCl4-induced liver damage and hepatocyte degeneration. The serum levels of alanine transaminase, aspartate aminotransferase, malondialdehyde, interleukin 1 beta and tumor necrosis factor-alpha were significantly lower in SB treated groups compared to control while levels of glutathione peroxidase were raised. Also, the sequencing data indicate that supplementation with SB could restore the microbiome and its function in CCl4-induced variations in intestinal microbiome of mice by significantly downregulating the abundances of pathogenic intestinal bacteria species including Bacteroides, Enterococcus, Eubacterium, Bifidobacterium while upregulating the levels of beneficial bacteria like Christensenella in the gut. In conclusion, we revealed that SB depicts a beneficial effect against hepatotoxicity induced by CCl4 in mice through the remission of hepatic inflammation and injury, through regulation of oxidative stress, and by restoring gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Xiaolei He
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Institute of Traditional Chinese Veterinary Medicine & MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ping Hao
- Institute of Traditional Chinese Veterinary Medicine & MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yun Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Chenyang Wu
- College of Animal Science & Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, PR China
| | - Wen Yin
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, PR China
| | - Muhammad Akbar Shahid
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Bosan Road, Multan, 60800, Pakistan
| | - Shengbo Wu
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, PR China
| | - Shah Nawaz
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad 32000, Pakistan
| | - Weiming Du
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, PR China
| | - Yanling Xu
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, PR China
| | - Yi Yu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine & MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuhan Ye
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, PR China
| | - Junting Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine & MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| |
Collapse
|
18
|
Zheng K, Dong Y, Liang Y, Liu Y, Zhang X, Zhang W, Wang Z, Shao H, Sung YY, Mok WJ, Wong LL, McMinn A, Wang M. Genomic diversity and ecological distribution of marine Pseudoalteromonas phages. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:271-285. [PMID: 37275543 PMCID: PMC10232697 DOI: 10.1007/s42995-022-00160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 12/01/2022] [Indexed: 06/07/2023]
Abstract
Pseudoalteromonas, with a ubiquitous distribution, is one of the most abundant marine bacterial genera. It is especially abundant in the deep sea and polar seas, where it has been found to have a broad metabolic capacity and unique co-existence strategies with other organisms. However, only a few Pseudoalteromonas phages have so far been isolated and investigated and their genomic diversity and distribution patterns are still unclear. Here, the genomes, taxonomic features and distribution patterns of Pseudoalteromonas phages are systematically analyzed, based on the microbial and viral genomes and metagenome datasets. A total of 143 complete or nearly complete Pseudoalteromonas-associated phage genomes (PSAPGs) were identified, including 34 Pseudoalteromonas phage isolates, 24 proviruses, and 85 Pseudoalteromonas-associated uncultured viral genomes (UViGs); these were assigned to 47 viral clusters at the genus level. Many integrated proviruses (n = 24) and filamentous phages were detected (n = 32), suggesting the prevalence of viral lysogenic life cycle in Pseudoalteromonas. PSAPGs encoded 66 types of 249 potential auxiliary metabolic genes (AMGs) relating to peptidases and nucleotide metabolism. They may also participate in marine biogeochemical cycles through the manipulation of the metabolism of their hosts, especially in the phosphorus and sulfur cycles. Siphoviral and filamentous PSAPGs were the predominant viral lineages found in polar areas, while some myoviral and siphoviral PSAPGs encoding transposase were more abundant in the deep sea. This study has expanded our understanding of the taxonomy, phylogenetic and ecological scope of marine Pseudoalteromonas phages and deepens our knowledge of viral impacts on Pseudoalteromonas. It will provide a baseline for the study of interactions between phages and Pseudoalteromonas in the ocean. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00160-z.
Collapse
Affiliation(s)
- Kaiyang Zheng
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
| | - Yue Dong
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
- UMT-OUC Joint Center for Marine Studies, Qingdao, 266003 China
| | - Yundan Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
| | - Xinran Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
| | - Wenjing Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
| | - Ziyue Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
- UMT-OUC Joint Center for Marine Studies, Qingdao, 266003 China
| | - Yeong Yik Sung
- UMT-OUC Joint Center for Marine Studies, Qingdao, 266003 China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), 21030 Kuala Nerus, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Center for Marine Studies, Qingdao, 266003 China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), 21030 Kuala Nerus, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Center for Marine Studies, Qingdao, 266003 China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), 21030 Kuala Nerus, Malaysia
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
- UMT-OUC Joint Center for Marine Studies, Qingdao, 266003 China
- Haide College, Ocean University of China, Qingdao, 266100 China
- The Affiliated Hospital of Qingdao University, Qingdao, 266000 China
| |
Collapse
|
19
|
Liu C, Chen G, Rao H, Xiao X, Chen Y, Wu C, Bian F, He H. Novel Antioxidant Peptides Identified from Arthrospira platensis Hydrolysates Prepared by a Marine Bacterium Pseudoalteromonas sp. JS4-1 Extracellular Protease. Mar Drugs 2023; 21:md21020133. [PMID: 36827174 PMCID: PMC9966703 DOI: 10.3390/md21020133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Crude enzymes produced by a marine bacterium Pseudoalteromonas sp. JS4-1 were used to hydrolyze phycobiliprotein. Enzymatic productions showed good performance on DPPH radical and hydroxyl radical scavenging activities (45.14 ± 0.43% and 65.11 ± 2.64%, respectively), especially small peptides with MWCO <3 kDa. Small peptides were fractioned to four fractions using size-exclusion chromatography and the second fraction (F2) had the highest activity in hydroxyl radical scavenging ability (62.61 ± 5.80%). The fraction F1 and F2 both exhibited good antioxidant activities in oxidative stress models in HUVECs and HaCaT cells. Among them, F2 could upregulate the activities of SOD and GSH-Px and reduce the lipid peroxidation degree to scavenge the ROS to protect Caenorhabditis elegans under adversity. Then, 25 peptides total were identified from F2 by LC-MS/MS, and the peptide with the new sequence of INSSDVQGKY as the most significant component was synthetized and the ORAC assay and cellular ROS scavenging assay both illustrated its excellent antioxidant property.
Collapse
Affiliation(s)
- Congling Liu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| | - Gong Chen
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| | - Hailian Rao
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| | - Xun Xiao
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| | - Yidan Chen
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
| | - Cuiling Wu
- Department of Biochemistry, Changzhi Medical College, Changzhi 046000, China
| | - Fei Bian
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Correspondence: (F.B.); (H.H.); Tel.: +86-531-6665-9499 (F.B.); +86-0731-8265-0230 (H.H.)
| | - Hailun He
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
- Correspondence: (F.B.); (H.H.); Tel.: +86-531-6665-9499 (F.B.); +86-0731-8265-0230 (H.H.)
| |
Collapse
|
20
|
Characterization of Multiple Alginate Lyases in a Highly Efficient Alginate-Degrading Vibrio Strain and Its Degradation Strategy. Appl Environ Microbiol 2022; 88:e0138922. [PMID: 36409133 PMCID: PMC9746302 DOI: 10.1128/aem.01389-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Alginate is an important polysaccharide in the ocean that supports the growth of marine microorganisms. Many widespread Vibrio species possess alginate lyases and can utilize alginate as a carbon source, but the detailed alginate degradation mechanism in Vibrio remains to be further explored. In this study, we obtained a highly efficient alginate-degrading strain, Vibrio pelagius WXL662, with 11 alginate lyases (VpAly-I to -XI) and further elucidated its molecular mechanism of alginate degradation. Three alginate utilization loci (AUL) were identified in different parts of WXL662's genome, comprising six alginate lyases (VpAly-I, -II, -VIII, -IX, -X, and -XI) and other genes related to alginate degradation. Most of the alginate-degrading genes are strongly induced when alginate is provided as the sole carbon source. Ten alginate lyases (VpAly-I to -X) had been purified and characterized, including six from polysaccharide lyase family 7 (PL7), three from PL17, and one from PL6. These recombinant alginate lyases existing in different cellular locations were active at a wide temperature (10 to 50°C) and pH (4.0 to 9.0) range, with different substrate preferences and diverse degradation products, enabling WXL662 to efficiently utilize alginate in a changing marine environment. Importantly, outer membrane vesicles (OMVs) can act as vectors for alginate lyases (VpAly-II, -V, and -VI) in WXL662. Further investigations of public Vibrio genomes revealed that most alginate-degrading vibrios possess one AUL instead of previously reported "scattered" system. These results emphasize the specific alginate degradation strategy in Vibrio pelagius WXL662, which can be used as a model strain to study the ecological importance of effective alginate-degrading vibrios in the ocean. IMPORTANCE Alginate is an important carbon source in the marine environment, and vibrios are major alginate utilizers. Previous studies focused only on the characteristics of individual alginate lyases in vibrios, but few of them discussed the comprehensive alginate-degrading strategy. Here, we depicted the alginate utilization mechanism and its ecological implications of a highly efficient alginate-degrading Vibrio strain, WXL662, which contained 11 alginate lyases with distinct enzymatic characteristics. Importantly, unlike other vibrios with only one alginate utilization locus (AUL) or the previously reported "scattered" system, three AUL were identified in WXL662. Additionally, the involvement of outer membrane vesicles (OMVs) in the secretion of alginate lyases is proposed for the first time.
Collapse
|
21
|
Li Y, Huang J, Zhang S, Yang F, Zhou H, Song Y, Wang B, Li H. Sodium alginate and galactooligosaccharides ameliorate metabolic disorders and alter the composition of the gut microbiota in mice with high-fat diet-induced obesity. Int J Biol Macromol 2022; 215:113-122. [PMID: 35718141 DOI: 10.1016/j.ijbiomac.2022.06.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 12/12/2022]
Abstract
We aimed to investigate the effects of sodium alginate (SA) and galactooligosaccharides (GOS) on the metabolism and gut microbiota of high-fat diet (HFD)-fed obese mice. GOS and SA delayed high-fat diet-induced obesity, reduced the epididymal fat and liver indices, and improved the circulating lipid profile. Low- and high-dose GOS reduced weight gain by 48.8 % and 35.3 %, and low- and high-dose SA reduced it by 37.7 % and 34.4 %, respectively. GOS and SA reduced blood glucose concentration, probably by increasing the expression of glucose transporter 4. GOS and SA increased the expression of tight junction proteins (ZO-1 and occludin), reduced the D-lactic acid (D-LA) and lipopolysaccharide concentrations, and reduced the expression of toll-like receptors, consistent with improved intestinal barrier function. GOS and SA also increased the abundance of Bacteroidota, Bifidobacterium, and Lactobacillus; and reduced that of Patescibacteria in the gut. The abundance of Parabacteroides positively correlated with the circulating low-density lipoprotein-cholesterol (LDL-C) concentration; that of Lactobacillus negatively correlated with LDL-C, D-LA, and tumor necrosis factor-α concentration; and that of Bifidobacterium positively correlated with high-density lipoprotein-cholesterol concentration, according to Spearman correlation analysis. In conclusion, SA and GOS ameliorate obesity and the associated metabolic disorders in mice, and also modulate their gut microbial composition.
Collapse
Affiliation(s)
- Yao Li
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Juan Huang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Silu Zhang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Fan Yang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Haolin Zhou
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Yang Song
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Bing Wang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Huajun Li
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China.
| |
Collapse
|
22
|
Xue Z, Sun XM, Chen C, Zhang XY, Chen XL, Zhang YZ, Fan SJ, Xu F. A Novel Alginate Lyase: Identification, Characterization, and Potential Application in Alginate Trisaccharide Preparation. Mar Drugs 2022; 20:159. [PMID: 35323458 PMCID: PMC8953905 DOI: 10.3390/md20030159] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Alginate oligosaccharides (AOS) have many biological activities and significant applications in prebiotics, nutritional supplements, and plant growth development. Alginate lyases have unique advantages in the preparation of AOS. However, only a limited number of alginate lyases have been so far reported to have potentials in the preparation of AOS with specific degrees of polymerization. Here, an alginate-degrading strain Pseudoalteromonasarctica M9 was isolated from Sargassum, and five alginate lyases were predicted in its genome. These putative alginate lyases were expressed and their degradation products towards sodium alginate were analyzed. Among them, AlyM2 mainly generated trisaccharides, which accounted for 79.9% in the products. AlyM2 is a PL6 lyase with low sequence identity (≤28.3%) to the characterized alginate lyases and may adopt a distinct catalytic mechanism from the other PL6 alginate lyases based on sequence alignment. AlyM2 is a bifunctional endotype lyase, exhibiting the highest activity at 30 °C, pH 8.0, and 0.5 M NaCl. AlyM2 predominantly produces trisaccharides from homopolymeric M block (PM), homopolymeric G block (PG), or sodium alginate, with a trisaccharide production of 588.4 mg/g from sodium alginate, indicating its promising potential in preparing trisaccharides from these polysaccharides.
Collapse
Affiliation(s)
- Zhao Xue
- Life Science College, Shandong Normal University, Jinan 250014, China; (Z.X.); (X.-M.S.); (C.C.); (Y.-Z.Z.)
| | - Xiao-Meng Sun
- Life Science College, Shandong Normal University, Jinan 250014, China; (Z.X.); (X.-M.S.); (C.C.); (Y.-Z.Z.)
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-Y.Z.); (X.-L.C.)
| | - Cui Chen
- Life Science College, Shandong Normal University, Jinan 250014, China; (Z.X.); (X.-M.S.); (C.C.); (Y.-Z.Z.)
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-Y.Z.); (X.-L.C.)
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-Y.Z.); (X.-L.C.)
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-Y.Z.); (X.-L.C.)
| | - Yu-Zhong Zhang
- Life Science College, Shandong Normal University, Jinan 250014, China; (Z.X.); (X.-M.S.); (C.C.); (Y.-Z.Z.)
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-Y.Z.); (X.-L.C.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Shou-Jin Fan
- Life Science College, Shandong Normal University, Jinan 250014, China; (Z.X.); (X.-M.S.); (C.C.); (Y.-Z.Z.)
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-Y.Z.); (X.-L.C.)
| |
Collapse
|