1
|
Delaporte E, Karki AB, Fakhr MK. Aerotolerancy of Campylobacter spp.: A Comprehensive Review. Pathogens 2024; 13:842. [PMID: 39452714 PMCID: PMC11510350 DOI: 10.3390/pathogens13100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Campylobacter spp. constitute a group of microaerophilic bacteria that includes strains that are aerotolerant and capable of surviving in aerobic conditions. Recent studies have shown that aerotolerant strains are highly prevalent in meats, animals, and clinical settings. Changes in growth media and other environmental conditions can affect the aerotolerance of Campylobacter strains and must be considered when studying their aerotolerance in vitro. Polymicrobial interactions and biofilms also play a significant role in the ability of Campylobacter to survive oxygen exposure. Continuous subculturing may foster aerotolerance, and studies have demonstrated a positive correlation between aerotolerance and virulence and between aerotolerance and the ability to survive stressful environmental conditions. Various mechanisms and genetic origins for aerotolerance have been proposed; however, most of the potential genes involved in aerotolerance require further investigation, and many candidate genes remain unidentified. Research is also needed to investigate if there are any clinical implications for Campylobacter aerotolerance. Understanding the aerotolerance of Campylobacter remains an important target for further research, and it will be an important step towards identifying potential targets for intervention against this clinically important food-borne pathogen.
Collapse
Affiliation(s)
- Elise Delaporte
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA;
| | - Anand B. Karki
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA
| | - Mohamed K. Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA;
| |
Collapse
|
2
|
Bundurus IA, Balta I, Pet I, Stef L, Popescu CA, McCleery D, Lemon J, Callaway T, Douglas A, Corcionivoschi N. Mechanistic concepts involved in biofilm associated processes of Campylobacter jejuni: persistence and inhibition in poultry environments. Poult Sci 2024; 103:104328. [PMID: 39366290 PMCID: PMC11483643 DOI: 10.1016/j.psj.2024.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024] Open
Abstract
Campylobacter species, predominantly Campylobacter jejuni, remains a significant zoonotic pathogen worldwide, with the poultry sector being the primary vector for human transmission. In recent years. there has been a notable rise in the incidence of human campylobacteriosis, necessitating a deeper understanding of the pathogen's survival mechanisms and transmission dynamics. Biofilm presence significantly contributes to C. jejuni persistence in poultry and subsequent food product contamination, and this review describes the intricate processes involved in biofilm formation. The ability of Campylobacter to form biofilms on various surfaces, including stainless steel, plastic, and glass, is a critical survival strategy. Campylobacter biofilms, with their remarkable resilience, protect the pathogen from environmental stresses such as desiccation, pH extremes, biocides and sanitizing agents. This review explores the molecular and genetic mechanisms of C. jejuni biofilm formation, highlighting regulatory genes involved in motility, chemotaxis, and stress responses. Flagellar proteins, particularly flaA, flaB, flaG, and adhesins like cadF and flpA, are identified as the main molecular components in biofilm development. The role of mixed-species biofilms, where C. jejuni integrates into existing biofilms of other bacteria to enhance pathogen resilience, is also discussed. This review also considers alternative interventions to control C. jejuni in poultry production, in the context of increasing antibiotic resistance. It explores the effectiveness of prebiotics, probiotics, synbiotics, bacteriocins, bacteriophages, vaccines, and organic acids, with a focus on their mechanisms of action in reducing bacterial colonization and biofilm formation. Studies show that mixtures of organic acids and compounds like Carvacrol and Eugenol significantly downregulate genes linked with motility and adhesion, thereby disrupting biofilm integrity. It discusses the impact of environmental factors, such as temperature and oxygen levels on biofilm formation, providing insights into how industrial conditions can be manipulated to reduce contamination. This paper stresses the need for a multifaceted approach to control Campylobacter in poultry, integrating molecular and genetic insights with practical interventions. By advancing our understanding of biofilm dynamics and gene regulation, we aim to inform the development of more effective strategies to enhance food safety and protect public health.
Collapse
Affiliation(s)
- Iulia A Bundurus
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Cosmin Alin Popescu
- Faculty of Agriculture, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - David McCleery
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland BT4 3SD, UK
| | - Joanne Lemon
- Chief Scientific Adviser's Office, Department of Agriculture, Environment and Rural Affairs for Northern Ireland, Belfast, Northern Ireland BT3 9ED, UK
| | - Todd Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Alastair Douglas
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland BT4 3SD, UK
| | - Nicolae Corcionivoschi
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania; Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland BT4 3SD, UK; Academy of Romanian Scientists, Bucharest 050044, Romania.
| |
Collapse
|
3
|
Zhu J, Liu Q, Wang Y, Zhu K, Guo J, Jin Y, Liu Y. Mangosteen extract reduces the bacterial load of eggshell and improves egg quality. Heliyon 2024; 10:e35857. [PMID: 39170416 PMCID: PMC11337060 DOI: 10.1016/j.heliyon.2024.e35857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
The increasing emergence and spread of antibiotic resistance accelerate the desire for antibiotic alternatives. Plant extracts have emerged as a promising and relatively unexplored area of research as potential substitutes. Herein, we investigated the prevalence and distribution patterns of bacteria on egg surfaces and evaluated the inhibitory effects of mangosteen extract on these surface bacteria. In addition, we examined the antioxidant activity and egg quality in improving the ability of mangosteen extract. The results showed that the predominant bacteria isolated from eggshells were Gram-positive, with Staphylococcus and Micrococcus as the dominant genera. Notably, mangosteen extract exhibited significant bactericidal activity, effectively inhibiting Gram-positive bacteria on the surface of chicken eggshells. Moreover, the supplementation of mangosteen extract in the feed of laying hens yielded a noteworthy improvement in egg quality, accompanied by positively shaped structure and function of microbial communities on the egg surface and in the feces. Collectively, our findings suggested that mangosteen extract was an effective alternative to traditional antibiotics, offering valuable insights for animal husbandry development.
Collapse
Affiliation(s)
- Jianfei Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qing Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kui Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiangpeng Guo
- Beijing General Station of Animal Husbandry, Beijing 100101, China
| | - Yinji Jin
- Beijing General Station of Animal Husbandry, Beijing 100101, China
| | - Ying Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
4
|
Price CTD, Hanford HE, Al-Quadan T, Santic M, Shin CJ, Da'as MSJ, Abu Kwaik Y. Amoebae as training grounds for microbial pathogens. mBio 2024; 15:e0082724. [PMID: 38975782 PMCID: PMC11323580 DOI: 10.1128/mbio.00827-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Grazing of amoebae on microorganisms represents one of the oldest predator-prey dynamic relationships in nature. It represents a genetic "melting pot" for an ancient and continuous multi-directional inter- and intra-kingdom horizontal gene transfer between amoebae and its preys, intracellular microbial residents, endosymbionts, and giant viruses, which has shaped the evolution, selection, and adaptation of microbes that evade degradation by predatory amoeba. Unicellular phagocytic amoebae are thought to be the ancient ancestors of macrophages with highly conserved eukaryotic processes. Selection and evolution of microbes within amoeba through their evolution to target highly conserved eukaryotic processes have facilitated the expansion of their host range to mammals, causing various infectious diseases. Legionella and environmental Chlamydia harbor an immense number of eukaryotic-like proteins that are involved in ubiquitin-related processes or are tandem repeats-containing proteins involved in protein-protein and protein-chromatin interactions. Some of these eukaryotic-like proteins exhibit novel domain architecture and novel enzymatic functions absent in mammalian cells, such as ubiquitin ligases, likely acquired from amoebae. Mammalian cells and amoebae may respond similarly to microbial factors that target highly conserved eukaryotic processes, but mammalian cells may undergo an accidental response to amoeba-adapted microbial factors. We discuss specific examples of microbes that have evolved to evade amoeba predation, including the bacterial pathogens- Legionella, Chlamydia, Coxiella, Rickettssia, Francisella, Mycobacteria, Salmonella, Bartonella, Rhodococcus, Pseudomonas, Vibrio, Helicobacter, Campylobacter, and Aliarcobacter. We also discuss the fungi Cryptococcus, and Asperigillus, as well as amoebae mimiviruses/giant viruses. We propose that amoeba-microbe interactions will continue to be a major "training ground" for the evolution, selection, adaptation, and emergence of microbial pathogens equipped with unique pathogenic tools to infect mammalian hosts. However, our progress will continue to be highly dependent on additional genomic, biochemical, and cellular data of unicellular eukaryotes.
Collapse
Affiliation(s)
- Christopher T. D. Price
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Hannah E. Hanford
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Tasneem Al-Quadan
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | | | - Cheon J. Shin
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Manal S. J. Da'as
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
5
|
Pokhrel D, Thames HT, Fugate H, Dinh T, Schilling W, White S, Ramachandran R, Sukumaran AT, Zhang L. Increase in temperature facilitates Campylobacter jejuni biofilm formation under both aerobic and microaerobic incubation. Poult Sci 2024; 103:103753. [PMID: 38652947 PMCID: PMC11063496 DOI: 10.1016/j.psj.2024.103753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
The formation of Campylobacter jeuni biofilms on processing surfaces is a significant concern in poultry processing, contributing to food safety risks. This study focused on assessing the biofilm forming capabilities of 12 field isolates of C. jejuni of different aerotolerance categories on stainless steel surfaces, a prevalent material in poultry processing environments. Working cultures of each isolate were prepared to approximately 6 log CFU/mL and incubated on stainless steel coupons under microaerobic or aerobic conditions at room temperature or 42°C for 72 h. Biofilm attached cells were enumerated using direct plating and biofilm density was measured using a crystal violet assay by measuring the optical density (OD600) a. Data analysis was conducted using the PROC GLIMMIX procedure in SAS 9.4 with a significance level of 0.05. The study revealed a notable interaction between aerotolerance categories and temperature (P < 0.039) impacting the number of biofilms attached C. jejuni cells on stainless steel coupons. All isolates had significantly higher counts when incubated at 42°C compared to room temperature, regardless of oxygen level (P < 0.001). Furthermore, stronger biofilm density was observed at 42°C compared to room temperature, regardless of oxygen level. These findings underscore the influence of temperature on the biofilm forming ability of C. jejuni. The ability of these field isolates to form biofilms under various environmental conditions suggests a heightened potential for surface colonization and increased infection risk in poultry processing facilities.
Collapse
Affiliation(s)
- Diksha Pokhrel
- Department of Poultry Science, Mississippi State University, Mississippi, Mississippi State, USA
| | - Hudson T Thames
- Department of Poultry Science, Mississippi State University, Mississippi, Mississippi State, USA
| | - Hailey Fugate
- Department of Poultry Science, Mississippi State University, Mississippi, Mississippi State, USA
| | - Thu Dinh
- Tyson Foods, Springdale, Arkansas, USA
| | - Wes Schilling
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi, Mississippi State, USA
| | - Shecoya White
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi, Mississippi State, USA
| | | | | | - Li Zhang
- Department of Poultry Science, Mississippi State University, Mississippi, Mississippi State, USA.
| |
Collapse
|
6
|
Sun L, Wang D, Feng K, Zhang JA, Gao W, Zhang L. Cell membrane-coated nanoparticles for targeting carcinogenic bacteria. Adv Drug Deliv Rev 2024; 209:115320. [PMID: 38643841 DOI: 10.1016/j.addr.2024.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
The etiology of cancers is multifactorial, with certain bacteria established as contributors to carcinogenesis. As the understanding of carcinogenic bacteria deepens, interest in cancer treatment through bacterial eradication is growing. Among emerging antibacterial platforms, cell membrane-coated nanoparticles (CNPs), constructed by enveloping synthetic substrates with natural cell membranes, exhibit significant promise in overcoming challenges encountered by traditional antibiotics. This article reviews recent advancements in developing CNPs for targeting carcinogenic bacteria. It first summarizes the mechanisms of carcinogenic bacteria and the status of cancer treatment through bacterial eradication. Then, it reviews engineering strategies for developing highly functional and multitasking CNPs and examines the emerging applications of CNPs in combating carcinogenic bacteria. These applications include neutralizing virulence factors to enhance bacterial eradication, exploiting bacterium-host binding for precise antibiotic delivery, and modulating antibacterial immunity to inhibit bacterial growth. Overall, this article aims to inspire technological innovations in developing CNPs for effective cancer treatment through oncogenic bacterial targeting.
Collapse
Affiliation(s)
- Lei Sun
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Dan Wang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Kailin Feng
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiayuan Alex Zhang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Tikhomirova A, McNabb ER, Petterlin L, Bellamy GL, Lin KH, Santoso CA, Daye ES, Alhaddad FM, Lee KP, Roujeinikova A. Campylobacter jejuni virulence factors: update on emerging issues and trends. J Biomed Sci 2024; 31:45. [PMID: 38693534 PMCID: PMC11064354 DOI: 10.1186/s12929-024-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Campylobacter jejuni is a very common cause of gastroenteritis, and is frequently transmitted to humans through contaminated food products or water. Importantly, C. jejuni infections have a range of short- and long-term sequelae such as irritable bowel syndrome and Guillain Barre syndrome. C. jejuni triggers disease by employing a range of molecular strategies which enable it to colonise the gut, invade the epithelium, persist intracellularly and avoid detection by the host immune response. The objective of this review is to explore and summarise recent advances in the understanding of the C. jejuni molecular factors involved in colonisation, invasion of cells, collective quorum sensing-mediated behaviours and persistence. Understanding the mechanisms that underpin the pathogenicity of C. jejuni will enable future development of effective preventative approaches and vaccines against this pathogen.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Emmylee R McNabb
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Luca Petterlin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Georgia L Bellamy
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kyaw H Lin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christopher A Santoso
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Ella S Daye
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Fatimah M Alhaddad
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kah Peng Lee
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Anna Roujeinikova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
8
|
Man L, Soh PXY, McEnearney TE, Cain JA, Dale AL, Cordwell SJ. Multi-Omics of Campylobacter jejuni Growth in Chicken Exudate Reveals Molecular Remodelling Associated with Altered Virulence and Survival Phenotypes. Microorganisms 2024; 12:860. [PMID: 38792690 PMCID: PMC11123243 DOI: 10.3390/microorganisms12050860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Campylobacter jejuni is the leading cause of foodborne human gastroenteritis in the developed world. Infections are largely acquired from poultry produced for human consumption and poor food handling is thus a major risk factor. Chicken exudate (CE) is a liquid produced from defrosted commercial chicken products that facilitates C. jejuni growth. We examined the response of C. jejuni to growth in CE using a multi-omics approach. Changes in the C. jejuni proteome were assessed by label-based liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We quantified 1328 and 1304 proteins, respectively, in experiments comparing 5% CE in Mueller-Hinton (MH) medium and 100% CE with MH-only controls. These proteins represent 81.8% and 80.3% of the predicted C. jejuni NCTC11168 proteome. Growth in CE induced profound remodelling of the proteome. These changes were typically conserved between 5% and 100% CE, with a greater magnitude of change observed in 100% CE. We confirmed that CE induced C. jejuni biofilm formation, as well as increasing motility and resistance against oxidative stress, consistent with changes to proteins representing those functions. Assessment of the C. jejuni metabolome showed CE also led to increased intracellular abundances of serine, proline, and lactate that were correlated with the elevated abundances of their respective transporters. Analysis of carbon source uptake showed prolonged culture supernatant retention of proline and succinate in CE-supplemented medium. Metabolomics data provided preliminary evidence for the uptake of chicken-meat-associated dipeptides. C. jejuni exposed to CE showed increased resistance to several antibiotics, including polymyxin B, consistent with changes to tripartite efflux system proteins and those involved in the synthesis of lipid A. The C. jejuni CE proteome was also characterised by very large increases in proteins associated with iron acquisition, while a decrease in proteins containing iron-sulphur clusters was also observed. Our data suggest CE is both oxygen- and iron-limiting and provide evidence of factors required for phenotypic remodelling to enable C. jejuni survival on poultry products.
Collapse
Affiliation(s)
- Lok Man
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Pamela X. Y. Soh
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tess E. McEnearney
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joel A. Cain
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ashleigh L. Dale
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stuart J. Cordwell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Ortega-Sanz I, Bocigas C, Melero B, Rovira J. Phase variation modulates the multi-phenotypes displayed by clinical Campylobacter jejuni strains. Food Microbiol 2024; 117:104397. [PMID: 37918995 DOI: 10.1016/j.fm.2023.104397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/15/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
The high incidence and prevalence of Campylobacter spp. in the food supply chain entail the importance to understand their mechanisms developed to withstand harsh environmental conditions encountered. Different stress conditions and phenotypic approaches were evaluated to study the behaviour of five clinical C. jejuni isolates with different genotypes, including the tolerance to oxygen and the oxidants hydrogen peroxide and cumene hydroperoxide, the motility and the ability to form biofilm on polystyrene and stainless steel at different temperatures and atmospheres. Whole Genome Sequencing was performed to analyse the occurrence of 216 genes involved in these mechanisms plus phase variation. The isolates showed high tolerance to oxygen and peroxide stress with different swimming motility performances and biofilm formation abilities. Aerotolerance was related with a reduced sensitive to peroxide stress and a loss of motility that promotes biofilm formation depending on the material surface. Comparative genomics did not reveal any clear gene pattern, although phase variation occurring during host infection was observed to be crucial for the modulation of the different survival mechanisms adopted by the bacteria. These findings reveal that the bacteria can combine diverse and complex strategies in an efficient manner to survive and persist in the environment.
Collapse
Affiliation(s)
- Irene Ortega-Sanz
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Carolina Bocigas
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Beatriz Melero
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Jordi Rovira
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain.
| |
Collapse
|
10
|
Myles M, Barnawi H, Mahmoudpour M, Shlimon S, Chang A, Zimmermann D, Choi C, Zebian N, Creuzenet C. Effect of the polysaccharide capsule and its heptose on the resistance of Campylobacter jejuni to innate immune defenses. Microbiologyopen 2024; 13:e1400. [PMID: 38375546 PMCID: PMC10877309 DOI: 10.1002/mbo3.1400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Campylobacter jejuni is a commensal in many animals but causes diarrhea in humans. Its polysaccharide capsule contributes to host colonization and virulence in a strain- and model-specific manner. We investigated if the capsule and its heptose are important for interactions of strain NCTC 11168 with various hosts and their innate immune defenses. We determined that they support bacterial survival in Drosophila melanogaster and enhance virulence in Galleria mellonella. We showed that the capsule had limited antiphagocytic activity in human and chicken macrophages, decreased adherence to chicken macrophages, and decreased intracellular survival in both macrophages. In contrast, the heptose increased uptake by chicken macrophages and supported adherence to human macrophages and survival within them. While the capsule triggered nitric oxide production in chicken macrophages, the heptose mitigated this and protected against nitrosative assault. Finally, the C. jejuni strain NCTC 11168 elicited strong cytokine production in both macrophages but quenched ROS production independently from capsule and heptose, and while the capsule and heptose did not protect against oxidative assault, they favored growth in biofilms under oxidative stress. This study shows that the wild-type capsule with its heptose is optimized to resist innate defenses in strain NCTC 11168 often via antagonistic effects of the capsule and its heptose.
Collapse
Affiliation(s)
- Matthew Myles
- Microbiology and ImmunologyThe University of Western OntarioLondonOntarioCanada
| | - Heba Barnawi
- Microbiology and ImmunologyThe University of Western OntarioLondonOntarioCanada
| | - Mahmoud Mahmoudpour
- Microbiology and ImmunologyThe University of Western OntarioLondonOntarioCanada
| | - Sargon Shlimon
- Microbiology and ImmunologyThe University of Western OntarioLondonOntarioCanada
| | - Adrienne Chang
- Microbiology and ImmunologyThe University of Western OntarioLondonOntarioCanada
| | - Daniel Zimmermann
- Microbiology and ImmunologyThe University of Western OntarioLondonOntarioCanada
| | - Chiwon Choi
- Microbiology and ImmunologyThe University of Western OntarioLondonOntarioCanada
| | - Najwa Zebian
- Microbiology and ImmunologyThe University of Western OntarioLondonOntarioCanada
| | - Carole Creuzenet
- Microbiology and ImmunologyThe University of Western OntarioLondonOntarioCanada
| |
Collapse
|
11
|
Kanaan MHG. Effect of biofilm formation in a hostile oxidative stress environment on the survival of Campylobacter jejuni recovered from poultry in Iraqi markets. Vet World 2024; 17:136-142. [PMID: 38406363 PMCID: PMC10884572 DOI: 10.14202/vetworld.2024.136-142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/14/2023] [Indexed: 02/27/2024] Open
Abstract
Background and Aim Campylobacter jejuni is a major contributor to bacterial enteritis, a common health problem. The resistance of this microaerophilic bacterium to oxidative stress allows it to thrive under aerobic conditions. This study aimed to investigate whether the capacity of C. jejuni to form biofilms in the presence of oxidative stress contributes to the pathogen's ability to thrive in agricultural settings as well as in chicken slaughter lines. Materials and Methods Twenty identified strains originating from chicken samples (eight from caeca contents and 12 from frozen chicken carcasses) were previously isolated and identified according to standard bacteriological protocols, followed by confirmation at the species level using multiplex polymerase chain reaction assay. Crystal violet staining was used to evaluate biofilm formation by these bacteria. Two exposure periods to gaseous ozone (1 and 2 min) were used to assess resistance to oxidative damage. Results Most of the strong biofilm-forming Campylobacter strains came from imported frozen chicken meat (25%), whereas only 10% came from caeca content. After exposure to gaseous ozone at 600 mg/h for 2 min, strong biofilm-producing strains exhibited a higher survival rate with a limited reduction of up to 3 logs, whereas negative biofilm-producing strains exhibited a limited survival rate with a reduction of 6 logs. Conclusion Based on our findings, we hypothesized that the presence of C. jejuni strains capable of forming biofilms in poultry farms and/or chicken production facilities triggers a public health alarm as this bacterium seems to be able to adapt more easily to live and thrive in hostile environmental conditions.
Collapse
Affiliation(s)
- Manal H. G. Kanaan
- Department of Nursing, Technical Institute of Suwaria, Middle Technical University, Baghdad, Iraq
| |
Collapse
|
12
|
Huq M, Wahid SUH, Istivan T. Biofilm Formation in Campylobacter concisus: The Role of the luxS Gene. Microorganisms 2023; 12:46. [PMID: 38257873 PMCID: PMC10820981 DOI: 10.3390/microorganisms12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Campylobacter concisus is a bacterium that inhabits human oral cavities and is an emerging intestinal tract pathogen known to be a biofilm producer and one of the bacterial species found in dental plaque. In this study, biofilms of oral and intestinal C. concisus isolates were phenotypically characterized. The role of the luxS gene, which is linked to the regulation of biofilm formation in other pathogens, was assessed in relation to the pathogenic potential of this bacterium. Biofilm formation capacity was assessed using phenotypic assays. Oral strains were shown to be the highest producers. A luxS mutant was created by inserting a kanamycin cassette within the luxS gene of the highest biofilm-forming isolate. The loss of the polar flagellum was observed with scanning and transmission electron microscopy (SEM and TEM). Furthermore, the luxS mutant exhibited a significant reduction (p < 0.05) in biofilm formation, motility, and its expression of flaB, in addition to the capability to invade intestinal epithelial cells, compared to the parental strain. The study concluded that C. concisus oral isolates are significantly higher biofilm producers than the intestinal isolates and that LuxS plays a role in biofilm formation, invasion, and motility in this bacterium.
Collapse
Affiliation(s)
- Mohsina Huq
- School of Science, STEM College, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | | | - Taghrid Istivan
- School of Science, STEM College, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
| |
Collapse
|
13
|
Držmíšek J, Petráčková D, Dienstbier A, Čurnová I, Večerek B. T3SS chaperone of the CesT family is required for secretion of the anti-sigma factor BtrA in Bordetella pertussis. Emerg Microbes Infect 2023; 12:2272638. [PMID: 37850324 PMCID: PMC10732220 DOI: 10.1080/22221751.2023.2272638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/15/2023] [Indexed: 10/19/2023]
Abstract
Bordetella pertussis is a Gram-negative, strictly human re-emerging respiratory pathogen and the causative agent of whooping cough. Similar to other Gram-negative pathogens, B. pertussis produces the type III secretion system, but its role in the pathogenesis of B. pertussis is enigmatic and yet to be elucidated. Here, we combined RNA-seq, LC-MS/MS, and co-immunoprecipitation techniques to identify and characterize the novel CesT family T3SS chaperone BP2265. We show that this chaperone specifically interacts with the secreted T3SS regulator BtrA and represents the first non-flagellar chaperone required for the secretion of an anti-sigma factor. In its absence, secretion but not production of BtrA and most T3SS substrates is severely impaired. It appears that the role of BtrA in regulating T3SS extends beyond its activity as an antagonist of the sigma factor BtrS. Predictions made by artificial intelligence system AlphaFold support the chaperone function of BP2265 towards BtrA and outline the structural basis for the interaction of BtrA with its target BtrS. We propose to rename BP2265 to BtcB for the Bordetella type III chaperone of BtrA.In addition, the absence of the BtcB chaperone results in increased expression of numerous flagellar genes and several virulence genes. While increased production of flagellar proteins and intimin BipA translated into increased biofilm formation by the mutant, enhanced production of virulence factors resulted in increased cytotoxicity towards human macrophages. We hypothesize that these phenotypic traits result indirectly from impaired secretion of BtrA and altered activity of the BtrA/BtrS regulatory node.
Collapse
Affiliation(s)
- Jakub Držmíšek
- Laboratory of post-transcriptional control of gene expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Denisa Petráčková
- Laboratory of post-transcriptional control of gene expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ana Dienstbier
- Laboratory of post-transcriptional control of gene expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ivana Čurnová
- Laboratory of post-transcriptional control of gene expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Branislav Večerek
- Laboratory of post-transcriptional control of gene expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
14
|
Sabotič J, Janež N, Volk M, Klančnik A. Molecular structures mediating adhesion of Campylobacter jejuni to abiotic and biotic surfaces. Vet Microbiol 2023; 287:109918. [PMID: 38029692 DOI: 10.1016/j.vetmic.2023.109918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Microaerophilic, Gram-negative Campylobacter jejuni is the causative agent of campylobacteriosis, the most common bacterial gastrointestinal infection worldwide. Adhesion is the crucial first step in both infection or interaction with the host and biofilm formation, and is a critical factor for bacterial persistence. Here we describe the proteins and other surface structures that promote adhesion to various surfaces, including abiotic surfaces, microorganisms, and animal and human hosts. In addition, we provide insight into the distribution of adhesion proteins among strains from different ecological niches and highlight unexplored proteins involved in C. jejuni adhesion. Protein-protein, protein-glycan, and glycan-glycan interactions are involved in C. jejuni adhesion, with different factors contributing to adhesion to varying degrees under different circumstances. As adhesion is essential for survival and persistence, it represents an interesting target for C. jejuni control. Knowledge of the adhesion process is incomplete, as different molecular and functional aspects have been studied for different structures involved in adhesion. Therefore, it is important to strive for an integration of different approaches to obtain a clearer picture of the adhesion process on different surfaces and to consider the involvement of proteins, glycoconjugates, and polysaccharides and their cooperation.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Manca Volk
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia.
| |
Collapse
|
15
|
Elgamoudi BA, Korolik V. A Guideline for Assessment and Characterization of Bacterial Biofilm Formation in the Presence of Inhibitory Compounds. Bio Protoc 2023; 13:e4866. [PMID: 37969760 PMCID: PMC10632153 DOI: 10.21769/bioprotoc.4866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 11/17/2023] Open
Abstract
Campylobacter jejuni, a zoonotic foodborne pathogen, is the worldwide leading cause of acute human bacterial gastroenteritis. Biofilms are a significant reservoir for survival and transmission of this pathogen, contributing to its overall antimicrobial resistance. Natural compounds such as essential oils, phytochemicals, polyphenolic extracts, and D-amino acids have been shown to have the potential to control biofilms formed by bacteria, including Campylobacter spp. This work presents a proposed guideline for assessing and characterizing bacterial biofilm formation in the presence of naturally occurring inhibitory molecules using C. jejuni as a model. The following protocols describe: i) biofilm formation inhibition assay, designed to assess the ability of naturally occurring molecules to inhibit the formation of biofilms; ii) biofilm dispersal assay, to assess the ability of naturally occurring inhibitory molecules to eradicate established biofilms; iii) confocal laser scanning microscopy (CLSM), to evaluate bacterial viability in biofilms after treatment with naturally occurring inhibitory molecules and to study the structured appearance (or architecture) of biofilm before and after treatment.
Collapse
Affiliation(s)
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
16
|
Kim J, Park M, Ahn E, Mao Q, Chen C, Ryu S, Jeon B. Stimulation of Surface Polysaccharide Production under Aerobic Conditions Confers Aerotolerance in Campylobacter jejuni. Microbiol Spectr 2023; 11:e0376122. [PMID: 36786626 PMCID: PMC10100837 DOI: 10.1128/spectrum.03761-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
The ability of a foodborne pathogen to tolerate environmental stress critically affects food safety by increasing the risk of pathogen survival and transmission in the food supply chain. Campylobacter jejuni, a leading bacterial cause of foodborne illnesses, is an obligate microaerophile and is sensitive to atmospheric levels of oxygen. Currently, the molecular mechanisms of how C. jejuni withstands oxygen toxicity under aerobic conditions have not yet been fully elucidated. Here, we show that when exposed to aerobic conditions, C. jejuni develops a thick layer of bacterial capsules, which in turn protect C. jejuni under aerobic conditions. The presence of both capsular polysaccharides and lipooligosaccharides is required to protect C. jejuni from excess oxygen in oxygen-rich environments by alleviating oxidative stress. Under aerobic conditions, C. jejuni undergoes substantial transcriptomic changes, particularly in the genes of carbon metabolisms involved in amino acid uptake, the tricarboxylic acid (TCA) cycle, and the Embden-Meyerhof-Parnas (EMP) pathway despite the inability of C. jejuni to grow aerobically. Moreover, the stimulation of carbon metabolism by aerobiosis increases the level of glucose-6-phosphate, the EMP pathway intermediate required for the synthesis of surface polysaccharides. The disruption of the TCA cycle eliminates aerobiosis-mediated stimulation of surface polysaccharide production and markedly compromises aerotolerance in C. jejuni. These results in this study provide novel insights into how an oxygen-sensitive microaerophilic pathogen survives in oxygen-rich environments by adapting its metabolism and physiology. IMPORTANCE Oxygen-sensitive foodborne pathogens must withstand oxygen toxicity in aerobic environments during transmission to humans. C. jejuni is a major cause of gastroenteritis, accounting for 400 million to 500 million infection cases worldwide per year. As an obligate microaerophile, C. jejuni is sensitive to air-level oxygen. However, it has not been fully explained how this oxygen-sensitive zoonotic pathogen survives in aerobic environments and is transmitted to humans. Here, we show that under aerobic conditions, C. jejuni boosts its carbon metabolism to produce a thick layer of bacterial capsules, which in turn act as a protective barrier conferring aerotolerance. The new findings in this study improve our understanding of how oxygen-sensitive C. jejuni can survive in aerobic environments.
Collapse
Affiliation(s)
- Jinshil Kim
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Myungseo Park
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eunbyeol Ahn
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Qingqing Mao
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Byeonghwa Jeon
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
17
|
Jiang L, Yuan C, Ye W, Huang Q, Chen Z, Wu W, Qian L. Akkermansia and its metabolites play key roles in the treatment of campylobacteriosis in mice. Front Immunol 2023; 13:1061627. [PMID: 36713373 PMCID: PMC9877526 DOI: 10.3389/fimmu.2022.1061627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Campylobacter jejuni (C. jejuni) is a common food-borne bacterial pathogen that can use the host's innate immune response to induce the development of colitis. There has been some research on the role of normal intestinal flora in C. jejuni-induced colitis, but the mechanisms that play a central role in resistance to C. jejuni infection have not been explored. Methods We treated Campylobacter jejuni-infected mice with fecal microbiota transplantation (FMT), oral butyric acid and deoxycholic acid in a controlled trial and analyzed the possible mechanisms of treatment by a combination of chromatography, immunohistochemistry, fluorescence in situ hybridization, 16s rRNA gene, proteomics and western blot techniques. Results We first investigated the therapeutic effect of FMT on C. jejuni infection. The results showed that FMT significantly reduced the inflammatory response and blocked the invasion of C.jejuni into the colonic tissue. We observed a significant increase in the abundance of Akkermansia in the colon of mice after FMT, as well as a significant increase in the levels of butyric acid and deoxycholic acid. We next demonstrated that oral administration of sodium butyrate or deoxycholic acid had a similar therapeutic effect. Further proteomic analysis showed that C.jejuni induced colitis mainly through activation of the PI3K-AKT signaling pathway and MAPK signaling pathway, whereas Akkermansia, the core flora of FMT, and the gut microbial metabolites butyric acid and deoxycholic acid both inhibited these signaling pathways to counteract the infection of C. jejuni and alleviate colitis. Finally, we verified the above idea by in vitro cellular assays. In conclusion, FMT is highly effective in the treatment of colitis caused by C. jejuni, with which Akkermansia and butyric and deoxycholic acids are closely associated.The present study demonstrates that Akkermansia and butyric and deoxycholic acids are effective in the treatment of colitis caused by C. jejuni. Discussion This is the first time that Akkermansia has been found to be effective in fighting pathogens, which provides new ideas and insights into the use of FMT to alleviate colitis caused by C. jejuni and Akkermansia as a treatment for intestinal sexually transmitted diseases caused by various pathogens.
Collapse
Affiliation(s)
- Lai Jiang
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chunchun Yuan
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wenxin Ye
- Hainan Institute of Zhejiang University, Sanya, China
| | - Qixin Huang
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhuo Chen
- Hainan Institute of Zhejiang University, Sanya, China
| | - Wenzi Wu
- Hainan Institute of Zhejiang University, Sanya, China
| | - Lichun Qian
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Dzianach PA, Pérez-Reche FJ, Strachan NJC, Forbes KJ, Dykes GA. The Use of Interdisciplinary Approaches to Understand the Biology of Campylobacter jejuni. Microorganisms 2022; 10:2498. [PMID: 36557751 PMCID: PMC9786101 DOI: 10.3390/microorganisms10122498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Campylobacter jejuni is a bacterial pathogen recognised as a major cause of foodborne illness worldwide. While Campylobacter jejuni generally does not grow outside its host, it can survive outside of the host long enough to pose a health concern. This review presents an up-to-date description and evaluation of biological, mathematical, and statistical approaches used to understand the behaviour of this foodborne pathogen and suggests future avenues which can be explored. Specifically, the incorporation of mathematical modelling may aid the understanding of C. jejuni biofilm formation both outside and inside the host. Predictive studies may be improved by the introduction of more standardised protocols for assessments of disinfection methods and by assessment of novel physical disinfection strategies as well as assessment of the efficiency of plant extracts on C. jejuni eradication. A full description of the metabolic pathways of C. jejuni, which is needed for the successful application of metabolic models, is yet to be achieved. Finally, a shift from animal models (except for those that are a source of human campylobacteriosis) to human-specific data may be made possible due to recent technological advancements, and this may lead to more accurate predictions of human infections.
Collapse
Affiliation(s)
- Paulina A. Dzianach
- Geospatial Health and Development, Telethon Kids Institute, Perth 6009, Australia
| | | | - Norval J. C. Strachan
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Ken J. Forbes
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Gary A. Dykes
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
19
|
Extracellular c-di-GMP Plays a Role in Biofilm Formation and Dispersion of Campylobacter jejuni. Microorganisms 2022; 10:microorganisms10102030. [PMID: 36296307 PMCID: PMC9608569 DOI: 10.3390/microorganisms10102030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
Cyclic diguanosine monophosphate (c-diGMP) is a ubiquitous second messenger involved in the regulation of many signalling systems in bacteria, including motility and biofilm formation. Recently, it has been reported that c-di-GMP was detected in C. jejuni DRH212; however, the presence and the role of c-di-GMP in other C. jejuni strains are unknown. Here, we investigated extracellular c-di-GMP as an environmental signal that potentially triggers biofilm formation in C. jejuni NCTC 11168 using a crystal violet-based assay, motility-based plate assay, RT-PCR and confocal laser scanning microscopy (CLSM). We found that, in presence of extracellular c-di-GMP, the biofilm formation was significantly reduced (>50%) and biofilm dispersion enhanced (up to 60%) with no effect on growth. In addition, the presence of extracellular c-di-GMP promoted chemotactic motility, inhibited the adherence of C. jejuni NCTC 11168-O to Caco-2 cells and upregulated the expression of Cj1198 (luxS, encoding quarum sensing pathway component, autoinducer-2), as well as chemotaxis genes Cj0284c (cheA) and Cj0448c (tlp6). Unexpectedly, the expression of Cj0643 (cbrR), containing a GGDEF-like domain and recently identified as a potential diguanylate cyclase gene, required for the synthesis of c-di-GMP, was not affected. Our findings suggest that extracellular c-di-GMP could be involved in C. jejuni gene regulation, sensing and biofilm dispersion.
Collapse
|
20
|
Survival of Campylobacter jejuni 11168H in Acanthamoebae castellanii Provides Mechanistic Insight into Host Pathogen Interactions. Microorganisms 2022; 10:microorganisms10101894. [PMID: 36296171 PMCID: PMC9612045 DOI: 10.3390/microorganisms10101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial foodborne gastroenteritis worldwide but is rarely transferred between human hosts. Although a recognized microaerophile, the majority of C. jejuni are incapable of growing in an aerobic environment. The persistence and transmission of this pathogen outside its warm-blooded avian and mammalian hosts is poorly understood. Acanthamoebae species are predatory protists and form an important ecological niche with several bacterial species. Here, we investigate the interaction of C. jejuni 11168H and Acanthamoebae castellanii at the single-cell level. We observe that a subpopulation of C. jejuni cells can resist killing by A. castellanii, and non-digested bacteria are exocytosed into the environment where they can persist. In addition, we observe that A. castellanii can harbor C. jejuni 11168H even upon encystment. Transcriptome analyses of C. jejuni interactions revealed similar survival mechanisms when infecting both A. castellanii and warm-blooded hosts. In particular, nitrosative stress defense mechanisms and flagellum function are important as confirmed by mutational analyses of C. jejuni 11168H. This study describes a new host–pathogen interaction for C. jejuni and confirms that amoebae are transient hosts for the persistence, adaptability, and potential transmission of C. jejuni.
Collapse
|
21
|
Nennig M, Clément A, Longueval E, Bernardi T, Ragimbeau C, Tresse O. Metaphenotypes associated with recurrent genomic lineages of Campylobacter jejuni responsible for human infections in Luxembourg. Front Microbiol 2022; 13:901192. [PMID: 36160185 PMCID: PMC9490421 DOI: 10.3389/fmicb.2022.901192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. Although considered fragile, this microaerophilic bacterium is able to survive in various challenging environments, which subsequently constitutes multiple sources of transmission for human infection. To test the assumption of acquiring specific features for adaptation and survival, we established a workflow of phenotypic tests related to the survival and the persistence of recurrent and sporadic strains. A representative collection of 83 strains isolated over 13 years from human, mammal, poultry, and environmental sources in Luxembourg, representing different spreading patterns (endemic, epidemic, and sporadic), was screened for survival to oxidative stresses, for acclimating to aerobic conditions (AC), and for persistence on abiotic surfaces. Using the cgMLST Oxford typing scheme for WGS data, the collection was classified into genomic lineages corresponding to host-generalist strains (lineages A and D, CC ST-21), host-specific strains (lineage B, CC ST-257 and lineage C, CC ST-464) and sporadic strains. We established that when a strain survives concentrations beyond 0.25 mM superoxide stress, it is six times more likely to survive hyperoxide stress and that a highly adherent strain is 14 times more likely to develop a biofilm. Surprisingly, more than half of the strains could acclimate to AC but this capacity does not explain the difference between recurrent genomic lineages and sporadic strains and the survival to oxidative stresses, while recurrent strains have a significantly higher adhesion/biofilm formation capacity than sporadic ones. From this work, the genomic lineages with more stable genomes could be characterized by a specific combination of phenotypes, called metaphenotypes. From the functional genomic analyses, the presence of a potentially functional T6SS in the strains of lineage D might explain the propensity of these strains to be strong biofilm producers. Our findings support the hypothesis that phenotypical abilities contribute to the spatio-temporal adaptation and survival of stable genomic lineages. It suggests a selection of better-adapted and persistent strains in challenging stress environments, which could explain the prevalence of these lineages in human infections.
Collapse
Affiliation(s)
- Morgane Nennig
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
- UMR-1280 PhAN, INRAE, Nantes, France
| | - Arnaud Clément
- BioFilm Control, Biopôle Clermont-Limagne, Saint-Beauzire, France
| | - Emmanuelle Longueval
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Thierry Bernardi
- BioFilm Control, Biopôle Clermont-Limagne, Saint-Beauzire, France
| | - Catherine Ragimbeau
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
| | | |
Collapse
|
22
|
Ma L, Feng J, Zhang J, Lu X. Campylobacter biofilms. Microbiol Res 2022; 264:127149. [DOI: 10.1016/j.micres.2022.127149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
|
23
|
Salazar-Sánchez A, Baztarrika I, Alonso R, Fernández-Astorga A, Martínez-Ballesteros I, Martinez-Malaxetxebarria I. Arcobacter butzleri Biofilms: Insights into the Genes Beneath Their Formation. Microorganisms 2022; 10:1280. [PMID: 35888999 PMCID: PMC9324650 DOI: 10.3390/microorganisms10071280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022] Open
Abstract
Arcobacter butzleri, the most prevalent species of the genus, has the demonstrated ability to adhere to various surfaces through biofilm production. The biofilm formation capability has been related to the expression of certain genes, which have not been characterized in A. butzleri. In order to increase the knowledge of this foodborne pathogen, the aim of this study was to assess the role of six biofilm-associated genes in campylobacteria (flaA, flaB, fliS, luxS, pta and spoT) in the biofilm formation ability of A. butzleri. Knockout mutants were constructed from different foodborne isolates, and static biofilm assays were conducted on polystyrene (PS), reinforced glass and stainless steel. Additionally, motility and Congo red binding assays were performed. In general, mutants in flaAB, fliS and luxS showed a decrease in the biofilm production irrespective of the surface; mutants in spoT showed an increase on stainless steel, and mutants in pta and spoT showed a decrease on reinforced glass but an increase on PS. Our work sheds light on the biofilm-related pathogenesis of A. butzleri, although future studies are necessary to achieve a satisfactory objective.
Collapse
Affiliation(s)
- Adrián Salazar-Sánchez
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Itsaso Baztarrika
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Rodrigo Alonso
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Aurora Fernández-Astorga
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Ilargi Martínez-Ballesteros
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Irati Martinez-Malaxetxebarria
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
24
|
Krzyżek P, Migdał P, Grande R, Gościniak G. Biofilm Formation of Helicobacter pylori in Both Static and Microfluidic Conditions Is Associated With Resistance to Clarithromycin. Front Cell Infect Microbiol 2022; 12:868905. [PMID: 35402304 PMCID: PMC8990135 DOI: 10.3389/fcimb.2022.868905] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022] Open
Abstract
It is widely accepted that production of biofilm is a protective mechanism against various type of stressors, including exposure to antibiotics. However, the impact of this structure on the spread of antibiotic resistance in Helicobacter pylori is still poorly understood. Therefore, the aim of the current research was to determine the relationship between biofilm formation and antibiotic resistance of H. pylori. The study was carried out on 24 clinical strains with different resistance profiles (antibiotic-sensitive, mono-resistant, double-resistant and multidrug-resistant) against clarithromycin (CLR), metronidazole (MTZ) and levofloxacin (LEV). Using static conditions and a crystal violet staining method, a strong correlation was observed between biofilm formation and resistance to CLR but not MTZ or LEV. Based on the obtained results, three the strongest and three the weakest biofilm producers were selected and directed for a set of microfluidic experiments performed in the Bioflux system combined with fluorescence microscopy. Under continuous flow conditions, it was observed that strong biofilm producers formed twice as much of biofilm and created significantly more eDNA and in particular proteins within the biofilm matrix when compared to weak biofilm producers. Additionally, it was noticed that strong biofilm producers had higher tendency for autoaggregation and presented morphostructural differences (a greater cellular packing, shorter cells and a higher amount of both OMVs and flagella) in relation to weak biofilm counterparts. In conclusion, resistance to CLR in clinical H. pylori strains was associated with a broad array of phenotypical features translating to the ability of strong biofilm formation.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- *Correspondence: Paweł Krzyżek,
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Rossella Grande
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
25
|
Giaouris E. Relevance and Importance of Biofilms in the Resistance and Spreading of Campylobacter spp. Within the Food Chain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022. [DOI: 10.1007/5584_2022_749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Cox CA, Bogacz M, El Abbar FM, Browning DD, Hsueh BY, Waters CM, Lee VT, Thompson SA. The Campylobacter jejuni Response Regulator and Cyclic-Di-GMP Binding CbrR Is a Novel Regulator of Flagellar Motility. Microorganisms 2021; 10:microorganisms10010086. [PMID: 35056537 PMCID: PMC8779298 DOI: 10.3390/microorganisms10010086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/19/2021] [Accepted: 12/29/2021] [Indexed: 01/03/2023] Open
Abstract
A leading cause of bacterial gastroenteritis, Campylobacter jejuni is also associated with broad sequelae, including extragastrointestinal conditions such as reactive arthritis and Guillain-Barré Syndrome (GBS). CbrR is a C. jejuni response regulator that is annotated as a diguanylate cyclase (DGC), an enzyme that catalyzes the synthesis of c-di-GMP, a universal bacterial second messenger, from GTP. In C. jejuni DRH212, we constructed an unmarked deletion mutant, cbrR-, and complemented mutant, cbrR+. Motility assays indicated a hyper-motile phenotype associated with cbrR-, whereas motility was deficient in cbrR+. The overexpression of CbrR in cbrR+ was accompanied by a reduction in expression of FlaA, the major flagellin. Biofilm assays and scanning electron microscopy demonstrated similarities between DRH212 and cbrR-; however, cbrR+ was unable to form significant biofilms. Transmission electron microscopy showed similar cell morphology between the three strains; however, cbrR+ cells lacked flagella. Differential radial capillary action of ligand assays (DRaCALA) showed that CbrR binds GTP and c-di-GMP. Liquid chromatography tandem mass spectrometry detected low levels of c-di-GMP in C. jejuni and in E. coli expressing CbrR. CbrR is therefore a negative regulator of FlaA expression and motility, a critical virulence factor in C. jejuni pathogenesis.
Collapse
Affiliation(s)
- Claudia A. Cox
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
| | - Marek Bogacz
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
| | - Faiha M. El Abbar
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
| | - Darren D. Browning
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA;
| | - Brian Y. Hsueh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (B.Y.H.); (C.M.W.)
| | - Chris M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (B.Y.H.); (C.M.W.)
| | - Vincent T. Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA;
| | - Stuart A. Thompson
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA; (C.A.C.); (M.B.); (F.M.E.A.)
- Correspondence:
| |
Collapse
|
27
|
Ohadi E, Bakhshi B, Kalani BS, Talebi M, Irajian G. Transcriptome analysis of biofilm formation under aerobic and microaerobic conditions in clinical isolates of Campylobacter spp. Res Vet Sci 2021; 142:24-30. [PMID: 34847463 DOI: 10.1016/j.rvsc.2021.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 07/29/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
It has been well documented that Campylobacter is the leading cause of foodborne infections and bacterial enteritis in high-income countries. The gastrointestinal tract of most warm-blooded animals, such as mammals and poultry, is prone to this pathogen. Infections caused by this bacterium in humans have usually been associated with the consumption of contaminated poultry meat. The important point about Campylobacter is that this bacterium has adapted to harsh environmental conditions along the food chain (poultry digestive tract to the consumer's plate) and developed an adapted mechanism to those conditions. This study aimed to compare the ability of Campylobacter jejuni and Campylobacter coli strains to form biofilms under aerobic and microaerobic conditions. The presence and expression of flab, FliS, DnaK, luxs, CsrA, Cj0688, and cosR genes involved in biofilm formation were investigated. Finally, the correlation between the biofilm forming ability of Campylobacter isolates and the presence/expression of selected genes has been explored. A significant correlation was observed between the presence and expression of some genes and the degree of biofilm formation in C. jejuni and C. coli isolates. A strong biofilm production was detected in strains harboring all selected genes with greater expression levels. The ability of C. jejuni and C. coli strains in biofilm formation is associated with the coordinated function and convergent expression of the selected genes. Seemingly, stress response- and motility-related genes have the most involvement in biofilm formation of C. jejuni and C. coli strains, while other genes have an accessory role in this phenomenon.
Collapse
Affiliation(s)
- Elnaz Ohadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Behrooz Sadeghi Kalani
- Department of Medical Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Malihe Talebi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Irajian
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Elgamoudi BA, Korolik V. Campylobacter Biofilms: Potential of Natural Compounds to Disrupt Campylobacter jejuni Transmission. Int J Mol Sci 2021; 22:12159. [PMID: 34830039 PMCID: PMC8617744 DOI: 10.3390/ijms222212159] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Microbial biofilms occur naturally in many environmental niches and can be a significant reservoir of infectious microbes in zoonotically transmitted diseases such as that caused by Campylobacter jejuni, the leading cause of acute human bacterial gastroenteritis world-wide. The greatest challenge in reducing the disease caused by this organism is reducing transmission of C. jejuni to humans from poultry via the food chain. Biofilms enhance the stress tolerance and antimicrobial resistance of the microorganisms they harbor and are considered to play a crucial role for Campylobacter spp. survival and transmission to humans. Unconventional approaches to control biofilms and to improve the efficacy of currently used antibiotics are urgently needed. This review summarizes the use plant- and microorganism-derived antimicrobial and antibiofilm compounds such as essential oils, antimicrobial peptides (AMPs), polyphenolic extracts, algae extracts, probiotic-derived factors, d-amino acids (DAs) and glycolipid biosurfactants with potential to control biofilms formed by Campylobacter, and the suggested mechanisms of their action. Further investigation and use of such natural compounds could improve preventative and remedial strategies aimed to limit the transmission of campylobacters and other human pathogens via the food chain.
Collapse
Affiliation(s)
- Bassam A. Elgamoudi
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
29
|
Biofilm Formation Ability of Arcobacter-like and Campylobacter Strains under Different Conditions and on Food Processing Materials. Microorganisms 2021; 9:microorganisms9102017. [PMID: 34683338 PMCID: PMC8538277 DOI: 10.3390/microorganisms9102017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Campylobacter jejuni is the most frequent cause of bacterial gastrointestinal food-borne infection worldwide. The transmission of Campylobacter and Arcobacter-like species is often made possible by their ability to adhere to various abiotic surfaces. This study is focused on monitoring the biofilm ability of 69 strains of Campylobacter spp. and lesser described species of the Arcobacteraceae family isolated from food, water, and clinical samples within the Czech Republic. Biofilm formation was monitored and evaluated under an aerobic/microaerophilic atmosphere after cultivation for 24 or 72 h depending on the surface material. An overall higher adhesion ability was observed in arcobacters. A chi-squared test showed no association between the origin of the strains and biofilm activity (p > 0.05). Arcobacter-like species are able to form biofilms under microaerophilic and aerobic conditions; however, they prefer microaerophilic environments. Biofilm formation has already been demonstrated at refrigerator temperatures (5 °C). Arcobacters also showed higher biofilm formation ability at the temperature of 30 °C. This is in contrast to Campylobacter jejuni NP 2896, which showed higher biofilm formation ability at temperatures of 5–30 °C. Overall, the results demonstrated the biofilm formation ability of many strains, which poses a considerable risk to the food industry, medical practice, and human health.
Collapse
|
30
|
Teren M, Shagieva E, Vondrakova L, Viktorova J, Svarcova V, Demnerova K, Michova HT. Mutagenic strategies against luxS gene affect the early stage of biofilm formation of Campylobacter jejuni. J Appl Genet 2021; 63:145-157. [PMID: 34448102 DOI: 10.1007/s13353-021-00655-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/07/2021] [Accepted: 07/23/2021] [Indexed: 11/26/2022]
Abstract
Currently, it is clear that the luxS gene has an impact on the process of biofilm formation in Campylobacter jejuni. However, even within the species, naturally occurring strains of Campylobacter lacking the luxS gene exist, which can form biofilms. In order to better understand the genetic determinants and the role of quorum sensing through the LuxS/AI-2 pathway in biofilm formation, a set of mutant/complemented strains of C. jejuni 81-176 were prepared. Additionally, the impact of the mutagenic strategy used against the luxS gene was investigated. Biofilm formation was affected by both the presence and absence of the luxS gene, and by the mutagenic strategy used. Analysis by CLSM showed that all mutant strains formed significantly less biofilm mass when compared to the wild-type. Interestingly, the deletion mutant (∆luxS) showed a larger decrease in biofilm mass than the substitution (∙luxS) and insertional inactivated ([Formula: see text]luxS) mutants, even though all the mutant strains lost the ability to produce autoinducer-2 molecules. Moreover, the biofilm of the ∆luxS mutant lacked the characteristic microcolonies observed in all other strains. The complementation of all mutant strains resulted in restored ability to produce AI-2, to form a complex biofilm, and to develop microcolonies at the level of the wild-type.
Collapse
Affiliation(s)
- Martin Teren
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic.
| | - Ekaterina Shagieva
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Lucie Vondrakova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Jitka Viktorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Viviana Svarcova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Katerina Demnerova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Hana T Michova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| |
Collapse
|
31
|
Ma L, Konkel ME, Lu X. Antimicrobial Resistance Gene Transfer from Campylobacter jejuni in Mono- and Dual-Species Biofilms. Appl Environ Microbiol 2021; 87:e0065921. [PMID: 33990313 PMCID: PMC8276811 DOI: 10.1128/aem.00659-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/13/2021] [Indexed: 01/16/2023] Open
Abstract
Horizontal gene transfer (HGT) is a driving force for the dissemination of antimicrobial resistance (AMR) genes among Campylobacter jejuni organisms, a leading cause of foodborne gastroenteritis worldwide. Although HGT is well documented for C. jejuni planktonic cells, the role of C. jejuni biofilms in AMR spread that likely occurs in the environment is poorly understood. Here, we developed a cocultivation model to investigate the HGT of chromosomally encoded AMR genes between two C. jejuni F38011 AMR mutants in biofilms. Compared to planktonic cells, C. jejuni biofilms significantly promoted HGT (P < 0.05), resulting in an increase of HGT frequencies by up to 17.5-fold. Dynamic study revealed that HGT in biofilms increased at the early stage (i.e., from 24 h to 48 h) and remained stable during 48 to 72 h. Biofilms continuously released the HGT mutants into supernatant culture, indicating spontaneous dissemination of AMR to broader niches. DNase I treatment confirmed the role of natural transformation in genetic exchange. HGT was not associated with biofilm biomass, cell density, or bacterial metabolic activity, whereas the presence of extracellular DNA was negatively correlated with the altered HGT frequencies. HGT in biofilms also had a strain-to-strain variation. A synergistic HGT effect was observed between C. jejuni with different genomic backgrounds (i.e., C. jejuni NCTC 11168 chloramphenicol-resistant strain and F38011 kanamycin-resistant strain). C. jejuni performed HGT at the frequency of 10-7 in Escherichia coli-C. jejuni biofilms, while HGT was not detectable in Salmonella enterica-C. jejuni biofilms. IMPORTANCE Antimicrobial-resistant C. jejuni has been listed as a high priority of public health concern worldwide. To tackle the rapid evolution of AMR in C. jejuni, it is of great importance to understand the extent and characteristics of HGT in C. jejuni biofilms, which serve as the main survival strategy of this microbe in the farm-to-table continuum. In this study, we demonstrated that biofilms significantly enhanced HGT compared to the planktonic state (P < 0.05). Biofilm cultivation time and extracellular DNA (eDNA) amount were related to varied HGT frequencies. C. jejuni could spread AMR genes in both monospecies and dual-species biofilms, mimicking the survival mode of C. jejuni in food chains. These findings indicated that the risk and extent of AMR transmission among C. jejuni organisms have been underestimated, as previous HGT studies mainly focused on the planktonic state. Future AMR controlling measures can target biofilms and their main component eDNA.
Collapse
Affiliation(s)
- Luyao Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael E. Konkel
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada
| |
Collapse
|
32
|
Karki AB, Ballard K, Harper C, Sheaff RJ, Fakhr MK. Staphylococcus aureus enhances biofilm formation, aerotolerance, and survival of Campylobacter strains isolated from retail meats. Sci Rep 2021; 11:13837. [PMID: 34226590 PMCID: PMC8257638 DOI: 10.1038/s41598-021-91743-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
In retail meat products, Campylobacter jejuni, C. coli, and Staphylococcus aureus have been reported in high prevalence. The polymicrobial interaction between Campylobacter and other bacteria could enhance Campylobacter survival during the adverse conditions encountered during retail meat processing and storage. This study was designed to investigate the potential role of S. aureus from retail meats in enhancing the survival of Campylobacter exposed to low temperature, aerobic conditions, and biofilm formation. Results indicated that viable S. aureus cells and filter-sterilized cell-free media obtained from S. aureus prolonged the survival of Campylobacter at low temperature and during aerobic conditions. Biofilm formation of Campylobacter strains was significantly enhanced in the presence of viable S. aureus cells, but the results were inconclusive when extracts from cell-free media were used. In conclusion, the presence of S. aureus cells enhances survivability of Campylobacter strains in adverse conditions such as low temperature and aerobic conditions. Further investigations are warranted to understand the interaction between Campylobacter and S. aureus, and effective intervention strategies are needed to reduce the incidence of both foodborne pathogens in retail meat products.
Collapse
Affiliation(s)
- Anand B. Karki
- grid.267360.60000 0001 2160 264XDepartment of Biological Science, The University of Tulsa, Tulsa, OK USA
| | - Kaylee Ballard
- grid.267360.60000 0001 2160 264XDepartment of Biological Science, The University of Tulsa, Tulsa, OK USA
| | - Claudia Harper
- grid.267360.60000 0001 2160 264XDepartment of Biological Science, The University of Tulsa, Tulsa, OK USA
| | - Robert J. Sheaff
- grid.267360.60000 0001 2160 264XDepartment of Chemistry and Biochemistry, The University of Tulsa, Tulsa, OK USA
| | - Mohamed K. Fakhr
- grid.267360.60000 0001 2160 264XDepartment of Biological Science, The University of Tulsa, Tulsa, OK USA
| |
Collapse
|
33
|
Majka G, Mazurek H, Strus M, Ciszek-Lenda M, Szatanek R, Pac A, Golińska E, Marcinkiewicz J. Chronic bacterial pulmonary infections in advanced cystic fibrosis differently affect the level of sputum neutrophil elastase, IL-8 and IL-6. Clin Exp Immunol 2021; 205:391-405. [PMID: 34031873 DOI: 10.1111/cei.13624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Advanced cystic fibrosis (CF) lung disease is commonly characterized by a chronic Pseudomonas aeruginosa infection and destructive inflammation caused by neutrophils. However, the lack of convincing evidence from most informative biomarkers of severe lung dysfunction (SLD-CF) has hampered the formulation of a conclusive, targeted diagnosis of CF. The aim of this study was to determine whether SLD-CF is related to the high concentration of sputum inflammatory mediators and the presence of biofilm-forming bacterial strains. Forty-one patients with advanced CF lung disease were studied. The severity of pulmonary dysfunction was defined by forced expiratory volume in 1 second (FEV1) < 40%. C-reactive protein (CRP) and NLR (neutrophil-lymphocyte ratio) were examined as representative blood-based markers of inflammation. Expectorated sputum was collected and analysed for cytokines and neutrophil-derived defence proteins. Isolated sputum bacteria were identified and their biofilm-forming capacity was determined. There was no association between FEV1% and total number of sputum bacteria. However, in the high biofilm-forming group the median FEV1 was < 40%. Importantly, high density of sputum bacteria was associated with increased concentrations of neutrophil elastase and interleukin (IL)-8 and low concentrations of IL-6 and IL-10. The low concentration of sputum IL-6 is unique for CF and distinct from that observed in other chronic pulmonary inflammatory diseases. These findings strongly suggest that expectorated sputum is an informative source of pulmonary biomarkers representative for advanced CF and may replace more invasive bronchoalveolar lavage analysis to monitor the disease. We recommend to use of the following inflammatory biomarkers: blood CRP, NLR and sputum elastase, IL-6, IL-8 and IL-10.
Collapse
Affiliation(s)
- Grzegorz Majka
- Faculty of Medicine, Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Henryk Mazurek
- Department of Pneumonology and Cystic Fibrosis, Institute of Tuberculosis and Lung Disorders, Rabka-Zdrój, Poland
| | - Magdalena Strus
- Faculty of Medicine, Department of Microbiology, Jagiellonian University Medical College, Kraków, Poland
| | - Marta Ciszek-Lenda
- Faculty of Medicine, Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Rafał Szatanek
- Faculty of Medicine, Institute of Pediatrics, Department of Clinical Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Pac
- Faculty of Medicine, Chair of Epidemiology and Preventive Medicine, Department of Epidemiology, Jagiellonian University Medical College, Kraków, Poland
| | - Edyta Golińska
- Faculty of Medicine, Department of Microbiology, Jagiellonian University Medical College, Kraków, Poland
| | - Janusz Marcinkiewicz
- Faculty of Medicine, Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
34
|
Reuter M, Ultee E, Toseafa Y, Tan A, van Vliet AHM. Inactivation of the core cheVAWY chemotaxis genes disrupts chemotactic motility and organised biofilm formation in Campylobacter jejuni. FEMS Microbiol Lett 2021; 367:6017310. [PMID: 33264398 DOI: 10.1093/femsle/fnaa198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Flagellar motility plays a central role in the bacterial foodborne pathogen Campylobacter jejuni, as flagellar motility is required for reaching the intestinal epithelium and subsequent colonisation or disease. Flagellar proteins also contribute strongly to biofilm formation during transmission. Chemotaxis is the process directing flagellar motility in response to attractant and repellent stimuli, but its role in biofilm formation of C. jejuni is not well understood. Here we show that inactivation of the core chemotaxis genes cheVAWY in C. jejuni strain NCTC 11168 affects both chemotactic motility and biofilm formation. Inactivation of any of the core chemotaxis genes (cheA, cheY, cheV or cheW) impaired chemotactic motility but did not affect flagellar assembly or growth. The ∆cheY mutant swam in clockwise loops, while complementation restored normal motility. Inactivation of the core chemotaxis genes interfered with the ability to form a discrete biofilm at the air-media interface, and the ∆cheY mutant displayed reduced dispersal/shedding of bacteria into the planktonic fraction. This suggests that while the chemotaxis system is not required for biofilm formation per se, it is necessary for organized biofilm formation. Hence interference with the Campylobacter chemotaxis system at any level disrupts optimal chemotactic motility and transmission modes such as biofilm formation.
Collapse
Affiliation(s)
- Mark Reuter
- Gut Health and Food Safety Programme, Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Eveline Ultee
- Gut Health and Food Safety Programme, Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Yasmin Toseafa
- Gut Health and Food Safety Programme, Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Andrew Tan
- Gut Health and Food Safety Programme, Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Daphne Jackson Road, Guildford GU2 7AL, UK
| |
Collapse
|
35
|
Molecular Mechanisms of Campylobacter Biofilm Formation and Quorum Sensing. Curr Top Microbiol Immunol 2021. [PMID: 33620656 DOI: 10.1007/978-3-030-65481-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Even though Campylobacter spp. are known to be fastidious organisms, they can survive within the natural environment. One mechanism to withstand unfavourable conditions is the formation of biofilms, a multicellular structure composed of different bacterial and other microbial species which are embedded in an extracellular matrix. High oxygen levels, low substrate concentrations and the presence of external DNA stimulate the biofilm formation by C. jejuni. These external factors trigger internal adaptation processes, e.g. via regulating the expression of genes encoding proteins required for surface structure formation, as well as motility, stress response and antimicrobial resistance. Known genes impacting biofilm formation will be summarized in this review. The formation of biofilms as well as the expression of virulence genes is often regulated in a cell density depending manner by quorum sensing, which is mediated via small signalling molecules termed autoinducers. Even though quorum sensing mechanisms of other bacteria are well understood, knowledge on the role of these mechanisms in C. jejuni biofilm formation is still scarce. The LuxS enzyme involved in generation of autoinducer-2 is present in C. jejuni, but autoinducer receptors have not been identified so far. Phenotypes of C. jejuni strains lacking a functional luxS like reduced growth, motility, oxygen stress tolerance, biofilm formation, adhesion, invasion and colonization are also summarized within this chapter. However, these phenotypes are highly variable in distinct C. jejuni strains and depend on the culture conditions applied.
Collapse
|
36
|
Elmi A, Nasher F, Dorrell N, Wren B, Gundogdu O. Revisiting Campylobacter jejuni Virulence and Fitness Factors: Role in Sensing, Adapting, and Competing. Front Cell Infect Microbiol 2021; 10:607704. [PMID: 33614526 PMCID: PMC7887314 DOI: 10.3389/fcimb.2020.607704] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial foodborne gastroenteritis world wide and represents a major public health concern. Over the past two decades, significant progress in functional genomics, proteomics, enzymatic-based virulence profiling (EBVP), and the cellular biology of C. jejuni have improved our basic understanding of this important pathogen. We review key advances in our understanding of the multitude of emerging virulence factors that influence the outcome of C. jejuni–mediated infections. We highlight, the spatial and temporal dynamics of factors that promote C. jejuni to sense, adapt and survive in multiple hosts. Finally, we propose cohesive research directions to obtain a comprehensive understanding of C. jejuni virulence mechanisms.
Collapse
Affiliation(s)
- Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fauzy Nasher
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Brendan Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
37
|
Ribeiro LNDM, de Paula E, Rossi DA, Martins FA, de Melo RT, Monteiro GP, Breitkreitz MC, Goulart LR, Fonseca BB. Nanocarriers From Natural Lipids With In Vitro Activity Against Campylobacter jejuni. Front Cell Infect Microbiol 2021; 10:571040. [PMID: 33489930 PMCID: PMC7820125 DOI: 10.3389/fcimb.2020.571040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
Campylobacter jejuni (CJ) is the most prevalent zoonotic pathogen of chicken meat and related products, which may lead to gastroenteritis and autoimmune diseases in humans. Although controlling this bacterium is important, CJ strains resistance against traditional antibiotic therapy has been increased. Vegetable oils and fats are natural biomaterials explored since the Ancient times, due to their therapeutic properties. Nanotechnology has promoted the miniaturization of materials, improving bioavailability and efficacy, while reducing the toxicity of loaded active molecules. In this work, a screening of 28 vegetable oils was firstly performed, in order to select anti-CJ candidates by the disc diffusion test. Thus, the selected liquid lipids were used as active molecules in nanostructured lipid carriers (NLC) formulations. The three resultant systems were characterized in terms of particle size (~200 nm), polydispersity index (~0.15), and zeta potential (~-35mV), and its physicochemical stability was confirmed for a year, at 25°C. The structural properties of NLC were assessed by infrared (FTIR-ATR) and differential scanning calorimetry (DSC) analyses. The spherical nanoparticle morphology and narrow size distribution was observed by transmission electron microscopy (TEM) and field emission scanning electron (FE-SEM) analyses, respectively. Then, the in vitro antimicrobial activity test determined the minimum inhibitory concentration (MIC) of each formulation against CJ strains, in both free (1-3 mg/ml-1) and sessile (0.78 mg/ml-1) forms. Finally, the in vitro biocompatibility of NLC was demonstrated through cell viability using VERO cell line, in which F6 was found twice less cytotoxic than pure olibanum oil. Considering the abovementioned achieved, F6 formulation is able to be evaluated in the in vivo anti-CJ efficacy assays.
Collapse
Affiliation(s)
- Lígia Nunes de Morais Ribeiro
- School of Veterinary Medicine, Federal University of Uberlandia, Uberlândia, Brazil.,Institute of Biotechnology, Federal University of Uberlandia, Uberlândia, Brazil.,Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Flávia Alves Martins
- Institute of Biotechnology, Federal University of Uberlandia, Uberlândia, Brazil
| | | | | | | | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlandia, Uberlândia, Brazil
| | | |
Collapse
|
38
|
Nennig M, Llarena AK, Herold M, Mossong J, Penny C, Losch S, Tresse O, Ragimbeau C. Investigating Major Recurring Campylobacter jejuni Lineages in Luxembourg Using Four Core or Whole Genome Sequencing Typing Schemes. Front Cell Infect Microbiol 2021; 10:608020. [PMID: 33489938 PMCID: PMC7819963 DOI: 10.3389/fcimb.2020.608020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial gastroenteritis, which has motivated the monitoring of genetic profiles circulating in Luxembourg since 13 years. From our integrated surveillance using a genotyping strategy based on an extended MLST scheme including gyrA and porA markers, an unexpected endemic pattern was discovered in the temporal distribution of genotypes. We aimed to test the hypothesis of stable lineages occurrence by implementing whole genome sequencing (WGS) associated with comprehensive and internationally validated schemes. This pilot study assessed four WGS-based typing schemes to classify a panel of 108 strains previously identified as recurrent or sporadic profiles using this in-house typing system. The strain collection included four common lineages in human infection (N = 67) initially identified from recurrent combination of ST-gyrA-porA alleles also detected in non-human samples: veterinary (N = 19), food (N = 20), and environmental (N = 2) sources. An additional set of 19 strains belonging to sporadic profiles completed the tested panel. All the strains were processed by WGS by using Illumina technologies and by applying stringent criteria for filtering sequencing data; we ensure robustness in our genomic comparison. Four typing schemes were applied to classify the strains: (i) the cgMLST SeqSphere+ scheme of 637 loci, (ii) the cgMLST Oxford scheme of 1,343 loci, (iii) the cgMLST INNUENDO scheme of 678 loci, and (iv) the wgMLST INNUENDO scheme of 2,795 loci. A high concordance between the typing schemes was determined by comparing the calculated adjusted Wallace coefficients. After quality control and analyses with these four typing schemes, 60 strains were confirmed as members of the four recurrent lineages regardless of the method used (N = 32, 12, 7, and 9, respectively). Our results indicate that, regardless of the typing scheme used, epidemic or endemic signals were detected as reflected by lineage B (ST2254-gyrA9-porA1) in 2014 or lineage A (ST19-gyrA8-porA7), respectively. These findings support the clonal expansion of stable genomes in Campylobacter population exhibiting a multi-host profile and accounting for the majority of clinical strains isolated over a decade. Such recurring genotypes suggest persistence in reservoirs, sources or environment, emphasizing the need to investigate their survival strategy in greater depth.
Collapse
Affiliation(s)
- Morgane Nennig
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg.,INRAE, Oniris, SECALIM, Nantes, France
| | - Ann-Katrin Llarena
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Malte Herold
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Joël Mossong
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Christian Penny
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation Department, Belvaux, Luxembourg
| | - Serge Losch
- Laboratoire de Médecine Vétérinaire de l'Etat, Veterinary Services Administration, Dudelange, Luxembourg
| | | | - Catherine Ragimbeau
- Epidemiology and Microbial Genomics, Laboratoire National de Santé, Dudelange, Luxembourg
| |
Collapse
|
39
|
Olson EG, Dittoe DK, Micciche AC, Ricke SC. Identification of bacterial isolates from commercial poultry feed via 16S rDNA. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:272-281. [PMID: 33400564 DOI: 10.1080/03601234.2020.1868236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The study's objective was to identify typical aerobic isolates from commercial, corn-soybean meal poultry diets utilizing 16S rDNA, assign them their corresponding taxonomy, and compare the data with the previously published WGS analysis of these same isolates. Ten grams of a commercial corn-soybean meal poultry diet was homogenized in 100 mL of tryptic soy broth for 2 min, serially diluted, plated onto tryptic soy agar (TSA), and incubated aerobically for 24 h at 37 °C. Subsequently, 20 unique colonies were streaked for isolation on TSA and incubated aerobically for 24 h at 37 °C. This process was repeated three consecutive times for purification of isolates until only 11 morphologically distinct colonies were obtained. DNA was extracted using Qiagen's DNeasey® Blood and Tissue Kit. The 16S rRNA V4 region was targeted using an Illumina MiSeq and analyzed via QIIME2-2020.2. Alpha diversity and Beta diversity metrics were generated, and taxa were aligned using Silva in Qiime2-2020.2. Twenty-five distinct genera were identified within the 11 different colonies. Because 16S rDNA identification can provide an understanding of pathogen associations and microbial niches within an ecosystem, the information may present a potential method to establish and characterize the hygienic indicator microorganisms associated with poultry feed.
Collapse
Affiliation(s)
- Elena G Olson
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dana K Dittoe
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Steven C Ricke
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
40
|
Whelan MVX, Simpson JC, Ó Cróinín T. A novel high-content screening approach for the elucidation of C. jejuni biofilm composition and integrity. BMC Microbiol 2021; 21:2. [PMID: 33397288 PMCID: PMC7784365 DOI: 10.1186/s12866-020-02062-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is the leading cause of bacterial gastroenteritis worldwide and the main source of infection is contaminated chicken meat. Although this important human pathogen is an obligate microaerophile, it must survive atmospheric oxygen conditions to allow transmission from contaminated chicken meat to humans. It is becoming increasingly evident that formation of biofilm plays a key role in the survival of this organism for extended periods on poultry products. We have recently demonstrated a novel inducible model for the study of adherent C. jejuni biofilm formation under aerobic conditions. By taking advantage of supercoiling mediated gene regulation, incubation of C. jejuni with subinhibitory concentrations of the Gyrase B inhibitor novobiocin was shown to promote the consistent formation of metabolically active adherent biofilm. RESULTS In this study, we implement this model in conjunction with the fluorescent markers: TAMRA (live cells) and SytoX (dead cells, eDNA) to develop a novel systematic high-content imaging approach and describe how it can be implemented to gain quantifiable information about the integrity and extracellular polymeric substance (EPS) composition of adherent C. jejuni biofilm in aerobic conditions. We show that this produces a model with a consistent, homogenous biofilm that can be induced and used to screen a range of inhibitors of biofilm adherence and matrix formation. CONCLUSIONS This model allows for the first time a high throughput analysis of C. jejuni biofilms which will be invaluable in enabling researchers to develop mechanisms to disrupt these biofilms and reduce the viability of these bacteria under aerobic conditions.
Collapse
Affiliation(s)
- Matthew V X Whelan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tadhg Ó Cróinín
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
41
|
Kreling V, Falcone FH, Kehrenberg C, Hensel A. Campylobacter sp.: Pathogenicity factors and prevention methods-new molecular targets for innovative antivirulence drugs? Appl Microbiol Biotechnol 2020; 104:10409-10436. [PMID: 33185702 PMCID: PMC7662028 DOI: 10.1007/s00253-020-10974-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/24/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
Abstract
Infections caused by bacterial species from the genus Campylobacter are one of the four main causes of strong diarrheal enteritis worldwide. Campylobacteriosis, a typical food-borne disease, can range from mild symptoms to fatal illness. About 550 million people worldwide suffer from campylobacteriosis and lethality is about 33 million p.a. This review summarizes the state of the current knowledge on Campylobacter with focus on its specific virulence factors. Using this knowledge, multifactorial prevention strategies can be implemented to reduce the prevalence of Campylobacter in the food chain. In particular, antiadhesive strategies with specific adhesion inhibitors seem to be a promising concept for reducing Campylobacter bacterial load in poultry production. Antivirulence compounds against bacterial adhesion to and/or invasion into the host cells can open new fields for innovative antibacterial agents. Influencing chemotaxis, biofilm formation, quorum sensing, secretion systems, or toxins by specific inhibitors can help to reduce virulence of the bacterium. In addition, the unusual glycosylation of the bacterium, being a prerequisite for effective phase variation and adaption to different hosts, is yet an unexplored target for combating Campylobacter sp. Plant extracts are widely used remedies in developing countries to combat infections with Campylobacter. Therefore, the present review summarizes the use of natural products against the bacterium in an attempt to stimulate innovative research concepts on the manifold still open questions behind Campylobacter towards improved treatment and sanitation of animal vectors, treatment of infected patients, and new strategies for prevention. KEY POINTS: • Campylobacter sp. is a main cause of strong enteritis worldwide. • Main virulence factors: cytolethal distending toxin, adhesion proteins, invasion machinery. • Strong need for development of antivirulence compounds.
Collapse
Affiliation(s)
- Vanessa Kreling
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Franco H Falcone
- Institute of Parasitology, University of Gießen, Schubertstraße 81, 35392, Gießen, Germany
| | - Corinna Kehrenberg
- Institute of Veterinary Food Science, University of Gießen, Frankfurterstraße 81, 35392, Gießen, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
42
|
Šilha D, Švarcová K, Bajer T, Královec K, Tesařová E, Moučková K, Pejchalová M, Bajerová P. Chemical Composition of Natural Hydrolates and Their Antimicrobial Activity on Arcobacter-Like Cells in Comparison with Other Microorganisms. Molecules 2020; 25:E5654. [PMID: 33266263 PMCID: PMC7730011 DOI: 10.3390/molecules25235654] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Hydrolates obtained via the hydrodistillation and steam distillation of Lavandulaangustifolia Mill., Syzygiumaromaticum L., Foeniculumvulgare Mill., and Laurusnobilis L. were analyzed by gas chromatography with flame ionization detector (GC-FID) and gas chromatography coupled to mass spectrometry (GC-MS). Additionally, the hydrolates were evaluated for antimicrobial activity (disk-diffusion and microdilution method), influence on biofilm formation (Christensen method) and cytotoxicity of concentrated hydrolates against human cell lines (A549) by xCELLigence system. Using chemical analysis, 48, 9, 13 and 33 different components were detected in lavender, clove, fennel and laurel hydrolates, respectively. Lavender hydrolate contained the largest proportion of 1,8-cineol, linalool furanoxide, and linalool. The main components of laurel hydrolate were 1,8-cineol, 4-terpineol and α-terpineol. Fenchone and estragole were the most abundant in fennel hydrolate, and eugenol and eugenyl acetate in clove hydrolate. Concentrated hydrolates showed significant antimicrobial activity. Clove hydrolate was among the most antimicrobially active agents, most preferably against C. albicans, with an inhibition zone up to 23.5 mm. Moreover, concentrated hydrolates did not show any cytotoxic effect again8 st human A549 cells. In the presence of the non-concentrated hydrolates, significantly reduced biofilm formation was observed; however, with concentrated clove hydrolate, there was an increase in biofilm formation, e.g., of A. thereius, A. lanthieri, and A. butzleri. Research shows new findings about hydrolates that may be important in natural medicine or for preservation purposes.
Collapse
Affiliation(s)
- David Šilha
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.Š.); (K.K.); (E.T.); (M.P.)
| | - Karolína Švarcová
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.Š.); (K.K.); (E.T.); (M.P.)
| | - Tomáš Bajer
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (T.B.); (K.M.)
| | - Karel Královec
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.Š.); (K.K.); (E.T.); (M.P.)
| | - Eliška Tesařová
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.Š.); (K.K.); (E.T.); (M.P.)
| | - Kristýna Moučková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (T.B.); (K.M.)
| | - Marcela Pejchalová
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.Š.); (K.K.); (E.T.); (M.P.)
| | - Petra Bajerová
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (T.B.); (K.M.)
| |
Collapse
|
43
|
Shagieva E, Teren M, Michova H, Strakova N, Karpiskova R, Demnerova K. Adhesion, Biofilm Formation, and luxS Sequencing of Campylobacter jejuni Isolated From Water in the Czech Republic. Front Cell Infect Microbiol 2020; 10:596613. [PMID: 33330139 PMCID: PMC7718015 DOI: 10.3389/fcimb.2020.596613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/20/2020] [Indexed: 01/06/2023] Open
Abstract
The microaerophilic pathogen Campylobacter jejuni is a leading bacterial cause of human gastroenteritis in developed countries. Even though it has a reputation as a fastidious organism, C. jejuni is widespread and can be easily isolated from various animals, food, and environmental sources. It is suggested that an ability to form biofilms is probably necessary for the survival of C. jejuni under harsh environmental conditions. The first step required for successful biofilm formation is adhesion to a suitable surface. Therefore, in this work, the degree of adhesion was evaluated, followed by characterization and quantification of biofilms using confocal laser scanning microscopy (CLSM). A total of 15 isolates of C. jejuni were used in the experiments (12 isolates from surface and waste waters, 1 human clinical, 1 food and 1 ACTT BAA-2151 collection strain, all samples originated from the Czech Republic). Regardless of the sample origin, all C. jejuni isolates were able to adhere to the polystyrene surface within 30 min, with the number of attached cells increasing with the time of incubation. The resulting data showed that all isolates were able to form complex voluminous biofilms after 24 h of cultivation. The average amount of biovolume ranged from 3.59 × 106 µm3 to 17.50 × 106 µm3 in isolates obtained from different sources of water, 16.79 × 106 µm3 in the food isolate and 10.92 × 106 µm3 in the collection strain. However, the highest amount of biomass was produced by the human clinical isolate (25.48 × 106 µm3). Similar to the quantity, the architecture of the biofilms also differed, from a rugged flat monolayer of cells to large clustered structures. Further, all isolates were tested for the presence of the luxS gene, as the luxS/AI-2 (autoinducer-2) quorum sensing pathway has been previously connected with enhanced biofilm formation. Two isolates originated from surface waters did not possess the luxS gene. These isolates formed thinner and sparser biofilms lacking the presence of significant clusters. However, the ability to adhere to the surface was preserved. The sequencing of the luxS-containing fragments shown a high similarity of the luxS gene among the isolates.
Collapse
Affiliation(s)
- Ekaterina Shagieva
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Martin Teren
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Hana Michova
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Nicol Strakova
- Laboratory of Zoonoses and Antibiotic Resistance, Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czechia
| | - Renata Karpiskova
- Laboratory of Zoonoses and Antibiotic Resistance, Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czechia
| | - Katerina Demnerova
- Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
44
|
Šimunović K, Zajkoska S, Bezek K, Klančnik A, Barlič Maganja D, Smole Možina S. Comparison of Campylobacter jejuni Slaughterhouse and Surface-Water Isolates Indicates Better Adaptation of Slaughterhouse Isolates to the Chicken Host Environment. Microorganisms 2020; 8:microorganisms8111693. [PMID: 33143223 PMCID: PMC7693524 DOI: 10.3390/microorganisms8111693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/10/2023] Open
Abstract
Campylobacter jejuni is an emerging food-borne pathogen that poses a high risk to human health. Knowledge of the strain source can contribute significantly to an understanding of this pathogen, and can lead to improved control measures in the food-processing industry. In this study, slaughterhouse and surface-water isolates of C. jejuni were characterized and compared in terms of their antimicrobial resistance profiles and adhesion to stainless steel and chicken skin. Resistance of C. jejuni biofilm cells to benzalkonium chloride and Satureja montana ethanolic extract was also tested. The data show that the slaughterhouse isolates are more resistant to ciprofloxacin, and adhere better to stainless steel at 42 °C, and at 37 °C in 50% chicken juice. Additionally, biofilm cells of the isolate with the greatest adhesion potential (C. jejuni S6) were harvested and tested for resistance to S. montana ethanolic extract, benzalkonium chloride, and erythromycin; and for efflux-pump activity, as compared to their planktonic cells. The biofilm cells showed increased resistance to both S. montana ethanolic extract and erythromycin, and increased efflux-pump activity. These data indicate adaptation of C. jejuni slaughterhouse isolates to the chicken host, as well as increased biofilm cell resistance due to increased efflux-pump activity.
Collapse
Affiliation(s)
- Katarina Šimunović
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (K.Š.); (S.Z.); (A.K.)
| | - Sandra Zajkoska
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (K.Š.); (S.Z.); (A.K.)
| | - Katja Bezek
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia; (K.B.); (D.B.M.)
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (K.Š.); (S.Z.); (A.K.)
| | - Darja Barlič Maganja
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia; (K.B.); (D.B.M.)
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (K.Š.); (S.Z.); (A.K.)
- Correspondence: ; Tel.: +386-1-3203751; Fax: +386-1-2565782
| |
Collapse
|
45
|
Begić M, Josić D. Biofilm formation and extracellular microvesicles-The way of foodborne pathogens toward resistance. Electrophoresis 2020; 41:1718-1739. [PMID: 32901923 DOI: 10.1002/elps.202000106] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
Almost all known foodborne pathogens are able to form biofilms as one of the strategies for survival under harsh living conditions, to ward off the inhibition and the disinfection during food production, transport and storage, as well as during cleaning and sanitation of corresponding facilities. Biofilms are communities where microbial cells live under constant intracellular interaction and communication. Members of the biofilm community are embedded into extracellular matrix that contains polysaccharides, DNA, lipids, proteins, and small molecules that protect microorganisms and enable their intercellular communication under stress conditions. Membrane vesicles (MVs) are produced by both Gram positive and Gram negative bacteria. These lipid membrane-enveloped nanoparticles play an important role in biofilm genesis and in communication between different biofilm members. Furthermore, MVs are involved in other important steps of bacterial life like cell wall modeling, cellular division, and intercellular communication. They also carry toxins and virulence factors, as well as nucleic acids and different metabolites, and play a key role in host infections. After entering host cells, MVs can start many pathologic processes and cause serious harm and cell death. Prevention and inhibition of both biofilm formation and shedding of MVs by foodborne pathogens has a very important role in food production, storage, and food safety in general. Better knowledge of biofilm formation and maintaining, as well as the role of microbial vesicles in this process and in the process of host cells' infection is essential for food safety and prevention of both food spoilage and host infection.
Collapse
Affiliation(s)
- Marija Begić
- Faculty of Medicine, Juraj Dobrila University, Pula, Croatia
| | - Djuro Josić
- Faculty of Medicine, Juraj Dobrila University, Pula, Croatia.,Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
46
|
Natsos G, Mouttotou NK, Magiorkinis E, Ioannidis A, Rodi-Burriel A, Chatzipanagiotou S, Koutoulis KC. Prevalence of and Risk Factors for Campylobacter spp. Colonization of Broiler Chicken Flocks in Greece. Foodborne Pathog Dis 2020; 17:679-686. [PMID: 32808818 DOI: 10.1089/fpd.2020.2795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The prevalence and risk factors for Campylobacter spp. colonization of broiler flocks and broiler carcass contamination in Greek slaughterhouses were investigated. Over a 14-month period, a pool of 10 ceca and 5 neck skin samples from chicken carcasses were collected from each of 142 batches of broiler flocks slaughtered in 3 different slaughterhouses. Information on potential risk factors for Campylobacter infection in broilers was collected by an on-farm interview and linked according to the Campylobacter contamination status of broiler flocks and differences in farm characteristics and management practices identified from questionnaires. Campylobacter spp. was isolated from 73.94% and 70.42% of ceca (95% CI 65.92-80.94) and carcasses (95% CI 62.19-77.78), respectively. A significant correlation (p < 0.001) between the presence of Campylobacter spp. in broiler ceca and contamination of carcasses was found, suggesting the spread of the microorganism on the skin of carcasses during the slaughtering procedure. A multiple logistic regression showed the disinfection of the poultry house being conducted by unskilled personnel (odds ratio [OR] ¼ = 3.983) as a significant risk factor (p < 0.05) and the use of straw litter as bedding material (OR ¼ = 0.170) and closure of windows during the intervals of production cycles (OR ¼ = 0.396) as significant protective factors (p < 0.05) for broiler flock contamination. These results are important and help further the understanding of the epidemiology of Campylobacter spp. derived from poultry in Greece.
Collapse
Affiliation(s)
- George Natsos
- Department of Poultry Diseases, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| | - Niki K Mouttotou
- Ministry of Rural Development and Foods, National Reference Laboratory for Salmonella and Antimicrobial Resistance, Chalkida, Greece
| | - Emmanouil Magiorkinis
- Department of Laboratory Haematology, General Hospital for Chest Diseases "Sotiria," Athens, Greece
| | - Anastasios Ioannidis
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Aggeliki Rodi-Burriel
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Stylianos Chatzipanagiotou
- Department of Medical Biopathology, Medical School-Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
47
|
Melo R, Resende A, Mendonça E, Nalevaiko P, Monteiro G, Buiatte A, Rossi D. Salmonella Minnesota de origem avícola apresenta fatores de virulência e risco potencial aos humanos. ARQ BRAS MED VET ZOO 2020. [DOI: 10.1590/1678-4162-10884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO Objetivou-se avaliar características de virulência, perfil de resistência antimicrobiana e padrão de similaridade genética de 71 cepas de Salmonella Minnesota isoladas na cadeia produtiva de frangos de corte, entre 2009 e 2010, em duas unidades de uma empresa (A e B). Os isolados foram sorotipificados e submetidos ao teste de susceptibilidade antimicrobiana pelo teste de difusão em disco. Utilizando-se PCR, foi avaliada a presença dos genes invA, lpfA, agfA e sefA e os genes de resistência aos betalactâmicos (bla TEM , bla SHV e bla CTX-M ). A relação filogenética foi determinada por RAPD-PCR. Os maiores percentuais de resistência foram para tetraciclina e sulfonamida. Foram reconhecidos oito perfis de resistência aos antimicrobianos entre as cepas isoladas na indústria A, e 11 perfis de resistência na indústria B. Do total de cepas, 100% foram positivas para o gene invA, 98,6% para o gene agfA, 49,3% para o gene lpfA e nenhuma para o gene sefA. Três cepas foram positivas para o gene bla TEM (4,2%) e 11 (15,5%) para o gene bla CTX-M . A avaliação filogenética demonstrou a presença de sete clusters com similaridade superior a 80% e três perfis distintos. Com base no dendrograma, observou-se a disseminação de um mesmo perfil em ambas as empresas.
Collapse
Affiliation(s)
- R.T. Melo
- Universidade Federal de Uberlândia, Brazil
| | | | | | | | | | | | - D.A. Rossi
- Universidade Federal de Uberlândia, Brazil
| |
Collapse
|
48
|
Assigning a role for chemosensory signal transduction in Campylobacter jejuni biofilms using a combined omics approach. Sci Rep 2020; 10:6829. [PMID: 32321947 PMCID: PMC7176700 DOI: 10.1038/s41598-020-63569-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/18/2020] [Indexed: 11/08/2022] Open
Abstract
Biofilms of the gastroenteric pathogen C. jejuni may serve an important role in the transmission of infection from reservoirs of infection to humans. Herein, we undertook a combinatorial approach examining differential gene expression and protein abundance during biofilm formation in C. jejuni. Biofilms induced a substantial rearrangement of the C. jejuni transcriptome and proteome, with ~600 genes differentially expressed when compared to planktonic cells. Genes and proteins induced in biofilms were involved in iron metabolism and acquisition, cell division, glycan production and attachment, while those repressed were associated with metabolism, amino acid usage, and large tracts of the chemotaxis pathway. We further examined the role of chemotaxis in C. jejuni biofilm formation by examining isogenic strains with deletions of the cheV and cheW signal transduction genes. Both ∆cheV and ∆cheW exhibited a significant decrease in directed motility when compared to wild-type C. jejuni as well as demonstrating an increase in autoagglutination ability and biofilm formation. A subtle difference was also observed between the phenotypes of ∆cheV and ∆cheW mutants, both in motility and biofilm formation. This suggests roles for CheV and CheW and may present signal transduction as a potential method for modulating C. jejuni biofilm formation.
Collapse
|
49
|
Tram G, Day CJ, Korolik V. Bridging the Gap: A Role for Campylobacter jejuni Biofilms. Microorganisms 2020; 8:E452. [PMID: 32210099 PMCID: PMC7143964 DOI: 10.3390/microorganisms8030452] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/23/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial gastroenteritis in the developed world. Cases of Campylobacteriosis are common, as the organism is an avian commensal and is passed on to humans through contaminated poultry meat, water, and food preparation areas. Although typically a fastidious organism, C. jejuni can survive outside the avian intestinal tract until it is able to reach a human host. It has long been considered that biofilms play a key role in transmission of this pathogen. The aim of this review is to examine factors that trigger biofilm formation in C. jejuni. A range of environmental elements have been shown to initiate biofilm formation, which are then affected by a suite of intrinsic factors. We also aim to further investigate the role that biofilms may play in the life cycle of this organism.
Collapse
Affiliation(s)
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Southport, Queensland 4222, Australia;
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Southport, Queensland 4222, Australia;
| |
Collapse
|
50
|
Klančnik A, Gobin I, Jeršek B, Smole Možina S, Vučković D, Tušek Žnidarič M, Abram M. Adhesion of Campylobacter jejuni Is Increased in Association with Foodborne Bacteria. Microorganisms 2020; 8:E201. [PMID: 32023990 PMCID: PMC7074767 DOI: 10.3390/microorganisms8020201] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to evaluate Campylobacter jejuni NTCT 11168 adhesion to abiotic and biotic surfaces when grown in co-culture with Escherichia coli ATCC 11229 and/or Listeria monocytogenes 4b. Adhesion of C. jejuni to polystyrene and to Caco-2 cells and Acanthamoeba castellanii was lower for at least 3 log CFU/mL compared to E. coli and L. monocytogenes. Electron micrographs of ultrathin sections revealed interactions of C. jejuni with host cells. In co-culture with E. coli and L. monocytogenes, adhesion of C. jejuni to all tested surfaces was significantly increased for more than 1 log CFU/mL. There was 10% higher aggregation for C. jejuni than for other pathogens, and high co-aggregation of co-cultures of C. jejuni with E. coli and L. monocytogenes. These data show that C. jejuni in co-cultures with E. coli and L. monocytogenes present significantly higher risk than C. jejuni as mono-cultures, which need to be taken into account in risk evaluation. C. jejuni adhesion is a prerequisite for their colonization, biofilm formation, and further contamination of the environment. C. jejuni survival under adverse conditions as a factor in their pathogenicity and depends on their adhesion to different surfaces, not only as individual strains, but also in co-cultures with other bacteria like E. coli and L. monocytogenes.
Collapse
Affiliation(s)
- Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (B.J.); (S.S.M.)
| | - Ivana Gobin
- Department of Microbiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, HR-51000 Rijeka, Croatia; (I.G.); (D.V.); (M.A.)
| | - Barbara Jeršek
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (B.J.); (S.S.M.)
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (B.J.); (S.S.M.)
| | - Darinka Vučković
- Department of Microbiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, HR-51000 Rijeka, Croatia; (I.G.); (D.V.); (M.A.)
| | - Magda Tušek Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia;
| | - Maja Abram
- Department of Microbiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, HR-51000 Rijeka, Croatia; (I.G.); (D.V.); (M.A.)
- Department of Clinical Microbiology, Clinical Hospital Centre Rijeka, Krešimirova 42, HR-51000 Rijeka, Croatia
| |
Collapse
|