1
|
Bianchelli J, Sagua MI, Quiroga MP, Nuozzi G, Fernández J, Schiaffino MR. Temporal dynamics of Legionella (Proteobacteria, Legionellaceae) in two Pampean shallow lakes from Argentina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59058-59070. [PMID: 39331293 DOI: 10.1007/s11356-024-35007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Aquatic systems have traditionally played a key role in the development of human life, providing multiple ecosystem services to society and being a reservoir for a wide biodiversity of organisms. Among them, bacteria belonging to Legionella stand out, mainly because they are of great interest both in the field of microbial ecology and public health, since some of them turn out to be pathogenic for humans. The aim of this work was to study the monthly temporal dynamics of Legionella spp. and its relationship with the environmental variables measured in two Pampean shallow lakes (Gómez and Carpincho, Buenos Aires Province, Argentina). The analysis was carried out using a quantitative approach by real-time polymerase chain reaction (qPCR) and a non-quantitative approach using bacterial diversity data obtained by next-generation sequencing (NGS), using the Illumina MiSeq platform. Our results showed that the overall Legionella abundance was very high in the studied Pampean shallow lakes. Notably, fluctuations in dissolved organic carbon and temperature influenced the dynamics shifts in Legionella abundances. Correlation analyses between Legionella reads from NGS and copy numbers obtained through qPCR revealed positive relationships, unveiling distinctions attributable to the diverse sequence processing algorithms employed in the analysis of NGS data.
Collapse
Affiliation(s)
- Julieta Bianchelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| | - Mara Inés Sagua
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA - UNSAdA - CONICET, Pergamino, Argentina
| | - María Pía Quiroga
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Argentina
| | - Guillermina Nuozzi
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA - UNSAdA - CONICET, Pergamino, Argentina
| | - Julia Fernández
- Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística, Facultad de Ciencias Económicas y Estadística, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Romina Schiaffino
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA - UNSAdA - CONICET, Pergamino, Argentina
| |
Collapse
|
2
|
Khan A, Liu G, Zhang G, Li X. Radiation-resistant bacteria in desiccated soil and their potentiality in applied sciences. Front Microbiol 2024; 15:1348758. [PMID: 38894973 PMCID: PMC11184166 DOI: 10.3389/fmicb.2024.1348758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
A rich diversity of radiation-resistant (Rr) and desiccation-resistant (Dr) bacteria has been found in arid habitats of the world. Evidence from scientific research has linked their origin to reactive oxygen species (ROS) intermediates. Rr and Dr. bacteria of arid regions have the potential to regulate imbalance radicals and evade a higher dose of radiation and oxidation than bacterial species of non-arid regions. Photochemical-activated ROS in Rr bacteria is run through photo-induction of electron transfer. A hypothetical model of the biogeochemical cycle based on solar radiation and desiccation. These selective stresses generate oxidative radicals for a short span with strong reactivity and toxic effects. Desert-inhibiting Rr bacteria efficiently evade ROS toxicity with an evolved antioxidant system and other defensive pathways. The imbalanced radicals in physiological disorders, cancer, and lung diseases could be neutralized by a self-sustaining evolved Rr bacteria antioxidant system. The direct link of evolved antioxidant system with intermediate ROS and indirect influence of radiation and desiccation provide useful insight into richness, ecological diversity, and origin of Rr bacteria capabilities. The distinguishing features of Rr bacteria in deserts present a fertile research area with promising applications in the pharmaceutical industry, genetic engineering, biological therapy, biological transformation, bioremediation, industrial biotechnology, and astrobiology.
Collapse
Affiliation(s)
- Asaf Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Zaccaria T, de Jonge MI, Domínguez-Andrés J, Netea MG, Beblo-Vranesevic K, Rettberg P. Survival of Environment-Derived Opportunistic Bacterial Pathogens to Martian Conditions: Is There a Concern for Human Missions to Mars? ASTROBIOLOGY 2024; 24:100-113. [PMID: 38227836 DOI: 10.1089/ast.2023.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The health of astronauts during space travel to new celestial bodies in the Solar System is a critical factor in the planning of a mission. Despite cleaning and decontamination protocols, microorganisms from the Earth have been and will be identified on spacecraft. This raises concerns for human safety and planetary protection, especially if these microorganisms can evolve and adapt to the new environment. In this study, we examined the tolerance of clinically relevant nonfastidious bacterial species that originate from environmental sources (Burkholderia cepacia, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Serratia marcescens) to simulated martian conditions. Our research showed changes in growth and survival of these species in the presence of perchlorates, under desiccating conditions, exposure to ultraviolet radiation, and exposure to martian atmospheric composition and pressure. In addition, our results demonstrate that growth was enhanced by the addition of a martian regolith simulant to the growth media. Additional future research is warranted to examine potential changes in the infectivity, pathogenicity, and virulence of these species with exposure to martian conditions.
Collapse
Affiliation(s)
- Tommaso Zaccaria
- Research Group Astrobiology, Radiation Biology Department, Institute of Aerospace Medicine, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Cologne, Germany
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marien I de Jonge
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jorge Domínguez-Andrés
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mihai G Netea
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Kristina Beblo-Vranesevic
- Research Group Astrobiology, Radiation Biology Department, Institute of Aerospace Medicine, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Cologne, Germany
| | - Petra Rettberg
- Research Group Astrobiology, Radiation Biology Department, Institute of Aerospace Medicine, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Cologne, Germany
| |
Collapse
|
4
|
Sagua MI, Nuozzi G, Sánchez ML, Huber P, Perdomo S, Schiaffino MR. Unraveling the effect of land use on the bacterioplankton community composition from highly impacted shallow lakes at a regional scale. FEMS Microbiol Ecol 2023; 99:fiad109. [PMID: 37715304 DOI: 10.1093/femsec/fiad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023] Open
Abstract
Bacterioplankton communities play a crucial role in global biogeochemical processes and are highly sensitive to changes induced by natural and anthropogenic stressors in aquatic ecosystems. We assessed the influence of Land Use Land Cover (LULC), environmental, and geographic changes on the bacterioplankton structure in highly connected and impacted shallow lakes within the Salado River basin, Buenos Aires, Argentina. Additionally, we investigated how changes in LULC affected the limnological characteristics of these lakes at a regional scale. Our analysis revealed that the lakes were ordinated by sub-basins (upper and lower) depending on their LULC characteristics and limnological properties. In coincidence, the same ordination was observed when considering the Bacterioplankton Community Composition (BCC). Spatial and environmental predictors significantly explained the variation in BCC, although when combined with LULC the effect was also important. While the pure LULC effect did not explain a significant percentage of BCC variation, the presence of atrazine in water, an anthropogenic variable linked to LULC, directly influenced both the BCC and some Amplicon Sequence Variants (ASVs) in particular. Our regional-scale approach contributes to understanding the complexity of factors driving bacterioplankton structure and how LULC pervasively affect these communities in highly impacted shallow lake ecosystems from the understudied Southern Hemisphere.
Collapse
Affiliation(s)
- Mara I Sagua
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Roque Saez Pena 456 (6000), Junín, Buenos Aires, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA) - UNNOBA-UNSAdA-CONICET, Monteagudo 2772 (2700), Pergamino, Buenos Aires, Argentina
| | - Guillermina Nuozzi
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Roque Saez Pena 456 (6000), Junín, Buenos Aires, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA) - UNNOBA-UNSAdA-CONICET, Monteagudo 2772 (2700), Pergamino, Buenos Aires, Argentina
| | - María L Sánchez
- CONICET - Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Universidad de Buenos Aires, Intendente Guiraldes 2160 (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, Intendente Guiraldes 2160 (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula Huber
- Instituto Nacional de Limnología (INALI, CONICET-UNL). Colectora RN 168 Km 0 (3000), Paraje El Pozo, Santa Fe, Argentina
- Departamento de Hydrobiologia, Universidade Federal de São Carlos (UFSCar). Rodovia Washington Luis S/N - Monjolinho (13565-905), São Carlos, São Paulo, Brazil
| | - Santiago Perdomo
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Roque Saez Pena 456 (6000), Junín, Buenos Aires, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA) - UNNOBA-UNSAdA-CONICET, Monteagudo 2772 (2700), Pergamino, Buenos Aires, Argentina
| | - María R Schiaffino
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Roque Saez Pena 456 (6000), Junín, Buenos Aires, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA) - UNNOBA-UNSAdA-CONICET, Monteagudo 2772 (2700), Pergamino, Buenos Aires, Argentina
| |
Collapse
|
5
|
Wang J, Yang Z, Lu P, Sun Y, Xue S, Tang X, Xiao H. Effects of UV-B radiation on epiphytic bacterial communities on male and female Sargassum thunbergii. Sci Rep 2023; 13:3985. [PMID: 36894683 PMCID: PMC9998616 DOI: 10.1038/s41598-022-26494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/15/2022] [Indexed: 03/11/2023] Open
Abstract
The effects of increased UV-B radiation on macroalgae have been widely studied, but knowledge concerning the response of communities of algal epiphytic bacteria to increased UV-B radiation and differences between male and female algae is still lacking. Via 16S rDNA high-throughput sequencing technology, changes in the epiphytic bacterial communities on male and female S. thunbergii under increased UV-B radiation were studied in the lab. Under different UV-B radiation intensities, although the α diversity and community composition of epiphytic bacteria changed little, the β diversity indicated that the community structure of bacteria on S. thunbergii was obviously clustered, and the relative abundance of dominant bacteria and indicator species changed considerably. There were unique bacteria in each experimental group, and the bacteria whose abundance obviously changed were members of groups related to environmental resistance or adaptability. The variation in the abundance of epiphytic bacteria was different in male and female S. thunbergii, and the bacteria whose abundance greatly changed were mainly related to algal growth and metabolism. The abundance of genes with predicted functions related to metabolism, genetic information processing, environmental adaptation and infectious diseases changed with increased UV-B radiation, and those variations differed between epiphytic bacteria on male and female S. thunbergii. This study found that the algal epiphytic bacteria were influenced by the increase in UV-B radiation and underwent certain adaptations through adjustments to community structure and function, and this response was also affected by the sex of the macroalgae. These results are expected to serve as experimental basis and provide reference for further understanding of the response of algae epiphytic bacteria to enhanced UV-B radiation caused by the thinning of the ozone layer and the resulting changes in the relationship between algae and bacteria, which may change the community of the marine ecosystem and affect important marine ecological process.
Collapse
Affiliation(s)
- Jing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Peiyao Lu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yan Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Song Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
6
|
Juvakoski A, Singhal G, Manzano MA, Moriñigo MÁ, Vahala R, Levchuk I. Solar disinfection - An appropriate water treatment method to inactivate faecal bacteria in cold climates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154086. [PMID: 35218818 DOI: 10.1016/j.scitotenv.2022.154086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/02/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Solar disinfection (SODIS) is an inexpensive drinking water treatment method applied in tropical and sub-tropical low-income countries. However, it has been unclear whether it functions adequately also in colder climates. To investigate this issue, SODIS experiments were performed in the humid continental climate of Finland by exposing faecally contaminated drinking water to natural solar radiation at different water temperatures (8-23 °C) and UV intensities (12-19 W/m2) in polyethylene (PE) bags. To establish an adequate benchmark, SODIS experiments with the same experimental design were additionally conducted in the Mediterranean climate of Spain in typical conditions of SODIS application (~39 °C and 42 W/m2). Out of all experiments, the highest coliform and enterococci inactivation efficiencies in terms of lowest required doses for 4-log disinfection (25 Wh/m2 and 60 Wh/m2, respectively) were obtained in humid continental climate at the lowest studied mean water temperature (8-11 °C). Despite the low mean UV irradiance (~19 Wh/m2), 4-log disinfection of coliforms and enterococci were also reached fast in these conditions (1 h 27 min and 3 h 18 min, respectively). Overall, the doses required for disinfection increased as the water temperatures and UV intensities of the experiments rose. Disinfection of 4-logs (> 99.99%) of both bacteria was reached in all SODIS experiments within 6 h, suggesting SODIS could be a sufficient household water treatment method also in colder climates, unlike previously thought. The effects of different water temperatures on bacterial inactivation were also tested in the absence of sunlight. Together the obtained results indicate that while water temperatures below or close to the optima of coliforms and enterococci (~10 °C) alone do not cause inactivation, these temperatures may enhance SODIS performance. This phenomenon is attributed to slower bacterial metabolism and hence slower photorepair induced by the low water temperature.
Collapse
Affiliation(s)
- Anni Juvakoski
- Department of Built Environment, School of Engineering, Aalto University, PO Box 15200, FI-00076 Aalto, Finland; Department of Environmental Technologies, INMAR-Marine Research Institute, Faculty of Marine and Environmental Sciences, University of Cádiz, Poligono Rio San Pedro s/n, Puerto Real, 11510 Cádiz, Spain.
| | - Gaurav Singhal
- Department of Built Environment, School of Engineering, Aalto University, PO Box 15200, FI-00076 Aalto, Finland; Department of Environmental Technologies, INMAR-Marine Research Institute, Faculty of Marine and Environmental Sciences, University of Cádiz, Poligono Rio San Pedro s/n, Puerto Real, 11510 Cádiz, Spain; Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Kemistintie 1, P.O. Box 16100, Espoo, FI-00076, Aalto, Finland
| | - Manuel A Manzano
- Department of Environmental Technologies, INMAR-Marine Research Institute, Faculty of Marine and Environmental Sciences, University of Cádiz, Poligono Rio San Pedro s/n, Puerto Real, 11510 Cádiz, Spain
| | - Miguel Ángel Moriñigo
- Department of Microbiology, Faculty of Sciences, Campus Universitario de Teatinos s/n, University of Málaga, Spain
| | - Riku Vahala
- Department of Built Environment, School of Engineering, Aalto University, PO Box 15200, FI-00076 Aalto, Finland
| | - Irina Levchuk
- Department of Built Environment, School of Engineering, Aalto University, PO Box 15200, FI-00076 Aalto, Finland; Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
7
|
Zannier F, Portero LR, Douki T, Gärtner W, Farías ME, Albarracín VH. Proteomic Signatures of Microbial Adaptation to the Highest Ultraviolet-Irradiation on Earth: Lessons From a Soil Actinobacterium. Front Microbiol 2022; 13:791714. [PMID: 35369494 PMCID: PMC8965627 DOI: 10.3389/fmicb.2022.791714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
In the Central Andean region in South America, high-altitude ecosystems (3500-6000 masl) are distributed across Argentina, Chile, Bolivia, and Peru, in which poly-extremophilic microbes thrive under extreme environmental conditions. In particular, in the Puna region, total solar irradiation and UV incidence are the highest on Earth, thus, restraining the physiology of individual microorganisms and the composition of microbial communities. UV-resistance of microbial strains thriving in High-Altitude Andean Lakes was demonstrated and their mechanisms were partially characterized by genomic analysis, biochemical and physiological assays. Then, the existence of a network of physiological and molecular mechanisms triggered by ultraviolet light exposure was hypothesized and called "UV-resistome". It includes some or all of the following subsystems: (i) UV sensing and effective response regulators, (ii) UV-avoidance and shielding strategies, (iii) damage tolerance and oxidative stress response, (iv) energy management and metabolic resetting, and (v) DNA damage repair. Genes involved in the described UV-resistome were recently described in the genome of Nesterenkonia sp. Act20, an actinobacterium which showed survival to high UV-B doses as well as efficient photorepairing capability. The aim of this work was to use a proteomic approach together with photoproduct measurements to help dissecting the molecular events involved in the adaptive response of a model High-Altitude Andean Lakes (HAAL) extremophilic actinobacterium, Nesterenkonia sp. Act20, under artificial UV-B radiation. Our results demonstrate that UV-B exposure induced over-abundance of a well-defined set of proteins while recovery treatments restored the proteomic profiles present before the UV-challenge. The proteins involved in this complex molecular network were categorized within the UV-resistome subsystems: damage tolerance and oxidative stress response, energy management and metabolic resetting, and DNA damage repair.
Collapse
Affiliation(s)
- Federico Zannier
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
| | - Luciano R. Portero
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
| | - Thierry Douki
- Université Grenoble Alpes, Commissariat a l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Institut de Recherche Interdisciplinaire de Grenoble–Systèmes Moléculaires et nanoMatériaux p our l’Énergie et la Santé, Grenoble, France
| | - Wolfgang Gärtner
- Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - María E. Farías
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
| | - Virginia H. Albarracín
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| |
Collapse
|
8
|
FARIAS GABRIELES, SANTOS JULIANAA, GIOVANELLA PATRICIA, SETTE LARAD. Antarctic-derived yeasts: taxonomic identification and resistance to adverse conditions. AN ACAD BRAS CIENC 2022; 94:e20210592. [DOI: 10.1590/0001-3765202220210592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 01/13/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - JULIANA A. SANTOS
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| | - PATRICIA GIOVANELLA
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil; Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| | - LARA D. SETTE
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil; Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| |
Collapse
|
9
|
Di Genova A, Nardocci G, Maldonado-Agurto R, Hodar C, Valdivieso C, Morales P, Gajardo F, Marina R, Gutiérrez RA, Orellana A, Cambiazo V, González M, Glavic A, Mendez MA, Maass A, Allende ML, Montecino MA. Genome sequencing and transcriptomic analysis of the Andean killifish Orestias ascotanensis reveals adaptation to high-altitude aquatic life. Genomics 2021; 114:305-315. [PMID: 34954349 DOI: 10.1016/j.ygeno.2021.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/26/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022]
Abstract
Orestias ascotanensis (Cyprinodontidae) is a teleost pupfish endemic to springs feeding into the Ascotan saltpan in the Chilean Altiplano (3,700 m.a.s.l.) and represents an opportunity to study adaptations to high-altitude aquatic environments. We have de novo assembled the genome of O. ascotanensis at high coverage. Comparative analysis of the O. ascotanensis genome showed an overall process of contraction, including loss of genes related to G-protein signaling, chemotaxis and signal transduction, while there was expansion of gene families associated with microtubule-based movement and protein ubiquitination. We identified 818 genes under positive selection, many of which are involved in DNA repair. Additionally, we identified novel and conserved microRNAs expressed in O. ascotanensis and its closely-related species, Orestias gloriae. Our analysis suggests that positive selection and expansion of genes that preserve genome stability are a potential adaptive mechanism to cope with the increased solar UV radiation to which high-altitude animals are exposed to.
Collapse
Affiliation(s)
- Alex Di Genova
- FONDAP Center for Genome Regulation, Santiago, Chile; Center for Mathematical Modeling, Department of Mathematical Engineering, Faculty of Physical and Mathematical Sciences, Universidad de Chile and IRL CNRS, 2807 Santiago, Chile
| | - Gino Nardocci
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Rodrigo Maldonado-Agurto
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Christian Hodar
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Camilo Valdivieso
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Pamela Morales
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Felipe Gajardo
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Raquel Marina
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Rodrigo A Gutiérrez
- FONDAP Center for Genome Regulation, Santiago, Chile; Department of Molecular Genetics and Microbiology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Ariel Orellana
- FONDAP Center for Genome Regulation, Santiago, Chile; Center of Plant Biotechnology, Universidad Andres Bello, Santiago, Chile
| | - Veronica Cambiazo
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Mauricio González
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Alvaro Glavic
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Marco A Mendez
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Institute of Ecology and Biodiversity, Chile
| | - Alejandro Maass
- FONDAP Center for Genome Regulation, Santiago, Chile; Center for Mathematical Modeling, Department of Mathematical Engineering, Faculty of Physical and Mathematical Sciences, Universidad de Chile and IRL CNRS, 2807 Santiago, Chile
| | - Miguel L Allende
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile.
| | - Martin A Montecino
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
10
|
Metz S, Huber P, Accattatis V, Lopes Dos Santos A, Bigeard E, Unrein F, Chambouvet A, Not F, Lara E, Devercelli M. Freshwater protists: unveiling the unexplored in a large floodplain system. Environ Microbiol 2021; 24:1731-1745. [PMID: 34783136 DOI: 10.1111/1462-2920.15838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/23/2021] [Accepted: 10/31/2021] [Indexed: 12/25/2022]
Abstract
Protists play a fundamental role in all ecosystems, but we are still far from estimating the total diversity of many lineages, in particular in highly diverse environments, such as freshwater. Here, we survey the protist diversity of the Paraná River using metabarcoding, and we applied an approach that includes sequence similarity and phylogeny to evaluate the degree of genetic novelty of the protists' communities against the sequences described in the reference database PR2 . We observed that ~28% of the amplicon sequence variants were classified as novel according to their similarity with sequences from the reference database; most of them were related to heterotrophic groups traditionally overlooked in freshwater systems. This lack of knowledge extended to those groups within the green algae (Archaeplastida) that are well documented such as Mamiellophyceae, and also to the less studied Pedinophyceae, for which we found sequences representing novel deep-branching clusters. Among the groups with potential novel protists, Bicosoecida (Stramenopiles) were the best represented, followed by Codosiga (Opisthokonta), and the Perkinsea (Alveolata). This illustrates the lack of knowledge on freshwater planktonic protists and also the need for isolation and/or cultivation of new organisms to better understand their role in ecosystem functioning.
Collapse
Affiliation(s)
- Sebastian Metz
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, F-29280, France.,Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Buenos Aires, Argentina
| | - Paula Huber
- Departamento de Hidrobiologia, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, São Paulo, 13565-905, Brazil.,Instituto Nacional de Limnología (INALI), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Victoria Accattatis
- Departamento de Hidrobiologia, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, São Paulo, 13565-905, Brazil
| | | | - Estelle Bigeard
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Fernando Unrein
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Buenos Aires, Argentina
| | | | - Fabrice Not
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Enrique Lara
- Real Jardín Botánico de Madrid, CSIC, Madrid, 28014, Spain
| | - Melina Devercelli
- Departamento de Hidrobiologia, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
11
|
Perez MF, Saona LA, Farías ME, Poehlein A, Meinhardt F, Daniel R, Dib JR. Assessment of the plasmidome of an extremophilic microbial community from the Diamante Lake, Argentina. Sci Rep 2021; 11:21459. [PMID: 34728656 PMCID: PMC8563766 DOI: 10.1038/s41598-021-00753-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/15/2021] [Indexed: 12/02/2022] Open
Abstract
Diamante Lake located at 4589 m.a.s.l. in the Andean Puna constitutes an extreme environment. It is exposed to multiple extreme conditions such as an unusually high concentration of arsenic (over 300 mg L-1) and low oxygen pressure. Microorganisms thriving in the lake display specific genotypes that facilitate survival, which include at least a multitude of plasmid-encoded resistance traits. Hence, the genetic information provided by the plasmids essentially contributes to understand adaptation to different stressors. Though plasmids from cultivable organisms have already been analyzed to the sequence level, the impact of the entire plasmid-borne genetic information on such microbial ecosystem is not known. This study aims at assessing the plasmidome from Diamante Lake, which facilitates the identification of potential hosts and prediction of gene functions as well as the ecological impact of mobile genetic elements. The deep-sequencing analysis revealed a large fraction of previously unknown DNA sequences of which the majority encoded putative proteins of unknown function. Remarkably, functions related to the oxidative stress response, DNA repair, as well as arsenic- and antibiotic resistances were annotated. Additionally, all necessary capacities related to plasmid replication, mobilization and maintenance were detected. Sequences characteristic for megaplasmids and other already known plasmid-associated genes were identified as well. The study highlights the potential of the deep-sequencing approach specifically targeting plasmid populations as it allows to evaluate the ecological impact of plasmids from (cultivable and non-cultivable) microorganisms, thereby contributing to the understanding of the distribution of resistance factors within an extremophilic microbial community.
Collapse
Affiliation(s)
- María Florencia Perez
- grid.423606.50000 0001 1945 2152Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán Argentina
| | - Luis Alberto Saona
- grid.423606.50000 0001 1945 2152Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán Argentina
| | - María Eugenia Farías
- grid.423606.50000 0001 1945 2152Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán Argentina
| | - Anja Poehlein
- grid.7450.60000 0001 2364 4210Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Friedhelm Meinhardt
- grid.5949.10000 0001 2172 9288Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität Münster, Münster, Germany
| | - Rolf Daniel
- grid.7450.60000 0001 2364 4210Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Julián Rafael Dib
- grid.423606.50000 0001 1945 2152Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán Argentina ,grid.108162.c0000000121496664Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán Argentina
| |
Collapse
|
12
|
Delegan Y, Kocharovskaya Y, Bogun A, Sizova A, Solomentsev V, Iminova L, Lyakhovchenko N, Zinovieva A, Goyanov M, Solyanikova I. Characterization and genomic analysis of Exiguobacterium alkaliphilum B-3531D, an efficient crude oil degrading strain. ACTA ACUST UNITED AC 2021; 32:e00678. [PMID: 34660213 PMCID: PMC8502702 DOI: 10.1016/j.btre.2021.e00678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022]
Abstract
B-3531D is the first E. alkaliphilum strain with fully assembled genome. It is the first E. alkaliphilum strain with the ability to utilize crude oil. Strain utilized 34.5% of crude oil for 14 days at 28 °C and a salinity of 11%.
The aim of the work was to carry out the physiological, biochemical and genetic characterization of the Exiguobacterium alkaliphilum B-3531D strain. This strain is promising for use in the field of environmental biotechnology, since it has a pronounced ability to utilize crude oil and individual hydrocarbons in a wide temperature range. The genome of the strain was sequenced and completely assembled, it consists of a 2,903,369 bp circular chromosome and two circular plasmids, namely, pE73 (73,590 bp) and pE52 (52,125 bp). When cultivated in a mineral medium containing 2% of crude oil, the strain utilized 50% within 30 days of the experiment. In simulated seawater with the same oil content, the loss of hydrocarbons was 45% over the same period. For the first time we observed in an E. alkaliphilum strain the ability to efficiently utilize crude oil, including with an increased content of sodium chloride in the cultivation medium.
Collapse
Affiliation(s)
- Yanina Delegan
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of Russian Academy of Sciences, Pushchino, Moscow Oblast, 142290, Russian Federation
| | - Yulia Kocharovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of Russian Academy of Sciences, Pushchino, Moscow Oblast, 142290, Russian Federation.,Pushchino State Institute of Natural Science, Pushchino, Moscow Oblast, 142290, Russian Federation
| | - Alexander Bogun
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, 142279, Russian Federation
| | - Angelika Sizova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, 142279, Russian Federation
| | - Viktor Solomentsev
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, 142279, Russian Federation
| | - Leila Iminova
- Pushchino State Institute of Natural Science, Pushchino, Moscow Oblast, 142290, Russian Federation
| | | | - Alina Zinovieva
- Belgorod State University, Belgorod, 308015, Russian Federation
| | - Mikhail Goyanov
- Belgorod State University, Belgorod, 308015, Russian Federation
| | - Inna Solyanikova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of Russian Academy of Sciences, Pushchino, Moscow Oblast, 142290, Russian Federation.,Belgorod State University, Belgorod, 308015, Russian Federation
| |
Collapse
|
13
|
Pilard E, Harrouard J, Miot-Sertier C, Marullo P, Albertin W, Ghidossi R. Wine yeast species show strong inter- and intra-specific variability in their sensitivity to ultraviolet radiation. Food Microbiol 2021; 100:103864. [PMID: 34416964 DOI: 10.1016/j.fm.2021.103864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022]
Abstract
While the trend in winemaking is toward reducing the inputs and especially sulphites utilization, emerging technologies for the preservation of wine is a relevant topic for the industry. Amongst yeast spoilage in wine, Brettanomyces bruxellensis is undoubtedly the most feared. In this study, UV-C treatment is investigated. This non-thermal technique is widely used for food preservation. A first approach was conducted using a drop-platted system to compare the sensitivity of various strains to UV-C surface treatment. 147 strains distributed amongst fourteen yeast species related to wine environment were assessed for six UV-C doses. An important variability in UV-C response was observed at the interspecific level. Interestingly, cellar resident species, which are mainly associated with wine spoilage, shows higher sensitivity to UV-C than vineyard-resident species. A focus on B. bruxellensis species with 104 screened strains highlighted an important effect of the UV-C, with intra-specific variation. This intra-specific variation was confirmed on 6 strains in liquid red wine by using a home-made pilot. 6624 J.L-1 was enough for a reduction of 5 log10 of magnitude for 5 upon 6 strains. These results highlight the potential of UV-C utilization against wine yeast spoiler at cellar scale.
Collapse
Affiliation(s)
- Etienne Pilard
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRAE, Bordeaux INP, F-33882, Villenave d'Ornon, France
| | - Jules Harrouard
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRAE, Bordeaux INP, F-33882, Villenave d'Ornon, France
| | - Cécile Miot-Sertier
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRAE, Bordeaux INP, F-33882, Villenave d'Ornon, France
| | - Philippe Marullo
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRAE, Bordeaux INP, F-33882, Villenave d'Ornon, France; Biolaffort, 11 Rue Aristide Bergès, F-33270, Floirac, France
| | - Warren Albertin
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRAE, Bordeaux INP, F-33882, Villenave d'Ornon, France; ENSCBP, Bordeaux INP, F-33600, Pessac, France
| | - Rémy Ghidossi
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRAE, Bordeaux INP, F-33882, Villenave d'Ornon, France.
| |
Collapse
|
14
|
Marasini S, Leanse LG, Dai T. Can microorganisms develop resistance against light based anti-infective agents? Adv Drug Deliv Rev 2021; 175:113822. [PMID: 34089778 DOI: 10.1016/j.addr.2021.05.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/25/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
Abstract
Recently, there have been increasing numbers of publications illustrating the potential of light-based antimicrobial therapies to combat antimicrobial resistance. Several modalities, in particular, which have proven antimicrobial efficacy against a wide range of pathogenic microbes include: photodynamic therapy (PDT), ultraviolet light (UVA, UVB and UVC), and antimicrobial blue light (aBL). Using these techniques, microbial cells can be inactivated rapidly, either by inducing reactive oxygen species that are deleterious to the microbial cells (PDT, aBL and UVA) or by causing irreversible DNA damage via direct absorption (UVB and UVC). Given the multi-targeted nature of light-based antimicrobial modalities, it has been hypothesised that resistance development to these approaches is highly unlikely. Furthermore, with the exception of a small number of studies, it has been found that resistance to light based anti-infective agents appears unlikely, irrespective of the modality in question. The concurrent literature however stipulates, that further studies should incorporate standardised microbial tolerance assessments for light-based therapies to better assess the reproducibility of these observations.
Collapse
Affiliation(s)
- Sanjay Marasini
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, New Zealand.
| | - Leon G Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Lu Y, Yang B, Zhang H, Lai ACK. Inactivation of foodborne pathogenic and spoilage bacteria by single and dual wavelength UV-LEDs: Synergistic effect and pulsed operation. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Carr EC, Harris SD, Herr JR, Riekhof WR. Lichens and biofilms: Common collective growth imparts similar developmental strategies. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Huber P, Metz S, Unrein F, Mayora G, Sarmento H, Devercelli M. Environmental heterogeneity determines the ecological processes that govern bacterial metacommunity assembly in a floodplain river system. THE ISME JOURNAL 2020; 14:2951-2966. [PMID: 32719401 PMCID: PMC7784992 DOI: 10.1038/s41396-020-0723-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/26/2020] [Accepted: 07/16/2020] [Indexed: 01/09/2023]
Abstract
How diversity is structured has been a central goal of microbial ecology. In freshwater ecosystems, selection has been found to be the main driver shaping bacterial communities. However, its relative importance compared with other processes (dispersal, drift, diversification) may depend on spatial heterogeneity and the dispersal rates within a metacommunity. Still, a decrease in the role of selection is expected with increasing dispersal homogenization. Here, we investigate the main ecological processes modulating bacterial assembly in contrasting scenarios of environmental heterogeneity. We carried out a spatiotemporal survey in the floodplain system of the Paraná River. The bacterioplankton metacommunity was studied using both statistical inferences based on phylogenetic and taxa turnover as well as co-occurrence networks. We found that selection was the main process determining community assembly even at both extremes of environmental heterogeneity and homogeneity, challenging the general view that the strength of selection is weakened due to dispersal homogenization. The ecological processes acting on the community also determined the connectedness of bacterial networks associations. Heterogeneous selection promoted more interconnected networks increasing β-diversity. Finally, spatiotemporal heterogeneity was an important factor determining the number and identity of the most highly connected taxa in the system. Integrating all these empirical evidences, we propose a new conceptual model that elucidates how the environmental heterogeneity determines the action of the ecological processes shaping the bacterial metacommunity.
Collapse
Affiliation(s)
- Paula Huber
- Instituto Nacional de Limnología (INALI), Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Litoral, (CONICET-UNL), Ciudad Universitaria, Paraje El Pozo, C. P. 3000, Santa Fe, Argentina.
| | - Sebastian Metz
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Intendente Marino Km 8.2, CP 7130, Chascomús, Buenos Aires, Argentina
| | - Fernando Unrein
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Intendente Marino Km 8.2, CP 7130, Chascomús, Buenos Aires, Argentina
| | - Gisela Mayora
- Instituto Nacional de Limnología (INALI), Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Litoral, (CONICET-UNL), Ciudad Universitaria, Paraje El Pozo, C. P. 3000, Santa Fe, Argentina
| | - Hugo Sarmento
- Departamento de Hydrobiologia, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, São Paulo, 13565-905, Brazil
| | - Melina Devercelli
- Instituto Nacional de Limnología (INALI), Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Litoral, (CONICET-UNL), Ciudad Universitaria, Paraje El Pozo, C. P. 3000, Santa Fe, Argentina
| |
Collapse
|
18
|
Schiaffino MR, Huber P, Sagua M, Sabio Y García CA, Reissig M. Covariation patterns of phytoplankton and bacterioplankton in hypertrophic shallow lakes. FEMS Microbiol Ecol 2020; 96:5894912. [PMID: 32816009 DOI: 10.1093/femsec/fiaa161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/12/2020] [Indexed: 11/14/2022] Open
Abstract
The aim of this work was to assess the temporal patterns in the community composition of phytoplankton (PCC) and bacterioplankton (BCC) in two interconnected and hypertrophic Pampean shallow lakes in Argentina. Factors shaping their community dynamics and community temporal covariations were also analysed. We performed 4 years of seasonal samplings (2012-2016) and communities were studied by the Utermöhl approach (PCC) and Illumina MiSeq sequencing (BCC). We found marked seasonal variations in both communities and inter-annual variations with decreasing microbial community similarities during the study. We also observed covariation in community-level dynamics among PCC and BCC within and between shallow lakes. The within-lake covariations remained positive and significant, while controlling for the effects of intrinsic (environmental) and extrinsic (temporal and meteorological) factors, suggesting a community coupling mediated by intrinsic biotic interactions. Algal-bacterial associations between different taxa of phytoplankton and bacterioplankton within each lake were also found. PCC was mainly explained by pure regional extrinsic (17-21%) and intrinsic environmental (8-9%) factors, while BCC was explained by environmental (8-10%) and biotic interactions with phytoplankton (7-8%). Our results reveal that the influence of extrinsic regional factors can be channeled to bacterioplankton through both environmental (i.e. water temperature) and phytoplankton effects.
Collapse
Affiliation(s)
- M R Schiaffino
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Roque Sáenz Peña 456, 6000, Junín, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA) - UNNOBA-UNSAdA-CONICET, Jorge Newbery 355, 6000, Junín, Argentina
| | - P Huber
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Colectora Ruta Nac. 168, Paraje El Pozo, 3000, Santa Fe, Argentina
| | - M Sagua
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Roque Sáenz Peña 456, 6000, Junín, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA) - UNNOBA-UNSAdA-CONICET, Jorge Newbery 355, 6000, Junín, Argentina
| | - C A Sabio Y García
- CONICET - Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Intendente Güiraldes 2160, Ciudad Universitaria - C1428EGA, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. Ecología, Genética y Evolución, Intendente Güiraldes 2160, Ciudad Universitaria - C1428EGA, Buenos Aires, Argentina
| | - M Reissig
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue - CONICET, Quintral 1250, 8400, San Carlos de Bariloche, Argentina
| |
Collapse
|
19
|
Saona LA, Soria M, Villafañe PG, Lencina AI, Stepanenko T, Farías ME. Andean Microbial Ecosystems: Traces in Hypersaline Lakes About Life Origin. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-030-46087-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
20
|
Perez MF, Kurth D, Farías ME, Soria MN, Castillo Villamizar GA, Poehlein A, Daniel R, Dib JR. First Report on the Plasmidome From a High-Altitude Lake of the Andean Puna. Front Microbiol 2020; 11:1343. [PMID: 32655530 PMCID: PMC7324554 DOI: 10.3389/fmicb.2020.01343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Mobile genetic elements, including plasmids, drive the evolution of prokaryotic genomes through the horizontal transfer of genes allowing genetic exchange between bacteria. Moreover, plasmids carry accessory genes, which encode functions that may offer an advantage to the host. Thus, it is expected that in a certain ecological niche, plasmids are enriched in accessory functions, which are important for their hosts to proliferate in that niche. Puquio de Campo Naranja is a high-altitude lake from the Andean Puna exposed to multiple extreme conditions, including high UV radiation, alkalinity, high concentrations of arsenic, heavy metals, dissolved salts, high thermal amplitude and low O2 pressure. Microorganisms living in this lake need to develop efficient mechanisms and strategies to cope under these conditions. The aim of this study was to characterize the plasmidome of microbialites from Puquio de Campo Naranja, and identify potential hosts and encoded functions using a deep-sequencing approach. The potential ecological impact of the plasmidome, including plasmids from cultivable and non-cultivable microorganisms, is described for the first time in a lake representing an extreme environment of the Puna. This study showed that the recovered genetic information for the plasmidome was novel in comparison to the metagenome derived from the same environment. The study of the total plasmid population allowed the identification of genetic features typically encoded by plasmids, such as resistance and virulence factors. The resistance genes comprised resistances to heavy metals, antibiotics and stress factors. These results highlight the key role of plasmids for their hosts and impact of extrachromosomal elements to thrive in a certain ecological niche.
Collapse
Affiliation(s)
- María Florencia Perez
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Daniel Kurth
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - María Eugenia Farías
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Mariana Noelia Soria
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Genis Andrés Castillo Villamizar
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany.,Línea Tecnológica Biocorrosión, Corporación para la Investigación de la Corrosión C.I.C., Piedecuesta, Colombia
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Julián Rafael Dib
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina.,Facultad de Bioquímica, Química y Farmacia, Instituto de Microbiología, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| |
Collapse
|
21
|
Reyneke B, Ndlovu T, Vincent MB, Martínez-García A, Polo-López MI, Fernández-Ibáñez P, Ferrero G, Khan S, McGuigan KG, Khan W. Validation of large-volume batch solar reactors for the treatment of rainwater in field trials in sub-Saharan Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137223. [PMID: 32062239 DOI: 10.1016/j.scitotenv.2020.137223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
The efficiency of two large-volume batch solar reactors [Prototype I (140 L) and II (88 L)] in treating rainwater on-site in a local informal settlement and farming community was assessed. Untreated [Tank 1 and Tank 2-(First-flush)] and treated (Prototype I and II) tank water samples were routinely collected from each site and all the measured physico-chemical parameters (e.g. pH and turbidity, amongst others), anions (e.g. sulphate and chloride, amongst others) and cations (e.g. iron and lead, amongst others) were within national and international drinking water guidelines limits. Culture-based analysis indicated that Escherichia coli, total and faecal coliforms, enterococci and heterotrophic bacteria counts exceeded drinking water guideline limits in 61%, 100%, 45%, 24% and 100% of the untreated tank water samples collected from both sites. However, an 8 hour solar exposure treatment for both solar reactors was sufficient to reduce these indicator organisms to within national and international drinking water standards, with the exception of the heterotrophic bacteria which exceeded the drinking water standard limit in 43% of the samples treated with the Prototype I reactor (1 log reduction). Molecular viability analysis subsequently indicated that mean overall reductions of 75% and 74% were obtained for the analysed indicator organisms (E. coli and enterococci spp.) and opportunistic pathogens (Klebsiella spp., Legionella spp., Pseudomonas spp., Salmonella spp. and Cryptosporidium spp. oocysts) in the Prototype I and II solar reactors, respectively. The large-volume batch solar reactor prototypes could thus effectively provide four (88 L Prototype II) to seven (144 L Prototype I) people on a daily basis with the basic water requirement for human activities (20 L). Additionally, a generic Water Safety Plan was developed to aid practitioners in identifying risks and implement remedial actions in this type of installation in order to ensure the safety of the treated water.
Collapse
Affiliation(s)
- B Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - T Ndlovu
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - M B Vincent
- Ecosystem Environmental Services S.A., Sant Andreu de Llavaneres, Barcelona, Spain
| | - A Martínez-García
- Plataforma Solar de Almeria-CIEMAT, P.O. Box 22, Tabernas, Almería, Spain
| | - M I Polo-López
- Plataforma Solar de Almeria-CIEMAT, P.O. Box 22, Tabernas, Almería, Spain
| | - P Fernández-Ibáñez
- Plataforma Solar de Almeria-CIEMAT, P.O. Box 22, Tabernas, Almería, Spain; Nanotechnology and Integrated BioEngineering Centre, School of Engineering, University of Ulster, Newtownabbey, Northern Ireland, United Kingdom
| | - G Ferrero
- IHE Delft Institute for Water Education, Westvest 7, 2611, AX, Delft, the Netherlands
| | - S Khan
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein 2028, South Africa
| | - K G McGuigan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - W Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa.
| |
Collapse
|
22
|
Sabio Y García CA, Schiaffino MR, Lozano VL, Vera MS, Ferraro M, Izaguirre I, Pizarro H. New findings on the effect of glyphosate on autotrophic and heterotrophic picoplankton structure: A microcosm approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105463. [PMID: 32172181 DOI: 10.1016/j.aquatox.2020.105463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/12/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Massive use of glyphosate-based herbicides in agricultural activities has led to the appearance of this herbicide in freshwater systems, which represents a potential threat to these systems and their communities. These herbicides can affect autotrophic and heterotrophic picoplankton abundance. However, little is known about glyphosate impact on the whole structure of these assemblages. Herein, we used an 8-day long microcosm approach under indoor controlled conditions to analyze changes in the structure of picoplankton exposed to a single pulse of glyphosate. The analyzed picoplankton correspond to two outdoor ponds with contrasting states: "clear" (chlorophyll-a = 3.48 μg L-1± 1.15; nephelometric turbidity, NTU = 1) and "turbid" (chlorophyll-a = 105.96 μg L-1 ± 15.3; NTU = 48). We evaluated herbicide impact on different picoplankton cytometric populations and further explored changes in bacterial dominant operational taxonomic units (OTUs) fingerprinting. We observed that glyphosate induced a drastic decrease in the abundance of phycocyanin-rich picocyanobacteria. Particularly, in the turbid system this effect resulted in an 85 % decrease in the abundance of the whole autotrophic picoplankton. Glyphosate also changed the structure of the heterotrophic fraction by means of changing bacterial dominant OTUs fingerprinting patterns in both systems and by shifting the relative abundances of cytometric groups in the clear scenario. These results demonstrate that upon glyphosate exposure picoplanktonic fractions face not only the already reported changes in abundance, but also alterations in the composition of cytometric groups and of bacterial dominant operational taxonomic units. This research provides suitable and still little explored tools to analyze agrochemical effects on picoplanktonic communities.
Collapse
Affiliation(s)
- Carmen Alejandra Sabio Y García
- CONICET - Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Int. Güiraldes 2620, Pabellón II, Ciudad Universitaria, CP 1428 Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. Ecología, Genética y Evolución. Int. Güiraldes 2620, Pabellón II, Ciudad Universitaria, CP 1428 Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| | - María Romina Schiaffino
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Argentina; Centro de Investigación y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA) - UNNOBA - UNSAdA - CONICET, Argentina
| | - Verónica Laura Lozano
- CONICET - Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Int. Güiraldes 2620, Pabellón II, Ciudad Universitaria, CP 1428 Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - María Solange Vera
- CONICET - Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Int. Güiraldes 2620, Pabellón II, Ciudad Universitaria, CP 1428 Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. Ecología, Genética y Evolución. Int. Güiraldes 2620, Pabellón II, Ciudad Universitaria, CP 1428 Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Marcela Ferraro
- Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús (IIB-INTECH), Av. Intendente Marino Km 8,200 CC 164, CP 7130 Chascomús, Buenos Aires, Argentina
| | - Irina Izaguirre
- CONICET - Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Int. Güiraldes 2620, Pabellón II, Ciudad Universitaria, CP 1428 Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. Ecología, Genética y Evolución. Int. Güiraldes 2620, Pabellón II, Ciudad Universitaria, CP 1428 Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Haydée Pizarro
- CONICET - Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Int. Güiraldes 2620, Pabellón II, Ciudad Universitaria, CP 1428 Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. Ecología, Genética y Evolución. Int. Güiraldes 2620, Pabellón II, Ciudad Universitaria, CP 1428 Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
23
|
Lamprecht-Grandío M, Cortesão M, Mirete S, de la Cámara MB, de Figueras CG, Pérez-Pantoja D, White JJ, Farías ME, Rosselló-Móra R, González-Pastor JE. Novel Genes Involved in Resistance to Both Ultraviolet Radiation and Perchlorate From the Metagenomes of Hypersaline Environments. Front Microbiol 2020; 11:453. [PMID: 32292392 PMCID: PMC7135895 DOI: 10.3389/fmicb.2020.00453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
Microorganisms that thrive in hypersaline environments on the surface of our planet are exposed to the harmful effects of ultraviolet radiation. Therefore, for their protection, they have sunscreen pigments and highly efficient DNA repair and protection systems. The present study aimed to identify new genes involved in UV radiation resistance from these microorganisms, many of which cannot be cultured in the laboratory. Thus, a functional metagenomic approach was used and for this, small-insert libraries were constructed with DNA isolated from microorganisms of high-altitude Andean hypersaline lakes in Argentina (Diamante and Ojo Seco lakes, 4,589 and 3,200 m, respectively) and from the Es Trenc solar saltern in Spain. The libraries were hosted in a UV radiation-sensitive strain of Escherichia coli (recA mutant) and they were exposed to UVB. The resistant colonies were analyzed and as a result, four clones were identified with environmental DNA fragments containing five genes that conferred resistance to UV radiation in E. coli. One gene encoded a RecA-like protein, complementing the mutation in recA that makes the E. coli host strain more sensitive to UV radiation. Two other genes from the same DNA fragment encoded a TATA-box binding protein and an unknown protein, both responsible for UV resistance. Interestingly, two other genes from different and remote environments, the Ojo Seco Andean lake and the Es Trenc saltern, encoded two hypothetical proteins that can be considered homologous based on their significant amino acid similarity (49%). All of these genes also conferred resistance to 4-nitroquinoline 1-oxide (4-NQO), a compound that mimics the effect of UV radiation on DNA, and also to perchlorate, a powerful oxidant that can induce DNA damage. Furthermore, the hypothetical protein from the Es Trenc salterns was localized as discrete foci possibly associated with damaged sites in the DNA in cells treated with 4-NQO, so it could be involved in the repair of damaged DNA. In summary, novel genes involved in resistance to UV radiation, 4-NQO and perchlorate have been identified in this work and two of them encoding hypothetical proteins that could be involved in DNA damage repair activities not previously described.
Collapse
Affiliation(s)
| | - Marta Cortesão
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Salvador Mirete
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | | | | | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Joseph John White
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), Centro Científico Tecnológico, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | | |
Collapse
|
24
|
Berman MC, Llames ME, Minotti P, Fermani P, Quiroga MV, Ferraro MA, Metz S, Zagarese HE. Field evidence supports former experimental claims on the stimulatory effect of glyphosate on picocyanobacteria communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134601. [PMID: 31734485 DOI: 10.1016/j.scitotenv.2019.134601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/07/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Glyphosate-based herbicides are the most commonly used herbicide worldwide. Although glyphosate is known to be toxic to aquatic organisms, it can also have stimulatory effects on small-size (ø <2 µm) cyanobacteria (Pcy) able to metabolize and degrade glyphosate and AMPA. Several previous experimental studies in micro- and mesocosms reported increases of Pcy abundance in response to glyphosate additions, but comparable field evidence is presently unavailable. We surveyed a large geographical area in order to collect information on Pcy abundance from lakes within the Pampa region (with over three decades of glyphosate usage) and lakes from Patagonia (with virtually no history of glyphosate usage). Fifty-two Pampean lakes and 24 Patagonian lakes were surveyed. We used three indicators of glyphosate impact: herbicide concentration, the presence of phosphonate metabolism genes (responsible for glyphosate and AMPA degradation) in environmental DNA samples, and descriptors of land use in the surrounding area of each lake. We addressed three questions: (1) is there field evidence of stimulatory effects of glyphosate on picocyanobacteria abundance? (2) is the magnitude of the effects of glyphosate in natural systems comparable to that reported under controlled experimental conditions? and (3), how do the effects of glyphosate compare to the effects of other potential environmental drivers of Pcy biomass? The collected evidence is consistent with the hypothesis that long-term agricultural practices relying on glyphosate-based technologies had important effects on freshwater microbial communities, particularly by promoting increases in picocyanobacteria abundance.
Collapse
Affiliation(s)
- Manuel Castro Berman
- Institute of Biotechnological Research. Av., Intendente Marinos Km. 8,2, 7130 PB Chascomús, Buenos Aires, Argentina.
| | - María E Llames
- Institute of Biotechnological Research. Av., Intendente Marinos Km. 8,2, 7130 PB Chascomús, Buenos Aires, Argentina
| | - Priscilla Minotti
- Institute of Environmental Research and Engineering. Campus Miguelete, 25 de Mayo y Francia, 1650 PB San Martín, Buenos Aires, Argentina
| | - Paulina Fermani
- Institute of Biotechnological Research. Av., Intendente Marinos Km. 8,2, 7130 PB Chascomús, Buenos Aires, Argentina
| | - María V Quiroga
- Institute of Biotechnological Research. Av., Intendente Marinos Km. 8,2, 7130 PB Chascomús, Buenos Aires, Argentina
| | - Marcela A Ferraro
- Institute of Biotechnological Research. Av., Intendente Marinos Km. 8,2, 7130 PB Chascomús, Buenos Aires, Argentina
| | - Sebastián Metz
- Institute of Biotechnological Research. Av., Intendente Marinos Km. 8,2, 7130 PB Chascomús, Buenos Aires, Argentina
| | - Horacio E Zagarese
- Institute of Biotechnological Research. Av., Intendente Marinos Km. 8,2, 7130 PB Chascomús, Buenos Aires, Argentina
| |
Collapse
|
25
|
Fuentes-Tristan S, Parra-Saldivar R, Iqbal HMN, Carrillo-Nieves D. Bioinspired biomolecules: Mycosporine-like amino acids and scytonemin from Lyngbya sp. with UV-protection potentialities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2019; 201:111684. [PMID: 31733505 DOI: 10.1016/j.jphotobiol.2019.111684] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/27/2019] [Accepted: 11/01/2019] [Indexed: 02/08/2023]
Abstract
Since the beginning of life on Earth, cyanobacteria have been exposed to natural ultraviolet-A radiation (UV-A, 315-400 nm) and ultraviolet-B radiation (UV-B, 280-315 nm), affecting their cells' biomolecules. These photoautotrophic organisms have needed to evolve to survive and thus, have developed different mechanisms against ultraviolet radiation. These mechanisms include UVR avoidance, DNA repair, and cell protection by producing photoprotective compounds like Scytonemin, carotenoids, and Mycosporine-like amino acids (MAAs). Lyngbya marine species are commercially important due to their secondary metabolites that show a range of biological activities including antibacterial, insecticidal, anticancer, antifungal, and enzyme inhibitor. The main topic in this review covers the Lyngbya sp., a cyanobacteria genus that presents photoprotection provided by the UV-absorbing/screening compounds such as MAAs and Scytonemin. These compounds have considerable potentialities to be used in the cosmeceutical, pharmaceutical, biotechnological and biomedical sectors and other related manufacturing industries with an additional value of environment friendly in nature. Scytonemin has UV protectant, anti-inflammatory, anti-proliferative, and antioxidant activity. MAAs act as sunscreens, provide additional protection as antioxidants, can be used as UV protectors, activators of cell proliferation, skin-care products, and even as photo-stabilizing additives in paints, plastics, and varnishes. The five MAAs identified so far in Lyngbya sp. are Asterina-330, M-312, Palythine, Porphyra-334, and Shinorine are capable of dissipating absorbed radiation as harmless heat without producing reactive oxygen species.
Collapse
Affiliation(s)
- Susana Fuentes-Tristan
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico.
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan C.P. 45138, Jalisco, Mexico.
| |
Collapse
|
26
|
Pinto M, Langer TM, Hüffer T, Hofmann T, Herndl GJ. The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession. PLoS One 2019; 14:e0217165. [PMID: 31166981 PMCID: PMC6550384 DOI: 10.1371/journal.pone.0217165] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/06/2019] [Indexed: 01/23/2023] Open
Abstract
Once in the ocean, plastics are rapidly colonized by complex microbial communities. Factors affecting the development and composition of these communities are still poorly understood. Additionally, whether there are plastic-type specific communities developing on different plastics remains enigmatic. We determined the development and succession of bacterial communities on different plastics under ambient and dim light conditions in the coastal Northern Adriatic over the course of two months using scanning electron microscopy and 16S rRNA gene analyses. Plastics used were low- and high-density polyethylene (LDPE and HDPE, respectively), polypropylene (PP) and polyvinyl chloride with two typical additives (PVC DEHP and PVC DINP). The bacterial communities developing on the plastics clustered in two groups; one group was found on PVC and the other group on all the other plastics and on glass, which was used as an inert control. Specific bacterial taxa were found on specific surfaces in essentially all stages of biofilm development and in both ambient and dim light conditions. Differences in bacterial community composition between the different plastics and light exposures were stronger after an incubation period of one week than at the later stages of the incubation. Under both ambient and dim light conditions, one part of the bacterial community was common on all plastic types, especially in later stages of the biofilm development, with families such as Flavobacteriaceae, Rhodobacteraceae, Planctomycetaceae and Phyllobacteriaceae presenting relatively high relative abundances on all surfaces. Another part of the bacterial community was plastic-type specific. The plastic-type specific fraction was variable among the different plastic types and was more abundant after one week of incubation than at later stages of the succession.
Collapse
Affiliation(s)
- Maria Pinto
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
- Research Platform ‘Plastics in the Environment and Society’, University of Vienna, Vienna, Austria
- * E-mail:
| | - Teresa M. Langer
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
| | - Thorsten Hüffer
- Research Platform ‘Plastics in the Environment and Society’, University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Thilo Hofmann
- Research Platform ‘Plastics in the Environment and Society’, University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Gerhard J. Herndl
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
- Research Platform ‘Plastics in the Environment and Society’, University of Vienna, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| |
Collapse
|
27
|
Kulkarni A, Kapley A, Dhodapkar RS, Nagababu P, Rayalu S. Plasmonics driven engineered pasteurizers for solar water disinfection (SWADIS). JOURNAL OF HAZARDOUS MATERIALS 2019; 369:474-482. [PMID: 30798162 DOI: 10.1016/j.jhazmat.2019.02.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Rampant environmental pollution is the most ubiquitous concern of current world. A sustainable panacea to overarching contamination of water-borne pathogens demands cheap and eco-friendly oriented research. Solar energy is effortlessly accessible in most of the weather conditions and can be used for water decontamination. In this context, Solar Water Disinfection (SWADIS) appears to be feasible solution. Herein we are reporting newly developed Carbon nanoparticles (CNP) which shows absorption of light in broad region extending from Ultraviolet-Visible (UV) to Infrared Spectroscopy (IR). This CNP with pronounced photothermal effect has been used for SWADIS. Photothermal effect of plasmonic nanomaterials has massive potential and has exploited for disinfection of water. Moving towards practical device design we have developed an efficient CNP based Multipurpose Solar Pasteurizer (MSP) and Nano-Solar Pasteurizer (NSP) which can efficiently perform the SWADIS. Result shows that upon irradiation under natural solar radiation pasteurizers can thermally inactivate the bacteria. The system proves to be able to perform 100% bacterial inactivation in sunny days. We also conducted bacterial inactivation experiments by simulating 106 CFU mL-1 concentration of E. coli in water to mimic field conditions. Results are evident that pasteurizers achieved 100% bacterial inactivation within period of ˜45 min under sunlight.
Collapse
|
28
|
Metz S, Lopes dos Santos A, Berman MC, Bigeard E, Licursi M, Not F, Lara E, Unrein F. Diversity of photosynthetic picoeukaryotes in eutrophic shallow lakes as assessed by combining flow cytometry cell-sorting and high throughput sequencing. FEMS Microbiol Ecol 2019; 95:5393366. [DOI: 10.1093/femsec/fiz038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/18/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sebastián Metz
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET. Av. Intendente Marino Km 8.200, Chascomús (7130), Buenos Aires, Argentina
| | - Adriana Lopes dos Santos
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Manuel Castro Berman
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET. Av. Intendente Marino Km 8.200, Chascomús (7130), Buenos Aires, Argentina
| | - Estelle Bigeard
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Magdalena Licursi
- Instituto Nacional de Limnología (INALI), CONICET-UNL. Ciudad Universitaria - Paraje el Pozo s/n (3000), Santa Fé, Argentina
| | - Fabrice Not
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Enrique Lara
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Fernando Unrein
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET. Av. Intendente Marino Km 8.200, Chascomús (7130), Buenos Aires, Argentina
| |
Collapse
|
29
|
Improved bactericidal capacity of UV-B radiation against E. coli strains by photosensitizing bacteria with fructosazine - An advanced Maillard reaction product. Food Chem 2019; 271:354-361. [PMID: 30236687 DOI: 10.1016/j.foodchem.2018.07.191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 11/20/2022]
Abstract
This study investigated the effect of UV-B irradiation and the combinational effect with glucosamine caramel, fructosazine and riboflavin on the antimicrobial activities against Bacillus subtilis (ATCC 6633) and two strains of Escherichia coli (AW 1.7 and ATCC 25922). The quantum yield of fructosazine was two times less than that of tryptophan, indicating its ability to emit fluorescent light but less efficiently than tryptophan. UV-B treatment alone was efficient to achieve a bactericidal effect for both E. coli stains tested, however no effect was found for Bacillus subtilis for up to 80 mJ/cm2 UV-B. The combination of UV-B with photosensitizers fructosazine, glucosamine caramel and riboflavin enhanced the UV-B efficacy against E. coli strains at lower UV-B doses, while Bacillus subtilis ATCC 6633 was more resistant to the treatment combinations. High-performance liquid chromatography showed the production of different fructosazine reaction products occurred during irradiation, including the possible formation of endoperoxides.
Collapse
|
30
|
Asao S, Parton WJ, Chen M, Gao W. Photodegradation accelerates ecosystem N cycling in a simulated California grassland. Ecosphere 2018. [DOI: 10.1002/ecs2.2370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Shinichi Asao
- USDA UV‐B Monitoring and Research Program Natural Resource Ecology Laboratory Colorado State University Fort Collins Colorado 80523 USA
| | - William J. Parton
- USDA UV‐B Monitoring and Research Program Natural Resource Ecology Laboratory Colorado State University Fort Collins Colorado 80523 USA
| | - Maosi Chen
- USDA UV‐B Monitoring and Research Program Natural Resource Ecology Laboratory Colorado State University Fort Collins Colorado 80523 USA
| | - Wei Gao
- USDA UV‐B Monitoring and Research Program Natural Resource Ecology Laboratory Colorado State University Fort Collins Colorado 80523 USA
- Department of Ecosystem Science and Sustainability Colorado State University Fort Collins Colorado 80523 USA
| |
Collapse
|
31
|
Kviatkovski I, Mamane H, Lakretz A, Sherman I, Beno-Moualem D, Minz D. Resistance of a multiple-isolate marine culture to ultraviolet C irradiation: inactivation vs biofilm formation. Lett Appl Microbiol 2018; 67:278-284. [PMID: 29901218 DOI: 10.1111/lam.13032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/26/2018] [Accepted: 06/11/2018] [Indexed: 11/30/2022]
Abstract
Ultraviolet (UV) irradiation is an emerging strategy for controlling the formation of undesired biofilms in water desalination facilities using reverse osmosis (RO). However, most studies examining these pretreatments are limited as they have been conducted on single-species cultures, while biofilms are composed of multiple-species communities. The goal of this study was to investigate the effect of UV-C irradiation on a model community composed of six environmental isolates from a marine biofilm formed in RO seawater desalination plant. There was a high variance in the susceptibility of the single-isolate cultures to UV-C, from no response (isolate Eryth23) to complete inactivation (isolate Vib3). The most active wavelength was around 260 nm, resulting in a loss of viability of single-isolate cultures and loss of vitality of the mixed-isolate cultures. With respect to biofilm formation, the activity of this wavelength was completely different compared to its activity on planktonic suspension. Irradiation with 260 nm did not inhibit the total biofilm formation by the six-isolate culture; moreover, isolates such as the resistant Eryth23 or the susceptible Pseudoalt17, even gained abundance in the mixed isolate biofilm. The only decrease in total biofilm was obtained from irradiation at 280 nm, which was less active against the planktonic culture. These results indicate that the complexity of the biofilm-forming microbial community may contribute to its resistance to UV-C irradiation. SIGNIFICANCE AND IMPACT OF THE STUDY This study examined the resistance of a multiple-isolate native marine culture to UV-C irradiation, in terms of viability, vitality and the ability to form biofilm. Results of this study showed that even though most of the cells were inactivated both in single-isolate and in multiple-isolate cultures, still the multiple-isolate cultures manages to form biofilms, surprisingly with higher biomass than without irradiation. The significance of the study is in its conclusion that studies on UV-C irradiation of biofilm-forming model micro-organisms are not always applicable to natural multiple-species communities.
Collapse
Affiliation(s)
- I Kviatkovski
- Department of Soil, Water, and Environmental Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan, Israel.,Robert H. Smith Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - H Mamane
- Faculty of Engineering, School of Mechanical Engineering and Water Research Center (TAU-WRC), Tel Aviv University, Tel Aviv, Israel
| | - A Lakretz
- Faculty of Engineering, School of Mechanical Engineering and Water Research Center (TAU-WRC), Tel Aviv University, Tel Aviv, Israel
| | - I Sherman
- Faculty of Engineering, School of Mechanical Engineering and Water Research Center (TAU-WRC), Tel Aviv University, Tel Aviv, Israel
| | - D Beno-Moualem
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| | - D Minz
- Department of Soil, Water, and Environmental Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| |
Collapse
|
32
|
Glady-Croue J, Niu XZ, Ramsay JP, Watkin E, Murphy RJT, Croue JP. Survival of antibiotic resistant bacteria following artificial solar radiation of secondary wastewater effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:1005-1011. [PMID: 29898509 DOI: 10.1016/j.scitotenv.2018.01.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
Urban wastewater treatment plant effluents represent one of the major emission sources of antibiotic-resistant bacteria (ARB) in natural aquatic environments. In this study, the effect of artificial solar radiation on total culturable heterotrophic bacteria and ARB (including amoxicillin-resistant, ciprofloxacin-resistant, rifampicin-resistant, sulfamethoxazole-resistant, and tetracycline-resistant bacteria) present in secondary effluent was investigated. Artificial solar radiation was effective in inactivating the majority of environmental bacteria, however, the proportion of strains with ciprofloxacin-resistance and rifampicin-resistance increased in the surviving populations. Isolates of Pseudomonas putida, Serratia marcescens, and Stenotrophomonas maltophilia nosocomial pathogens were identified as resistant to solar radiation and to at least three antibiotics. Draft genome sequencing and typing revealed isolates carrying multiple resistance genes; where S. maltophilia (resistant to all studied antibiotics) sequence type was similar to strains isolated in blood infections. Results from this study confirm that solar radiation reduces total bacterial load in secondary effluent, but may indirectly increase the relative abundance of ARB.
Collapse
Affiliation(s)
- Julie Glady-Croue
- Curtin Water Quality Research Centre, Curtin University. Perth, Western Australia, Australia
| | - Xi-Zhi Niu
- Curtin Water Quality Research Centre, Curtin University. Perth, Western Australia, Australia
| | - Joshua P Ramsay
- CHIRI, School of Biomedical Science, Curtin University, Perth, Western Australia, Australia
| | - Elizabeth Watkin
- CHIRI, School of Biomedical Science, Curtin University, Perth, Western Australia, Australia
| | - Riley J T Murphy
- CHIRI, School of Biomedical Science, Curtin University, Perth, Western Australia, Australia
| | - Jean-Philippe Croue
- Curtin Water Quality Research Centre, Curtin University. Perth, Western Australia, Australia.
| |
Collapse
|
33
|
Fan X, Huang R, Chen H. Application of ultraviolet C technology for surface decontamination of fresh produce. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Kang J, Ma X, He S. Evidence of high-altitude adaptation in the glyptosternoid fish, Creteuchiloglanis macropterus from the Nujiang River obtained through transcriptome analysis. BMC Evol Biol 2017; 17:229. [PMID: 29169322 PMCID: PMC5701497 DOI: 10.1186/s12862-017-1074-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/15/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Organisms living at high altitudes face low oxygen and temperature conditions; thus, the genetic mechanisms underlying the adaptations in these organisms merit investigation. The glyptosternoid fish, Creteuchiloglanis macropterus mainly inhabits regions with gradual increases in altitudes along the Nujiang River and might serve as an appropriate evolutionary model for detecting adaptation processes in environments with altitude changes. RESULTS We constructed eleven RNA-sequencing (RNA-seq) libraries of C. macropterus collected from five locations at different altitudes to identify the genetic signatures of high-altitude adaptation. The comparative genomic analysis indicated that C. macropterus has an accelerated evolutionary rate compared with that of fishes in the lowland, and fishes at higher altitudes might evolve faster. Functional enrichment analysis of the fast-evolving and positively selected genes, differentially expressed genes and highly expressed genes, showed that these genes were involved in many functions related to energy metabolism and hypoxia. CONCLUSIONS Our study provides evidence of high-altitude adaptation in C. macropterus, and the detected adaptive genes might be a resource for future investigations of adaptations to high-altitude environments in other fishes.
Collapse
Affiliation(s)
- Jingliang Kang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Science, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 China
- University of the Chinese Academy of Science, Beijing, China
| | - Xiuhui Ma
- College of Animal Science, Guizhou University, Guiyang, Guizhou 550025 China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Science, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 China
| |
Collapse
|
35
|
Lasagabaster A, Martínez de Marañón I. Comparative Study on the Inactivation and Photoreactivation Response of Listeria monocytogenes Seafood Isolates and a Listeria innocua Surrogate after Pulsed Light Treatment. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1972-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Adair EC, Parton WJ, King JY, Brandt LA, Lin Y. Accounting for photodegradation dramatically improves prediction of carbon losses in dryland systems. Ecosphere 2017. [DOI: 10.1002/ecs2.1892] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- E. Carol Adair
- Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont 05405 USA
| | - William J. Parton
- Natural Resource Ecology Laboratory, and Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado 80523 USA
| | - Jennifer Y. King
- Department of Geography University of California Santa Barbara California 93106 USA
| | - Leslie A. Brandt
- Northern Institute of Applied Climate Science USDA Forest Service Saint Paul Minnesota 55108 USA
| | - Yang Lin
- Department of Geography University of California Santa Barbara California 93106 USA
| |
Collapse
|
37
|
Pérez V, Hengst M, Kurte L, Dorador C, Jeffrey WH, Wattiez R, Molina V, Matallana-Surget S. Bacterial Survival under Extreme UV Radiation: A Comparative Proteomics Study of Rhodobacter sp., Isolated from High Altitude Wetlands in Chile. Front Microbiol 2017; 8:1173. [PMID: 28694800 PMCID: PMC5483449 DOI: 10.3389/fmicb.2017.01173] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022] Open
Abstract
Salar de Huasco, defined as a polyextreme environment, is a high altitude saline wetland in the Chilean Altiplano (3800 m.a.s.l.), permanently exposed to the highest solar radiation doses registered in the world. We present here the first comparative proteomics study of a photoheterotrophic bacterium, Rhodobacter sp., isolated from this remote and hostile habitat. We developed an innovative experimental approach using different sources of radiation (in situ sunlight and UVB lamps), cut-off filters (Mylar, Lee filters) and a high-throughput, label-free quantitative proteomics method to comprehensively analyze the effect of seven spectral bands on protein regulation. A hierarchical cluster analysis of 40 common proteins revealed that all conditions containing the most damaging UVB radiation induced similar pattern of protein regulation compared with UVA and visible light spectral bands. Moreover, it appeared that the cellular adaptation of Rhodobacter sp. to osmotic stress encountered in the hypersaline environment from which it was originally isolated, might further a higher resistance to damaging UV radiation. Indeed, proteins involved in the synthesis and transport of key osmoprotectants, such as glycine betaine and inositol, were found in very high abundance under UV radiation compared to the dark control, suggesting the function of osmolytes as efficient reactive oxygen scavengers. Our study also revealed a RecA-independent response and a tightly regulated network of protein quality control involving proteases and chaperones to selectively degrade misfolded and/or damaged proteins.
Collapse
Affiliation(s)
- Vilma Pérez
- Laboratory of Molecular Ecology and Applied Microbiology, Department of Pharmaceutical Sciences, Universidad Católica del NorteAntofagasta, Chile.,Centre for Biotechnology and BioengineeringSantiago, Chile.,Programa de Doctorado en Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad de AntofagastaAntofagasta, Chile
| | - Martha Hengst
- Laboratory of Molecular Ecology and Applied Microbiology, Department of Pharmaceutical Sciences, Universidad Católica del NorteAntofagasta, Chile.,Centre for Biotechnology and BioengineeringSantiago, Chile
| | - Lenka Kurte
- Laboratory of Molecular Ecology and Applied Microbiology, Department of Pharmaceutical Sciences, Universidad Católica del NorteAntofagasta, Chile.,Centre for Biotechnology and BioengineeringSantiago, Chile
| | - Cristina Dorador
- Centre for Biotechnology and BioengineeringSantiago, Chile.,Laboratory of Microbial Complexity and Functional Ecology, Institute of Antofagasta and Department of Biotechnology, Universidad de AntofagastaAntofagasta, Chile
| | - Wade H Jeffrey
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, PensacolaFL, United States
| | - Ruddy Wattiez
- Proteomics and Microbiology Laboratory, Research Institute of Biosciences, University of MonsMons, Belgium
| | - Veronica Molina
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad de Playa AnchaValparaíso, Chile
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of StirlingStirling, United Kingdom
| |
Collapse
|
38
|
Interplay between stochastic and deterministic processes in the maintenance of alternative community states in Verrucomicrobia-dominated shallow lakes. FEMS Microbiol Ecol 2017; 93:3860560. [DOI: 10.1093/femsec/fix077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/30/2017] [Indexed: 11/12/2022] Open
|
39
|
Rasuk MC, Ferrer GM, Kurth D, Portero LR, Farías ME, Albarracín VH. UV-Resistant Actinobacteria from High-Altitude Andean Lakes: Isolation, Characterization and Antagonistic Activities. Photochem Photobiol 2017; 93:865-880. [DOI: 10.1111/php.12759] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/03/2017] [Indexed: 11/27/2022]
Affiliation(s)
- María Cecilia Rasuk
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; S. M. de Tucumán Argentina
| | - Gabriela Mónica Ferrer
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; S. M. de Tucumán Argentina
| | - Daniel Kurth
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; S. M. de Tucumán Argentina
| | - Luciano Raúl Portero
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; S. M. de Tucumán Argentina
| | - María Eugenia Farías
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; S. M. de Tucumán Argentina
| | - Virginia Helena Albarracín
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI); CCT; CONICET; S. M. de Tucumán Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo; Universidad Nacional de Tucumán; Tucumán Argentina
- Centro Integral de Microscopía Electrónica; CCT-Tucumán; CONICET; Universidad Nacional de Tucumán; Tucumán Argentina
| |
Collapse
|
40
|
Al-Jassim N, Mantilla-Calderon D, Wang T, Hong PY. Inactivation and Gene Expression of a Virulent Wastewater Escherichia coli Strain and the Nonvirulent Commensal Escherichia coli DSM1103 Strain upon Solar Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3649-3659. [PMID: 28263596 DOI: 10.1021/acs.est.6b05377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study examined the decay kinetics and molecular responses of two Escherichia coli strains upon solar irradiation. The first is E. coli PI-7, a virulent and antibiotic-resistant strain that was isolated from wastewater and carries the emerging NDM-1 antibiotic resistance gene. The other strain, E. coli DSM1103, displayed lower virulence and antibiotic resistance than E. coli PI-7. In a buffer solution, E. coli PI-7 displayed a longer lag phase prior to decay and a longer half-life compared with E. coli DSM1103 (6.64 ± 0.63 h and 2.85 ± 0.46 min vs 1.33 ± 0.52 h and 2.04 ± 0.36 min). In wastewater, both E. coli strains decayed slower than they did in buffer. Although solar irradiation remained effective in reducing the numbers of both strains by more than 5-log10 in <24 h, comparative genomics and transcriptomics revealed differences in the genomes and overall regulation of genes between the two E. coli strains. A wider arsenal of genes related to oxidative stress, cellular repair and protective mechanisms were upregulated in E. coli PI-7. Subpopulations of E. coli PI-7 expressed genes related to dormancy and persister cell formation during the late decay phase, which may have accounted for its prolonged persistence. Upon prolonged solar irradiation, both E. coli strains displayed upregulation of genes related to horizontal gene transfer and antibiotic resistance. Virulence functions unique to E. coli PI-7 were also upregulated. Our findings collectively indicated that, whereas solar irradiation is able to reduce total cell numbers, viable E. coli remained and expressed genes that enable survival despite solar treatment. There remains a need for heightened levels of concern regarding risks arising from the dissemination of E. coli that may remain viable in wastewater after solar irradiation.
Collapse
Affiliation(s)
- Nada Al-Jassim
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Saudi Arabia
| | - David Mantilla-Calderon
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Saudi Arabia
| | - Tiannyu Wang
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Saudi Arabia
| | - Pei-Ying Hong
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
41
|
Castro-Severyn J, Remonsellez F, Valenzuela SL, Salinas C, Fortt J, Aguilar P, Pardo-Esté C, Dorador C, Quatrini R, Molina F, Aguayo D, Castro-Nallar E, Saavedra CP. Comparative Genomics Analysis of a New Exiguobacterium Strain from Salar de Huasco Reveals a Repertoire of Stress-Related Genes and Arsenic Resistance. Front Microbiol 2017; 8:456. [PMID: 28377753 PMCID: PMC5360010 DOI: 10.3389/fmicb.2017.00456] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/06/2017] [Indexed: 11/13/2022] Open
Abstract
The Atacama Desert hosts diverse ecosystems including salt flats and shallow Andean lakes. Several heavy metals are found in the Atacama Desert, and microorganisms growing in this environment show varying levels of resistance/tolerance to copper, tellurium, and arsenic, among others. Herein, we report the genome sequence and comparative genomic analysis of a new Exiguobacterium strain, sp. SH31, isolated from an altiplanic shallow athalassohaline lake. Exiguobacterium sp. SH31 belongs to the phylogenetic Group II and its closest relative is Exiguobacterium sp. S17, isolated from the Argentinian Altiplano (95% average nucleotide identity). Strain SH31 encodes a wide repertoire of proteins required for cadmium, copper, mercury, tellurium, chromium, and arsenic resistance. Of the 34 Exiguobacterium genomes that were inspected, only isolates SH31 and S17 encode the arsenic efflux pump Acr3. Strain SH31 was able to grow in up to 10 mM arsenite and 100 mM arsenate, indicating that it is arsenic resistant. Further, expression of the ars operon and acr3 was strongly induced in response to both toxics, suggesting that the arsenic efflux pump Acr3 mediates arsenic resistance in Exiguobacterium sp. SH31.
Collapse
Affiliation(s)
- Juan Castro-Severyn
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile; Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias Biológicas, Universidad Andrés BelloSantiago, Chile
| | - Francisco Remonsellez
- Laboratorio de Tecnologías de Membranas, Biotecnología y Medio Ambiente, Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte Antofagasta, Chile
| | - Sandro L Valenzuela
- Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias Biológicas, Universidad Andrés Bello Santiago, Chile
| | - Cesar Salinas
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Jonathan Fortt
- Laboratorio de Tecnologías de Membranas, Biotecnología y Medio Ambiente, Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte Antofagasta, Chile
| | - Pablo Aguilar
- Laboratorio de Tecnologías de Membranas, Biotecnología y Medio Ambiente, Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del NorteAntofagasta, Chile; Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta and Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de AntofagastaAntofagasta, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta and Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de AntofagastaAntofagasta, Chile; Centre for Biotechnology and BioengineeringAntofagasta, Chile
| | - Raquel Quatrini
- Laboratorio de Ecofisiología Microbiana, Fundación Ciencia and Vida Santiago, Chile
| | | | - Daniel Aguayo
- Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias Biológicas, Universidad Andrés BelloSantiago, Chile; Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Eduardo Castro-Nallar
- Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias Biológicas, Universidad Andrés Bello Santiago, Chile
| | - Claudia P Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| |
Collapse
|
42
|
Huber P, Diovisalvi N, Ferraro M, Metz S, Lagomarsino L, Llames ME, Royo-Llonch M, Bustingorry J, Escaray R, Acinas SG, Gasol JM, Unrein F. Phenotypic plasticity in freshwater picocyanobacteria. Environ Microbiol 2017; 19:1120-1133. [PMID: 27943603 DOI: 10.1111/1462-2920.13638] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/28/2016] [Indexed: 11/30/2022]
Abstract
Picocyanobacteria can occur as single-cell (Pcy) or as colonies (CPcy). Published evidence suggests that some Pcy strains have the capability to aggregate under certain culture conditions, however this has not been demonstrated to occur in natural environments. We investigated whether the Pcy and CPcy belong to the same species (i.e. phylotype), and the factors that determine their morphological and genetic variability in a hypertrophic shallow lake dominated by picocyanobacteria. Six main different morphologies and >30 phylotypes were observed. All sequences retrieved belonged to the 'Anathece + Cyanobium' clade (Synechococcales) that are known to have the capability of aggregation/disaggregation. The temporal variation of picocyanobacteria morphotype composition was weakly correlated with the DGGE temporal pattern, and could be explained by the composition of the zooplankton assemblage. Laboratory experiments confirmed that the small cladoceran Bosmina favoured the dominance of CPcy, i.e. Cyanodictyon doubled the size of the colonies when present, most likely through the aggregation of single-cell picocyanobacteria into colonies. Flow cytometry cell sorting and 16S rRNA + ITS sequencing of the Pcy and CPcy cytometrically-defined populations revealed that some phylotypes could be found in both sorted populations, suggesting phenotypic plasticity in which various Synechococcales phylotypes could be found in situ either as single-cells or as colonies.
Collapse
Affiliation(s)
- Paula Huber
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| | - Nadia Diovisalvi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| | - Marcela Ferraro
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| | - Sebastián Metz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| | - Leonardo Lagomarsino
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| | - María Eugenia Llames
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| | - Marta Royo-Llonch
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - José Bustingorry
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| | - Roberto Escaray
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| | - Silvia G Acinas
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Fernando Unrein
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| |
Collapse
|
43
|
Gutiérrez-Preciado A, Vargas-Chávez C, Reyes-Prieto M, Ordoñez OF, Santos-García D, Rosas-Pérez T, Valdivia-Anistro J, Rebollar EA, Saralegui A, Moya A, Merino E, Farías ME, Latorre A, Souza V. The genomic sequence of Exiguobacterium chiriqhucha str. N139 reveals a species that thrives in cold waters and extreme environmental conditions. PeerJ 2017; 5:e3162. [PMID: 28439458 PMCID: PMC5399880 DOI: 10.7717/peerj.3162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/08/2017] [Indexed: 02/05/2023] Open
Abstract
We report the genome sequence of Exiguobacterium chiriqhucha str. N139, isolated from a high-altitude Andean lake. Comparative genomic analyses of the Exiguobacterium genomes available suggest that our strain belongs to the same species as the previously reported E. pavilionensis str. RW-2 and Exiguobacterium str. GIC 31. We describe this species and propose the chiriqhucha name to group them. 'Chiri qhucha' in Quechua means 'cold lake', which is a common origin of these three cosmopolitan Exiguobacteria. The 2,952,588-bp E. chiriqhucha str. N139 genome contains one chromosome and three megaplasmids. The genome analysis of the Andean strain suggests the presence of enzymes that confer E. chiriqhucha str. N139 the ability to grow under multiple environmental extreme conditions, including high concentrations of different metals, high ultraviolet B radiation, scavenging for phosphorous and coping with high salinity. Moreover, the regulation of its tryptophan biosynthesis suggests that novel pathways remain to be discovered, and that these pathways might be fundamental in the amino acid metabolism of the microbial community from Laguna Negra, Argentina.
Collapse
Affiliation(s)
- Ana Gutiérrez-Preciado
- Unidad de Genética Evolutiva, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Calle Catedrático José Beltrán Martínez, Paterna, Valencia, Spain
- Current affiliation: Ecologie Systématique Evolution, CNRS, AgroParisTech, Université Paris Sud (Paris XI), Orsay, France
| | - Carlos Vargas-Chávez
- Unidad de Genética Evolutiva, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Calle Catedrático José Beltrán Martínez, Paterna, Valencia, Spain
| | - Mariana Reyes-Prieto
- Unidad de Genética Evolutiva, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Calle Catedrático José Beltrán Martínez, Paterna, Valencia, Spain
| | - Omar F. Ordoñez
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pasaje Caseros, San Miguel de Tucumán, Argentina
| | - Diego Santos-García
- Unidad de Genética Evolutiva, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Calle Catedrático José Beltrán Martínez, Paterna, Valencia, Spain
- Current affiliation: Department of Entomology, Hebrew University of Jerusalem, Rehovot, Israel
| | - Tania Rosas-Pérez
- Unidad de Genética Evolutiva, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Calle Catedrático José Beltrán Martínez, Paterna, Valencia, Spain
| | - Jorge Valdivia-Anistro
- Carrera de Biología, Faculta de Estudios Superiores Zaragoza, UNAM, Mexico City, Mexico
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México coyoacan, Mexico City, México
| | - Eria A. Rebollar
- Department of Biology, James Madison University, Harrisonburg, VI, United States of America
| | - Andrés Saralegui
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Andrés Moya
- Unidad de Genética Evolutiva, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Calle Catedrático José Beltrán Martínez, Paterna, Valencia, Spain
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Belgrano y Pasaje Caseros, San Miguel de Tucumán, Argentina
| | - Amparo Latorre
- Unidad de Genética Evolutiva, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Calle Catedrático José Beltrán Martínez, Paterna, Valencia, Spain
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México coyoacan, Mexico City, México
| |
Collapse
|
44
|
Chen M, Parton WJ, Adair EC, Asao S, Hartman MD, Gao W. Simulation of the effects of photodecay on long‐term litter decay using DayCent. Ecosphere 2016. [DOI: 10.1002/ecs2.1631] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maosi Chen
- United States Department of Agriculture UV‐B Monitoring and Research Program Natural Resource Ecology Laboratory Colorado State University Fort Collins Colorado 80521 USA
| | - William J. Parton
- Natural Resource Ecology Laboratory Colorado State University Fort Collins Colorado 80523 USA
| | - E. Carol Adair
- Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont 05405 USA
| | - Shinichi Asao
- United States Department of Agriculture UV‐B Monitoring and Research Program Natural Resource Ecology Laboratory Colorado State University Fort Collins Colorado 80521 USA
- Natural Resource Ecology Laboratory Colorado State University Fort Collins Colorado 80523 USA
| | - Melannie D. Hartman
- United States Department of Agriculture UV‐B Monitoring and Research Program Natural Resource Ecology Laboratory Colorado State University Fort Collins Colorado 80521 USA
- Natural Resource Ecology Laboratory Colorado State University Fort Collins Colorado 80523 USA
| | - Wei Gao
- United States Department of Agriculture UV‐B Monitoring and Research Program Natural Resource Ecology Laboratory Colorado State University Fort Collins Colorado 80521 USA
- Department of Ecosystem Science and Sustainability Colorado State University Fort Collins Colorado 80523 USA
| |
Collapse
|
45
|
Perez MF, Contreras L, Garnica NM, Fernández-Zenoff MV, Farías ME, Sepulveda M, Ramallo J, Dib JR. Native Killer Yeasts as Biocontrol Agents of Postharvest Fungal Diseases in Lemons. PLoS One 2016; 11:e0165590. [PMID: 27792761 PMCID: PMC5085023 DOI: 10.1371/journal.pone.0165590] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/16/2016] [Indexed: 11/19/2022] Open
Abstract
Economic losses caused by postharvest diseases represent one of the main problems of the citrus industry worldwide. The major diseases affecting citrus are the "green mold" and "blue mold", caused by Penicillium digitatum and P. italicum, respectively. To control them, synthetic fungicides are the most commonly used method. However, often the emergence of resistant strains occurs and their use is becoming more restricted because of toxic effects and environmental pollution they generate, combined with trade barriers to international markets. The aim of this work was to isolate indigenous killer yeasts with antagonistic activity against fungal postharvest diseases in lemons, and to determine their control efficiency in in vitro and in vivo assays. Among 437 yeast isolates, 8.5% show to have a killer phenotype. According to molecular identification, based on the 26S rDNA D1/D2 domain sequences analysis, strains were identified belonging to the genera Saccharomyces, Wickerhamomyces, Kazachstania, Pichia, Candida and Clavispora. Killers were challenged with pathogenic molds and strains that caused the maximum in vitro inhibition of P. digitatum were selected for in vivo assays. Two strains of Pichia and one strain of Wickerhamomyces depicted a significant protection (p <0.05) from decay by P. digitatum in assays using wounded lemons. Thus, the native killer yeasts studied in this work showed to be an effective alternative for the biocontrol of postharvest fungal infections of lemons and could be promising agents for the development of commercial products for the biological control industry.
Collapse
Affiliation(s)
- María Florencia Perez
- Planta Piloto de Procesos Industriales Microbiológicos - Consejo Nacional de Investigaciones Científicas y Técnicas, Tucumán, Argentina
| | - Luciana Contreras
- Planta Piloto de Procesos Industriales Microbiológicos - Consejo Nacional de Investigaciones Científicas y Técnicas, Tucumán, Argentina
| | - Nydia Mercedes Garnica
- Planta Piloto de Procesos Industriales Microbiológicos - Consejo Nacional de Investigaciones Científicas y Técnicas, Tucumán, Argentina
| | - María Verónica Fernández-Zenoff
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán. Ayacucho 471 (4000), Tucumán, Argentina
| | - María Eugenia Farías
- Planta Piloto de Procesos Industriales Microbiológicos - Consejo Nacional de Investigaciones Científicas y Técnicas, Tucumán, Argentina
| | - Milena Sepulveda
- Laboratorio de Desarrollo e Investigación, SA San Miguel, Lavalle 4001, T4000BAB, San Miguel de Tucumán, Argentina
| | - Jacqueline Ramallo
- Laboratorio de Desarrollo e Investigación, SA San Miguel, Lavalle 4001, T4000BAB, San Miguel de Tucumán, Argentina
| | - Julián Rafael Dib
- Planta Piloto de Procesos Industriales Microbiológicos - Consejo Nacional de Investigaciones Científicas y Técnicas, Tucumán, Argentina
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán. Ayacucho 471 (4000), Tucumán, Argentina
| |
Collapse
|
46
|
Pigments from UV-resistant Antarctic bacteria as photosensitizers in Dye Sensitized Solar Cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:707-714. [DOI: 10.1016/j.jphotobiol.2016.08.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022]
|
47
|
Description of Deinococcus oregonensis sp. nov., from biological soil crusts in the Southwestern arid lands of the United States of America. Arch Microbiol 2016; 199:69-76. [PMID: 27515516 DOI: 10.1007/s00203-016-1273-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/21/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
Abstract
Biological soil crusts are distinct habitats, harbor unique prokaryotic diversity and gave an impetus to isolate novel species. In the present study, a pink-pigmented bacterium, (OR316-6T), was isolated from biological soil crusts using oligotrophic BG11-PGY medium. Strain OR316-6T was Gram-positive, short rods, non-motile and non-spore forming. Cells were positive for catalase, oxidase and β-galactosidase and negative for most of the enzymatic activities. The major fatty acids present were C16:0, C17:0, and C16:1ω7c and contained MK-8 and MK-10 as the predominant menaquinones. The cell wall peptidoglycan was of A3β variant with L-ornithine as the diamino acid. Based on the above characteristics, strain OR316-6T was assigned to the genus Deinococcus. The phylogenetic analysis indicated that strain OR316-6T was closely related to D. aquatilis DSM 23025T with a 16S rRNA gene similarity of 99.3 % and clustered with a bootstrap value of 100 %. DNA-DNA similarity between strain OR316-6T and D. aquatilis DSM 23025T was 37.0 % indicating that strain OR316-6T was a novel species. Further, DNA fingerprinting of stains OR316-6T and D. aquatilis DSM 23035T demonstrated that both strains were related to each other with a similarity coefficient of only 0.32 and supported the species status to strain OR316-6T. In addition, phenotypic characteristics distinguished strain OR316-6T from D. aquatilis DSM 23025T. Based on the cumulative differences, strain OR316-16T exhibited with its closely related species, it was identified as a novel species and proposed the name Deinococcus oregonensis sp. nov. The type strain is D. oregonensis sp. nov. (OR316-6T = JCM 13503T = DSM 17762T).
Collapse
|
48
|
Lui GY, Roser D, Corkish R, Ashbolt NJ, Stuetz R. Point-of-use water disinfection using ultraviolet and visible light-emitting diodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 553:626-635. [PMID: 26967007 DOI: 10.1016/j.scitotenv.2016.02.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Improvements in point-of-use (POU) drinking water disinfection technologies for remote and regional communities are urgently needed. Conceptually, UV-C light-emitting diodes (LEDs) overcome many drawbacks of low-pressure mercury tube based UV devices, and UV-A or visible light LEDs also show potential. To realistically evaluate the promise of LED disinfection, our study assessed the performance of a model 1.3 L reactor, similar in size to solar disinfection bottles. In all, 12 different commercial or semi-commercial LED arrays (270-740 nm) were compared for their ability to inactivate Escherichia coli K12 ATCC W3110 and Enterococcus faecalis ATCC 19433 over 6h. Five log10 and greater reductions were consistently achieved using the 270, 365, 385 and 405 nm arrays. The output of the 310 nm array was insufficient for useful disinfection while 430 and 455 nm performance was marginal (≈ 4.2 and 2.3-log10s E. coli and E. faecalis over the 6h). No significant disinfection was observed with the 525, 590, 623, 660 and 740 nm arrays. Delays in log-phase inactivation of E. coli were observed, particularly with UV-A wavelengths. The radiation doses required for >3-log10 reduction of E. coli and E. faecalis differed by 10 fold at 270 nm but only 1.5-2.5 fold at 365-455 nm. Action spectra, consistent with the literature, were observed with both indicators. The design process revealed cost and technical constraints pertaining to LED electrical efficiency, availability and lifetime. We concluded that POU LED disinfection using existing LED technology is already technically possible. UV-C LEDs offer speed and energy demand advantages, while UV-A/violet units are safer. Both approaches still require further costing and engineering development. Our study provides data needed for such work.
Collapse
Affiliation(s)
- Gough Yumu Lui
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; School of Photovoltaics and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - David Roser
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Richard Corkish
- School of Photovoltaics and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Nicholas J Ashbolt
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; School of Public Health, South Academic Building, University of Alberta, Edmonton, Alberta T6G 2G7, Canada.
| | - Richard Stuetz
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
49
|
Albarracín VH, Gärtner W, Farias ME. Forged Under the Sun: Life and Art of Extremophiles from Andean Lakes. Photochem Photobiol 2015; 92:14-28. [PMID: 26647770 DOI: 10.1111/php.12555] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/09/2015] [Accepted: 11/05/2015] [Indexed: 12/25/2022]
Abstract
High-altitude Andean lakes (HAAL) are a treasure chest for microbiological research in South America. Their indigenous microbial communities are exposed to extremely high UV irradiation and to multiple chemical extremes (Arsenic, high salt content, alkalinity). Microbes are found both, free-living or associated into microbial mats with different degrees of mineralization and lithification, including unique modern stromatolites located at 3570 m above sea level. Characterization of these polyextremophilic microbes began only recently, employing morphological and phylogenetic methods as well as high-throughput sequencing and proteomics approach. Aside from providing a general overview on microbial communities, special attention is given to various survival strategies; HAAL's microbes present a complex system of shared genetic and physiological mechanisms (UV-resistome) based on UV photoreceptors and stress sensors with their corresponding response regulators, UV avoidance and protection strategies, damage tolerance and UV damage repair. Molecular information will be provided for what is, so far the most studied HAAL molecule, a CPD-Class I photolyase from Acinetobacter Ver3 (Laguna Verde, 4400 m). This work further proposes some strategies that make an appeal for the preservation of HAAL, a highly fragile environment that offers promising and ample research possibilities.
Collapse
Affiliation(s)
- Virginia Helena Albarracín
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Tucumán, Argentina.,Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim, Germany
| | - María Eugenia Farias
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Tucumán, Argentina
| |
Collapse
|
50
|
Albarracín VH, Kurth D, Ordoñez OF, Belfiore C, Luccini E, Salum GM, Piacentini RD, Farías ME. High-Up: A Remote Reservoir of Microbial Extremophiles in Central Andean Wetlands. Front Microbiol 2015; 6:1404. [PMID: 26733008 PMCID: PMC4679917 DOI: 10.3389/fmicb.2015.01404] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/25/2015] [Indexed: 11/18/2022] Open
Abstract
The Central Andes region displays unexplored ecosystems of shallow lakes and salt flats at mean altitudes of 3700 m. Being isolated and hostile, these so-called "High-Altitude Andean Lakes" (HAAL) are pristine and have been exposed to little human influence. HAAL proved to be a rich source of microbes showing interesting adaptations to life in extreme settings (poly-extremophiles) such as alkalinity, high concentrations of arsenic and dissolved salts, intense dryness, large daily ambient thermal amplitude, and extreme solar radiation levels. This work reviews HAAL microbiodiversity, taking into account different microbial niches, such as plankton, benthos, microbial mats and microbialites. The modern stromatolites and other microbialites discovered recently at HAAL are highlighted, as they provide unique modern-though quite imperfect-analogs of environments proxy for an earlier time in Earth's history (volcanic setting and profuse hydrothermal activity, low atmospheric O2 pressure, thin ozone layer and high UV exposure). Likewise, we stress the importance of HAAL microbes as model poly-extremophiles in the study of the molecular mechanisms underlying their resistance ability against UV and toxic or deleterious chemicals using genome mining and functional genomics. In future research directions, it will be necessary to exploit the full potential of HAAL poly-extremophiles in terms of their biotechnological applications. Current projects heading this way have yielded detailed molecular information and functional proof on novel extremoenzymes: i.e., DNA repair enzymes and arsenic efflux pumps for which medical and bioremediation applications, respectively, are envisaged. But still, much effort is required to unravel novel functions for this and other molecules that dwell in a unique biological treasure despite its being hidden high up, in the remote Andes.
Collapse
Affiliation(s)
- Virginia H. Albarracín
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICETTucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de TucumánTucumán, Argentina
- Centro Integral de Microscopía Electrónica, Universidad Nacional de Tucumán, Centro Científico Tecnológico, CONICETTucumán, Argentina
| | - Daniel Kurth
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICETTucumán, Argentina
| | - Omar F. Ordoñez
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICETTucumán, Argentina
| | - Carolina Belfiore
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICETTucumán, Argentina
| | - Eduardo Luccini
- CONICET Centro de Excelencia en Productos y Procesos de la Provincia de CórdobaCórdoba, Argentina
- Facultad de Química e Ingeniería, Pontificia Universidad Católica ArgentinaRosario, Argentina
| | - Graciela M. Salum
- Instituto de Física Rosario, CONICET Universidad Nacional de RosarioRosario, Argentina
- Facultad Regional Concepción del Uruguay, Universidad Tecnológica NacionalConcepción del Uruguay, Argentina
| | - Ruben D. Piacentini
- Facultad Regional Concepción del Uruguay, Universidad Tecnológica NacionalConcepción del Uruguay, Argentina
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de RosarioRosario, Argentina
| | - María E. Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICETTucumán, Argentina
| |
Collapse
|