1
|
Galisteo C, Puente-Sánchez F, de la Haba RR, Bertilsson S, Sánchez-Porro C, Ventosa A. Metagenomic insights into the prokaryotic communities of heavy metal-contaminated hypersaline soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175497. [PMID: 39151617 DOI: 10.1016/j.scitotenv.2024.175497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Saline soils and their microbial communities have recently been studied in response to ongoing desertification of agricultural soils caused by anthropogenic impacts and climate change. Here we describe the prokaryotic microbiota of hypersaline soils in the Odiel Saltmarshes Natural Area of Southwest Spain. This region has been strongly affected by mining and industrial activity and feature high levels of certain heavy metals. We sequenced 18 shotgun metagenomes through Illumina NovaSeq from samples obtained from three different areas in 2020 and 2021. Taxogenomic analyses demonstrate that these soils harbored equal proportions of archaea and bacteria, with Methanobacteriota, Pseudomonadota, Bacteroidota, Gemmatimonadota, and Balneolota as most abundant phyla. Functions related to the transport of heavy metal outside the cytoplasm are among the most relevant features of the community (i.e., ZntA and CopA enzymes). They seem to be indispensable to avoid the increase of zinc and copper concentration inside the cell. Besides, the archaeal phylum Methanobacteriota is the main arsenic detoxifier within the microbiota although arsenic related genes are widely distributed in the community. Regarding the osmoregulation strategies, "salt-out" mechanism was identified in part of the bacterial population, whereas "salt-in" mechanism was present in both domains, Bacteria and Archaea. De novo biosynthesis of two of the most universal compatible solutes was detected, with predominance of glycine betaine biosynthesis (betAB genes) over ectoine (ectABC genes). Furthermore, doeABCD gene cluster related to the use of ectoine as carbon and energy source was solely identified in Pseudomonadota and Methanobacteriota.
Collapse
Affiliation(s)
- Cristina Galisteo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Fernando Puente-Sánchez
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
2
|
Arthi R, Parameswari E, Dhevagi P, Janaki P, Parimaladevi R. Microbial alchemists: unveiling the hidden potentials of halophilic organisms for soil restoration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33949-9. [PMID: 38877191 DOI: 10.1007/s11356-024-33949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/20/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Salinity, resulting from various contaminants, is a major concern to global crop cultivation. Soil salinity results in increased osmotic stress, oxidative stress, specific ion toxicity, nutrient deficiency in plants, groundwater contamination, and negative impacts on biogeochemical cycles. Leaching, the prevailing remediation method, is expensive, energy-intensive, demands more fresh water, and also causes nutrient loss which leads to infertile cropland and eutrophication of water bodies. Moreover, in soils co-contaminated with persistent organic pollutants, heavy metals, and textile dyes, leaching techniques may not be effective. It promotes the adoption of microbial remediation as an effective and eco-friendly method. Common microbes such as Pseudomonas, Trichoderma, and Bacillus often struggle to survive in high-saline conditions due to osmotic stress, ion imbalance, and protein denaturation. Halophiles, capable of withstanding high-saline conditions, exhibit a remarkable ability to utilize a broad spectrum of organic pollutants as carbon sources and restore the polluted environment. Furthermore, halophiles can enhance plant growth under stress conditions and produce vital bio-enzymes. Halophilic microorganisms can contribute to increasing soil microbial diversity, pollutant degradation, stabilizing soil structure, participating in nutrient dynamics, bio-geochemical cycles, enhancing soil fertility, and crop growth. This review provides an in-depth analysis of pollutant degradation, salt-tolerating mechanisms, and plant-soil-microbe interaction and offers a holistic perspective on their potential for soil restoration.
Collapse
Affiliation(s)
- Ravichandran Arthi
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Periyasamy Dhevagi
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, India
| | - Ponnusamy Janaki
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, India
| | - Rathinasamy Parimaladevi
- Department of Bioenergy, Agrl. Engineering College & Research Institute, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
3
|
Liu H, Xu R, Häggblom MM, Zhang J, Sun X, Gao P, Li J, Yan W, Gao W, Gao P, Liu G, Zhang H, Sun W. Immobile Iron-Rich Particles Promote Arsenic Retention and Regulate Arsenic Biotransformation in Treatment Wetlands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15627-15637. [PMID: 36283075 DOI: 10.1021/acs.est.2c04421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/16/2023]
Abstract
Remediation of arsenic (As)-contaminated wastewater by treatment wetlands (TWs) remains a technological challenge due to the low As adsorption capacity of wetland substrates and the release of adsorbed As to pore water. This study investigated the feasibility of using immobile iron-rich particles (IIRP) to promote As retention and to regulate As biotransformation in TWs. Iron-rich particles prepared were immobilized in the interspace of a gravel substrate. TWs with IIRP amendment (IIRP-TWs) achieved a stable As removal efficiency of 63 ± 4% over 300 days, while no As removal or release was observed in TWs without IIRP after 180 days of continuous operation. IIRP amendment provided additional adsorption sites and increased the stability of adsorbed As due to the strong binding affinity between As and Fe oxides. Microbially mediated As(III) oxidation was intensified by iron-rich particles in the anaerobic bottom layer of IIRP-TWs. Myxococcus and Fimbriimonadaceae were identified as As(III) oxidizers. Further, metagenomic binning suggested that these two bacterial taxa may have the capability for anaerobic As(III) oxidation. Overall, this study demonstrated that abiotic and biotic effects of IIRP contribute to As retention in TWs and provided insights into the role of IIRP for the remediation of As contamination.
Collapse
Affiliation(s)
- Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Rui Xu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Peng Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jiayi Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wangwang Yan
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen 518107, China
| | - Wenlong Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guoqiang Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
4
|
Khanal A, Hur HG, Fredrickson JK, Lee JH. Direct and Indirect Reduction of Cr(VI) by Fermentative Fe(III)-Reducing Cellulomonas sp. Strain Cellu-2a. J Microbiol Biotechnol 2021; 31:1519-1525. [PMID: 34489371 PMCID: PMC9706010 DOI: 10.4014/jmb.2107.07038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022]
Abstract
Hexavalent chromium (Cr(VI)) is recognized to be carcinogenic and toxic and registered as a contaminant in many drinking water regulations. It occurs naturally and is also produced by industrial processes. The reduction of Cr(VI) to Cr(III) has been a central topic for chromium remediation since Cr(III) is less toxic and less mobile. In this study, fermentative Fe(III)-reducing bacterial strains (Cellu-2a, Cellu-5a, and Cellu-5b) were isolated from a groundwater sample and were phylogenetically related to species of Cellulomonas by 16S rRNA gene analysis. One selected strain, Cellu-2a showed its capacity of reduction of both soluble iron (ferric citrate) and solid iron (hydrous ferric oxide, HFO), as well as aqueous Cr(VI). The strain Cellu-2a was able to reduce 15 μM Cr(VI) directly with glucose or sucrose as a sole carbon source under the anaerobic condition and indirectly with one of the substrates and HFO in the same incubations. The heterogeneous reduction of Cr(VI) by the surface-associated reduced iron from HFO by Cellu-2a likely assisted the Cr(VI) reduction. Fermentative features such as large-scale cell growth may impose advantages on the application of bacterial Cr(VI) reduction over anaerobic respiratory reduction.
Collapse
Affiliation(s)
- Anamika Khanal
- Department of Bioenvironmental Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hor-Gil Hur
- School of Environmental and Earth Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - James K. Fredrickson
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea,Corresponding author Phone: +82-63-270-2546 Fax: +82-63-270-2550 E-mail:
| |
Collapse
|
5
|
Wang Y, Wei D, Li P, Jiang Z, Liu H, Qing C, Wang H. Diversity and arsenic-metabolizing gene clusters of indigenous arsenate-reducing bacteria in high arsenic groundwater of the Hetao Plain, Inner Mongolia. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1680-1688. [PMID: 33196984 DOI: 10.1007/s10646-020-02305-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Dissimilatory arsenate reduction from arsenic (As)-bearing minerals into highly mobile arsenite is one of the key mechanisms of As release into groundwater. To detect the microbial diversity and As-metabolizing gene clusters of indigenous arsenate-reducing bacteria in high As groundwater in the Hetao Plain of Inner Mongolia, China, three anaerobic arsenate-reducing bacteria were isolated and arrA and arsC gene-based clone libraries of four in situ groundwater samples were constructed. The strains IMARCUG-11(G-11), IMARCUG-C1(G-C1) and IMARCUG-12(G-12) were phylogenetically belonged to genera Paraclostridium, Citrobacter and Klebsiella, respectively. They could reduce >99% of 1 mM arsenate under anoxic conditions with lactate as a carbon source in 60 h, 72 h and 84 h, respectively. As far as we know, this was the first report of arsenate reduction by genus Paraclostridium. Compared with strain G-11 (arsC) and G-C1 (arsRBC), strain G-12 contained two incomplete ars operons (operon1: arsABC, operon2: arsBC), indicating that these strains might present different strategies to resist As toxicity. Phylogenetic analysis illuminating by the arrA genes showed that in situ arsenate-reducing bacterial communities were diverse and mainly composed of Desulfobacterales (53%, dominated by Geobacter), Betaproteobacteria (12%), and unidentified groups (35%). Based on the arsC gene analysis, the indigenous arsenate-reducing bacterial communities were mainly affiliated with Omnitrophica (88%) and Deltaproteobacteria (11%, dominated by Geobacter and Syntrophobacterales). Results of this study expanded our understanding of indigenous arsenic-reducing bacteria in high As groundwater aquifers.
Collapse
Affiliation(s)
- Yanhong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Dazhun Wei
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China.
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Han Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Chun Qing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| | - Helin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
| |
Collapse
|
6
|
Ersoy Omeroglu E, Sudagidan M, Yurt MNZ, Tasbasi BB, Acar EE, Ozalp VC. Microbial community of soda Lake Van as obtained from direct and enriched water, sediment and fish samples. Sci Rep 2021; 11:18364. [PMID: 34526632 PMCID: PMC8443733 DOI: 10.1038/s41598-021-97980-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2021] [Accepted: 08/25/2021] [Indexed: 01/21/2023] Open
Abstract
Soda lakes are saline and alkaline ecosystems that are considered to have existed since the first geological records of the world. These lakes support the growth of ecologically and economically important microorganisms due to their unique geochemistry. Microbiota members of lakes are valuable models to study the link between community structure and abiotic parameters such as pH and salinity. Lake Van is the largest endroheic lake and in this study, bacterial diversity of lake water, sediment, and pearl mullet (inci kefali; Alburnus tarichi), an endemic species of fish which are collected from different points of the lake, are studied directly and investigated meticulously using a metabarcoding approach after pre-enrichment. Bacterial community structures were identified using Next Generation Sequencing of the 16S rRNA gene. The analysis revealed that the samples of Lake Van contain high level of bacterial diversity. Direct water samples were dominated by Proteobacteria, Cyanobacteria, and Bacteroidota, on the other hand, pre-enriched water samples were dominated by Proteobacteria and Firmicutes at phylum-level. In direct sediment samples Proteobacteria, whereas in pre-enriched sediment samples Firmicutes and Proteobacteria were determined at highest level. Pre-enriched fish samples were dominated by Proteobacteria and Firmicutes at phylum-level. In this study, microbiota members of Lake Van were identified by taxonomic analysis.
Collapse
Affiliation(s)
- Esra Ersoy Omeroglu
- Biology Department, Basic and Industrial Microbiology Section, Faculty of Science, Ege University, 35040, Bornova, Izmir, Turkey.
| | - Mert Sudagidan
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, 42080, Meram, Konya, Turkey
| | - Mediha Nur Zafer Yurt
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, 42080, Meram, Konya, Turkey
| | - Behiye Busra Tasbasi
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, 42080, Meram, Konya, Turkey
| | - Elif Esma Acar
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, 42080, Meram, Konya, Turkey
| | - Veli Cengiz Ozalp
- Department of Medical Biology, Medical School, Atilim University, 06830, Ankara, Turkey
| |
Collapse
|
7
|
Wang Y, Zhang G, Wang H, Cheng Y, Liu H, Jiang Z, Li P, Wang Y. Effects of different dissolved organic matter on microbial communities and arsenic mobilization in aquifers. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125146. [PMID: 33485230 DOI: 10.1016/j.jhazmat.2021.125146] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/08/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Dissolved organic matter (DOM) play key roles in the biotransformation of arsenic in groundwater systems. However, the effects of different types of DOM on arsenic biogeochemistry remain poorly understood. In this study, four typical DOM compounds (acetate, lactate, AQS and humic acid) were amended to high As aquifer sediments to investigate their effects on arsenic/iron biotransformation and microbial community response. Results demonstrated that different DOM drove different microbial community shifts and then enhanced microbially-mediated arsenic release and iron reduction. With labile DOM (acetate and lactate) amendment, the abundance of putative dissimilatory iron and sulfate reducers Desulfomicrobium and Clostridium sensu stricto increased within the first week, and subsequently the anaerobic fermentative bacterial genus Acetobacterium and arsenate/sulfate-reducing bacterial genus Fusibacter became predominant. In contrast, recalcitrant DOM (AQS and humic acid) mainly stimulated the abundances of sulfur compounds respiratory genus Desulfomicrobium and fermentative bacterial genus Alkalibacter in the whole incubation. Accompanied with the microbial community structure and function shifts, dissolved organic carbon concentration and oxidation-reduction potential changed and the arsenic/iron reduction increased, which resulted in the enhanced arsenic mobilization. Collectively, the present study linked DOM type to microbial community structure and explored the potential roles of different DOM on arsenic biotransformation in aquifers.
Collapse
Affiliation(s)
- Yanhong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Guanglong Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Helin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Yu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Han Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
8
|
Ahmad K, Shah HUR, Ashfaq M, Nawaz H. Removal of decidedly lethal metal arsenic from water using metal organic frameworks: a critical review. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
Abstract
Water contamination is worldwide issue, undermining whole biosphere, influencing life of a large number of individuals all over the world. Water contamination is one of the chief worldwide danger issues for death, sickness, and constant decrease of accessible drinkable water around the world. Among the others, presence of arsenic, is considered as the most widely recognized lethal contaminant in water bodies and poses a serious threat not exclusively to humans but also towards aquatic lives. Hence, steps must be taken to decrease quantity of arsenic in water to permissible limits. Recently, metal-organic frameworks (MOFs) with outstanding stability, sorption capacities, and ecofriendly performance have empowered enormous improvements in capturing substantial metal particles. MOFs have been affirmed as good performance adsorbents for arsenic removal having extended surface area and displayed remarkable results as reported in literature. In this review we look at MOFs which have been recently produced and considered for potential applications in arsenic metal expulsion. We have delivered a summary of up-to-date abilities as well as significant characteristics of MOFs used for this removal. In this review conventional and advanced materials applied to treat water by adsorptive method are also discussed briefly.
Collapse
Affiliation(s)
- Khalil Ahmad
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Habib-Ur-Rehman Shah
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Muhammad Ashfaq
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Haq Nawaz
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , China
| |
Collapse
|
9
|
Abstract
HCN-derived polymers are a heterogeneous group of complex substances synthesized from pure HCN; from its salts; from its oligomers, specifically its trimer and tetramer, amino-nalono-nitrile (AMN) and diamino-maleo-nitrile (DAMN), respectively; or from its hydrolysis products, such as formamide, under a wide range of experimental conditions. The characteristics and properties of HCN-derived polymers depend directly on the synthetic conditions used for their production and, by extension, their potential applications. These puzzling systems have been known mainly in the fields of prebiotic chemistry and in studies on the origins of life and astrobiology since the first prebiotic production of adenine by Oró in the early years of the 1960s. However, the first reference regarding their possible role in prebiotic chemistry was mentioned in the 19th century by Pflüger. Currently, HCN-derived polymers are considered keys in the formation of the first and primeval protometabolic and informational systems, and they may be among the most readily formed organic macromolecules in the solar system. In addition, HCN-derived polymers have attracted a growing interest in materials science due to their potential biomedical applications as coatings and adhesives; they have also been proposed as valuable models for multifunctional materials with emergent properties such as semi-conductivity, ferroelectricity, catalysis and photocatalysis, and heterogeneous organo-synthesis. However, the real structures and the formation pathways of these fascinating substances have not yet been fully elucidated; several models based on either computational approaches or spectroscopic and analytical techniques have endeavored to shed light on their complete nature. In this review, a comprehensive perspective of HCN-derived polymers is presented, taking into account all the aspects indicated above.
Collapse
|
10
|
Abstract
Cultivation and molecular approaches were used to study methanogenesis in saline aquatic system of the Lake Elton (southern Russia), the largest hypersaline lake in Europe. The potential rates of hydrogenotrophic, acetoclastic, methylotrophic and methyl-reducing methanogenesis and diversity of the growth-enriched for by adding electron donors methanogenic communities were studied in the sediment slurry incubations at salinity range from 7 to 275 g/L. The most active pathway detected at all salinities was methylotrophic with a dominance of Methanohalobium and Methanohalophilus genera, at salt saturation and moderately halophilic Methanolobus and Methanococcoides at lower salinity. The absence of methane production from acetate, formate and H2/CO2 under hypersaline conditions was most probably associated with the energy constraints. The contribution of hydrogenotrophic, acetoclastic, and methyl-reducing methanogens to the community increases with a decrease in salinity. Temperature might play an important regulatory function in hypersaline habitats; i.e. methylotrophic methanogens and hydrogenotrophic sulfate-reducing bacteria (SRB) outcompeting methyl-reducing methanogens under mesophilic conditions, and vice versa under thermophilic conditions. An active methane production together with negligible methane oxidation makes hypersaline environments a potential source of methane emission.
Collapse
|
11
|
Shi Z, Hu S, Lin J, Liu T, Li X, Li F. Quantifying Microbially Mediated Kinetics of Ferrihydrite Transformation and Arsenic Reduction: Role of the Arsenate-Reducing Gene Expression Pattern. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6621-6631. [PMID: 32352764 DOI: 10.1021/acs.est.9b07137] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2023]
Abstract
The behavior of arsenic (As) is usually coupled with iron (Fe) oxide transformation and mediated by both abiotic reactions and microbial processes in the environment. However, quantitative models for the coupled kinetic processes, which specifically consider the arsenate-reducing gene expression correspondent to different reaction conditions, are lacking. In this study, based on the pure cultured Shewanella putrefaciens incubation experiments, extended X-ray absorption fine structure spectroscopy, high resolution transmission electron microscopy, and a suite of microbial analyses, we developed a coupled kinetics model for microbially mediated As reduction and Fe oxide transformation and specifically quantified the As(V) reduction rate coefficients based on the expression patterns of arrA genes. The model reasonably described the temporal changes of As speciation and distribution. The microbial reduction rates of As(V) varied dramatically during the reactions, which were well represented by the varying transcript abundances of arrA genes at different As concentrations. The contributions of biotic and abiotic reactions to the overall reaction rates were assessed. The results improved our quantitative understanding on the key role of As(V)-reducing genes in regulating the speciation and distribution of As. The kinetic modeling approaches based on microbial gene expression patterns are promising for developing comprehensive biogeochemical models of As involving multiple coupled reactions.
Collapse
Affiliation(s)
- Zhenqing Shi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Shiwen Hu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jingyi Lin
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Tongxu Liu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, People's Republic of China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, People's Republic of China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Fangbai Li
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, People's Republic of China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, People's Republic of China
| |
Collapse
|
12
|
Bagade A, Nandre V, Paul D, Patil Y, Sharma N, Giri A, Kodam K. Characterisation of hyper tolerant Bacillus firmus L-148 for arsenic oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114124. [PMID: 32078878 DOI: 10.1016/j.envpol.2020.114124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/17/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Groundwater arsenic pollution causes millions of deaths worldwide. Long term natural and anthropogenic activities have increased arsenic levels in groundwater causing higher threats of arsenic exposure. Arsenic hyper-tolerant Firmicute Bacillus firmus L-148 was isolated from arsenic limiting Lonar lake soil, which tolerated more than 3 M arsenic and could oxidize 75 mM arsenite [As(III)] in 14 days. It oxidized As(III) in presence of heavy metals and had unusual pH optima at 9.2. B. firmus L-148 was studied at the biochemical, protein, genomic and transcript level for understanding its arsenic oxidizing machinery. The proteomic and transcript analysis exhibited the presence of ars and aio operon and supported the inducible nature of ars operon. Robust, hyper-tolerant, fast As(III) oxidizing, least nutrient requiring and multi-metal resistance qualities of the strain were used in microcosm studies for bioremediation. Artificial groundwater mimicking microcosm with 75 mM As(III) was developed. Modulation of carbon source, iron and multi metals affected growth and As(III) oxidation rate. The As(III) oxidation was recorded to be 77% in 15 days in presence of sodium acetate and Fe ions. This microcosm study can be explored for bioremediation of arsenic contaminated water and followed by precipitation using other methods.
Collapse
Affiliation(s)
- Aditi Bagade
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Vinod Nandre
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Dhiraj Paul
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, 411021, India
| | - Yugendra Patil
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Nisha Sharma
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Ashok Giri
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Kisan Kodam
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
13
|
Kujala K, Besold J, Mikkonen A, Tiirola M, Planer-Friedrich B. Abundant and diverse arsenic-metabolizing microorganisms in peatlands treating arsenic-contaminated mining wastewaters. Environ Microbiol 2020; 22:1572-1587. [PMID: 31984582 PMCID: PMC7187466 DOI: 10.1111/1462-2920.14922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2018] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/17/2023]
Abstract
Mining operations produce large quantities of wastewater. At a mine site in Northern Finland, two natural peatlands are used for the treatment of mining‐influenced waters with high concentrations of sulphate and potentially toxic arsenic (As). In the present study, As removal and the involved microbial processes in those treatment peatlands (TPs) were assessed. Arsenic‐metabolizing microorganisms were abundant in peat soil from both TPs (up to 108 cells gdw−1), with arsenate respirers being about 100 times more abundant than arsenite oxidizers. In uninhibited microcosm incubations, supplemented arsenite was oxidized under oxic conditions and supplemented arsenate was reduced under anoxic conditions, while little to no oxidation/reduction was observed in NaN3‐inhibited microcosms, indicating high As‐turnover potential of peat microbes. Formation of thioarsenates was observed in anoxic microcosms. Sequencing of the functional genemarkers aioA (arsenite oxidizers), arrA (arsenate respirers) and arsC (detoxifying arsenate reducers) demonstrated high diversity of the As‐metabolizing microbial community. The microbial community composition differed between the two TPs, which may have affected As removal efficiencies. In the present situation, arsenate reduction is likely the dominant net process and contributes substantially to As removal. Changes in TP usage (e.g. mine closure) with lowered water tables and heightened oxygen availability in peat might lead to re‐oxidation and re‐mobilization of bound arsenite.
Collapse
Affiliation(s)
- Katharina Kujala
- Water Resources and Environmental Engineering Research Unit, University of Oulu, Oulu, Finland
| | - Johannes Besold
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Anu Mikkonen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Marja Tiirola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
14
|
Chen X, Zeng XC, Kawa YK, Wu W, Zhu X, Ullah Z, Wang Y. Microbial reactions and environmental factors affecting the dissolution and release of arsenic in the severely contaminated soils under anaerobic or aerobic conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109946. [PMID: 31759742 DOI: 10.1016/j.ecoenv.2019.109946] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/10/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
The soils near the abandoned Shimen Realgar Mine are characterized by containing extremely high contents of total and soluble arsenic. To determine the microbial reactions and environmental factors affecting the mobilization and release of arsenic from soils phase into pore water, we collected 24 soil samples from the representative points around the abandoned Shimen Realgar Mine. They contained 8310.84 mg/kg total arsenic and 703.21 mg/kg soluble arsenic in average. The soluble arsenic in the soils shows significant positive and negative correlations with environmental SO42-/TOC/pH/PO43-, and Fe/Mn, respectively. We found that diverse dissimilatory As(V)-respiring prokaryotes (DARPs) and As(III)-oxidizing bacteria (AOB) exist in all the examined soil samples. The activities of DARPs led to 65-1275% increase of soluble As(III) in the examined soils after 21.0 days of anaerobic incubation, and the microbial dissolution and releases of arsenic show significant positive and negative correlations with the environmental pH/TN and NH4+/PO43-, respectively. In comparison, the activities of AOB led to 24-346% inhibition of the dissolved oxygen-mediated dissolution of arsenic in the soils, and the AOB-mediated releases of As(V) show significant positive and negative correlations with the environmental SO42- and pH/NH4+, respectively. The microbial communities of 24 samples contain 54 phyla of bacteria that show extremely high diversities. Total arsenic, TOC, NO3- and pH are the key environmental factors that indirectly controlled the mobilization and release of arsenic via influencing the structures of the microbial communities in the soils. This work gained new insights into the mechanism for how microbial communities catalyze the dissolution and releases of arsenic from the soils with extremely high contents of arsenic.
Collapse
Affiliation(s)
- Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China.
| | - Yahaya Kudush Kawa
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| | - Weiwei Wu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| | - Xianbin Zhu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| | - Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| |
Collapse
|
15
|
Ordoñez OF, Rasuk MC, Soria MN, Contreras M, Farías ME. Haloarchaea from the Andean Puna: Biological Role in the Energy Metabolism of Arsenic. MICROBIAL ECOLOGY 2018; 76:695-705. [PMID: 29520450 DOI: 10.1007/s00248-018-1159-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/28/2017] [Accepted: 02/13/2018] [Indexed: 05/25/2023]
Abstract
Biofilms, microbial mats, and microbialites dwell under highly limiting conditions (high salinity, extreme aridity, pH, and elevated arsenic concentration) in the Andean Puna. Only recent pioneering studies have described the microbial diversity of different Altiplano lakes and revealed their unexpectedly diverse microbial communities. Arsenic metabolism is proposed to be an ancient mechanism to obtain energy by microorganisms. Members of Bacteria and Archaea are able to exploit arsenic as a bioenergetic substrate in either anaerobic arsenate respiration or chemolithotrophic growth on arsenite. Only six aioAB sequences coding for arsenite oxidase and three arrA sequences coding for arsenate reductase from haloarchaea were previously deposited in the NCBI database. However, no experimental data on their expression and function has been reported. Recently, our working group revealed the prevalence of haloarchaea in a red biofilm from Diamante Lake and microbial mat from Tebenquiche Lake using a metagenomics approach. Also, a surprisingly high abundance of genes used for anaerobic arsenate respiration (arr) and arsenite oxidation (aio) was detected in the Diamante's metagenome. In order to study in depth the role of arsenic in these haloarchaeal communities, in this work, we obtained 18 haloarchaea belonging to the Halorubrum genus, tolerant to arsenic. Furthermore, the identification and expression analysis of genes involved in obtaining energy from arsenic compounds (aio and arr) showed that aio and arr partial genes were detected in 11 isolates, and their expression was verified in two selected strains. Better growth of two isolates was obtained in presence of arsenic compared to control. Moreover, one of the isolates was able to oxidize As[III]. The confirmation of the oxidation of arsenic and the transcriptional expression of these genes by RT-PCR strongly support the hypothesis that the arsenic can be used in bioenergetics processes by the microorganisms flourishing in these environments.
Collapse
Affiliation(s)
- Omar Federico Ordoñez
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - María Cecilia Rasuk
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Mariana Noelia Soria
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Manuel Contreras
- Centro de Ecología Aplicada (CEA), Suecia 3304, 56-2-2741872, Ñuñoa, Santiago, Chile
| | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina.
| |
Collapse
|
16
|
Blum JS, Hernandez-Maldonado J, Redford K, Sing C, Bennett SC, Saltikov CW, Oremland RS. Arsenate-dependent growth is independent of an ArrA mechanism of arsenate respiration in the termite hindgut isolate Citrobacter sp. strain TSA-1. Can J Microbiol 2018; 64:619-627. [PMID: 30169127 DOI: 10.1139/cjm-2017-0523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Citrobacter sp. strain TSA-1 is an enteric bacterium isolated from the hindgut of the termite. Strain TSA-1 displays anaerobic growth with selenite, fumarate, tetrathionate, nitrate, or arsenate serving as electron acceptors, and it also grows aerobically. In regards to arsenate, genome sequencing revealed that strain TSA-1 lacks a homolog for respiratory arsenate reductase, arrAB, and we were unable to obtain amplicons of arrA. This raises the question as to how strain TSA-1 achieves As(V)-dependent growth. We show that growth of strain TSA-1 on glycerol, which it cannot ferment, is linked to the electron acceptor arsenate. A series of transcriptomic experiments were conducted to discern which genes were upregulated during growth on arsenate, as opposed to those on fumarate or oxygen. For As(V), upregulation was noted for 1 of the 2 annotated arsC genes, while there was no clear upregulation for tetrathionate reductase (ttr), suggesting that this enzyme is not an alternative to arrAB as occurs in certain hyperthermophilic archaea. A gene-deletion mutant strain of TSA-1 deficient in arsC could not achieve anaerobic respiratory growth on As(V). Our results suggest that Citrobacter sp. strain TSA-1 has an unusual and as yet undefined means of achieving arsenate respiration, perhaps involving its ArsC as a respiratory reductase as well as a detoxifying agent.
Collapse
Affiliation(s)
- Jodi Switzer Blum
- a National Research Program-Western Branch, Water Mission Area, US Geological Survey, Menlo Park, California, USA
| | - Jaime Hernandez-Maldonado
- b Division of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Kaitlyn Redford
- b Division of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Caitlyn Sing
- b Division of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Stacy C Bennett
- a National Research Program-Western Branch, Water Mission Area, US Geological Survey, Menlo Park, California, USA
| | - Chad W Saltikov
- b Division of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Ronald S Oremland
- a National Research Program-Western Branch, Water Mission Area, US Geological Survey, Menlo Park, California, USA.,b Division of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
17
|
Structural and mechanistic analysis of the arsenate respiratory reductase provides insight into environmental arsenic transformations. Proc Natl Acad Sci U S A 2018; 115:E8614-E8623. [PMID: 30104376 DOI: 10.1073/pnas.1807984115] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Arsenate respiration by bacteria was discovered over two decades ago and is catalyzed by diverse organisms using the well-conserved Arr enzyme complex. Until now, the mechanisms underpinning this metabolism have been relatively opaque. Here, we report the structure of an Arr complex (solved by X-ray crystallography to 1.6-Å resolution), which was enabled by an improved Arr expression method in the genetically tractable arsenate respirer Shewanella sp. ANA-3. We also obtained structures bound with the substrate arsenate (1.8 Å), the product arsenite (1.8 Å), and the natural inhibitor phosphate (1.7 Å). The structures reveal a conserved active-site motif that distinguishes Arr [(R/K)GRY] from the closely related arsenite respiratory oxidase (Arx) complex (XGRGWG). Arr activity assays using methyl viologen as the electron donor and arsenate as the electron acceptor display two-site ping-pong kinetics. A Mo(V) species was detected with EPR spectroscopy, which is typical for proteins with a pyranopterin guanine dinucleotide cofactor. Arr is an extraordinarily fast enzyme that approaches the diffusion limit (Km = 44.6 ± 1.6 μM, kcat = 9,810 ± 220 seconds-1), and phosphate is a competitive inhibitor of arsenate reduction (Ki = 325 ± 12 μM). These observations, combined with knowledge of typical sedimentary arsenate and phosphate concentrations and known rates of arsenate desorption from minerals in the presence of phosphate, suggest that (i) arsenate desorption limits microbiologically induced arsenate reductive mobilization and (ii) phosphate enhances arsenic mobility by stimulating arsenate desorption rather than by inhibiting it at the enzymatic level.
Collapse
|
18
|
Rojas P, Rodríguez N, de la Fuente V, Sánchez-Mata D, Amils R, Sanz JL. Microbial diversity associated with the anaerobic sediments of a soda lake (Mono Lake, California, USA). Can J Microbiol 2018; 64:385-392. [DOI: 10.1139/cjm-2017-0657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Soda lakes are inhabited by important haloalkaliphilic microbial communities that are well adapted to these extreme characteristics. The surface waters of the haloalkaline Mono Lake (California, USA) are alkaline but, in contrast to its bottom waters, do not present high salinity. We have studied the microbiota present in the shoreline sediments of Mono Lake using next-generation sequencing techniques. The statistical indexes showed that Bacteria had a higher richness, diversity, and evenness than Archaea. Seventeen phyla and 8 “candidate divisions” were identified among the Bacteria, with a predominance of the phyla Firmicutes, Proteobacteria, and Bacteroidetes. Among the Proteobacteria, there was a notable presence of Rhodoplanes and a high diversity of sulfate-reducing Deltaproteobacteria, in accordance with the high sulfate-reducing activity detected in soda lakes. Numerous families of bacterial fermenters were identified among the Firmicutes. The Bacteroides were represented by several environmental groups that have not yet been isolated. Since final organic matter in anaerobic environments with high sulfate contents is mineralized mainly by sulfate-reducing bacteria, very little methanogenic archaeal biodiversity was detected. Only 2 genera, Methanocalculus and Methanosarcina, were retrieved. The species similarities described indicate that a significant number of the operational taxonomic units identified may represent new species.
Collapse
Affiliation(s)
- Patricia Rojas
- Department of Molecular Biology, Universidad Autónoma de Madrid, Spain
| | | | | | - Daniel Sánchez-Mata
- Department of Pharmacology, Pharmacognosy and Botany, Universidad Complutense de Madrid, Spain
| | - Ricardo Amils
- Centro de Astrobiología (INTA–CSIC), Spain
- Centro de Biología Molecular Severo Ochoa (UAM–CSIC), Universidad Autónoma de Madrid, Spain
| | - José L. Sanz
- Department of Molecular Biology, Universidad Autónoma de Madrid, Spain
| |
Collapse
|
19
|
Oremland RS, Saltikov CW, Stolz JF, Hollibaugh JT. Autotrophic microbial arsenotrophy in arsenic-rich soda lakes. FEMS Microbiol Lett 2018; 364:3940223. [PMID: 28859313 DOI: 10.1093/femsle/fnx146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2017] [Accepted: 07/07/2017] [Indexed: 01/15/2023] Open
Abstract
A number of prokaryotes are capable of employing arsenic oxy-anions as either electron acceptors [arsenate; As(V)] or electron donors [arsenite; As(III)] to sustain arsenic-dependent growth ('arsenotrophy'). A subset of these microorganisms function as either chemoautotrophs or photoautotrophs, whereby they gain sufficient energy from their redox metabolism of arsenic to completely satisfy their carbon needs for growth by autotrophy, that is the fixation of inorganic carbon (e.g. HCO3-) into their biomass. Here we review what has been learned of these processes by investigations we have undertaken in three soda lakes of the western USA and from the physiological characterizations of the relevant bacteria, which include the critical genes involved, such as respiratory arsenate reductase (arrA) and the discovery of its arsenite-oxidizing counterpart (arxA). When possible, we refer to instances of similar process occurring in other, less extreme ecosystems and by microbes other than haloalkaliphiles.
Collapse
Affiliation(s)
| | - Chad W Saltikov
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, CA 95064, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - James T Hollibaugh
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
20
|
Andreote APD, Dini-Andreote F, Rigonato J, Machineski GS, Souza BCE, Barbiero L, Rezende-Filho AT, Fiore MF. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom. Front Microbiol 2018; 9:244. [PMID: 29520256 PMCID: PMC5827094 DOI: 10.3389/fmicb.2018.00244] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/10/2017] [Accepted: 01/31/2018] [Indexed: 11/29/2022] Open
Abstract
Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600) potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake) and by no record of cyanobacterial blooms (Salina Preta, black-water lake). The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii. This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes.
Collapse
Affiliation(s)
- Ana P. D. Andreote
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Francisco Dini-Andreote
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Janaina Rigonato
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Bruno C. E. Souza
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Laurent Barbiero
- Observatoire Midi-Pyrénées, Géosciences Environnement Toulouse, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Ary T. Rezende-Filho
- Faculty of Engineering, Architecture and Urbanism and Geography, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Marli F. Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
21
|
Gnanaprakasam ET, Lloyd JR, Boothman C, Ahmed KM, Choudhury I, Bostick BC, van Geen A, Mailloux BJ. Microbial Community Structure and Arsenic Biogeochemistry in Two Arsenic-Impacted Aquifers in Bangladesh. mBio 2017; 8:e01326-17. [PMID: 29184025 PMCID: PMC5705915 DOI: 10.1128/mbio.01326-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022] Open
Abstract
Long-term exposure to trace levels of arsenic (As) in shallow groundwater used for drinking and irrigation puts millions of people at risk of chronic disease. Although microbial processes are implicated in mobilizing arsenic from aquifer sediments into groundwater, the precise mechanism remains ambiguous. The goal of this work was to target, for the first time, a comprehensive suite of state-of-the-art molecular techniques in order to better constrain the relationship between indigenous microbial communities and the iron and arsenic mineral phases present in sediments at two well-characterized arsenic-impacted aquifers in Bangladesh. At both sites, arsenate [As(V)] was the major species of As present in sediments at depths with low aqueous As concentrations, while most sediment As was arsenite [As(III)] at depths with elevated aqueous As concentrations. This is consistent with a role for the microbial As(V) reduction in mobilizing arsenic. 16S rRNA gene analysis indicates that the arsenic-rich sediments were colonized by diverse bacterial communities implicated in both dissimilatory Fe(III) and As(V) reduction, while the correlation analyses involved phylogenetic groups not normally associated with As mobilization. Findings suggest that direct As redox transformations are central to arsenic fate and transport and that there is a residual reactive pool of both As(V) and Fe(III) in deeper sediments that could be released by microbial respiration in response to hydrologic perturbation, such as increased groundwater pumping that introduces reactive organic carbon to depth.IMPORTANCE The consumption of arsenic in waters collected from tube wells threatens the lives of millions worldwide and is particularly acute in the floodplains and deltas of southern Asia. The cause of arsenic mobilization from natural sediments within these aquifers to groundwater is complex, with recent studies suggesting that sediment-dwelling microorganisms may be the cause. In the absence of oxygen at depth, specialist bacteria are thought able to use metals within the sediments to support their metabolism. Via these processes, arsenic-contaminated iron minerals are transformed, resulting in the release of arsenic into the aquifer waters. Focusing on a field site in Bangladesh, a comprehensive, multidisciplinary study using state-of-the-art geological and microbiological techniques has helped better understand the microbes that are present naturally in a high-arsenic aquifer and how they may transform the chemistry of the sediment to potentially lethal effect.
Collapse
Affiliation(s)
- Edwin T Gnanaprakasam
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, the University of Manchester, Manchester, United Kingdom
| | - Jonathan R Lloyd
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, the University of Manchester, Manchester, United Kingdom
| | - Christopher Boothman
- School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, the University of Manchester, Manchester, United Kingdom
| | | | | | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | - Alexander van Geen
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | - Brian J Mailloux
- Environmental Science Department, Barnard College, New York, New York, USA
| |
Collapse
|
22
|
Zhu YG, Xue XM, Kappler A, Rosen BP, Meharg AA. Linking Genes to Microbial Biogeochemical Cycling: Lessons from Arsenic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7326-7339. [PMID: 28602082 PMCID: PMC5871744 DOI: 10.1021/acs.est.7b00689] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/21/2023]
Abstract
The biotransformation of arsenic is highly relevant to the arsenic biogeochemical cycle. Identification of the molecular details of microbial pathways of arsenic biotransformation coupled with analyses of microbial communities by meta-omics can provide insights into detailed aspects of the complexities of this biocycle. Arsenic transformations couple to other biogeochemical cycles, and to the fate of both nutrients and other toxic environmental contaminants. Microbial redox metabolism of iron, carbon, sulfur, and nitrogen affects the redox and bioavailability of arsenic species. In this critical review we illustrate the biogeochemical processes and genes involved in arsenic biotransformations. We discuss how current and future metagenomic-, metatranscriptomic-, metaproteomic-, and metabolomic-based methods will help to decipher individual microbial arsenic transformation processes, and their connections to other biogeochemical cycle. These insights will allow future use of microbial metabolic capabilities for new biotechnological solutions to environmental problems. To understand the complex nature of inorganic and organic arsenic species and the fate of environmental arsenic will require integrating systematic approaches with biogeochemical modeling. Finally, from the lessons learned from these studies of arsenic biogeochemistry, we will be able to predict how the environment changes arsenic, and, in response, how arsenic biotransformations change the environment.
Collapse
Affiliation(s)
- Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen 72076, Germany
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Andrew A Meharg
- Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5HN, United Kingdom
| |
Collapse
|
23
|
Edwardson CF, Hollibaugh JT. Metatranscriptomic analysis of prokaryotic communities active in sulfur and arsenic cycling in Mono Lake, California, USA. ISME JOURNAL 2017; 11:2195-2208. [PMID: 28548659 PMCID: PMC5607362 DOI: 10.1038/ismej.2017.80] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/24/2016] [Revised: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 11/09/2022]
Abstract
This study evaluates the transcriptionally active, dissimilatory sulfur- and arsenic-cycling components of the microbial community in alkaline, hypersaline Mono Lake, CA, USA. We sampled five depths spanning the redox gradient (10, 15, 18, 25 and 31 m) during maximum thermal stratification. We used custom databases to identify transcripts of genes encoding complex iron-sulfur molybdoenzyme (CISM) proteins, with a focus on arsenic (arrA, aioA and arxA) and sulfur cycling (dsrA, aprA and soxB), and assigned them to taxonomic bins. We also report on the distribution of transcripts related to the ars arsenic detoxification pathway. Transcripts from detoxification pathways were not abundant in oxic surface waters (10 m). Arsenic cycling in the suboxic and microaerophilic zones of the water column (15 and 18 m) was dominated by arsenite-oxidizing members of the Gammaproteobacteria most closely affiliated with Thioalkalivibrio and Halomonas, transcribing arxA. We observed a transition to arsenate-reducing bacteria belonging to the Deltaproteobacteria and Firmicutes transcribing arsenate reductase (arrA) in anoxic bottom waters of the lake (25 and 31 m). Sulfur cycling at 15 and 18 m was dominated by Gammaproteobacteria (Thioalkalivibrio and Thioalkalimicrobium) oxidizing reduced S species, with a transition to sulfate-reducing Deltaproteobacteria at 25 and 31 m. Genes related to arsenic and sulfur oxidation from Thioalkalivibrio were more highly transcribed at 15 m relative to other depths. Our data highlight the importance of Thioalkalivibrio to arsenic and sulfur biogeochemistry in Mono Lake and identify new taxa that appear capable of transforming arsenic.
Collapse
Affiliation(s)
- Christian F Edwardson
- Department of Marine Sciences, University of Georgia, Athens, GA, USA.,Department of Microbiology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
24
|
Zhang J, Zhao S, Xu Y, Zhou W, Huang K, Tang Z, Zhao FJ. Nitrate Stimulates Anaerobic Microbial Arsenite Oxidation in Paddy Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4377-4386. [PMID: 28358982 DOI: 10.1021/acs.est.6b06255] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/10/2023]
Abstract
Arsenic (As) bioavailability to rice plants is elevated in flooded paddy soils due to reductive mobilization of arsenite [As(III)]. However, some microorganisms are able to mediate anaerobic As(III) oxidation by coupling to nitrate reduction, thus attenuating As mobility. In this study, we investigated the impact of nitrate additions on As species dynamics in the porewater of four As-contaminated paddy soils. The effects of nitrate on microbial community structure and the abundance and diversity of the As(III) oxidase (aioA) genes were quantified using 16S rRNA sequencing, quantitative PCR, and aioA gene clone libraries. Nitrate additions greatly stimulated anaerobic oxidation of As(III) to As(V) and decreased total soluble As in the porewater in flooded paddy soils. Nitrate additions significantly enhanced the abundance of aioA genes and changed the microbial community structure by increasing the relative abundance of the operational taxonomic units (OTUs) from the genera Acidovorax and Azoarcus. The aioA gene sequences from the Acidovorax related OTU were also stimulated by nitrate. A bacterial strain (ST3) belonging to Acidovorax was isolated from nitrate-amended paddy soil. The strain was able to oxidize As(III) and Fe(II) under anoxic conditions using nitrate as the electron acceptor. Abiotic experiments showed that Fe(II), but not As(III), could be oxidized by nitrite. These results show that nitrate additions can stimulate As(III) oxidation in flooded paddy soils by enhancing the population of anaerobic As(III) oxidizers, offering a potential strategy to decrease As mobility in As-contaminated paddy soils.
Collapse
Affiliation(s)
- Jun Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095, China
| | - Shichen Zhao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095, China
| | - Yan Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095, China
| | - Wuxian Zhou
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095, China
| | - Ke Huang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095, China
| | - Zhu Tang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095, China
- Sustainable Soils and Grassland Systems Department, Rothamsted Research , Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| |
Collapse
|
25
|
Mirza BS, Sorensen DL, Dupont RR, McLean JE. New Arsenate Reductase Gene (arrA) PCR Primers for Diversity Assessment and Quantification in Environmental Samples. Appl Environ Microbiol 2017; 83:e02725-16. [PMID: 27913413 PMCID: PMC5288830 DOI: 10.1128/aem.02725-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2016] [Accepted: 11/28/2016] [Indexed: 11/20/2022] Open
Abstract
The extent of arsenic contamination in drinking water and its potential threat to human health have resulted in considerable research interest in the microbial species responsible for arsenic reduction. The arsenate reductase gene (arrA), an important component of the microbial arsenate reduction system, has been widely used as a biomarker to study arsenate-reducing microorganisms. A new primer pair was designed and evaluated for quantitative PCR (qPCR) and high-throughput sequencing of the arrA gene, because currently available PCR primers are not suitable for these applications. The primers were evaluated in silico and empirically tested for amplification of arrA genes in clones and for amplification and high-throughput sequencing of arrA genes from soil and groundwater samples. In silico, this primer pair matched (≥90% DNA identity) 86% of arrA gene sequences from GenBank. Empirical evaluation showed successful amplification of arrA gene clones of diverse phylogenetic groups, as well as amplification and high-throughput sequencing of independent soil and groundwater samples without preenrichment, suggesting that these primers are highly specific and can amplify a broad diversity of arrA genes. The arrA gene diversity from soil and groundwater samples from the Cache Valley Basin (CVB) in Utah was greater than anticipated. We observed a significant correlation between arrA gene abundance, quantified through qPCR, and reduced arsenic (AsIII) concentrations in the groundwater samples. Furthermore, we demonstrated that these primers can be useful for studying the diversity of arsenate-reducing microbial communities and the ways in which their relative abundance in groundwater may be associated with different groundwater quality parameters. IMPORTANCE Arsenic is a major drinking water contaminant that threatens the health of millions of people worldwide. The extent of arsenic contamination and its potential threat to human health have resulted in considerable interest in the study of microbial species responsible for the reduction of arsenic, i.e., the conversion of AsV to AsIII In this study, we developed a new primer pair to evaluate the diversity and abundance of arsenate-reducing microorganisms in soil and groundwater samples from the CVB in Utah. We observed significant arrA gene diversity in the CVB soil and groundwater samples, and arrA gene abundance was significantly correlated with the reduced arsenic (AsIII) concentrations in the groundwater samples. We think that these primers are useful for studying the ecology of arsenate-reducing microorganisms in different environments.
Collapse
Affiliation(s)
- Babur S Mirza
- Utah Water Research Laboratory, Utah State University, Logan, Utah, USA
| | - Darwin L Sorensen
- Utah Water Research Laboratory, Utah State University, Logan, Utah, USA
| | - R Ryan Dupont
- Utah Water Research Laboratory, Utah State University, Logan, Utah, USA
- Department of Civil and Environmental Engineering, Utah State University, Logan, Utah, USA
| | - Joan E McLean
- Utah Water Research Laboratory, Utah State University, Logan, Utah, USA
- Department of Civil and Environmental Engineering, Utah State University, Logan, Utah, USA
| |
Collapse
|
26
|
Chen X, Zeng XC, Wang J, Deng Y, Ma T, Mu Y, Yang Y, Li H, Wang Y. Microbial communities involved in arsenic mobilization and release from the deep sediments into groundwater in Jianghan plain, Central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:989-999. [PMID: 27916305 DOI: 10.1016/j.scitotenv.2016.11.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/26/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
It was shown that groundwater in Jianghan Plain was severely contaminated by arsenic; however, little is known about the mechanism by which the mineral arsenic was mobilized and released into groundwater from the high-arsenic sediments in this area. Here, we collected sediment samples from the depths of 5-230m in Jianghan Plain. Although all of the samples contain high contents of total arsenic, the soluble arsenic was only detectable in few of the shallow sediments, but was readily detectable in all of the deep sediments at the depths of 190-230m. Analysis of the genes of arsenate-respiring reductases indicated that they were not present in all of the shallow sediments from the depths of 5-185m, but were detectable in all of the deep sediments from the depths of 190-230m; all of the identified reductase genes are new or new-type, and they display unique diversity. Microcosm assay indicated that the microbial communities from the deep sediments were able to reduce As(V) into As(III) using lactate, formate, pyruvate or acetate as an electron donor under anaerobic condition. Arsenic release assay demonstrated that these microbial communalities efficiently catalyzed the mobilization and release of the mineral arsenic into aqueous phase. We also isolated a novel cultivable dissimilatory As(V)-respiring bacterium Aeromonas sp. JH155 from the sediments. It is able to completely reduce 2.0mM As(V) into As(III) in 72h, and efficiently promote the reduction and release of the mineral arsenic into aqueous phase. Analysis of the 16S rRNA genes indicated that the deep sediments contain diversities of microbial communities, which were shaped by the environmental factors, such as As, SO42-, NO3-, Fe and pH value. These data suggest that the microorganisms in the deep sediments in Jianghan Plain played key roles in the mobilization and release of insoluble arsenic into the groundwater.
Collapse
Affiliation(s)
- Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), People's, Republic of China; Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), People's, Republic of China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences (Wuhan), People's, Republic of China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), People's, Republic of China; Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), People's, Republic of China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences (Wuhan), People's, Republic of China.
| | - Jianing Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), People's, Republic of China; Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), People's, Republic of China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences (Wuhan), People's, Republic of China
| | - Yamin Deng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), People's, Republic of China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences (Wuhan), People's, Republic of China
| | - Teng Ma
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), People's, Republic of China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences (Wuhan), People's, Republic of China.
| | - Yao Mu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), People's, Republic of China; Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), People's, Republic of China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences (Wuhan), People's, Republic of China
| | - Ye Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), People's, Republic of China; Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), People's, Republic of China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences (Wuhan), People's, Republic of China
| | - Hao Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), People's, Republic of China; Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), People's, Republic of China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences (Wuhan), People's, Republic of China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), People's, Republic of China; Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences (Wuhan), People's, Republic of China
| |
Collapse
|
27
|
Bagade AV, Bachate SP, Dholakia BB, Giri AP, Kodam KM. Characterization of Roseomonas and Nocardioides spp. for arsenic transformation. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:742-750. [PMID: 27498193 DOI: 10.1016/j.jhazmat.2016.07.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/02/2016] [Revised: 06/18/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
The metalloid arsenic predominantly exists in the arsenite [As(III)] and arsenate [As(V)]. These two forms are respectively oxidized and reduced by microbial redox processes. This study was designed to bioprospect arsenic tolerating bacteria from Lonar lake and to characterize their arsenic redoxing ability. Screening of sixty-nine bacterial species isolated from Lonar lake led to identification of three arsenic-oxidizing and seven arsenic-reducing species. Arsenite oxidizing isolate Roseomonas sp. L-159a being closely related to Roseomonas cervicalis ATCC 49957 oxidized 2mM As(III) in 60h. Gene expression of large and small subunits of arsenite oxidase respectively showed 15- and 17-fold higher expression. Another isolate Nocardioides sp. L-37a formed a clade with Nocardioides ghangwensis JC2055, exhibited normal growth with different carbon sources and pH ranges. It reduced 2mM As(V) in 36h and showed constitutive expression of arsenate reductase which increased over 4-fold upon As(V) exposure. Genetic markers related to arsenic transformation were identified and characterized from the two isolates. Moderate resistance against the arsenicals was exhibited by the two isolates in the range of 1-5mM for As(III) and 1-200mM for As(V). Altogether we provide multiple evidences to indicate that Roseomonas sp. and Nocardioides sp. exhibited arsenic transformation ability.
Collapse
Affiliation(s)
- Aditi V Bagade
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Sachin P Bachate
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Bhushan B Dholakia
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Ashok P Giri
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Kisan M Kodam
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, Maharashtra, India.
| |
Collapse
|
28
|
|
29
|
Keren R, Lavy A, Ilan M. Increasing the Richness of Culturable Arsenic-Tolerant Bacteria from Theonella swinhoei by Addition of Sponge Skeleton to the Growth Medium. MICROBIAL ECOLOGY 2016; 71:873-886. [PMID: 26809776 DOI: 10.1007/s00248-015-0726-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/24/2015] [Accepted: 12/27/2015] [Indexed: 06/05/2023]
Abstract
Theonella swinhoei is an arsenic hyper-accumulator sponge, harboring a multitude of associated bacteria. These bacteria reside in the mesohyl, the dense extracellular matrix of the sponge. Previous elemental analysis of separated cell fractions from the sponge had determined that arsenic is localized to the associated bacteria. Subsequently, sponge-associated arsenic-tolerant bacteria were isolated here and grouped into 15 operational taxonomic units (OTUs, 97% similarity). Both culture-dependent and culture-independent work had revealed that T. swinhoei harbors a highly diverse bacterial community. It was thus hypothesized the acclimation of bacteria in the presence of a sponge skeleton, better mimicking its natural environment, would increase the yield of isolation of sponge-associated bacteria. Using seven modularly designed media, 380 bacteria isolates were grown and grouped into 22 OTUs. Inclusion of sponge skeleton in the growth medium promoted bacterial growth in all seven media, accounting for 20 of the 22 identified OTUs (the other two in a medium without skeleton). Diversity and richness indices were calculated for each treatment or combination of treatments with shared growth parameters. Integrating data inherent in the modularly designed media with the ecological indices led to the formation of new hypotheses regarding the aeration conditions and expected arsenic form in situ. Both aerobic and anoxic conditions are expected to occur in the sponge (temporally and/or spatially). Arsenate is expected to be the dominant (or even the only) arsenic form in the sponge.
Collapse
Affiliation(s)
- Ray Keren
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel.
| | - Adi Lavy
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Micha Ilan
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| |
Collapse
|
30
|
Desoeuvre A, Casiot C, Héry M. Diversity and Distribution of Arsenic-Related Genes Along a Pollution Gradient in a River Affected by Acid Mine Drainage. MICROBIAL ECOLOGY 2016; 71:672-685. [PMID: 26603631 DOI: 10.1007/s00248-015-0710-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/24/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
Some microorganisms have the capacity to interact with arsenic through resistance or metabolic processes. Their activities contribute to the fate of arsenic in contaminated ecosystems. To investigate the genetic potential involved in these interactions in a zone of confluence between a pristine river and an arsenic-rich acid mine drainage, we explored the diversity of marker genes for arsenic resistance (arsB, acr3.1, acr3.2), methylation (arsM), and respiration (arrA) in waters characterized by contrasted concentrations of metallic elements (including arsenic) and pH. While arsB-carrying bacteria were representative of pristine waters, Acr3 proteins may confer to generalist bacteria the capacity to cope with an increase of contamination. arsM showed an unexpected wide distribution, suggesting biomethylation may impact arsenic fate in contaminated aquatic ecosystems. arrA gene survey suggested that only specialist microorganisms (adapted to moderately or extremely contaminated environments) have the capacity to respire arsenate. Their distribution, modulated by water chemistry, attested the specialist nature of the arsenate respirers. This is the first report of the impact of an acid mine drainage on the diversity and distribution of arsenic (As)-related genes in river waters. The fate of arsenic in this ecosystem is probably under the influence of the abundance and activity of specific microbial populations involved in different As biotransformations.
Collapse
Affiliation(s)
- Angélique Desoeuvre
- Laboratoire HydroSciences Montpellier, HSM, UMR 5569 IRD, CNRS, Université Montpellier, CC 57, 163 rue Auguste Broussonet, 34090, Montpellier, France
| | - Corinne Casiot
- Laboratoire HydroSciences Montpellier, HSM, UMR 5569 IRD, CNRS, Université Montpellier, CC 57, 163 rue Auguste Broussonet, 34090, Montpellier, France
| | - Marina Héry
- Laboratoire HydroSciences Montpellier, HSM, UMR 5569 IRD, CNRS, Université Montpellier, CC 57, 163 rue Auguste Broussonet, 34090, Montpellier, France.
| |
Collapse
|
31
|
Rodriguez-Freire L, Moore SE, Sierra-Alvarez R, Root RA, Chorover J, Field JA. Arsenic remediation by formation of arsenic sulfide minerals in a continuous anaerobic bioreactor. Biotechnol Bioeng 2016; 113:522-30. [PMID: 26333155 PMCID: PMC4729605 DOI: 10.1002/bit.25825] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2015] [Revised: 08/04/2015] [Accepted: 08/23/2015] [Indexed: 11/10/2022]
Abstract
Arsenic (As) is a highly toxic metalloid that has been identified at high concentrations in groundwater in certain locations around the world. Concurrent microbial reduction of arsenate (As(V) ) and sulfate (SO4 (2-) ) can result in the formation of poorly soluble arsenic sulfide minerals (ASM). The objective of this research was to study As biomineralization in a minimal iron environment for the bioremediation of As-contaminated groundwater using simultaneous As(V) and SO4 (2-) reduction. A continuous-flow anaerobic bioreactor was maintained at slightly acidic pH (6.25-6.50) and fed with As(V) and SO4 (2-) , utilizing ethanol as an electron donor for over 250 d. A second bioreactor running under the same conditions but lacking SO4 (2-) was operated as a control to study the fate of As (without S). The reactor fed with SO4 (2-) removed an average 91.2% of the total soluble As at volumetric rates up to 2.9 mg As/(L · h), while less than 5% removal was observed in the control bioreactor. Soluble S removal occurred with an S to As molar ratio of 1.2, suggesting the formation of a mixture of orpiment- (As2 S3 ) and realgar-like (AsS) solid phases. Solid phase characterization using K-edge X-ray absorption spectroscopy confirmed the formation of a mixture of As2 S3 and AsS. These results indicate that a bioremediation process relying on the addition of a simple, low-cost electron donor offers potential to promote the removal of As from groundwater with naturally occurring or added SO4 (2-) by precipitation of ASM.
Collapse
Affiliation(s)
- Lucia Rodriguez-Freire
- Department of Chemical and Environmental Engineering, The University of Arizona, P.O. Box 210011, Tucson, Arizona.
| | - Sarah E Moore
- Department of Chemical and Environmental Engineering, The University of Arizona, P.O. Box 210011, Tucson, Arizona
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, The University of Arizona, P.O. Box 210011, Tucson, Arizona
| | - Robert A Root
- Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, Arizona
| | - Jon Chorover
- Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, Arizona
| | - James A Field
- Department of Chemical and Environmental Engineering, The University of Arizona, P.O. Box 210011, Tucson, Arizona
| |
Collapse
|
32
|
Cordi A, Pagnout C, Devin S, Poirel J, Billard P, Dollard MA, Bauda P. Determination of physiological, taxonomic, and molecular characteristics of a cultivable arsenic-resistant bacterial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13753-13763. [PMID: 25721523 DOI: 10.1007/s11356-014-3840-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/05/2014] [Accepted: 11/10/2014] [Indexed: 06/04/2023]
Abstract
A collection of 219 bacterial arsenic-resistant isolates was constituted from neutral arsenic mine drainage sediments. Isolates were grown aerobically or anaerobically during 21 days on solid DR2A medium using agar or gelan gum as gelling agent, with 7 mM As(III) or 20 mM As(V) as selective pressure. Interestingly, the sum of the different incubation conditions used (arsenic form, gelling agent, oxygen pressure) results in an overall increase of the isolate diversity. Isolated strains mainly belonged to Proteobacteria (63%), Actinobacteria (25%), and Bacteroidetes (10%). The most representative genera were Pseudomonas (20%), Acinetobacter (8%), and Serratia (15%) among the Proteobacteria; Rhodococcus (13%) and Microbacterium (5%) among Actinobacteria; and Flavobacterium (13%) among the Bacteroidetes. Isolates were screened for the presence of arsenic-related genes (arsB, ACR3(1), ACR3(2), aioA, arsM, and arrA). In this way, 106 ACR3(1)-, 74 arsB-, 22 aioA-, 14 ACR3(2)-, and one arsM-positive PCR products were obtained and sequenced. Analysis of isolate sensitivity toward metalloids (arsenite, arsenate, and antimonite) revealed correlations between taxonomy, sensitivity, and genotype. Antimonite sensitivity correlated with the presence of ACR3(1) mainly present in Bacteroidetes and Actinobacteria, and arsenite or antimonite resistance correlated with arsB gene presence. The presence of either aioA gene or several different arsenite carrier genes did not ensure a high level of arsenic resistance in the tested conditions.
Collapse
Affiliation(s)
- A Cordi
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360, CNRS, Université de Lorraine, Campus Bridoux, rue du Général Delestraint, 57070, Metz, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Planer-Friedrich B, Härtig C, Lohmayer R, Suess E, McCann SH, Oremland R. Anaerobic Chemolithotrophic Growth of the Haloalkaliphilic Bacterium Strain MLMS-1 by Disproportionation of Monothioarsenate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6554-6563. [PMID: 25941832 DOI: 10.1021/acs.est.5b01165] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/04/2023]
Abstract
A novel chemolithotrophic metabolism based on a mixed arsenic-sulfur species has been discovered for the anaerobic deltaproteobacterium, strain MLMS-1, a haloalkaliphile isolated from Mono Lake, California, U.S. Strain MLMS-1 is the first reported obligate arsenate-respiring chemoautotroph which grows by coupling arsenate reduction to arsenite with the oxidation of sulfide to sulfate. In that pathway the formation of a mixed arsenic-sulfur species was reported. That species was assumed to be monothioarsenite ([H2As(III)S(-II)O2](-)), formed as an intermediate by abiotic reaction of arsenite with sulfide. We now report that this species is monothioarsenate ([HAs(V)S(-II)O3](2-)) as revealed by X-ray absorption spectroscopy. Monothioarsenate forms by abiotic reaction of arsenite with zerovalent sulfur. Monothioarsenate is kinetically stable under a wide range of pH and redox conditions. However, it was metabolized rapidly by strain MLMS-1 when incubated with arsenate. Incubations using monothioarsenate confirmed that strain MLMS-1 was able to grow (μ = 0.017 h(-1)) on this substrate via a disproportionation reaction by oxidizing the thio-group-sulfur (S(-II)) to zerovalent sulfur or sulfate while concurrently reducing the central arsenic atom (As(V)) to arsenite. Monothioarsenate disproportionation could be widespread in nature beyond the already studied arsenic and sulfide rich hot springs and soda lakes where it was discovered.
Collapse
Affiliation(s)
- B Planer-Friedrich
- †Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - C Härtig
- †Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - R Lohmayer
- †Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - E Suess
- ‡Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
- §Department of Water Resources and Drinking Water, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), 8600 Dübendorf, Switzerland
| | - S H McCann
- ∥U.S. Geological Survey, Menlo Park, California, United States
| | - R Oremland
- ∥U.S. Geological Survey, Menlo Park, California, United States
| |
Collapse
|
34
|
Hassan Z, Sultana M, van Breukelen BM, Khan SI, Röling WFM. Diverse arsenic- and iron-cycling microbial communities in arsenic-contaminated aquifers used for drinking water in Bangladesh. FEMS Microbiol Ecol 2015; 91:fiv026. [PMID: 25778510 DOI: 10.1093/femsec/fiv026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 03/08/2015] [Indexed: 11/14/2022] Open
Abstract
Subsurface removal of arsenic by injection with oxygenated groundwater has been proposed as a viable technology for obtaining 'safe' drinking water in Bangladesh. While the oxidation of ferrous iron to solid ferric iron minerals, to which arsenic adsorbs, is assumed to be driven by abiotic reactions, metal-cycling microorganisms may potentially affect arsenic removal. A cultivation-independent survey covering 24 drinking water wells in several geographical regions in Bangladesh was conducted to obtain information on microbial community structure and diversity in general, and on specific functional groups capable of the oxidation or reduction of arsenic or iron. Each functional group, targeted by either group-specific 16S rRNA or functional gene amplification, occurred in at least 79% of investigated samples. Putative arsenate reducers and iron-oxidizing Gallionellaceae were present at low diversity, while more variation in potentially arsenite-oxidizing microorganisms and iron-reducing Desulfuromonadales was revealed within and between samples. Relations between community composition on the one hand and hydrochemistry on the other hand were in general not evident, apart from an impact of salinity on iron-cycling microorganisms. Our data suggest widespread potential for a positive contribution of arsenite and iron oxidizers to arsenic removal upon injection with oxygenated water, but also indicate a potential risk for arsenic re-mobilization by anaerobic arsenate and iron reducers once injection is halted.
Collapse
Affiliation(s)
- Zahid Hassan
- Department of Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Boris M van Breukelen
- Critical Zone Hydrology Group, Department of Earth Sciences, Faculty of Earth and Life Sciences, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Sirajul I Khan
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Wilfred F M Röling
- Department of Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
35
|
Hamamura N, Itai T, Liu Y, Reysenbach AL, Damdinsuren N, Inskeep WP. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:476-482. [PMID: 25646538 DOI: 10.1111/1758-2229.12144] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/04/2023]
Abstract
Microbial arsenic transformation pathways associated with a saline lake located in northern Mongolia were examined using molecular biological and culturing approaches. Bacterial 16S rRNA gene sequences recovered from saline lake sediments and soils were affiliated with haloalkaliphiles, including Bacillus and Halomonas spp. Diverse sequences of arsenate respiratory reductase (arrA) and a new group of arsenite oxidase (arxA) genes were also identified. Pure cultures of arsenate-reducing Nitrincola strain and anaerobic arsenite-oxidizing Halomonas strain were isolated. The chemoorganotrophic Halomonas strain contains arxA gene similar to that of a chemoautotrophic arsenite-oxidizing Alkalilimnicola ehrlichii strain MLHE-1. These results revealed the diversity of arsenic transformation pathways associated with a geographically distinct saline system and the potential contribution of arx-dependent arsenite oxidation by heterotrophic bacteria.
Collapse
|
36
|
Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 2014; 18:791-809. [PMID: 25156418 PMCID: PMC4158274 DOI: 10.1007/s00792-014-0670-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2014] [Accepted: 06/26/2014] [Indexed: 01/26/2023]
Abstract
Soda lakes contain high concentrations of sodium carbonates resulting in a stable elevated pH, which provide a unique habitat to a rich diversity of haloalkaliphilic bacteria and archaea. Both cultivation-dependent and -independent methods have aided the identification of key processes and genes in the microbially mediated carbon, nitrogen, and sulfur biogeochemical cycles in soda lakes. In order to survive in this extreme environment, haloalkaliphiles have developed various bioenergetic and structural adaptations to maintain pH homeostasis and intracellular osmotic pressure. The cultivation of a handful of strains has led to the isolation of a number of extremozymes, which allow the cell to perform enzymatic reactions at these extreme conditions. These enzymes potentially contribute to biotechnological applications. In addition, microbial species active in the sulfur cycle can be used for sulfur remediation purposes. Future research should combine both innovative culture methods and state-of-the-art 'meta-omic' techniques to gain a comprehensive understanding of the microbes that flourish in these extreme environments and the processes they mediate. Coupling the biogeochemical C, N, and S cycles and identifying where each process takes place on a spatial and temporal scale could unravel the interspecies relationships and thereby reveal more about the ecosystem dynamics of these enigmatic extreme environments.
Collapse
Affiliation(s)
- Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, RAS, Moscow, Russia
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Tom Berben
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Emily Denise Melton
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Lex Overmars
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Charlotte D. Vavourakis
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerard Muyzer
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Fu X, Wang D, Yin X, Du P, Kan B. Time course transcriptome changes in Shewanella algae in response to salt stress. PLoS One 2014; 9:e96001. [PMID: 24789066 PMCID: PMC4006864 DOI: 10.1371/journal.pone.0096001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2014] [Accepted: 04/01/2014] [Indexed: 11/19/2022] Open
Abstract
Shewanella algae, which produces tetrodotoxin and exists in various seafoods, can cause human diseases, such as spondylodiscitis and bloody diarrhea. In the present study, we focused on the temporal, dynamic process in salt-stressed S. algae by monitoring the gene transcript levels at different time points after high salt exposure. Transcript changes in amino acid metabolism, carbohydrate metabolism, energy metabolism, membrane transport, regulatory functions, and cellular signaling were found to be important for the high salt response in S. algae. The most common strategies used by bacteria to survive and grow in high salt environments, such as Na+ efflux, K+ uptake, glutamate transport and biosynthesis, and the accumulation of compatible solutes, were also observed in S. algae. In particular, genes involved in peptidoglycan biosynthesis and DNA repair were highly and steadily up-regulated, accompanied by rapid and instantaneous enhancement of the transcription of large- and small-ribosome subunits, which suggested that the structural changes in the cell wall and some stressful responses occurred in S. algae. Furthermore, the transcription of genes involved in the tricarboxylic acid (TCA) cycle and the glycolytic pathway was decreased, whereas the transcription of genes involved in anaerobic respiration was increased. These results, demonstrating the multi-pathway reactions of S. algae in response to salt stress, increase our understanding of the microbial stress response mechanisms.
Collapse
Affiliation(s)
- Xiuping Fu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Duochun Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Xiling Yin
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Pengcheng Du
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
38
|
Zhu YG, Yoshinaga M, Zhao FJ, Rosen BP. Earth Abides Arsenic Biotransformations. ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES 2014; 42:443-467. [PMID: 26778863 PMCID: PMC4712701 DOI: 10.1146/annurev-earth-060313-054942] [Citation(s) in RCA: 314] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/04/2023]
Abstract
Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.
Collapse
Affiliation(s)
- Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People’s Republic of China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People’s Republic of China
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199
| | - Fang-Jie Zhao
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199
| |
Collapse
|
39
|
Mirza BS, Muruganandam S, Meng X, Sorensen DL, Dupont RR, McLean JE. Arsenic(V) reduction in relation to Iron(III) transformation and molecular characterization of the structural and functional microbial community in sediments of a basin-fill aquifer in Northern Utah. Appl Environ Microbiol 2014; 80:3198-208. [PMID: 24632255 PMCID: PMC4018920 DOI: 10.1128/aem.00240-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2014] [Accepted: 03/07/2014] [Indexed: 11/20/2022] Open
Abstract
Basin-fill aquifers of the Southwestern United States are associated with elevated concentrations of arsenic (As) in groundwater. Many private domestic wells in the Cache Valley Basin, UT, have As concentrations in excess of the U.S. EPA drinking water limit. Thirteen sediment cores were collected from the center of the valley at the depth of the shallow groundwater and were sectioned into layers based on redoxmorphic features. Three of the layers, two from redox transition zones and one from a depletion zone, were used to establish microcosms. Microcosms were treated with groundwater (GW) or groundwater plus glucose (GW+G) to investigate the extent of As reduction in relation to iron (Fe) transformation and characterize the microbial community structure and function by sequencing 16S rRNA and arsenate dissimilatory reductase (arrA) genes. Under the carbon-limited conditions of the GW treatment, As reduction was independent of Fe reduction, despite the abundance of sequences related to Geobacter and Shewanella, genera that include a variety of dissimilatory iron-reducing bacteria. The addition of glucose, an electron donor and carbon source, caused substantial shifts toward domination of the bacterial community by Clostridium-related organisms, and As reduction was correlated with Fe reduction for the sediments from the redox transition zone. The arrA gene sequencing from microcosms at day 54 of incubation showed the presence of 14 unique phylotypes, none of which were related to any previously described arrA gene sequence, suggesting a unique community of dissimilatory arsenate-respiring bacteria in the Cache Valley Basin.
Collapse
Affiliation(s)
- Babur S Mirza
- Utah Water Research Laboratory, Utah State University, Logan, Utah, USA
| | | | | | | | | | | |
Collapse
|
40
|
Héry M, Rizoulis A, Sanguin H, Cooke DA, Pancost RD, Polya DA, Lloyd JR. Microbial ecology of arsenic-mobilizing Cambodian sediments: lithological controls uncovered by stable-isotope probing. Environ Microbiol 2014; 17:1857-69. [PMID: 24467551 DOI: 10.1111/1462-2920.12412] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2013] [Accepted: 01/20/2014] [Indexed: 11/29/2022]
Abstract
Microbially mediated arsenic release from Holocene and Pleistocene Cambodian aquifer sediments was investigated using microcosm experiments and substrate amendments. In the Holocene sediment, the metabolically active bacteria, including arsenate-respiring bacteria, were determined by DNA stable-isotope probing. After incubation with (13) C-acetate and (13) C-lactate, active bacterial community in the Holocene sediment was dominated by different Geobacter spp.-related 16S rRNA sequences. Substrate addition also resulted in the enrichment of sequences related to the arsenate-respiring Sulfurospirillum spp. (13) C-acetate selected for ArrA related to Geobacter spp. whereas (13) C-lactate selected for ArrA which were not closely related to any cultivated organism. Incubation of the Pleistocene sediment with lactate favoured a 16S rRNA-phylotype related to the sulphate-reducing Desulfovibrio oxamicus DSM1925, whereas the ArrA sequences clustered with environmental sequences distinct from those identified in the Holocene sediment. Whereas limited As(III) release was observed in Pleistocene sediment after lactate addition, no arsenic mobilization occurred from Holocene sediments, probably because of the initial reduced state of As, as determined by X-ray Absorption Near Edge Structure. Our findings demonstrate that in the presence of reactive organic carbon, As(III) mobilization can occur in Pleistocene sediments, having implications for future strategies that aim to reduce arsenic contamination in drinking waters by using aquifers containing Pleistocene sediments.
Collapse
Affiliation(s)
- Marina Héry
- School of Earth, Atmospheric and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, UK
| | - Athanasios Rizoulis
- School of Earth, Atmospheric and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, UK
| | - Hervé Sanguin
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - David A Cooke
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, UK
| | - Richard D Pancost
- Organic Geochemistry Unit, The Cabot Institute, Bristol Biogeochemistry Research Centre, School of Chemistry, Cantock's Close, Bristol University, Bristol, UK
| | - David A Polya
- School of Earth, Atmospheric and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, UK
| | - Jonathan R Lloyd
- School of Earth, Atmospheric and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, UK
| |
Collapse
|
41
|
Sorokin DY, Abbas B, Tourova TP, Bumazhkin BK, Kolganova TV, Muyzer G. Sulfate-dependent acetate oxidation under extremely natron-alkaline conditions by syntrophic associations from hypersaline soda lakes. MICROBIOLOGY-SGM 2014; 160:723-732. [PMID: 24482193 DOI: 10.1099/mic.0.075093-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022]
Abstract
So far, anaerobic sulfate-dependent acetate oxidation at high pH has only been demonstrated for a low-salt-tolerant syntrophic association of a clostridium 'Candidatus Contubernalis alkalaceticum' and its hydrogenotrophic sulfate-reducing partner Desulfonatronum cooperativum. Anaerobic enrichments at pH 10 inoculated with sediments from hypersaline soda lakes of the Kulunda Steppe (Altai, Russia) demonstrated the possibility of sulfate-dependent acetate oxidation at much higher salt concentrations (up to 3.5 M total Na(+)). The most salt-tolerant purified cultures contained two major components apparently working in syntrophy. The primary acetate-fermenting component was identified as a member of the order Clostridiales forming, together with 'Ca. Contubernalis alkalaceticum', an independent branch within the family Syntrophomonadaceae. A provisional name, 'Ca. Syntrophonatronum acetioxidans', is suggested for the novel haloalkaliphilic clostridium. Two phylotypes of extremely haloalkaliphilic sulfate-reducing bacteria of the genus Desulfonatronospira were identified as sulfate-reducing partners in the acetate-oxidizing cultures under extreme salinity. The dominant phylotype differed from the two species of Desulfonatronospira described so far, whilst a minor component belonged to Desulfonatronum thiodismutans. The results proved that, contrary to previous beliefs, sulfate-dependent acetate oxidation is possible, albeit very slowly, in nearly saturated soda brines.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.,Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117811 Moscow, Russia
| | - Ben Abbas
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Tatjana P Tourova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117811 Moscow, Russia
| | | | | | - Gerard Muyzer
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Jia Y, Huang H, Chen Z, Zhu YG. Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1001-7. [PMID: 24383760 DOI: 10.1021/es403877s] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/15/2023]
Abstract
Arsenic (As) uptake by rice is largely determined by As speciation, which is strongly influenced by microbial activities. However, little is known about interactions between root and rhizosphere microbes, particularly on arsenic oxidation and reduction. In this study, two rice cultivars with different radial oxygen loss (ROL) ability were used to investigate the impact of microbially mediated As redox changes in the rhizosphere on As uptake. Results showed that the cultivar with higher ROL (Yangdao) had lower As uptake than that with lower ROL (Nongken). The enhancement of the rhizospheric effect on the abundance of the arsenite (As(III)) oxidase gene (aroA-like) was greater than on the arsenate (As(V)) reductase gene (arsC), and As(V) respiratory reductase gene (arrA), resulting in As oxidation and sequestration in the rhizosphere, particularly for cultivar Yangdao. The community of As(III)-oxidizing bacteria in the rhizosphere was dominated by α-Proteobacteria and β-Proteobacteria and was influenced by rhizospheric effects, rice straw application, growth stage, and cultivar. Application of rice straw into the soil increased As release and accumulation into rice plants. These results highlighted that uptake of As by rice is influenced by microbial processes, especially As oxidation in the rhizosphere, and these processes are influenced by root ROL and organic matter application.
Collapse
Affiliation(s)
- Yan Jia
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | | | | | | |
Collapse
|
43
|
Kulp TR, Miller LG, Braiotta F, Webb SM, Kocar BD, Blum JS, Oremland RS. Microbiological reduction of Sb(V) in anoxic freshwater sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 48:218-226. [PMID: 24274659 DOI: 10.1021/es403312j] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/02/2023]
Abstract
Microbiological reduction of millimolar concentrations of Sb(V) to Sb(III) was observed in anoxic sediments from two freshwater settings: (1) a Sb- and As-contaminated mine site (Stibnite Mine) in central Idaho and 2) an uncontaminated suburban lake (Searsville Lake) in the San Francisco Bay Area. Rates of Sb(V) reduction in anoxic sediment microcosms and enrichment cultures were enhanced by amendment with lactate or acetate as electron donors but not by H2, and no reduction occurred in sterilized controls. Addition of 2-(14)C-acetate to Stibnite Mine microcosms resulted in the production of (14)CO2 coupled to Sb(V) reduction, suggesting that this process proceeds by a dissimilatory respiratory pathway in those sediments. Antimony(V) reduction in Searsville Lake sediments was not coupled to acetate mineralization and may be associated with Sb-resistance. The microcosms and enrichment cultures also reduced sulfate, and the precipitation of insoluble Sb(III)-sulfide complexes was a major sink for reduced Sb. The reduction of Sb(V) by Stibnite Mine sediments was inhibited by As(V), suggesting that As(V) is a preferred electron acceptor for the indigenous community. These findings indicate a novel pathway for anaerobic microbiological respiration and suggest that communities capable of reducing high concentrations of Sb(V) commonly occur naturally in the environment.
Collapse
Affiliation(s)
- Thomas R Kulp
- Department of Geological Sciences and Environmental Studies, Binghamton University, SUNY , Binghamton, New York 13902, United States
| | | | | | | | | | | | | |
Collapse
|
44
|
Distribution of microbial arsenic reduction, oxidation and extrusion genes along a wide range of environmental arsenic concentrations. PLoS One 2013; 8:e78890. [PMID: 24205341 PMCID: PMC3815024 DOI: 10.1371/journal.pone.0078890] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2013] [Accepted: 09/17/2013] [Indexed: 11/28/2022] Open
Abstract
The presence of the arsenic oxidation, reduction, and extrusion genes arsC, arrA, aioA, and acr3 was explored in a range of natural environments in northern Chile, with arsenic concentrations spanning six orders of magnitude. A combination of primers from the literature and newly designed primers were used to explore the presence of the arsC gene, coding for the reduction of As (V) to As (III) in one of the most common detoxification mechanisms. Enterobacterial related arsC genes appeared only in the environments with the lowest As concentration, while Firmicutes-like genes were present throughout the range of As concentrations. The arrA gene, involved in anaerobic respiration using As (V) as electron acceptor, was found in all the systems studied. The As (III) oxidation gene aioA and the As (III) transport gene acr3 were tracked with two primer sets each and they were also found to be spread through the As concentration gradient. Sediment samples had a higher number of arsenic related genes than water samples. Considering the results of the bacterial community composition available for these samples, the higher microbial phylogenetic diversity of microbes inhabiting the sediments may explain the increased number of genetic resources found to cope with arsenic. Overall, the environmental distribution of arsenic related genes suggests that the occurrence of different ArsC families provides different degrees of protection against arsenic as previously described in laboratory strains, and that the glutaredoxin (Grx)-linked arsenate reductases related to Enterobacteria do not confer enough arsenic resistance to live above certain levels of As concentrations.
Collapse
|
45
|
Plewniak F, Koechler S, Navet B, Dugat-Bony É, Bouchez O, Peyret P, Séby F, Battaglia-Brunet F, Bertin PN. Metagenomic insights into microbial metabolism affecting arsenic dispersion in Mediterranean marine sediments. Mol Ecol 2013; 22:4870-83. [DOI: 10.1111/mec.12432] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2013] [Revised: 06/13/2013] [Accepted: 06/25/2013] [Indexed: 02/04/2023]
Affiliation(s)
- Frédéric Plewniak
- Département Microorganismes, Génomes, Environnement; Génétique Moléculaire, Génomique et Microbiologie; UMR7156 Université de Strasbourg/CNRS; 28 rue Goethe 67083 Strasbourg Cedex France
| | - Sandrine Koechler
- Département Microorganismes, Génomes, Environnement; Génétique Moléculaire, Génomique et Microbiologie; UMR7156 Université de Strasbourg/CNRS; 28 rue Goethe 67083 Strasbourg Cedex France
| | - Benjamin Navet
- Département Microorganismes, Génomes, Environnement; Génétique Moléculaire, Génomique et Microbiologie; UMR7156 Université de Strasbourg/CNRS; 28 rue Goethe 67083 Strasbourg Cedex France
| | - Éric Dugat-Bony
- Laboratoire Microorganismes: Génome et Environnement; UMR 6023 Université Blaise Pascal Clermont-Ferrand/CNRS; Bât de Biologie A, Les Cézeaux, 24, Avenue des Landais BP 80026 63171 Aubière Cedex France
| | - Olivier Bouchez
- Plateforme génomique (PlaGe); Génopole Toulouse-Midi-Pyrénées; INRA; 31326 Castanet-Tolosan France
- INRA; UMR444 Laboratoire de Génétique Cellulaire; INRA Auzeville; 31326 Castanet-Tolosan France
| | - Pierre Peyret
- Laboratoire Microorganismes: Génome et Environnement; UMR 6023 Université Blaise Pascal Clermont-Ferrand/CNRS; Bât de Biologie A, Les Cézeaux, 24, Avenue des Landais BP 80026 63171 Aubière Cedex France
| | - Fabienne Séby
- Ultra Traces Analyses Aquitaine (UT2A); Hélioparc Pau-Pyrénées; 2, avenue du Président Angot 64053 Pau Cedex 9 France
| | - Fabienne Battaglia-Brunet
- BRGM; Environnement et Procédés; Unité Biogéochimie Environnementale; Avenue Claude Guillemin 45060 Orléans France
| | - Philippe N. Bertin
- Département Microorganismes, Génomes, Environnement; Génétique Moléculaire, Génomique et Microbiologie; UMR7156 Université de Strasbourg/CNRS; 28 rue Goethe 67083 Strasbourg Cedex France
| |
Collapse
|
46
|
Glombitza C, Stockhecke M, Schubert CJ, Vetter A, Kallmeyer J. Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey). Front Microbiol 2013; 4:209. [PMID: 23908647 PMCID: PMC3725400 DOI: 10.3389/fmicb.2013.00209] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/02/2013] [Accepted: 07/05/2013] [Indexed: 11/13/2022] Open
Abstract
As part of the International Continental Drilling Program deep lake drilling project PaleoVan, we investigated sulfate reduction (SR) in deep sediment cores of the saline, alkaline (salinity 21.4‰, alkalinity 155 m mEq-1, pH 9.81) Lake Van, Turkey. The cores were retrieved in the Northern Basin (NB) and at Ahlat Ridge (AR) and reached a maximum depth of 220 m. Additionally, 65–75 cm long gravity cores were taken at both sites. SR rates (SRR) were low (≤22 nmol cm-3 day-1) compared to lakes with higher salinity and alkalinity, indicating that salinity and alkalinity are not limiting SR in Lake Van. Both sites differ significantly in rates and depth distribution of SR. In NB, SRR are up to 10 times higher than at AR. SR could be detected down to 19 mblf (meters below lake floor) at NB and down to 13 mblf at AR. Although SRR were lower at AR than at NB, organic matter (OM) concentrations were higher. In contrast, dissolved OM in the pore water at AR contained more macromolecular OM and less low molecular weight OM. We thus suggest, that OM content alone cannot be used to infer microbial activity at Lake Van but that quality of OM has an important impact as well. These differences suggest that biogeochemical processes in lacustrine sediments are reacting very sensitively to small variations in geological, physical, or chemical parameters over relatively short distances.
Collapse
Affiliation(s)
- Clemens Glombitza
- Geomicrobiology Group, Institute of Earth and Environmental Sciences, University of Potsdam Potsdam, Germany
| | | | | | | | | |
Collapse
|
47
|
Cavalca L, Corsini A, Zaccheo P, Andreoni V, Muyzer G. Microbial transformations of arsenic: perspectives for biological removal of arsenic from water. Future Microbiol 2013; 8:753-68. [DOI: 10.2217/fmb.13.38] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
Arsenic is present in many environments and is released by various natural processes and anthropogenic actions. Although arsenic is recognized to cause a wide range of adverse health effects in humans, diverse bacteria can metabolize it by detoxification and energy conservation reactions. This review highlights the current understanding of the ecology, biochemistry and genomics of these bacteria, and their potential application in the treatment of arsenic-polluted water.
Collapse
Affiliation(s)
- Lucia Cavalca
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| | - Anna Corsini
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Patrizia Zaccheo
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Milano, Italy
| | - Vincenza Andreoni
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Gerard Muyzer
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
- Institute for Biodiversity & Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
48
|
Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1. Appl Environ Microbiol 2013; 79:4635-42. [PMID: 23709511 DOI: 10.1128/aem.00693-13] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
A novel arsenate-reducing bacterium, designated strain PSR-1, was isolated from arsenic-contaminated soil. Strain PSR-1 was phylogenetically closely related to Anaeromyxobacter dehalogenans 2CP-1(T) with 16S rRNA gene similarity of 99.7% and coupled the oxidation of acetate with the reduction of arsenate. Arsenate reduction was inhibited almost completely by respiratory inhibitors such as dicumarol and 2-heptyl-4-hydroxyquinoline N-oxide. Strain PSR-1 also utilized soluble Fe(III), ferrihydrite, nitrate, oxygen, and fumarate as electron acceptors. Strain PSR-1 catalyzed the release of arsenic from arsenate-adsorbed ferrihydrite. In addition, inoculation of washed cells of strain PSR-1 into sterilized soil successfully reproduced arsenic release. Arsenic K-edge X-ray absorption near-edge structure (XANES) analysis revealed that the proportion of arsenite in the soil solid phase actually increased from 20% to 50% during incubation with washed cells of strain PSR-1. These results suggest that strain PSR-1 is capable of reducing not only dissolved arsenate but also arsenate adsorbed on the soil mineral phase. Arsenate reduction by strain PSR-1 expands the metabolic versatility of Anaeromyxobacter dehalogenans. Considering its distribution throughout diverse soils and anoxic sediments, Anaeromyxobacter dehalogenans may play a role in arsenic release from these environments.
Collapse
|
49
|
Hamamura N, Fukushima K, Itai T. Identification of antimony- and arsenic-oxidizing bacteria associated with antimony mine tailing. Microbes Environ 2013; 28:257-63. [PMID: 23666539 PMCID: PMC4070671 DOI: 10.1264/jsme2.me12217] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022] Open
Abstract
Antimony (Sb) is a naturally occurring toxic element commonly associated with arsenic (As) in the environment and both elements have similar chemistry and toxicity. Increasing numbers of studies have focused on microbial As transformations, while microbial Sb interactions are still not well understood. To gain insight into microbial roles in the geochemical cycling of Sb and As, soils from Sb mine tailing were examined for the presence of Sb- and As-oxidizing bacteria. After aerobic enrichment culturing with AsIII (10 mM) or SbIII (100 μM), pure cultures of Pseudomonas- and Stenotrophomonas-related isolates with SbIII oxidation activities and a Sinorhizobium-related isolate capable of AsIII oxidation were obtained. The AsIII-oxidizing Sinorhizobium isolate possessed the aerobic arsenite oxidase gene (aioA), the expression of which was induced in the presence of AsIII or SbIII. However, no SbIII oxidation activity was detected from the Sinorhizobium-related isolate, suggesting the involvement of different mechanisms for Sb and As oxidation. These results demonstrate that indigenous microorganisms associated with Sb mine soils are capable of Sb and As oxidation, and potentially contribute to the speciation and mobility of Sb and As in situ.
Collapse
Affiliation(s)
- Natsuko Hamamura
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790–8577, Japan.
| | | | | |
Collapse
|
50
|
Giloteaux L, Holmes DE, Williams KH, Wrighton KC, Wilkins MJ, Montgomery AP, Smith JA, Orellana R, Thompson CA, Roper TJ, Long PE, Lovley DR. Characterization and transcription of arsenic respiration and resistance genes during in situ uranium bioremediation. THE ISME JOURNAL 2013; 7:370-83. [PMID: 23038171 PMCID: PMC3554400 DOI: 10.1038/ismej.2012.109] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/11/2012] [Revised: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 11/09/2022]
Abstract
The possibility of arsenic release and the potential role of Geobacter in arsenic biogeochemistry during in situ uranium bioremediation was investigated because increased availability of organic matter has been associated with substantial releases of arsenic in other subsurface environments. In a field experiment conducted at the Rifle, CO study site, groundwater arsenic concentrations increased when acetate was added. The number of transcripts from arrA, which codes for the α-subunit of dissimilatory As(V) reductase, and acr3, which codes for the arsenic pump protein Acr3, were determined with quantitative reverse transcription-PCR. Most of the arrA (>60%) and acr3-1 (>90%) sequences that were recovered were most similar to Geobacter species, while the majority of acr3-2 (>50%) sequences were most closely related to Rhodoferax ferrireducens. Analysis of transcript abundance demonstrated that transcription of acr3-1 by the subsurface Geobacter community was correlated with arsenic concentrations in the groundwater. In contrast, Geobacter arrA transcript numbers lagged behind the major arsenic release and remained high even after arsenic concentrations declined. This suggested that factors other than As(V) availability regulated the transcription of arrA in situ, even though the presence of As(V) increased the transcription of arrA in cultures of Geobacter lovleyi, which was capable of As(V) reduction. These results demonstrate that subsurface Geobacter species can tightly regulate their physiological response to changes in groundwater arsenic concentrations. The transcriptomic approach developed here should be useful for the study of a diversity of other environments in which Geobacter species are considered to have an important influence on arsenic biogeochemistry.
Collapse
Affiliation(s)
- Ludovic Giloteaux
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|