1
|
Morón Á, Ortiz-Miravalles L, Peñalver M, García-del Portillo F, Pucciarelli MG, Ortega AD. Rli51 Attenuates Transcription of the Listeria Pathogenicity Island 1 Gene mpl and Functions as a Trans-Acting sRNA in Intracellular Bacteria. Int J Mol Sci 2024; 25:9380. [PMID: 39273334 PMCID: PMC11394854 DOI: 10.3390/ijms25179380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Listeria pathogenicity island 1 (LIPI-1) is a genetic region containing a cluster of genes essential for virulence of the bacterial pathogen Listeria monocytogenes. Main virulence factors in LIPI-1 include long 5' untranslated regions (5'UTRs), among which is Rli51, a small RNA (sRNA) in the 5'UTR of the Zn-metalloprotease-coding mpl. So far, Rli51 function and molecular mechanisms have remained obscure. Here, we show that Rli51 exhibits a dual mechanism of regulation, functioning as a cis- and as a trans-acting sRNA. Under nutrient-rich conditions, rli51-mpl transcription is prematurely terminated, releasing a short 121-nucleotide-long sRNA. Rli51 is predicted to function as a transcription attenuator that can fold into either a terminator or a thermodynamically more stable antiterminator. We show that the sRNA Rli21/RliI binds to a single-stranded RNA loop in Rli51, which is essential to mediate premature transcription termination, suggesting that sRNA binding could stabilize the terminator fold. During intracellular infection, rli51 transcription is increased, which generates a higher abundance of the short Rli51 sRNA and allows for transcriptional read-through into mpl. Comparative intracellular bacterial transcriptomics in rli51-null mutants and the wild-type reference strain EGD-e suggests that Rli51 upregulates iron-scavenging proteins and downregulates virulence factors from LIPI-1. MS2 affinity purification confirmed that Rli51 binds transcripts of the heme-binding protein Lmo2186 and Lmo0937 in vivo. These results prove that Rli51 functions as a trans-acting sRNA in intracellular bacteria. Our research shows a growth condition-dependent mechanism of regulation for Rli51, preventing unintended mpl transcription in extracellular bacteria and regulating genes important for virulence in intracellular bacteria.
Collapse
Affiliation(s)
- Álvaro Morón
- Department of Cell Biology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, 28049 Madrid, Spain; (L.O.-M.); (M.P.); (F.G.-d.P.)
| | - Laura Ortiz-Miravalles
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, 28049 Madrid, Spain; (L.O.-M.); (M.P.); (F.G.-d.P.)
- Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biologia Molecular Severo Ochoa (CBM) CSIC-UAM, 28049 Madrid, Spain
| | - Marcos Peñalver
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, 28049 Madrid, Spain; (L.O.-M.); (M.P.); (F.G.-d.P.)
- Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biologia Molecular Severo Ochoa (CBM) CSIC-UAM, 28049 Madrid, Spain
| | - Francisco García-del Portillo
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, 28049 Madrid, Spain; (L.O.-M.); (M.P.); (F.G.-d.P.)
| | - M. Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, 28049 Madrid, Spain; (L.O.-M.); (M.P.); (F.G.-d.P.)
- Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biologia Molecular Severo Ochoa (CBM) CSIC-UAM, 28049 Madrid, Spain
| | - Alvaro Darío Ortega
- Department of Cell Biology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biologia Molecular Severo Ochoa (CBM) CSIC-UAM, 28049 Madrid, Spain
| |
Collapse
|
2
|
Feltham L, Moran J, Goldrick M, Lord E, Spiller DG, Cavet JS, Muldoon M, Roberts IS, Paszek P. Bacterial aggregation facilitates internalin-mediated invasion of Listeria monocytogenes. Front Cell Infect Microbiol 2024; 14:1411124. [PMID: 39045131 PMCID: PMC11263170 DOI: 10.3389/fcimb.2024.1411124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Dissemination of food-borne L. monocytogenes in the host relies on internalin-mediated invasion, but the underlying invasion strategies remain elusive. Here we use live-cell microscopy to follow single cell interactions between individual human cells and L. monocytogenes and elucidate mechanisms associated with internalin B (InlB)-mediated invasion. We demonstrate that whilst a replicative invasion of nonphagocytic cells is a rare event even at high multiplicities of invasion, L. monocytogenes overcomes this by utilising a strategy relaying on PrfA-mediated ActA-based aggregation. We show that L. monocytogenes forms aggregates in extracellular host cell environment, which promote approximately 5-fold more host cell adhesions than the non-aggregating actA-ΔC mutant (which lacks the C-terminus coding region), with the adhering bacteria inducing 3-fold more intracellular invasions. Aggregation is associated with robust MET tyrosine kinase receptor clustering in the host cells, a hallmark of InlB-mediated invasion, something not observed with the actA-ΔC mutant. Finally, we show via RNA-seq analyses that aggregation involves a global adaptive response to host cell environment (including iron depletion), resulting in metabolic changes in L. monocytogenes and upregulation of the PrfA virulence regulon. Overall, our analyses provide new mechanistic insights into internalin-mediated host-pathogen interactions of L. monocytogenes.
Collapse
Affiliation(s)
- Liam Feltham
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Josephine Moran
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Marie Goldrick
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Elizabeth Lord
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David G. Spiller
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jennifer S. Cavet
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Mark Muldoon
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Ian. S. Roberts
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Pawel Paszek
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Hoo R, Ruiz-Morales ER, Kelava I, Rawat M, Mazzeo CI, Tuck E, Sancho-Serra C, Chelaghma S, Predeus AV, Murray S, Fernandez-Antoran D, Waller RF, Álvarez-Errico D, Lee MCS, Vento-Tormo R. Acute response to pathogens in the early human placenta at single-cell resolution. Cell Syst 2024; 15:425-444.e9. [PMID: 38703772 DOI: 10.1016/j.cels.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/01/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
The placenta is a selective maternal-fetal barrier that provides nourishment and protection from infections. However, certain pathogens can attach to and even cross the placenta, causing pregnancy complications with potential lifelong impacts on the child's health. Here, we profiled at the single-cell level the placental responses to three pathogens associated with intrauterine complications-Plasmodium falciparum, Listeria monocytogenes, and Toxoplasma gondii. We found that upon exposure to the pathogens, all placental lineages trigger inflammatory responses that may compromise placental function. Additionally, we characterized the responses of fetal macrophages known as Hofbauer cells (HBCs) to each pathogen and propose that they are the probable niche for T. gondii. Finally, we revealed how P. falciparum adapts to the placental microenvironment by modulating protein export into the host erythrocyte and nutrient uptake pathways. Altogether, we have defined the cellular networks and signaling pathways mediating acute placental inflammatory responses that could contribute to pregnancy complications.
Collapse
Affiliation(s)
- Regina Hoo
- Wellcome Sanger Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Iva Kelava
- Wellcome Sanger Institute, Cambridge, UK
| | - Mukul Rawat
- Wellcome Sanger Institute, Cambridge, UK; Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK
| | | | | | | | - Sara Chelaghma
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - David Fernandez-Antoran
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Marcus C S Lee
- Wellcome Sanger Institute, Cambridge, UK; Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK.
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Fischer K, Bradlerova M, Decker T, Supper V. Vγ9+Vδ2+ T cell control of Listeria monocytogenes growth in infected epithelial cells requires butyrophilin 3A genes. Sci Rep 2023; 13:18651. [PMID: 37903831 PMCID: PMC10616279 DOI: 10.1038/s41598-023-45587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/21/2023] [Indexed: 11/01/2023] Open
Abstract
Intracellular bacteria produce antigens, which serve as potent activators of γδ T cells. Phosphoantigens are presented via a complex of butyrophilins (BTN) to signal infection to human Vγ9+Vδ2+ T cells. Here, we established an in vitro system allowing for studies of Vγ9+Vδ2+ T cell activity in coculture with epithelial cells infected with the intracellular bacterial pathogen Listeria monocytogenes. We report that the Vγ9+Vδ2+ T cells efficiently control L. monocytogenes growth in such cultures. This effector function requires the expression of members of the BTN3A family on epithelial cells. Specifically, we observed a BTN3A1-independent BTN3A3 activity to present antigen to Vγ9+Vδ2+ T cells. Since BTN3A1 is the only BTN3A associated with phosphoantigen presentation, our study suggests that BTN3A3 may present different classes of antigens to mediate Vγ9+Vδ2+ T cell effector function against L. monocytogenes-infected epithelia.
Collapse
Affiliation(s)
- Katrin Fischer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Michaela Bradlerova
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Vienna, Austria.
| | - Verena Supper
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| |
Collapse
|
5
|
Moran J, Feltham L, Bagnall J, Goldrick M, Lord E, Nettleton C, Spiller DG, Roberts I, Paszek P. Live-cell imaging reveals single-cell and population-level infection strategies of Listeria monocytogenes in macrophages. Front Immunol 2023; 14:1235675. [PMID: 37675103 PMCID: PMC10478088 DOI: 10.3389/fimmu.2023.1235675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/01/2023] [Indexed: 09/08/2023] Open
Abstract
Pathogens have developed intricate strategies to overcome the host's innate immune responses. In this paper we use live-cell microscopy with a single bacterium resolution to follow in real time interactions between the food-borne pathogen L. monocytogenes and host macrophages, a key event controlling the infection in vivo. We demonstrate that infection results in heterogeneous outcomes, with only a subset of bacteria able to establish a replicative invasion of macrophages. The fate of individual bacteria in the same host cell was independent from the host cell and non-cooperative, being independent from co-infecting bacteria. A higher multiplicity of infection resulted in a reduced probability of replication of the overall bacterial population. By use of internalisation assays and conditional probabilities to mathematically describe the two-stage invasion process, we demonstrate that the higher MOI compromises the ability of macrophages to phagocytose bacteria. We found that the rate of phagocytosis is mediated via the secreted Listeriolysin toxin (LLO), while the probability of replication of intracellular bacteria remained constant. Using strains expressing fluorescent reporters to follow transcription of either the LLO-encoding hly or actA genes, we show that replicative bacteria exhibited higher PrfA regulon expression in comparison to those bacteria that did not replicate, however elevated PrfA expression per se was not sufficient to increase the probability of replication. Overall, this demonstrates a new role for the population-level, but not single cell, PrfA-mediated activity to regulate outcomes of host pathogen interactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ian Roberts
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Pawel Paszek
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
6
|
Tadala L, Langenbach D, Dannborg M, Cervantes-Rivera R, Sharma A, Vieth K, Rieckmann LM, Wanders A, Cisneros DA, Puhar A. Infection-induced membrane ruffling initiates danger and immune signaling via the mechanosensor PIEZO1. Cell Rep 2022; 40:111173. [PMID: 35947957 DOI: 10.1016/j.celrep.2022.111173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/12/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022] Open
Abstract
Microorganisms are generally sensed by receptors recognizing microbial molecules, which evoke changes in cellular activities and gene expression. Bacterial pathogens induce secretion of the danger signal ATP as an early alert response of intestinal epithelial cells, initiating overt inflammation. However, what triggers ATP secretion during infection is unclear. Here we show that the inherently mechanosensitive plasma membrane channel PIEZO1 acts as a sensor for bacterial entry. PIEZO1 is mechanically activated by invasion-induced membrane ruffles upstream of Ca2+ influx and ATP secretion. Mimicking mechanical stimuli of pathogen uptake with sterile beads equally elicits ATP secretion. Chemical or genetic PIEZO1 inactivation inhibits mechanically induced ATP secretion. Moreover, chemical or mechanical PIEZO1 activation evokes gene expression in immune and barrier pathways. Thus, mechanosensation of invasion-induced plasma membrane distortion initiates immune signaling upon infection, independently of detection of microbial molecules. Hence, PIEZO1-dependent detection of infection is driven by physical signals instead of chemical ligands.
Collapse
Affiliation(s)
- Lalitha Tadala
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), 901 87 Umeå, Sweden; Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Dorothee Langenbach
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), 901 87 Umeå, Sweden; Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Mirjam Dannborg
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), 901 87 Umeå, Sweden; Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Ramón Cervantes-Rivera
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), 901 87 Umeå, Sweden; Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Atin Sharma
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), 901 87 Umeå, Sweden; Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Kevin Vieth
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), 901 87 Umeå, Sweden; Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Lisa M Rieckmann
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), 901 87 Umeå, Sweden; Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Alkwin Wanders
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden; Department of Pathology, Aalborg University Hospital, 9100 Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - David A Cisneros
- Umeå Centre for Microbial Research (UCMR), 901 87 Umeå, Sweden; Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Andrea Puhar
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), 901 87 Umeå, Sweden; Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
7
|
Menendez-Gil P, Catalan-Moreno A, Caballero CJ, Toledo-Arana A. Staphylococcus aureus ftnA 3'-Untranslated Region Modulates Ferritin Production Facilitating Growth Under Iron Starvation Conditions. Front Microbiol 2022; 13:838042. [PMID: 35572681 PMCID: PMC9093591 DOI: 10.3389/fmicb.2022.838042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Iron acquisition and modulation of its intracellular concentration are critical for the development of all living organisms. So far, several proteins have been described to be involved in iron homeostasis. Among them, ferritins act as the major iron storage proteins, sequestering internalized iron and modulating its concentration inside bacterial cells. We previously described that the deletion of the 3’-untranslated region (3’UTR) of the ftnA gene, which codes for ferritin in Staphylococcus aureus, increased the ftnA mRNA and ferritin levels. Here, we show that the ferritin levels are affected by RNase III and PNPase, which target the ftnA 3’UTR. Rifampicin mRNA stability experiments revealed that the half-life of the ftnA mRNA is affected by both RNase III and the ftnA 3’UTR. A transcriptional fusion of the ftnA 3’UTR to the gfp reporter gene decreased green fluorescent protein (GFP) expression, indicating that the ftnA 3’UTR could work as an independent module. Additionally, a chromosomal deletion of the ftnA 3’UTR impaired S. aureus growth under conditions of iron starvation. Overall, this work highlights the biological relevance of the ftnA 3’UTR for iron homeostasis in S. aureus.
Collapse
Affiliation(s)
- Pilar Menendez-Gil
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| | - Arancha Catalan-Moreno
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| | - Carlos J Caballero
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Navarra, Spain
| |
Collapse
|
8
|
Saint Martin C, Darsonval M, Grégoire M, Caccia N, Midoux L, Berland S, Leroy S, Dubois-Brissonnet F, Desvaux M, Briandet R. Spatial organisation of Listeria monocytogenes and Escherichia coli O157:H7 cultivated in gel matrices. Food Microbiol 2022; 103:103965. [DOI: 10.1016/j.fm.2021.103965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/01/2023]
|
9
|
Maudet C, Kheloufi M, Levallois S, Gaillard J, Huang L, Gaultier C, Tsai YH, Disson O, Lecuit M. Bacterial inhibition of Fas-mediated killing promotes neuroinvasion and persistence. Nature 2022; 603:900-906. [PMID: 35296858 DOI: 10.1038/s41586-022-04505-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/03/2022] [Indexed: 12/19/2022]
Abstract
Infections of the central nervous system are among the most serious infections1,2, but the mechanisms by which pathogens access the brain remain poorly understood. The model microorganism Listeria monocytogenes (Lm) is a major foodborne pathogen that causes neurolisteriosis, one of the deadliest infections of the central nervous system3,4. Although immunosuppression is a well-established host risk factor for neurolisteriosis3,5, little is known about the bacterial factors that underlie the neuroinvasion of Lm. Here we develop a clinically relevant experimental model of neurolisteriosis, using hypervirulent neuroinvasive strains6 inoculated in a humanized mouse model of infection7, and we show that the bacterial surface protein InlB protects infected monocytes from Fas-mediated cell death by CD8+ T cells in a manner that depends on c-Met, PI3 kinase and FLIP. This blockade of specific anti-Lm cellular immune killing lengthens the lifespan of infected monocytes, and thereby favours the transfer of Lm from infected monocytes to the brain. The intracellular niche that is created by InlB-mediated cell-autonomous immune resistance also promotes Lm faecal shedding, which accounts for the selection of InlB as a core virulence gene of Lm. We have uncovered a specific mechanism by which a bacterial pathogen confers an increased lifespan to the cells it infects by rendering them resistant to cell-mediated immunity. This promotes the persistence of Lm within the host, its dissemination to the central nervous system and its transmission.
Collapse
Affiliation(s)
- Claire Maudet
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, France
| | - Marouane Kheloufi
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, France
| | - Sylvain Levallois
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, France
| | - Julien Gaillard
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, France
| | - Lei Huang
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, France
| | - Charlotte Gaultier
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, France
| | - Yu-Huan Tsai
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, France.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Olivier Disson
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, Paris, France. .,Institut Pasteur, National Reference Center and WHO Collaborating Center Listeria, Paris, France. .,Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, Paris, France.
| |
Collapse
|
10
|
Regulation of Heterogenous LexA Expression in Staphylococcus aureus by an Antisense RNA Originating from Transcriptional Read-Through upon Natural Mispairings in the sbrB Intrinsic Terminator. Int J Mol Sci 2022; 23:ijms23010576. [PMID: 35009002 PMCID: PMC8745188 DOI: 10.3390/ijms23010576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial genomes are pervasively transcribed, generating a wide variety of antisense RNAs (asRNAs). Many of them originate from transcriptional read-through events (TREs) during the transcription termination process. Previous transcriptome analyses revealed that the lexA gene from Staphylococcus aureus, which encodes the main SOS response regulator, is affected by the presence of an asRNA. Here, we show that the lexA antisense RNA (lexA-asRNA) is generated by a TRE on the intrinsic terminator (TTsbrB) of the sbrB gene, which is located downstream of lexA, in the opposite strand. Transcriptional read-through occurs by a natural mutation that destabilizes the TTsbrB structure and modifies the efficiency of the intrinsic terminator. Restoring the mispairing mutation in the hairpin of TTsbrB prevented lexA-asRNA transcription. The level of lexA-asRNA directly correlated with cellular stress since the expressions of sbrB and lexA-asRNA depend on the stress transcription factor SigB. Comparative analyses revealed strain-specific nucleotide polymorphisms within TTsbrB, suggesting that this TT could be prone to accumulating natural mutations. A genome-wide analysis of TREs suggested that mispairings in TT hairpins might provide wider transcriptional connections with downstream genes and, ultimately, transcriptomic variability among S. aureus strains.
Collapse
|
11
|
Tran TT, Mathmann CD, Gatica-Andrades M, Rollo RF, Oelker M, Ljungberg JK, Nguyen TTK, Zamoshnikova A, Kummari LK, Wyer OJK, Irvine KM, Melo-Bolívar J, Gross A, Brown D, Mak JYW, Fairlie DP, Hansford KA, Cooper MA, Giri R, Schreiber V, Joseph SR, Simpson F, Barnett TC, Johansson J, Dankers W, Harris J, Wells TJ, Kapetanovic R, Sweet MJ, Latomanski EA, Newton HJ, Guérillot RJR, Hachani A, Stinear TP, Ong SY, Chandran Y, Hartland EL, Kobe B, Stow JL, Sauer-Eriksson AE, Begun J, Kling JC, Blumenthal A. Inhibition of the master regulator of Listeria monocytogenes virulence enables bacterial clearance from spacious replication vacuoles in infected macrophages. PLoS Pathog 2022; 18:e1010166. [PMID: 35007292 PMCID: PMC8746789 DOI: 10.1371/journal.ppat.1010166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/01/2021] [Indexed: 02/04/2023] Open
Abstract
A hallmark of Listeria (L.) monocytogenes pathogenesis is bacterial escape from maturing entry vacuoles, which is required for rapid bacterial replication in the host cell cytoplasm and cell-to-cell spread. The bacterial transcriptional activator PrfA controls expression of key virulence factors that enable exploitation of this intracellular niche. The transcriptional activity of PrfA within infected host cells is controlled by allosteric coactivation. Inhibitory occupation of the coactivator site has been shown to impair PrfA functions, but consequences of PrfA inhibition for L. monocytogenes infection and pathogenesis are unknown. Here we report the crystal structure of PrfA with a small molecule inhibitor occupying the coactivator site at 2.0 Å resolution. Using molecular imaging and infection studies in macrophages, we demonstrate that PrfA inhibition prevents the vacuolar escape of L. monocytogenes and enables extensive bacterial replication inside spacious vacuoles. In contrast to previously described spacious Listeria-containing vacuoles, which have been implicated in supporting chronic infection, PrfA inhibition facilitated progressive clearance of intracellular L. monocytogenes from spacious vacuoles through lysosomal degradation. Thus, inhibitory occupation of the PrfA coactivator site facilitates formation of a transient intravacuolar L. monocytogenes replication niche that licenses macrophages to effectively eliminate intracellular bacteria. Our findings encourage further exploration of PrfA as a potential target for antimicrobials and highlight that intra-vacuolar residence of L. monocytogenes in macrophages is not inevitably tied to bacterial persistence.
Collapse
Affiliation(s)
- Thao Thanh Tran
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | | | | | - Rachel F. Rollo
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | | | | | - Tam T. K. Nguyen
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | | | - Lalith K. Kummari
- The University of Queensland School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Orry J. K. Wyer
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | - Katharine M. Irvine
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | - Annette Gross
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | - Darren Brown
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jeffrey Y. W. Mak
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Karl A. Hansford
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Rabina Giri
- Mater Research Institute – The University of Queensland, Brisbane, Australia
| | - Veronika Schreiber
- Mater Research Institute – The University of Queensland, Brisbane, Australia
| | - Shannon R. Joseph
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | - Fiona Simpson
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | - Timothy C. Barnett
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, Australia
| | | | - Wendy Dankers
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Australia
| | - James Harris
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Australia
| | - Timothy J. Wells
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Matthew J. Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Eleanor A. Latomanski
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hayley J. Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Romain J. R. Guérillot
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sze Ying Ong
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Melbourne, Australia
| | - Yogeswari Chandran
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Melbourne, Australia
| | - Elizabeth L. Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Melbourne, Australia
| | - Bostjan Kobe
- The University of Queensland School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jennifer L. Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | - Jakob Begun
- Mater Research Institute – The University of Queensland, Brisbane, Australia
| | - Jessica C. Kling
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, Brisbane, Australia
- * E-mail:
| |
Collapse
|
12
|
Listeriolysin S: A bacteriocin from Listeria monocytogenes that induces membrane permeabilization in a contact-dependent manner. Proc Natl Acad Sci U S A 2021; 118:2108155118. [PMID: 34599102 PMCID: PMC8501752 DOI: 10.1073/pnas.2108155118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes (Lm) is a bacterial pathogen that causes listeriosis, a foodborne disease characterized by gastroenteritis, meningitis, bacteremia, and abortions in pregnant women. The most severe human listeriosis outbreaks are associated with a subset of Lm hypervirulent clones that encode the bacteriocin Listeriolysin S (LLS), which modifies the gut microbiota and allows efficient Lm gut colonization and invasion of deeper organs. Our present work identifies the killing mechanism displayed by LLS to outcompete gut commensal bacteria, demonstrating that it induces membrane permeabilization and membrane depolarization of target bacteria. Moreover, we show that LLS is a thiazole/oxazole–modified microcin that displays a contact-dependent inhibition mechanism. Listeriolysin S (LLS) is a thiazole/oxazole–modified microcin (TOMM) produced by hypervirulent clones of Listeria monocytogenes. LLS targets specific gram-positive bacteria and modulates the host intestinal microbiota composition. To characterize the mechanism of LLS transfer to target bacteria and its bactericidal function, we first investigated its subcellular distribution in LLS-producer bacteria. Using subcellular fractionation assays, transmission electron microscopy, and single-molecule superresolution microscopy, we identified that LLS remains associated with the bacterial cell membrane and cytoplasm and is not secreted to the bacterial extracellular space. Only living LLS-producer bacteria (and not purified LLS-positive bacterial membranes) display bactericidal activity. Applying transwell coculture systems and microfluidic-coupled microscopy, we determined that LLS requires direct contact between LLS-producer and -target bacteria in order to display bactericidal activity, and thus behaves as a contact-dependent bacteriocin. Contact-dependent exposure to LLS leads to permeabilization/depolarization of the target bacterial cell membrane and adenosine triphosphate (ATP) release. Additionally, we show that lipoteichoic acids (LTAs) can interact with LLS and that LTA decorations influence bacterial susceptibility to LLS. Overall, our results suggest that LLS is a TOMM that displays a contact-dependent inhibition mechanism.
Collapse
|
13
|
Catalan-Moreno A, Cela M, Menendez-Gil P, Irurzun N, Caballero CJ, Caldelari I, Toledo-Arana A. RNA thermoswitches modulate Staphylococcus aureus adaptation to ambient temperatures. Nucleic Acids Res 2021; 49:3409-3426. [PMID: 33660769 PMCID: PMC8034633 DOI: 10.1093/nar/gkab117] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/27/2021] [Accepted: 02/11/2021] [Indexed: 01/05/2023] Open
Abstract
Thermoregulation of virulence genes in bacterial pathogens is essential for environment-to-host transition. However, the mechanisms governing cold adaptation when outside the host remain poorly understood. Here, we found that the production of cold shock proteins CspB and CspC from Staphylococcus aureus is controlled by two paralogous RNA thermoswitches. Through in silico prediction, enzymatic probing and site-directed mutagenesis, we demonstrated that cspB and cspC 5′UTRs adopt alternative RNA structures that shift from one another upon temperature shifts. The open (O) conformation that facilitates mRNA translation is favoured at ambient temperatures (22°C). Conversely, the alternative locked (L) conformation, where the ribosome binding site (RBS) is sequestered in a double-stranded RNA structure, is folded at host-related temperatures (37°C). These structural rearrangements depend on a long RNA hairpin found in the O conformation that sequesters the anti-RBS sequence. Notably, the remaining S. aureus CSP, CspA, may interact with a UUUGUUU motif located in the loop of this long hairpin and favour the folding of the L conformation. This folding represses CspB and CspC production at 37°C. Simultaneous deletion of the cspB/cspC genes or their RNA thermoswitches significantly decreases S. aureus growth rate at ambient temperatures, highlighting the importance of CspB/CspC thermoregulation when S. aureus transitions from the host to the environment.
Collapse
Affiliation(s)
- Arancha Catalan-Moreno
- Instituto de Agrobiotecnología, IdAB, CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - Marta Cela
- Instituto de Agrobiotecnología, IdAB, CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - Pilar Menendez-Gil
- Instituto de Agrobiotecnología, IdAB, CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - Naiara Irurzun
- Instituto de Agrobiotecnología, IdAB, CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - Carlos J Caballero
- Instituto de Agrobiotecnología, IdAB, CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, UPR 9002, F-67000 Strasbourg, France
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología, IdAB, CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain
| |
Collapse
|
14
|
Dorado‐Morales P, Martínez I, Rivero‐Buceta V, Díaz E, Bähre H, Lasa I, Solano C. Elevated c-di-GMP levels promote biofilm formation and biodesulfurization capacity of Rhodococcus erythropolis. Microb Biotechnol 2021; 14:923-937. [PMID: 33128507 PMCID: PMC8085952 DOI: 10.1111/1751-7915.13689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022] Open
Abstract
Bacterial biofilms provide high cell density and a superior adaptation and protection from stress conditions compared to planktonic cultures, making them a very promising approach for bioremediation. Several Rhodococcus strains can desulfurize dibenzothiophene (DBT), a major sulphur pollutant in fuels, reducing air pollution from fuel combustion. Despite multiple efforts to increase Rhodococcus biodesulfurization activity, there is still an urgent need to develop better biocatalysts. Here, we implemented a new approach that consisted in promoting Rhodococcus erythropolis biofilm formation through the heterologous expression of a diguanylate cyclase that led to the synthesis of the biofilm trigger molecule cyclic di-GMP (c-di-GMP). R. erythropolis biofilm cells displayed a significantly increased DBT desulfurization activity when compared to their planktonic counterparts. The improved biocatalyst formed a biofilm both under batch and continuous flow conditions which turns it into a promising candidate for the development of an efficient bioreactor for the removal of sulphur heterocycles present in fossil fuels.
Collapse
Affiliation(s)
- Pedro Dorado‐Morales
- Laboratory of Microbial PathogenesisNavarrabiomed‐Universidad Pública de Navarra (UPNA)‐Complejo Hospitalario de Navarra (CHN)IdiSNAIrunlarrea 3PamplonaNavarra31008Spain
| | - Igor Martínez
- Department of Systems BiologyCentro Nacional de BiotecnologíaAgencia Estatal Consejo Superior de Investigaciones CientíficasDarwin 3Madrid28049Spain
| | - Virginia Rivero‐Buceta
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita SalasAgencia Estatal Consejo Superior de Investigaciones CientíficasRamiro de Maeztu 9Madrid28040Spain
| | - Eduardo Díaz
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita SalasAgencia Estatal Consejo Superior de Investigaciones CientíficasRamiro de Maeztu 9Madrid28040Spain
| | - Heike Bähre
- Research Core Unit MetabolomicsHannover Medical SchoolCarl‐Neuberg‐Straße 1Hannover30625Germany
| | - Iñigo Lasa
- Laboratory of Microbial PathogenesisNavarrabiomed‐Universidad Pública de Navarra (UPNA)‐Complejo Hospitalario de Navarra (CHN)IdiSNAIrunlarrea 3PamplonaNavarra31008Spain
| | - Cristina Solano
- Laboratory of Microbial PathogenesisNavarrabiomed‐Universidad Pública de Navarra (UPNA)‐Complejo Hospitalario de Navarra (CHN)IdiSNAIrunlarrea 3PamplonaNavarra31008Spain
| |
Collapse
|
15
|
Impens F, Dussurget O. Three decades of listeriology through the prism of technological advances. Cell Microbiol 2021; 22:e13183. [PMID: 32185895 DOI: 10.1111/cmi.13183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Decades of breakthroughs resulting from cross feeding of microbiological research and technological innovation have promoted Listeria monocytogenes to the rank of model microorganism to study host-pathogen interactions. The extraordinary capacity of this bacterium to interfere with a vast array of host cellular processes uncovered new concepts in microbiology, cell biology and infection biology. Here, we review technological advances that revealed how bacteria and host interact in space and time at the molecular, cellular, tissue and whole body scales, ultimately revolutionising our understanding of Listeria pathogenesis. With the current bloom of multidisciplinary integrative approaches, Listeria entered a new microbiology era.
Collapse
Affiliation(s)
- Francis Impens
- Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department for Biomedical Medicine, Ghent University, Ghent, Belgium.,VIB Proteomics Core, VIB, Ghent, Belgium
| | - Olivier Dussurget
- Institut Pasteur, Unité de Recherche Yersinia, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
16
|
Internalization Assays for Listeria monocytogenes. Methods Mol Biol 2021. [PMID: 32975776 DOI: 10.1007/978-1-0716-0982-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Listeria monocytogenes is a model intracellular pathogen that can invade the cytoplasm of host mammalian cells. Cellular invasion can be measured using standard techniques, such as the classical gentamicin protection assay, based on the quantification of colony-forming units from lysates of infected cells. In addition, there are methods based on immunofluorescence microscopy which allow for assaying invasion in a medium- to high-throughput manner. In the following sections, we detail two different assays that can be used alone or in combination to quantify the internalization of L. monocytogenes in host cells.
Collapse
|
17
|
Bierne H, Kortebi M, Descoeudres N. Microscopy of Intracellular Listeria monocytogenes in Epithelial Cells. Methods Mol Biol 2021; 2220:201-215. [PMID: 32975777 DOI: 10.1007/978-1-0716-0982-8_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The pathogen Listeria monocytogenes is a facultative intracellular bacterium, which targets a large range of cell types. Following entry, bacteria disrupt the invasion vacuole and reach the cytoplasm where they replicate and use the actin cytoskeleton to propel themselves from cell to cell. Mammalian epithelial cells grown in vitro can be used to study the different steps of the intracellular life of Listeria. However, rapid multiplication and dissemination of bacteria can induce important cell death and detachment, resulting in the formation of lytic plaques. Thus, in vitro infections with L. monocytogenes are usually restricted to short time courses, from a few minutes to one day. Here, we present a method to study long-term L. monocytogenes infections in epithelial cells using epifluorescence microscopy. This protocol enables the observation of actin-based motility, intercellular dissemination foci, and entrapment of L. monocytogenes within vacuoles of persistence termed "Listeria-Containing Vacuoles" (LisCVs). We also describe a protocol to study the recruitment of cytoskeletal proteins at Listeria actin comet tails, as well as a method to assess the membrane integrity of intracellular bacteria using a LIVE/DEAD viability assay.
Collapse
Affiliation(s)
- Hélène Bierne
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| | - Mounia Kortebi
- Epigenetics and Cellular Microbiology Laboratory, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Natalie Descoeudres
- Epigenetics and Cellular Microbiology Laboratory, Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
18
|
Live Imaging Reveals Listeria Hijacking of E-Cadherin Recycling as It Crosses the Intestinal Barrier. Curr Biol 2020; 31:1037-1047.e4. [PMID: 33333010 DOI: 10.1016/j.cub.2020.11.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/13/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes is a foodborne bacterial pathogen that causes human listeriosis, a severe systemic infection.1 Its translocation across the intestinal epithelium is mediated by the interaction of internalin (InlA), a Listeria surface protein, with its host-species-specific receptor E-cadherin (Ecad).2-5 It occurs through goblet cells, on which Ecad is luminally accessible,6 via an unknown mechanism. In the absence of cell lines recapitulating this phenotype in vitro, we developed an ex vivo experimental system, based on the intraluminal microinjection of Listeria in untreated, pharmacologically treated, and genetically modified intestinal organoids. Using both live light-sheet microscopy and confocal imaging, we show that Listeria translocates through goblet cells within a membrane vacuole in an InlA- and microtubule-dependent manner. As Ecad undergoes constant apical-basal recycling,7,8 we hypothesized that Lm may transit through goblet cells by hijacking Ecad recycling pathway. Indeed, Listeria is stuck at goblet cell apex when Ecad endocytosis is blocked and remains trapped intracellularly at the basolateral pole of goblet cells when Rab11-dependent Ecad recycling is compromised. Together, these results show that Listeria, upon docking onto its luminally accessible receptor Ecad, hijacks its recycling pathway to be transferred by transcytosis across goblet cells. Live imaging of host-pathogen interactions in organoids is a promising approach to dissect their underlying cell and molecular biology.
Collapse
|
19
|
Peron-Cane C, Fernandez JC, Leblanc J, Wingertsmann L, Gautier A, Desprat N, Lebreton A. Fluorescent secreted bacterial effectors reveal active intravacuolar proliferation of Listeria monocytogenes in epithelial cells. PLoS Pathog 2020; 16:e1009001. [PMID: 33045003 PMCID: PMC7580998 DOI: 10.1371/journal.ppat.1009001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/22/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Real-time imaging of bacterial virulence factor dynamics is hampered by the limited number of fluorescent tools suitable for tagging secreted effectors. Here, we demonstrated that the fluorogenic reporter FAST could be used to tag secreted proteins, and we implemented it to monitor infection dynamics in epithelial cells exposed to the human pathogen Listeria monocytogenes (Lm). By tracking individual FAST-labelled vacuoles after Lm internalisation into cells, we unveiled the heterogeneity of residence time inside entry vacuoles. Although half of the bacterial population escaped within 13 minutes after entry, 12% of bacteria remained entrapped over an hour inside long term vacuoles, and sometimes much longer, regardless of the secretion of the pore-forming toxin listeriolysin O (LLO). We imaged LLO-FAST in these long-term vacuoles, and showed that LLO enabled Lm to proliferate inside these compartments, reminiscent of what had been previously observed for Spacious Listeria-containing phagosomes (SLAPs). Unexpectedly, inside epithelial SLAP-like vacuoles (eSLAPs), Lm proliferated as fast as in the host cytosol. eSLAPs thus constitute an alternative replication niche in epithelial cells that might promote the colonization of host tissues. Bacterial pathogens secrete virulence factors to subvert their hosts; however, monitoring bacterial secretion in real-time remains challenging. Here, we developed a convenient method that enabled fluorescent imaging of secreted proteins in live microscopy, and applied it to the human pathogen Listeria monocytogenes. Listeria has been described to invade cells and proliferate in their cytosol; it is first internalized inside vacuoles, from where it escapes thanks to the secretion of virulence factors that disrupt membranes. Our work revealed the existence, in human epithelial cells, of a population of Listeria that failed to escape vacuoles but instead multiplied efficiently therein, despite—and in fact, thanks to—the active secretion of a toxin that permeates membranes. This intravacuolar niche may provide Listeria with an alternative strategy to colonize its host.
Collapse
Affiliation(s)
- Caroline Peron-Cane
- Laboratoire de Physique de l’École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
- Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - José-Carlos Fernandez
- Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Julien Leblanc
- Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Laure Wingertsmann
- Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Arnaud Gautier
- Sorbonne Université, École normale supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, Paris, France
- Institut Universitaire de France
| | - Nicolas Desprat
- Laboratoire de Physique de l’École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
- Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- UFR de Physique, Université Paris-Diderot, Université de Paris, Paris, France
- * E-mail: (ND); (AL)
| | - Alice Lebreton
- Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- INRAE, IBENS, Paris, France
- * E-mail: (ND); (AL)
| |
Collapse
|
20
|
Confocal Laser Microscopy Analysis of Listeria monocytogenes Biofilms and Spatially Organized Communities. Methods Mol Biol 2020. [PMID: 32975771 DOI: 10.1007/978-1-0716-0982-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The behavior of Listeria monocytogenes communities in the food chain is closely associated with their spatial organization. Whether as biofilms on industrial surfaces or as microcolonies in food matrices, the resulting physiological diversification combined with the presence of extracellular polymeric substances (EPS) triggers emergent community functions involved in the pathogen survival and persistence (e.g., tolerance to dehydration, biocides, or preservatives). In this contribution, we present a noninvasive confocal laser microscopy (CLM) protocol allowing exploration of the spatial organization of L. monocytogenes communities on various inert or nutritive materials relevant for the food industry.
Collapse
|
21
|
Menendez-Gil P, Caballero CJ, Catalan-Moreno A, Irurzun N, Barrio-Hernandez I, Caldelari I, Toledo-Arana A. Differential evolution in 3'UTRs leads to specific gene expression in Staphylococcus. Nucleic Acids Res 2020; 48:2544-2563. [PMID: 32016395 PMCID: PMC7049690 DOI: 10.1093/nar/gkaa047] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/05/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
The evolution of gene expression regulation has contributed to species differentiation. The 3' untranslated regions (3'UTRs) of mRNAs include regulatory elements that modulate gene expression; however, our knowledge of their implications in the divergence of bacterial species is currently limited. In this study, we performed genome-wide comparative analyses of mRNAs encoding orthologous proteins from the genus Staphylococcus and found that mRNA conservation was lost mostly downstream of the coding sequence (CDS), indicating the presence of high sequence diversity in the 3'UTRs of orthologous genes. Transcriptomic mapping of different staphylococcal species confirmed that 3'UTRs were also variable in length. We constructed chimeric mRNAs carrying the 3'UTR of orthologous genes and demonstrated that 3'UTR sequence variations affect protein production. This suggested that species-specific functional 3'UTRs might be specifically selected during evolution. 3'UTR variations may occur through different processes, including gene rearrangements, local nucleotide changes, and the transposition of insertion sequences. By extending the conservation analyses to specific 3'UTRs, as well as the entire set of Escherichia coli and Bacillus subtilis mRNAs, we showed that 3'UTR variability is widespread in bacteria. In summary, our work unveils an evolutionary bias within 3'UTRs that results in species-specific non-coding sequences that may contribute to bacterial diversity.
Collapse
Affiliation(s)
- Pilar Menendez-Gil
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-Gobierno de Navarra, 31192-Mutilva, Navarra, Spain
| | - Carlos J Caballero
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-Gobierno de Navarra, 31192-Mutilva, Navarra, Spain
| | - Arancha Catalan-Moreno
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-Gobierno de Navarra, 31192-Mutilva, Navarra, Spain
| | - Naiara Irurzun
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-Gobierno de Navarra, 31192-Mutilva, Navarra, Spain
| | - Inigo Barrio-Hernandez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Isabelle Caldelari
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000-Strasbourg, France
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-Gobierno de Navarra, 31192-Mutilva, Navarra, Spain
| |
Collapse
|
22
|
Rolhion N, Chassaing B, Nahori MA, de Bodt J, Moura A, Lecuit M, Dussurget O, Bérard M, Marzorati M, Fehlner-Peach H, Littman DR, Gewirtz AT, Van de Wiele T, Cossart P. A Listeria monocytogenes Bacteriocin Can Target the Commensal Prevotella copri and Modulate Intestinal Infection. Cell Host Microbe 2020; 26:691-701.e5. [PMID: 31726031 PMCID: PMC6854461 DOI: 10.1016/j.chom.2019.10.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/05/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Understanding the role of the microbiota components in either preventing or favoring enteric infections is critical. Here, we report the discovery of a Listeria bacteriocin, Lmo2776, which limits Listeria intestinal colonization. Oral infection of conventional mice with a Δlmo2776 mutant leads to a thinner intestinal mucus layer and higher Listeria loads both in the intestinal content and deeper tissues compared to WT Listeria. This latter difference is microbiota dependent, as it is not observed in germ-free mice. Strikingly, it is phenocopied by pre-colonization of germ-free mice before Listeria infection with Prevotella copri, an abundant gut-commensal bacteria, but not with the other commensals tested. We further show that Lmo2776 targets P. copri and reduces its abundance. Together, these data unveil a role for P.copri in exacerbating intestinal infection, highlighting that pathogens such as Listeria may selectively deplete microbiota bacterial species to avoid excessive inflammation. L. monocytogenes secretes a bacteriocin (Lmo2776) homologous to the lactococcin 972 Lmo2776 controls Listeria intestinal colonization in a microbiota-dependent manner Lmo2776 targets the abundant gut commensal Prevotella copri Presence of P. copri exacerbates infection
Collapse
Affiliation(s)
- Nathalie Rolhion
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, Unité sous-contrat 2020, 75015 Paris, France
| | - Benoit Chassaing
- Neurosciences Institute, Georgia State University (GSU), Atlanta, GA 30303, USA; Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, GSU, Atlanta, GA 30303, USA
| | - Marie-Anne Nahori
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, Unité sous-contrat 2020, 75015 Paris, France
| | - Jana de Bodt
- Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Alexandra Moura
- Institut Pasteur, Unité Biologie des Infections, 75015 Paris, France; Inserm, U1117, 75015 Paris, France
| | - Marc Lecuit
- Institut Pasteur, Unité Biologie des Infections, 75015 Paris, France; Inserm, U1117, 75015 Paris, France; Paris Descartes University, Sorbonne Paris Cité, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Institut Imagine, 75743 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, Unité sous-contrat 2020, 75015 Paris, France; Université de Paris, 75013 Paris, France
| | - Marion Bérard
- Animalerie Centrale, Department of Technology and Scientific Programmes, Institut Pasteur, 75015 Paris, France
| | - Massimo Marzorati
- Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Hannah Fehlner-Peach
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Dan R Littman
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York, NY 10016, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, GSU, Atlanta, GA 30303, USA
| | - Tom Van de Wiele
- Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, Unité sous-contrat 2020, 75015 Paris, France.
| |
Collapse
|
23
|
Abstract
The pathogenic potential of Listeria monocytogenes relies on the production of an arsenal of virulence determinants that have been extensively characterized, including surface and secreted proteins of the internalin family. We have previously shown that the Listeria secreted internalin InlC interacts with IκB kinase α to interfere with the host immune response (E. Gouin, M. Adib-Conquy, D. Balestrino, M.-A. Nahori, et al., Proc Natl Acad Sci USA, 107:17333–17338, 2010, https://doi.org/10.1073/pnas.1007765107). In the present work, we report that InlC is monoubiquitinated on K224 upon infection of cells and provide evidence that ubiquitinated InlC interacts with and stabilizes the alarmin S100A9, which is a critical regulator of the immune response and inflammatory processes. Additionally, we show that ubiquitination of InlC causes an increase in reactive oxygen species production by neutrophils in mice and restricts Listeria infection. These findings are the first to identify a posttranscriptional modification of an internalin contributing to host defense. Listeria monocytogenes is a pathogenic bacterium causing potentially fatal foodborne infections in humans and animals. While the mechanisms used by Listeria to manipulate its host have been thoroughly characterized, how the host controls bacterial virulence factors remains to be extensively deciphered. Here, we found that the secreted Listeria virulence protein InlC is monoubiquitinated by the host cell machinery on K224, restricting infection. We show that the ubiquitinated form of InlC interacts with the intracellular alarmin S100A9, resulting in its stabilization and in increased reactive oxygen species production by neutrophils in infected mice. Collectively, our results suggest that posttranslational modification of InlC exacerbates the host response upon Listeria infection.
Collapse
|
24
|
Pagliuso A, Tham TN, Allemand E, Robertin S, Dupuy B, Bertrand Q, Bécavin C, Koutero M, Najburg V, Nahori MA, Tangy F, Stavru F, Bessonov S, Dessen A, Muchardt C, Lebreton A, Komarova AV, Cossart P. An RNA-Binding Protein Secreted by a Bacterial Pathogen Modulates RIG-I Signaling. Cell Host Microbe 2019; 26:823-835.e11. [PMID: 31761719 PMCID: PMC6907008 DOI: 10.1016/j.chom.2019.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/21/2019] [Accepted: 10/07/2019] [Indexed: 01/20/2023]
Abstract
RNA-binding proteins (RBPs) perform key cellular activities by controlling the function of bound RNAs. The widely held assumption that RBPs are strictly intracellular has been challenged by the discovery of secreted RBPs. However, extracellular RBPs have been described in eukaryotes, while secreted bacterial RBPs have not been reported. Here, we show that the bacterial pathogen Listeria monocytogenes secretes a small RBP that we named Zea. We show that Zea binds a subset of L. monocytogenes RNAs, causing their accumulation in the extracellular medium. Furthermore, during L. monocytogenes infection, Zea binds RIG-I, the non-self-RNA innate immunity sensor, potentiating interferon-β production. Mouse infection studies reveal that Zea affects L. monocytogenes virulence. Together, our results unveil that bacterial RNAs can be present extracellularly in association with RBPs, acting as “social RNAs” to trigger a host response during infection. L. monocytogenes secretes an RNA-binding protein, Zea Zea binds and protects L. monocytogenes RNA, resulting in extracellular RNA accumulation During infection, Zea binds RIG-I and modulates RIG-I-dependent IFN response Zea plays a role in L. monocytogenes virulence in mice
Collapse
Affiliation(s)
- Alessandro Pagliuso
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France.
| | - To Nam Tham
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France
| | - Eric Allemand
- Unité de régulation épigénétique, Institut Pasteur, UMR3738 CNRS, Paris, France
| | - Stevens Robertin
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, Université de Paris, Paris, France
| | - Quentin Bertrand
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, Grenoble, France
| | - Christophe Bécavin
- Hub de bioinformatique et biostatistique - Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Unité mixte de Service et Recherche 3756 Institut Pasteur - Centre National de la Recherche Scientifique, Paris 75015, France
| | - Mikael Koutero
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France
| | - Valérie Najburg
- Unité de Génomique Virale et Vaccination, Institut Pasteur, Paris 75015, France; CNRS UMR-3569, Paris, France
| | - Marie-Anne Nahori
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France
| | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, Paris 75015, France; CNRS UMR-3569, Paris, France
| | - Fabrizia Stavru
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France
| | - Sergey Bessonov
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department of Translational Epigenetics and Tumor Genetics, University Hospital Cologne, Cologne, Germany
| | - Andréa Dessen
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Bacterial Pathogenesis Group, Grenoble, France; Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, SP, Brazil
| | - Christian Muchardt
- Unité de régulation épigénétique, Institut Pasteur, UMR3738 CNRS, Paris, France
| | - Alice Lebreton
- Équipe Infection et Devenir de l'ARN, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, Inserm, PSL Université Paris, Paris 75005, France; INRA, IBENS, 75005 Paris, France
| | - Anastassia V Komarova
- Unité de Génomique Virale et Vaccination, Institut Pasteur, Paris 75015, France; CNRS UMR-3569, Paris, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France; U604 Inserm, Paris, France; USC2020 INRA, Paris, France.
| |
Collapse
|
25
|
Williams AH, Redzej A, Rolhion N, Costa TRD, Rifflet A, Waksman G, Cossart P. The cryo-electron microscopy supramolecular structure of the bacterial stressosome unveils its mechanism of activation. Nat Commun 2019; 10:3005. [PMID: 31285450 PMCID: PMC6614362 DOI: 10.1038/s41467-019-10782-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/22/2019] [Indexed: 01/18/2023] Open
Abstract
How the stressosome, the epicenter of the stress response in bacteria, transmits stress signals from the environment has remained elusive. The stressosome consists of multiple copies of three proteins RsbR, RsbS and RsbT, a kinase that is important for its activation. Using cryo-electron microscopy, we determined the atomic organization of the Listeria monocytogenes stressosome at 3.38 Å resolution. RsbR and RsbS are organized in a 60-protomers truncated icosahedron. A key phosphorylation site on RsbR (T209) is partially hidden by an RsbR flexible loop, whose "open" or "closed" position could modulate stressosome activity. Interaction between three glutamic acids in the N-terminal domain of RsbR and the membrane-bound mini-protein Prli42 is essential for Listeria survival to stress. Together, our data provide the atomic model of the stressosome core and highlight a loop important for stressosome activation, paving the way towards elucidating the mechanism of signal transduction by the stressosome in bacteria.
Collapse
Affiliation(s)
- Allison H Williams
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Groupe Avenir, INSERM, 75015, Paris, France.
| | - Adam Redzej
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 7HX, UK
| | - Nathalie Rolhion
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015, Paris, France.,Inserm, U604, 75015, Paris, France.,INRA, Unité sous-contrat 2020, 75015, Paris, France
| | - Tiago R D Costa
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 7HX, UK.,MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Aline Rifflet
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Groupe Avenir, INSERM, 75015, Paris, France
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 7HX, UK.
| | - Pascale Cossart
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015, Paris, France. .,Inserm, U604, 75015, Paris, France. .,INRA, Unité sous-contrat 2020, 75015, Paris, France.
| |
Collapse
|
26
|
σ B Inhibits Poly- N-Acetylglucosamine Exopolysaccharide Synthesis and Biofilm Formation in Staphylococcus aureus. J Bacteriol 2019; 201:JB.00098-19. [PMID: 30858304 DOI: 10.1128/jb.00098-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/07/2019] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus clinical strains are able to produce at least two distinct types of biofilm matrixes: biofilm matrixes made of the polysaccharide intercellular adhesin (PIA) or poly-N-acetylglucosamine (PNAG), whose synthesis is mediated by the icaADBC locus, and biofilm matrixes built of proteins (polysaccharide independent). σB is a conserved alternative sigma factor that regulates the expression of more than 100 genes in response to changes in environmental conditions. While numerous studies agree that σB is required for polysaccharide-independent biofilms, controversy persists over the role of σB in the regulation of PIA/PNAG-dependent biofilm development. Here, we show that genetically unrelated S. aureus σB-deficient strains produced stronger biofilms under both static and flow conditions and accumulated higher levels of PIA/PNAG exopolysaccharide than their corresponding wild-type strains. The increased accumulation of PIA/PNAG in the σB mutants correlated with a greater accumulation of the IcaC protein showed that it was not due to adjustments in icaADBC operon transcription and/or icaADBC mRNA stability. Overall, our results reveal that in the presence of active σB, the turnover of Ica proteins is accelerated, reducing the synthesis of PIA/PNAG exopolysaccharide and consequently the PIA/PNAG-dependent biofilm formation capacity.IMPORTANCE Due to its multifaceted lifestyle, Staphylococcus aureus needs a complex regulatory network to connect environmental signals with cellular physiology. One particular transcription factor, named σB (SigB), is involved in the general stress response and the expression of virulence factors. For many years, great confusion has existed about the role of σB in the regulation of the biofilm lifestyle in S. aureus Our study demonstrated that σB is not necessary for exopolysaccharide-dependent biofilms and, even more, that S. aureus produces stronger biofilms in the absence of σB The increased accumulation of exopolysaccharide correlates with higher stability of the proteins responsible for its synthesis. The present findings reveal an additional regulatory layer to control biofilm exopolysaccharide synthesis under stress conditions.
Collapse
|
27
|
Batan D, Braselmann E, Minson M, Nguyen DMT, Cossart P, Palmer AE. A Multicolor Split-Fluorescent Protein Approach to Visualize Listeria Protein Secretion in Infection. Biophys J 2018; 115:251-262. [PMID: 29653838 PMCID: PMC6050711 DOI: 10.1016/j.bpj.2018.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/04/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
Listeria monocytogenes is an intracellular food-borne pathogen that has evolved to enter mammalian host cells, survive within them, spread from cell to cell, and disseminate throughout the body. A series of secreted virulence proteins from Listeria are responsible for manipulation of host-cell defense mechanisms and adaptation to the intracellular lifestyle. Identifying when and where these virulence proteins are located in live cells over the course of Listeria infection can provide valuable information on the roles these proteins play in defining the host-pathogen interface. These dynamics and protein levels may vary from cell to cell, as bacterial infection is a heterogeneous process both temporally and spatially. No assay to visualize virulence proteins over time in infection with Listeria or other Gram-positive bacteria has been developed. Therefore, we adapted a live, long-term tagging system to visualize a model Listeria protein by fluorescence microscopy on a single-cell level in infection. This system leverages split-fluorescent proteins, in which the last strand of a fluorescent protein (a 16-amino-acid peptide) is genetically fused to the virulence protein of interest. The remainder of the fluorescent protein is produced in the mammalian host cell. Both individual components are nonfluorescent and will bind together and reconstitute fluorescence upon virulence-protein secretion into the host cell. We demonstrate accumulation and distribution within the host cell of the model virulence protein InlC in infection over time. A modular expression platform for InlC visualization was developed. We visualized InlC by tagging it with red and green split-fluorescent proteins and compared usage of a strong constitutive promoter versus the endogenous promoter for InlC production. This split-fluorescent protein approach is versatile and may be used to investigate other Listeria virulence proteins for unique mechanistic insights in infection progression.
Collapse
Affiliation(s)
- Dilara Batan
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Esther Braselmann
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado; BioFrontiers Institute, University of Colorado, Boulder, Colorado
| | - Michael Minson
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado; BioFrontiers Institute, University of Colorado, Boulder, Colorado
| | | | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France; Inserm U604, Paris, France; French National Institute for Agricultural Research, Unité Sous-Contrat 2020, Paris, France
| | - Amy E Palmer
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado; BioFrontiers Institute, University of Colorado, Boulder, Colorado.
| |
Collapse
|
28
|
David DJ, Pagliuso A, Radoshevich L, Nahori MA, Cossart P. Lmo1656 is a secreted virulence factor of Listeria monocytogenes that interacts with the sorting nexin 6-BAR complex. J Biol Chem 2018; 293:9265-9276. [PMID: 29666193 PMCID: PMC6005434 DOI: 10.1074/jbc.ra117.000365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/09/2018] [Indexed: 12/14/2022] Open
Abstract
Listeria monocytogenes (Lm) is a facultative intracellular bacterial pathogen and the causative agent of listeriosis, a rare but fatal disease. During infection, Lm can traverse several physiological barriers; it can cross the intestine and placenta barrier and, in immunocompromised individuals, the blood–brain barrier. With the recent plethora of sequenced genomes available for Lm, it is clear that the complete repertoire of genes used by Lm to interact with its host remains to be fully explored. Recently, we focused on secreted Lm proteins because they are likely to interact with host cell components. Here, we investigated a putatively secreted protein of Lm, Lmo1656, that is present in most sequenced strains of Lm but absent in the nonpathogenic species Listeria innocua. lmo1656 gene is predicted to encode a small, positively charged protein. We show that Lmo1656 is secreted by Lm. Furthermore, deletion of the lmo1656 gene (Δlmo1656) attenuates virulence in mice infected orally but not intravenously, suggesting that Lmo1656 plays a role during oral listeriosis. We identified sorting nexin 6 (SNX6), an endosomal sorting component and BAR domain–containing protein, as a host cell interactor of Lmol656. SNX6 colocalizes with WT Lm during the early steps of infection. This colocalization depends on Lmo1656, and RNAi of SNX6 impairs infection in infected tissue culture cells, suggesting that SNX6 is utilized by Lm during infection. Our results reveal that Lmo1656 is a novel secreted virulence factor of Lm that facilitates recruitment of a specific member of the sorting nexin family in the mammalian host.
Collapse
Affiliation(s)
- Daryl Jason David
- From the Unité des Interactions Bactéries-Cellules, Department of Cell Biology and Infection, INSERM U604, Institut National de la Recherche Agronomique USC2020, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Alessandro Pagliuso
- From the Unité des Interactions Bactéries-Cellules, Department of Cell Biology and Infection, INSERM U604, Institut National de la Recherche Agronomique USC2020, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Lilliana Radoshevich
- From the Unité des Interactions Bactéries-Cellules, Department of Cell Biology and Infection, INSERM U604, Institut National de la Recherche Agronomique USC2020, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Marie-Anne Nahori
- From the Unité des Interactions Bactéries-Cellules, Department of Cell Biology and Infection, INSERM U604, Institut National de la Recherche Agronomique USC2020, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Pascale Cossart
- From the Unité des Interactions Bactéries-Cellules, Department of Cell Biology and Infection, INSERM U604, Institut National de la Recherche Agronomique USC2020, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
29
|
Quereda JJ, Andersson C, Cossart P, Johansson J, Pizarro-Cerdá J. Role in virulence of phospholipases, listeriolysin O and listeriolysin S from epidemic Listeria monocytogenes using the chicken embryo infection model. Vet Res 2018; 49:13. [PMID: 29409521 PMCID: PMC5801685 DOI: 10.1186/s13567-017-0496-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/03/2017] [Indexed: 01/30/2023] Open
Abstract
Most human listeriosis outbreaks are caused by Listeria monocytogenes evolutionary lineage I strains which possess four exotoxins: a phosphatidylinositol-specific phospholipase C (PlcA), a broad-range phospholipase C (PlcB), listeriolysin O (LLO) and listeriolysin S (LLS). The simultaneous contribution of these molecules to virulence has never been explored. Here, the importance of these four exotoxins of an epidemic lineage I L. monocytogenes strain (F2365) in virulence was assessed in chicken embryos infected in the allantoic cavity. We show that LLS does not play a role in virulence while LLO is required to infect and kill chicken embryos both in wild type transcriptional regulator of virulence PrfA (PrfAWT) and constitutively active PrfA (PrfA*) backgrounds. We demonstrate that PlcA, a toxin previously considered as a minor virulence factor, played a major role in virulence in a PrfA* background. Interestingly, GFP transcriptional fusions show that the plcA promoter is less active than the hly promoter in vitro, explaining why the contribution of PlcA to virulence could be observed more importantly in a PrfA* background. Together, our results suggest that PlcA might play a more important role in the infectious lifecycle of L. monocytogenes than previously thought, explaining why all the strains of L. monocytogenes have conserved an intact copy of plcA in their genomes.
Collapse
Affiliation(s)
- Juan J Quereda
- Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, Institut Pasteur, 75015, Paris, France. .,Institut National de la Santé et de la Recherche Médicale, U604, 75015, Paris, France. .,Institut National de la Recherche Agronomique, USC2020, 75015, Paris, France. .,Grupo Fisiopatología de la Reproducción, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.
| | - Christopher Andersson
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden.,Umeå Center for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, Institut Pasteur, 75015, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U604, 75015, Paris, France.,Institut National de la Recherche Agronomique, USC2020, 75015, Paris, France
| | - Jörgen Johansson
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden.,Umeå Center for Microbial Research (UCMR), Umeå University, 90187, Umeå, Sweden
| | - Javier Pizarro-Cerdá
- Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, Institut Pasteur, 75015, Paris, France. .,Institut National de la Santé et de la Recherche Médicale, U604, 75015, Paris, France. .,Institut National de la Recherche Agronomique, USC2020, 75015, Paris, France. .,Unité de Recherche Yersinia, Département de Microbiologie, Institut Pasteur, 75015, Paris, France. .,Centre National de Référence "Peste et autres Yersinioses, Institut Pasteur, 75015, Paris, France. .,Centre Collaborateur OMS de Référence et de Recherche "Yersinia", Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
30
|
Kortebi M, Milohanic E, Mitchell G, Péchoux C, Prevost MC, Cossart P, Bierne H. Listeria monocytogenes switches from dissemination to persistence by adopting a vacuolar lifestyle in epithelial cells. PLoS Pathog 2017; 13:e1006734. [PMID: 29190284 PMCID: PMC5708623 DOI: 10.1371/journal.ppat.1006734] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 11/04/2017] [Indexed: 12/26/2022] Open
Abstract
Listeria monocytogenes causes listeriosis, a foodborne disease that poses serious risks to fetuses, newborns and immunocompromised adults. This intracellular bacterial pathogen proliferates in the host cytosol and exploits the host actin polymerization machinery to spread from cell-to-cell and disseminate in the host. Here, we report that during several days of infection in human hepatocytes or trophoblast cells, L. monocytogenes switches from this active motile lifestyle to a stage of persistence in vacuoles. Upon intercellular spread, bacteria gradually stopped producing the actin-nucleating protein ActA and became trapped in lysosome-like vacuoles termed Listeria-Containing Vacuoles (LisCVs). Subpopulations of bacteria resisted degradation in LisCVs and entered a slow/non-replicative state. During the subculture of host cells harboring LisCVs, bacteria showed a capacity to cycle between the vacuolar and the actin-based motility stages. When ActA was absent, such as in ΔactA mutants, vacuolar bacteria parasitized host cells in the so-called “viable but non-culturable” state (VBNC), preventing their detection by conventional colony counting methods. The exposure of infected cells to high doses of gentamicin did not trigger the formation of LisCVs, but selected for vacuolar and VBNC bacteria. Together, these results reveal the ability of L. monocytogenes to enter a persistent state in a subset of epithelial cells, which may favor the asymptomatic carriage of this pathogen, lengthen the incubation period of listeriosis, and promote bacterial survival during antibiotic therapy. L. monocytogenes is a model intracellular pathogen that replicates in the cytoplasm of mammalian cells and disseminate in the host using actin-based motility. Here, we reveal that L. monocytogenes changes its lifestyle and persists in lysosomal vacuoles during long-term infection of human hepatocytes and trophoblast cells. When the virulence factor ActA is not expressed, subpopulations of vacuolar bacteria enter a dormant viable but non-culturable (VBNC) state. This novel facet of the L. monocytogenes intracellular life could contribute to the asymptomatic carriage of this pathogen in epithelial tissues and render it tolerant to antibiotic therapy and undetectable by routine culture techniques.
Collapse
Affiliation(s)
- Mounia Kortebi
- Micalis Institute, Inra, AgroParisTech, Université Paris-Saclay, Equipe Epigénétique et Microbiologie Cellulaire, Jouy-en-Josas, France
| | - Eliane Milohanic
- Micalis Institute, Inra, AgroParisTech, Université Paris-Saclay, Equipe Epigénétique et Microbiologie Cellulaire, Jouy-en-Josas, France
| | - Gabriel Mitchell
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Christine Péchoux
- Unité GABI, Inra, AgroParisTech, Université Paris-Saclay, Plate-Forme MIMA2, Jouy-en-Josas, France
| | | | - Pascale Cossart
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- Inserm, U604, Paris, France
- Inra, USC2020, Paris, France
| | - Hélène Bierne
- Micalis Institute, Inra, AgroParisTech, Université Paris-Saclay, Equipe Epigénétique et Microbiologie Cellulaire, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
31
|
Listeriolysin S Is a Streptolysin S-Like Virulence Factor That Targets Exclusively Prokaryotic Cells In Vivo. mBio 2017; 8:mBio.00259-17. [PMID: 28377528 PMCID: PMC5380841 DOI: 10.1128/mbio.00259-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Streptolysin S (SLS)-like virulence factors from clinically relevant Gram-positive pathogens have been proposed to behave as potent cytotoxins, playing key roles in tissue infection. Listeriolysin S (LLS) is an SLS-like hemolysin/bacteriocin present among Listeria monocytogenes strains responsible for human listeriosis outbreaks. As LLS cytotoxic activity has been associated with virulence, we investigated the LLS-specific contribution to host tissue infection. Surprisingly, we first show that LLS causes only weak red blood cell (RBC) hemolysis in vitro and neither confers resistance to phagocytic killing nor favors survival of L. monocytogenes within the blood cells or in the extracellular space (in the plasma). We reveal that LLS does not elicit specific immune responses, is not cytotoxic for eukaryotic cells, and does not impact cell infection by L. monocytogenes. Using in vitro cell infection systems and a murine intravenous infection model, we actually demonstrate that LLS expression is undetectable during infection of cells and murine inner organs. Importantly, upon intravenous animal inoculation, L. monocytogenes is found in the gastrointestinal system, and only in this environment LLS expression is detected in vivo. Finally, we confirm that LLS production is associated with destruction of target bacteria. Our results demonstrate therefore that LLS does not contribute to L. monocytogenes tissue injury and virulence in inner host organs as previously reported. Moreover, we describe that LlsB, a putative posttranslational modification enzyme encoded in the LLS operon, is necessary for murine inner organ colonization. Overall, we demonstrate that LLS is the first SLS-like virulence factor targeting exclusively prokaryotic cells during in vivo infections. The most severe human listeriosis outbreaks are caused by L. monocytogenes strains harboring listeriolysin S (LLS), previously described as a cytotoxin that plays a critical role in host inner tissue infection. Cytotoxic activities have been proposed as a general mode of action for streptolysin S (SLS)-like toxins, including clostridiolysin S and LLS. We now challenge this dogma by demonstrating that LLS does not contribute to virulence in vivo once the intestinal barrier has been crossed. Importantly, we show that intravenous L. monocytogenes inoculation leads to bacterial translocation to the gastrointestinal system, where LLS is specifically expressed, targeting the host gut microbiota. Our study highlights the heterogeneous modes of action of SLS-like toxins, and we demonstrate for the first time a further level of complexity for SLS-like biosynthetic clusters as we reveal that the putative posttranslational modification enzyme LlsB is actually required for inner organ colonization, independently of the LLS activity.
Collapse
|
32
|
Guldimann C, Guariglia-Oropeza V, Harrand S, Kent D, Boor KJ, Wiedmann M. Stochastic and Differential Activation of σ B and PrfA in Listeria monocytogenes at the Single Cell Level under Different Environmental Stress Conditions. Front Microbiol 2017; 8:348. [PMID: 28352251 PMCID: PMC5349113 DOI: 10.3389/fmicb.2017.00348] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/20/2017] [Indexed: 01/03/2023] Open
Abstract
During host infection, the foodborne pathogen Listeria monocytogenes must sense and respond to rapidly changing environmental conditions. Two transcriptional regulators, the alternative sigma factor B (σB) and the Positive Regulatory Factor A (PrfA), are key contributors to the transcriptomic responses that enable bacterial survival in the host gastrointestinal tract and invasion of host duodenal cells. Increases in temperature and osmolarity induce activity of these proteins; such conditions may be encountered in food matrices as well as within the host gastrointestinal tract. Differences in PrfA and σB activity between individual cells might affect the fate of a cell during host invasion, therefore, we hypothesized that PrfA and σB activities differ among individual cells under heat and salt stress. We used fluorescent reporter fusions to determine the relative proportions of cells with active σB or PrfA following exposure to 45°C heat or 4% NaCl. Activities of both PrfA and σB were induced stochastically, with fluorescence levels ranging from below detection to high among individual cells. The proportion of cells with active PrfA was significantly higher than the proportion with active σB under all tested conditions; under some conditions, nearly all cells had active PrfA. Our findings further support the growing body of evidence illustrating the stochastic nature of bacterial gene expression under conditions that are relevant for host invasion via food-borne, oral infection.
Collapse
Affiliation(s)
- Claudia Guldimann
- Food Safety Laboratory, Department of Food Science, Cornell University Ithaca, NY, USA
| | | | - Sophia Harrand
- Food Safety Laboratory, Department of Food Science, Cornell University Ithaca, NY, USA
| | - David Kent
- Food Safety Laboratory, Department of Food Science, Cornell University Ithaca, NY, USA
| | - Kathryn J Boor
- Food Safety Laboratory, Department of Food Science, Cornell University Ithaca, NY, USA
| | - Martin Wiedmann
- Food Safety Laboratory, Department of Food Science, Cornell University Ithaca, NY, USA
| |
Collapse
|
33
|
Impens F, Rolhion N, Radoshevich L, Bécavin C, Duval M, Mellin J, García Del Portillo F, Pucciarelli MG, Williams AH, Cossart P. N-terminomics identifies Prli42 as a membrane miniprotein conserved in Firmicutes and critical for stressosome activation in Listeria monocytogenes. Nat Microbiol 2017; 2:17005. [PMID: 28191904 DOI: 10.1038/nmicrobiol.2017.5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/04/2017] [Indexed: 12/25/2022]
Abstract
To adapt to changing environments, bacteria have evolved numerous pathways that activate stress response genes. In Gram-positive bacteria, the stressosome, a cytoplasmic complex, relays external cues and activates the sigma B regulon. The stressosome is structurally well-characterized in Bacillus, but how it senses stress remains elusive. Here, we report a genome-wide N-terminomic approach in Listeria that strikingly led to the discovery of 19 internal translation initiation sites and 6 miniproteins, among which one, Prli42, is conserved in Firmicutes. Prli42 is membrane-anchored and interacts with orthologues of Bacillus stressosome components. We reconstituted the Listeria stressosome in vitro and visualized its supramolecular structure by electron microscopy. Analysis of a series of Prli42 mutants demonstrated that Prli42 is important for sigma B activation, bacterial growth following oxidative stress and for survival in macrophages. Taken together, our N-terminonic approach unveiled Prli42 as a long-sought link between stress and the stressosome.
Collapse
Affiliation(s)
- Francis Impens
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France.,Inserm, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France
| | - Nathalie Rolhion
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France.,Inserm, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France
| | - Lilliana Radoshevich
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France.,Inserm, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France
| | - Christophe Bécavin
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France.,Inserm, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France.,Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, Paris, France
| | - Mélodie Duval
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France.,Inserm, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France
| | - Jeffrey Mellin
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France.,Inserm, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France
| | | | - M Graciela Pucciarelli
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain.,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Biología Molecular 'Severo Ochoa' (CBMSO-CSIC), Madrid, Spain
| | - Allison H Williams
- Département de Microbiologie, Institut Pasteur, Unité des Biologie et génétique de la paroi bactérienne, F-75015 Paris, France.,INSERM, Groupe Avenir, F-75015 Paris, France
| | - Pascale Cossart
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France.,Inserm, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France
| |
Collapse
|
34
|
Abstract
Bacterial sensing is important for understanding the numerous roles bacteria play in nature and in technology, understanding and managing bacterial populations, detecting pathogenic bacterial infections, and preventing the outbreak of illness. Current analytical challenges in bacterial sensing center on the dilemma of rapidly acquiring quantitative information about bacteria with high detection efficiency, sensitivity, and specificity, while operating within a reasonable budget and optimizing the use of ancillary tools, such as multivariate statistics. This review starts from a general description of bacterial sensing methods and challenges, and then focuses on bacterial characterization using optical methods including Raman spectroscopy and imaging, infrared spectroscopy, fluorescence spectroscopy and imaging, and plasmonics, including both extended and localized surface plasmon resonance spectroscopy. The advantages and drawbacks of each method in relation to the others are discussed, as are their applications. A particularly promising direction in bacterial sensing lies in combining multiple approaches to achieve multiplex analysis, and examples where this has been achieved are highlighted.
Collapse
Affiliation(s)
- Jiayun Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
35
|
Malet JK, Cossart P, Ribet D. Alteration of epithelial cell lysosomal integrity induced by bacterial cholesterol-dependent cytolysins. Cell Microbiol 2016; 19. [PMID: 27739224 PMCID: PMC5347955 DOI: 10.1111/cmi.12682] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/14/2022]
Abstract
Bacterial pathogens can interfere during infection with host cell organelles, such as mitochondria, the endoplasmic reticulum‐Golgi system or nuclei. As important cellular functions are often compartmentalized in these organelles, their targeting allows pathogens to manipulate key host functions during infection. Here, we identify lysosomes as a new class of organelles targeted by the pathogenic bacterium Listeria monocytogenes. We demonstrate that extracellular Listeria, via secretion of the pore‐forming toxin listeriolysin O, alters lysosomal integrity in epithelial cells but not in macrophages. Listeriolysin O induces lysosomal membrane permeabilization and release of lysosomal content, such as cathepsins proteases, which remain transiently active in the host cytosol. We furthermore show that other bacterial pore‐forming toxins, such as perfringolysin O and pneumolysin, also induce lysosomes alteration. Together, our data unveil a novel activity of bacterial cholesterol‐dependent cytolysins.
Collapse
Affiliation(s)
- Julien Karim Malet
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, F-75015, Paris, France.,Inserm, U604, F-75015, Paris, France.,INRA, USC2020, F-75015, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, F-75015, Paris, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, F-75015, Paris, France.,Inserm, U604, F-75015, Paris, France.,INRA, USC2020, F-75015, Paris, France
| | - David Ribet
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, F-75015, Paris, France.,Inserm, U604, F-75015, Paris, France.,INRA, USC2020, F-75015, Paris, France
| |
Collapse
|
36
|
Rossini V, Radulovic K, Riedel CU, Niess JH. Development of an Antigen-driven Colitis Model to Study Presentation of Antigens by Antigen Presenting Cells to T Cells. J Vis Exp 2016. [PMID: 27684040 DOI: 10.3791/54421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammation which affects the gastrointestinal tract (GIT). One of the best ways to study the immunological mechanisms involved during the disease is the T cell transfer model of colitis. In this model, immunodeficient mice (RAG(-/-) recipients) are reconstituted with naive CD4(+) T cells from healthy wild type hosts. This model allows examination of the earliest immunological events leading to disease and chronic inflammation, when the gut inflammation perpetuates but does not depend on a defined antigen. To study the potential role of antigen presenting cells (APCs) in the disease process, it is helpful to have an antigen-driven disease model, in which a defined commensal-derived antigen leads to colitis. An antigen driven-colitis model has hence been developed. In this model OT-II CD4(+) T cells, that can recognize only specific epitopes in the OVA protein, are transferred into RAG(-/-) hosts challenged with CFP-OVA-expressing E. coli. This model allows the examination of interactions between APCs and T cells in the lamina propria.
Collapse
Affiliation(s)
| | | | | | - Jan Hendrik Niess
- Division of Gastroenterology and Hepatology, University Hospital Basel;
| |
Collapse
|
37
|
Koutsoumanis KP, Aspridou Z. Individual cell heterogeneity in Predictive Food Microbiology: Challenges in predicting a "noisy" world. Int J Food Microbiol 2016; 240:3-10. [PMID: 27412586 DOI: 10.1016/j.ijfoodmicro.2016.06.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/13/2016] [Accepted: 06/19/2016] [Indexed: 11/25/2022]
Abstract
Gene expression is a fundamentally noisy process giving rise to a significant cell to cell variability at the phenotype level. The phenotypic noise is manifested in a wide range of microbial traits. Heterogeneous behavior of individual cells is observed at the growth, survival and inactivation responses and should be taken into account in the context of Predictive Food Microbiology (PMF). Recent methodological advances can be employed for the study and modeling of single cell dynamics leading to a new generation of mechanistic models which can provide insight into the link between phenotype, gene-expression, protein and metabolic functional units at the single cell level. Such models however, need to deal with an enormous amount of interactions and processes that influence each other, forming an extremely complex system. In this review paper, we discuss the importance of noise and present the future challenges in predicting the "noisy" microbial responses in foods.
Collapse
Affiliation(s)
- Konstantinos P Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Zafiro Aspridou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
38
|
Abstract
The model opportunistic pathogen Listeria monocytogenes has been the object of extensive research, aiming at understanding its ability to colonize diverse environmental niches and animal hosts. Bacterial transcriptomes in various conditions reflect this efficient adaptability. We review here our current knowledge of the mechanisms allowing L. monocytogenes to respond to environmental changes and trigger pathogenicity, with a special focus on RNA-mediated control of gene expression. We highlight how these studies have brought novel concepts in prokaryotic gene regulation, such as the ‘excludon’ where the 5′-UTR of a messenger also acts as an antisense regulator of an operon transcribed in opposite orientation, or the notion that riboswitches can regulate non-coding RNAs to integrate complex metabolic stimuli into regulatory networks. Overall, the Listeria model exemplifies that fine RNA tuners act together with master regulatory proteins to orchestrate appropriate transcriptional programmes.
Collapse
Affiliation(s)
- Alice Lebreton
- a École Normale Supérieure , PSL Research University, CNRS, Inserm, Institut de Biologie de l'École Normale Supérieure (IBENS), Équipe Infection et Devenir de l'ARN , Paris , France.,b INRA, IBENS , Paris , France
| | - Pascale Cossart
- c Institut Pasteur, Unité des Interactions Bactéries-Cellules , Paris , France.,d Inserm , Paris , France.,e INRA, USC2020 , Paris , France
| |
Collapse
|
39
|
Dar D, Shamir M, Mellin JR, Koutero M, Stern-Ginossar N, Cossart P, Sorek R. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 2016; 352:aad9822. [PMID: 27120414 DOI: 10.1126/science.aad9822] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/24/2016] [Indexed: 12/12/2022]
Abstract
Riboswitches and attenuators are cis-regulatory RNA elements, most of which control bacterial gene expression via metabolite-mediated, premature transcription termination. We developed an unbiased experimental approach for genome-wide discovery of such ribo-regulators in bacteria. We also devised an experimental platform that quantitatively measures the in vivo activity of all such regulators in parallel and enables rapid screening for ribo-regulators that respond to metabolites of choice. Using this approach, we detected numerous antibiotic-responsive ribo-regulators that control antibiotic resistance genes in pathogens and in the human microbiome. Studying one such regulator in Listeria monocytogenes revealed an attenuation mechanism mediated by antibiotic-stalled ribosomes. Our results expose broad roles for conditional termination in regulating antibiotic resistance and provide a tool for discovering riboswitches and attenuators that respond to previously unknown ligands.
Collapse
Affiliation(s)
- Daniel Dar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maya Shamir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - J R Mellin
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, F-75015 France. INSERM, U604, Paris, F-75015 France. Institut National de la Recherche Agronomique, USC2020, Paris, F-75015 France
| | - Mikael Koutero
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, F-75015 France. INSERM, U604, Paris, F-75015 France. Institut National de la Recherche Agronomique, USC2020, Paris, F-75015 France
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, F-75015 France. INSERM, U604, Paris, F-75015 France. Institut National de la Recherche Agronomique, USC2020, Paris, F-75015 France
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
40
|
Bacteriocin from epidemic Listeria strains alters the host intestinal microbiota to favor infection. Proc Natl Acad Sci U S A 2016; 113:5706-11. [PMID: 27140611 DOI: 10.1073/pnas.1523899113] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Listeria monocytogenes is responsible for gastroenteritis in healthy individuals and for a severe invasive disease in immunocompromised patients. Among the three identified L. monocytogenes evolutionary lineages, lineage I strains are overrepresented in epidemic listeriosis outbreaks, but the mechanisms underlying the higher virulence potential of strains of this lineage remain elusive. Here, we demonstrate that Listeriolysin S (LLS), a virulence factor only present in a subset of lineage I strains, is a bacteriocin highly expressed in the intestine of orally infected mice that alters the host intestinal microbiota and promotes intestinal colonization by L. monocytogenes, as well as deeper organ infection. To our knowledge, these results therefore identify LLS as the first bacteriocin described in L. monocytogenes and associate modulation of host microbiota by L. monocytogenes epidemic strains to increased virulence.
Collapse
|
41
|
Kern T, Kutzner E, Eisenreich W, Fuchs TM. Pathogen-nematode interaction: Nitrogen supply of Listeria monocytogenes during growth in Caenorhabditis elegans. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:20-29. [PMID: 26478569 DOI: 10.1111/1758-2229.12344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Listeria monocytogenes is a Gram-positive facultatively intracellular human pathogen. Due to its saprophytic lifestyle, L. monocytogenes is assumed to infect and proliferate within soil organisms such as Caenorhabditis elegans. However, little is known about the nutrient usages and metabolite fluxes in this bacterium-nematode interaction. Here, we established a nematode colonization model for L. monocytogenes and a method for the efficient separation of the pathogen from the nematodal gut. Following (15)N labelling of C. elegans and gas chromatography-mass spectrometry-based (15)N isotopologue analysis, we detected a high basal metabolic rate of the nematode, and observed a significant metabolic flux from nitrogenous compounds of the nematode to listerial proteins during proliferation of the pathogen in the worm's intestine. For comparison, we also measured the N fluxes from the gut content into listerial proteins using completely (15)N-labelled Escherichia coli OP50 as food for C. elegans. In both settings, L. monocytogenes prefers the direct incorporation of histidine, arginine and lysine over their de novo biosynthesis. Our data suggest that colonization of nematodes is a strategy of L. monocytogenes to increase its access to N-rich nutrients.
Collapse
Affiliation(s)
- Tanja Kern
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Erika Kutzner
- Lehrstuhl für Biochemie, Technische Universität München, D-85747, Garching, Germany
| | - Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Technische Universität München, D-85747, Garching, Germany
| | - Thilo M Fuchs
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| |
Collapse
|
42
|
|
43
|
A Dual Microscopy-Based Assay To Assess Listeria monocytogenes Cellular Entry and Vacuolar Escape. Appl Environ Microbiol 2015; 82:211-7. [PMID: 26497455 DOI: 10.1128/aem.02302-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/14/2015] [Indexed: 01/11/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive bacterium and a facultative intracellular pathogen that invades mammalian cells, disrupts its internalization vacuole, and proliferates in the host cell cytoplasm. Here, we describe a novel image-based microscopy assay that allows discrimination between cellular entry and vacuolar escape, enabling high-content screening to identify factors specifically involved in these two steps. We first generated L. monocytogenes and Listeria innocua strains expressing a β-lactamase covalently attached to the bacterial cell wall. These strains were then incubated with HeLa cells containing the Förster resonance energy transfer (FRET) probe CCF4 in their cytoplasm. The CCF4 probe was cleaved by the bacterial surface β-lactamase only in cells inoculated with L. monocytogenes but not those inoculated with L. innocua, thereby demonstrating bacterial access to the host cytoplasm. Subsequently, we performed differential immunofluorescence staining to distinguish extracellular versus total bacterial populations in samples that were also analyzed by the FRET-based assay. With this two-step analysis, bacterial entry can be distinguished from vacuolar rupture in a single experiment. Our novel approach represents a powerful tool for identifying factors that determine the intracellular niche of L. monocytogenes.
Collapse
|
44
|
Bridier A, Hammes F, Canette A, Bouchez T, Briandet R. Fluorescence-based tools for single-cell approaches in food microbiology. Int J Food Microbiol 2015; 213:2-16. [PMID: 26163933 DOI: 10.1016/j.ijfoodmicro.2015.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/26/2015] [Accepted: 07/03/2015] [Indexed: 12/31/2022]
Abstract
The better understanding of the functioning of microbial communities is a challenging and crucial issue in the field of food microbiology, as it constitutes a prerequisite to the optimization of positive and technological microbial population functioning, as well as for the better control of pathogen contamination of food. Heterogeneity appears now as an intrinsic and multi-origin feature of microbial populations and is a major determinant of their beneficial or detrimental functional properties. The understanding of the molecular and cellular mechanisms behind the behavior of bacteria in microbial communities requires therefore observations at the single-cell level in order to overcome "averaging" effects inherent to traditional global approaches. Recent advances in the development of fluorescence-based approaches dedicated to single-cell analysis provide the opportunity to study microbial communities with an unprecedented level of resolution and to obtain detailed insights on the cell structure, metabolism activity, multicellular behavior and bacterial interactions in complex communities. These methods are now increasingly applied in the field of food microbiology in different areas ranging from research laboratories to industry. In this perspective, we reviewed the main fluorescence-based tools used for single-cell approaches and their concrete applications with specific focus on food microbiology.
Collapse
Affiliation(s)
| | - F Hammes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - A Canette
- INRA, UMR1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | | | - R Briandet
- INRA, UMR1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Jouy-en-Josas, France.
| |
Collapse
|
45
|
Henke D, Rupp S, Gaschen V, Stoffel MH, Frey J, Vandevelde M, Oevermann A. Listeria monocytogenes spreads within the brain by actin-based intra-axonal migration. Infect Immun 2015; 83:2409-19. [PMID: 25824833 PMCID: PMC4432752 DOI: 10.1128/iai.00316-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/22/2015] [Indexed: 02/05/2023] Open
Abstract
Listeria monocytogenes rhombencephalitis is a severe progressive disease despite a swift intrathecal immune response. Based on previous observations, we hypothesized that the disease progresses by intra-axonal spread within the central nervous system. To test this hypothesis, neuroanatomical mapping of lesions, immunofluorescence analysis, and electron microscopy were performed on brains of ruminants with naturally occurring rhombencephalitis. In addition, infection assays were performed in bovine brain cell cultures. Mapping of lesions revealed a consistent pattern with a preferential affection of certain nuclear areas and white matter tracts, indicating that Listeria monocytogenes spreads intra-axonally within the brain along interneuronal connections. These results were supported by immunofluorescence and ultrastructural data localizing Listeria monocytogenes inside axons and dendrites associated with networks of fibrillary structures consistent with actin tails. In vitro infection assays confirmed that bacteria were moving within axon-like processes by employing their actin tail machinery. Remarkably, in vivo, neutrophils invaded the axonal space and the axon itself, apparently by moving between split myelin lamellae of intact myelin sheaths. This intra-axonal invasion of neutrophils was associated with various stages of axonal degeneration and bacterial phagocytosis. Paradoxically, the ensuing adaxonal microabscesses appeared to provide new bacterial replication sites, thus supporting further bacterial spread. In conclusion, intra-axonal bacterial migration and possibly also the innate immune response play an important role in the intracerebral spread of the agent and hence the progression of listeric rhombencephalitis.
Collapse
Affiliation(s)
- Diana Henke
- Division of Neurological Sciences, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sebastian Rupp
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Véronique Gaschen
- Division of Veterinary Anatomy, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joachim Frey
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marc Vandevelde
- Division of Neurological Sciences, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
46
|
Intracellular Listeria monocytogenes comprises a minimal but vital fraction of the intestinal burden following foodborne infection. Infect Immun 2015; 83:3146-56. [PMID: 26015479 DOI: 10.1128/iai.00503-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/18/2015] [Indexed: 12/29/2022] Open
Abstract
Listeria monocytogenes is a highly adaptive bacterium that replicates as a free-living saprophyte in the environment as well as a facultative intracellular pathogen that causes invasive foodborne infections. The intracellular life cycle of L. monocytogenes is considered to be its primary virulence determinant during mammalian infection; however, the proportion of L. monocytogenes that is intracellular in vivo has not been studied extensively. In this report, we demonstrate that the majority of wild-type (strain EGDe) and mouse-adapted (InlA(m)-expressing) L. monocytogenes recovered from the mesenteric lymph nodes (MLN) was extracellular within the first few days after foodborne infection. In addition, significantly lower burdens of L. monocytogenes were recovered from the colon, spleen, and liver of gentamicin-treated mice than of control mice. This led us to investigate whether intracellular replication of L. monocytogenes was essential during the intestinal phase of infection. We found that lipoate protein ligase-deficient L. monocytogenes (ΔlplA1) mutants, which display impaired intracellular growth, were able to colonize the colon but did not persist efficiently and had a significant defect in spreading to the MLN, spleen, and liver. Together, these data indicate that the majority of the L. monocytogenes burden in the gastrointestinal tract is extracellular, but the small proportion of intracellular L. monocytogenes is essential for dissemination to the MLN and systemic organs.
Collapse
|
47
|
Cruz-Adalia A, Ramirez-Santiago G, Calabia-Linares C, Torres-Torresano M, Feo L, Galán-Díez M, Fernández-Ruiz E, Pereiro E, Guttmann P, Chiappi M, Schneider G, Carrascosa JL, Chichón FJ, Martínez Del Hoyo G, Sánchez-Madrid F, Veiga E. T cells kill bacteria captured by transinfection from dendritic cells and confer protection in mice. Cell Host Microbe 2015; 15:611-22. [PMID: 24832455 DOI: 10.1016/j.chom.2014.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 01/18/2014] [Accepted: 03/16/2014] [Indexed: 11/18/2022]
Abstract
Dendritic cells (DCs) phagocytose, process, and present bacterial antigens to T lymphocytes to trigger adaptive immunity. In vivo, bacteria can also be found inside T lymphocytes. However, T cells are refractory to direct bacterial infection, leaving the mechanisms by which bacteria invade T cells unclear. We show that T cells take up bacteria from infected DCs by the process of transinfection, which requires direct contact between the two cells and is enhanced by antigen recognition. Prior to transfer, bacteria localize to the immunological synapse, an intimate DC/T cell contact structure that activates T cells. Strikingly, T cells efficiently eliminate the transinfecting bacteria within the first hours after infection. Transinfected T cells produced high levels of proinflammatory cytokines and were able to protect mice from bacterial challenge following adoptive transfer. Thus, T lymphocytes can capture and kill bacteria in a manner reminiscent of innate immunity.
Collapse
Affiliation(s)
- Aránzazu Cruz-Adalia
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Department of Molecular and Cellular Biology, Darwin, 3, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa, Hospital de Santa Cristina, 28009 Madrid, Spain
| | - Guillermo Ramirez-Santiago
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Department of Molecular and Cellular Biology, Darwin, 3, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa, Hospital de Santa Cristina, 28009 Madrid, Spain
| | - Carmen Calabia-Linares
- Instituto de Investigación Sanitaria Princesa, Hospital de Santa Cristina, 28009 Madrid, Spain
| | - Mónica Torres-Torresano
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Department of Molecular and Cellular Biology, Darwin, 3, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa, Hospital de Santa Cristina, 28009 Madrid, Spain
| | - Lidia Feo
- Instituto de Investigación Sanitaria Princesa, Hospital de Santa Cristina, 28009 Madrid, Spain
| | - Marta Galán-Díez
- Instituto de Investigación Sanitaria Princesa, Hospital de la Princesa, 28006 Madrid, Spain; Microbiology and Immunology Department, Columbia University Medical Center, New York, NY 10032, USA
| | - Elena Fernández-Ruiz
- Instituto de Investigación Sanitaria Princesa, Hospital de la Princesa, 28006 Madrid, Spain
| | - Eva Pereiro
- ALBA Synchrotron Light Source, MISTRAL Beamline-Experiments Division, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Peter Guttmann
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute Soft Matters and Functional Materials, Electron Storage Ring BESSY II, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Michele Chiappi
- Department Macromolecular, Centro Nacional de Biotecnología (CNB-CSIC), Darwin, 3, 28049 Madrid, Spain
| | - Gerd Schneider
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute Soft Matters and Functional Materials, Electron Storage Ring BESSY II, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - José López Carrascosa
- Department Macromolecular, Centro Nacional de Biotecnología (CNB-CSIC), Darwin, 3, 28049 Madrid, Spain; Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Cantoblanco, Madrid, Spain
| | - Francisco Javier Chichón
- Department Macromolecular, Centro Nacional de Biotecnología (CNB-CSIC), Darwin, 3, 28049 Madrid, Spain
| | - Gloria Martínez Del Hoyo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | | | - Esteban Veiga
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Department of Molecular and Cellular Biology, Darwin, 3, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa, Hospital de Santa Cristina, 28009 Madrid, Spain.
| |
Collapse
|
48
|
Samba-Louaka A, Pereira JM, Nahori MA, Villiers V, Deriano L, Hamon MA, Cossart P. Listeria monocytogenes dampens the DNA damage response. PLoS Pathog 2014; 10:e1004470. [PMID: 25340842 PMCID: PMC4207825 DOI: 10.1371/journal.ppat.1004470] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 09/14/2014] [Indexed: 12/17/2022] Open
Abstract
The DNA damage response (DDR) is an essential signaling pathway that detects DNA lesions, which constantly occur upon either endogenous or exogenous assaults, and maintains genetic integrity. An infection by an invading pathogen is one such assault, but how bacteria impact the cellular DDR is poorly documented. Here, we report that infection with Listeria monocytogenes induces host DNA breaks. Strikingly, the signature response to these breaks is only moderately activated. We uncover the role of the listerial toxin listeriolysin O (LLO) in blocking the signaling response to DNA breaks through degradation of the sensor Mre11. Knocking out or inactivating proteins involved in the DDR promotes bacterial replication showing the importance of this mechanism for the control of infection. Together, our data highlight that bacterial dampening of the DDR is critical for a successful listerial infection. In eukaryotic cells both normal metabolic activities and environmental factors such as UV radiation can cause DNA lesions or mutations. The ability of a cell to restore integrity to its genome is vital, and depends on a signaling cascade called the DNA damage response (DDR) that both senses and responds to the assaults. Bacterial infection is one such assault, but its effect on the DDR of the invaded cell remains elusive. Here we used the bacterial pathogen Listeria monocytogenes to study its effect on host DNA damage and its impact on the DDR. Our results show that although Listeria is able to induce DNA damage, the ensuing response is surprisingly low, demonstrating that this bacterium is able to dampen the DDR. We have also shown that the listerial toxin listeriolysin O (LLO) is responsible for the observed block in the DDR. In fact, we find that LLO induces protein degradation of the main DNA damage sensor, Mre11, thereby blocking downstream signaling. Furthermore, we have studied the impact of mutating the DDR on the infectious process and find that it negatively regulates infection with Listeria. In conclusion, our findings reveal that dampening of the DDR is crucial for a productive infection.
Collapse
Affiliation(s)
- Ascel Samba-Louaka
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- The French National Institute of Health and Medical Research (Inserm), Paris, France
- The French National Institute for Agricultural Research (INRA), Paris, France
| | - Jorge M. Pereira
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- The French National Institute of Health and Medical Research (Inserm), Paris, France
- The French National Institute for Agricultural Research (INRA), Paris, France
| | - Marie-Anne Nahori
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- The French National Institute of Health and Medical Research (Inserm), Paris, France
- The French National Institute for Agricultural Research (INRA), Paris, France
| | - Veronique Villiers
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- The French National Institute of Health and Medical Research (Inserm), Paris, France
- The French National Institute for Agricultural Research (INRA), Paris, France
| | - Ludovic Deriano
- Institut Pasteur, Laboratoire développement Lymphocytaire et Oncogénèse, Paris, France
- Centre National de la Recherche Scientifique (CNRS) Paris, France
| | - Mélanie A. Hamon
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- The French National Institute of Health and Medical Research (Inserm), Paris, France
- The French National Institute for Agricultural Research (INRA), Paris, France
- * E-mail: (MAH); (PC)
| | - Pascale Cossart
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- The French National Institute of Health and Medical Research (Inserm), Paris, France
- The French National Institute for Agricultural Research (INRA), Paris, France
- * E-mail: (MAH); (PC)
| |
Collapse
|
49
|
Chen LH, Köseoğlu VK, Güvener ZT, Myers-Morales T, Reed JM, D'Orazio SEF, Miller KW, Gomelsky M. Cyclic di-GMP-dependent signaling pathways in the pathogenic Firmicute Listeria monocytogenes. PLoS Pathog 2014; 10:e1004301. [PMID: 25101646 PMCID: PMC4125290 DOI: 10.1371/journal.ppat.1004301] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 06/27/2014] [Indexed: 12/21/2022] Open
Abstract
We characterized key components and major targets of the c-di-GMP signaling pathways in the foodborne pathogen Listeria monocytogenes, identified a new c-di-GMP-inducible exopolysaccharide responsible for motility inhibition, cell aggregation, and enhanced tolerance to disinfectants and desiccation, and provided first insights into the role of c-di-GMP signaling in listerial virulence. Genome-wide genetic and biochemical analyses of c-di-GMP signaling pathways revealed that L. monocytogenes has three GGDEF domain proteins, DgcA (Lmo1911), DgcB (Lmo1912) and DgcC (Lmo2174), that possess diguanylate cyclase activity, and three EAL domain proteins, PdeB (Lmo0131), PdeC (Lmo1914) and PdeD (Lmo0111), that possess c-di-GMP phosphodiesterase activity. Deletion of all phosphodiesterase genes (ΔpdeB/C/D) or expression of a heterologous diguanylate cyclase stimulated production of a previously unknown exopolysaccharide. The synthesis of this exopolysaccharide was attributed to the pssA-E (lmo0527-0531) gene cluster. The last gene of the cluster encodes the fourth listerial GGDEF domain protein, PssE, that functions as an I-site c-di-GMP receptor essential for exopolysaccharide synthesis. The c-di-GMP-inducible exopolysaccharide causes cell aggregation in minimal medium and impairs bacterial migration in semi-solid agar, however, it does not promote biofilm formation on abiotic surfaces. The exopolysaccharide also greatly enhances bacterial tolerance to commonly used disinfectants as well as desiccation, which may contribute to survival of L. monocytogenes on contaminated food products and in food-processing facilities. The exopolysaccharide and another, as yet unknown c-di-GMP-dependent target, drastically decrease listerial invasiveness in enterocytes in vitro, and lower pathogen load in the liver and gallbladder of mice infected via an oral route, which suggests that elevated c-di-GMP levels play an overall negative role in listerial virulence. Listeria monocytogenes is ubiquitously present in the environment, highly adaptable and tolerant to various stresses. L. monocytogenes is also a foodborne pathogen associated with the largest foodborne outbreaks in recent US history. Signaling pathways involving the second messenger c-di-GMP play important roles in increased stress survival of proteobacteria and mycobacteria, yet roles of c-di-GMP signaling pathways in L. monocytogenes have remained unexplored. Here, we identified and systematically characterized functions of the proteins involved in c-di-GMP synthesis, degradation and sensing. We show that elevated c-di-GMP levels in L. monocytogenes result in synthesis of a previously unknown exopolysaccharide that promotes cell aggregation, inhibits motility in semi-solid media, and importantly, enhances bacterial tolerance to commonly used disinfectants as well as desiccation. These properties of the exopolysaccharide may increase listerial survival in food processing plants as well as on produce during transportation and storage. Elevated c-di-GMP levels also grossly diminish listerial invasiveness in enterocytes in vitro, and impair bacterial accumulation in selected mouse organs during oral infection.
Collapse
Affiliation(s)
- Li-Hong Chen
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Volkan K. Köseoğlu
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Zehra T. Güvener
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Tanya Myers-Morales
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Joseph M. Reed
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Sarah E. F. D'Orazio
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kurt W. Miller
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
- * E-mail:
| |
Collapse
|
50
|
Schnell B, Staubli T, Harris NL, Rogler G, Kopf M, Loessner MJ, Schuppler M. Cell-wall deficient L. monocytogenes L-forms feature abrogated pathogenicity. Front Cell Infect Microbiol 2014; 4:60. [PMID: 24904838 PMCID: PMC4033035 DOI: 10.3389/fcimb.2014.00060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/21/2014] [Indexed: 11/29/2022] Open
Abstract
Stable L-forms are cell wall-deficient bacteria which are able to multiply and propagate indefinitely, despite the absence of a rigid peptidoglycan cell wall. We investigated whether L-forms of the intracellular pathogen L. monocytogenes possibly retain pathogenicity, and if they could trigger an innate immune response. While phagocytosis of L. monocytogenes L-forms by non-activated macrophages sometimes resulted in an unexpected persistence of the bacteria in the phagocytes, they were effectively eliminated by IFN-γ preactivated or bone marrow-derived macrophages (BMM). These findings were in line with the observed down-regulation of virulence factors in the cell-wall deficient L. monocytogenes. Absence of Interferon-β (IFN-β) triggering indicated inability of L-forms to escape from the phagosome into the cytosol. Moreover, abrogated cytokine response in MyD88-deficient dendritic cells (DC) challenged with L. monocytogenes L-forms suggested an exclusive TLR-dependent host response. Taken together, our data demonstrate a strong attenuation of Listeria monocytogenes L-form pathogenicity, due to diminished expression of virulence factors and innate immunity recognition, eventually resulting in elimination of L-form bacteria from phagocytes.
Collapse
Affiliation(s)
- Barbara Schnell
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology Zurich (ETHZ) Zurich, Switzerland
| | - Titu Staubli
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology Zurich (ETHZ) Zurich, Switzerland
| | - Nicola L Harris
- School of Life Sciences, The Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL) Lausanne, Switzerland
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital Zurich Zurich, Switzerland
| | - Manfred Kopf
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETHZ) Zurich, Switzerland
| | - Martin J Loessner
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology Zurich (ETHZ) Zurich, Switzerland
| | - Markus Schuppler
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology Zurich (ETHZ) Zurich, Switzerland
| |
Collapse
|