1
|
Cai YL, Xu YH, Xiang JZ, Zhang ZQ, He QX, Li YF, Lü J. Iron-doped bismuth oxybromides as visible-light-responsive Fenton catalysts for the degradation of atrazine in aqueous phases. J Environ Sci (China) 2024; 137:321-332. [PMID: 37980019 DOI: 10.1016/j.jes.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 11/20/2023]
Abstract
Pesticides and its degradation products, being well-known residues in soil, have recently been detected in many water bodies as pollutants of emerging concerns, and thus there is a contemporary demand to develop viable and cost-effective techniques for the removal of related organic pollutants in aqueous phases. Herein, a visible-light-responsive Fenton system was constructed with iron-doped bismuth oxybromides (Fe-BiOBr) as the catalysts. Taking the advantage of sustainable Fe(III)/Fe(II) conversion and optimized H2O2 utilization, the optimal Fe-BiOBr-2 catalyst showed an excellent atrazine removal efficiency of 97.61% in 120 min, which is superior than the traditional homogeneous Fenton and the majority of heterogeneous processes documented in the literature. In this photo-Fenton system, hydroxyl (·OH) and superoxide (·O2-) radicals were dominant active species contributed to the oxidative degradation of atrazine. Due to the production of various active radicals, five degradation pathways were proposed based on the identification of intermediates and degradation products. Overall, this work not only demonstrates a fundamental insight into creating highly efficient and atom economic photo-Fenton systems, but also provides a complementary strategy for the treatment of organic pollutants in water.
Collapse
Affiliation(s)
- Yong-Li Cai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu-Hang Xu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ji-Zun Xiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi-Qiang Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiu-Xiang He
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ya-Feng Li
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
| | - Jian Lü
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
2
|
Khan RS, Rather AH, Wani TU, Rather SU, Amna T, Hassan MS, Sheikh FA. Recent trends using natural polymeric nanofibers as supports for enzyme immobilization and catalysis. Biotechnol Bioeng 2023; 120:22-40. [PMID: 36169115 DOI: 10.1002/bit.28246] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
All the disciplines of science, especially biotechnology, have given continuous attention to the area of enzyme immobilization. However, the structural support made by material science intervention determines the performance of immobilized enzymes. Studies have proven that nanostructured supports can maintain better catalytic performance and improve immobilization efficiency. The recent trends in the application of nanofibers using natural polymers for enzyme immobilization have been addressed in this review article. A comprehensive survey about the immobilization strategies and their characteristics are highlighted. The natural polymers, e.g., chitin, chitosan, silk fibroin, gelatin, cellulose, and their blends with other synthetic polymers capable of immobilizing enzymes in their 1D nanofibrous form, are discussed. The multiple applications of enzymes immobilized on nanofibers in biocatalysis, biosensors, biofuels, antifouling, regenerative medicine, biomolecule degradation, etc.; some of these are discussed in this review article.
Collapse
Affiliation(s)
- Rumysa S Khan
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir, India
| | - Anjum H Rather
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir, India
| | - Taha U Wani
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir, India
| | - Sami-Ullah Rather
- Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Touseef Amna
- Department of Biology, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - M Shamshi Hassan
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Faheem A Sheikh
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
3
|
Gao Z, Liu Y, Huang Q, Li B, Ma T, Qin X, Zhao L, Sun Y, Xu Y. Effects of sepiolite and biochar on the photosynthetic and antioxidant systems of pakchoi under Cd and atrazine stress. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:897-904. [PMID: 36263769 DOI: 10.1080/03601234.2022.2133922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sepiolite and biochar effectively immobilize Cd and atrazine in vegetable soils. This study further investigated the effects of sepiolite and biochar on the photosynthetic and antioxidative defence systems of pakchoi under Cd and atrazine stress. The results showed that after adding sepiolite and biochar to contaminated soil, the chlorophyll content was restored and the photosynthetic rate increased, whereas the soluble sugar content of pakchoi decreased. In the antioxidant system of the plants, the activities of peroxidase, ascorbate peroxidase, and superoxide dismutase decreased, while the activity of catalase increased. The content of malondialdehyde, glutathione, and O2·- increased, but the content of H2O2 decreased. In general, remediation materials reduced the bioavailability of Cd and atrazine, reduced the stress on pakchoi, and restored and improved the rate of photosynthesis and function of antioxidants.
Collapse
Affiliation(s)
- Zhixin Gao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Yetong Liu
- Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Qingqing Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Boyan Li
- Agro-Ecological Environment Monitoring and Agricultural Products Quality Inspection Center of Tianjin, Tianjin, China
| | - Tiantian Ma
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Xu Qin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Lijie Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Yuebing Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Yingming Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| |
Collapse
|
4
|
Chen S, Ma L, Wang Y. Kinetic isotope effects of C and N indicate different transformation mechanisms between atzA- and trzN-harboring strains in dechlorination of atrazine. Biodegradation 2022; 33:207-221. [PMID: 35257297 DOI: 10.1007/s10532-022-09977-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/18/2022] [Indexed: 11/02/2022]
Abstract
Compound-specific stable isotope analysis provides an alternative method to insight into the biotransformation mechanisms of diffuse organic pollutants in the environment, e.g., the endocrine disruptor herbicide atrazine. Biotic hydrolysis process catalyzed by chlorohydrolase AtzA and TrzN plays an important role in the detoxification of atrazine, while the catalytic mechanism of AtzA is still speculative. To investigate the catalytic mechanism of AtzA and answer whether both enzymes catalyze hydrolytic dechlorination of atrazine by the same mechanism, in this study, apparent kinetic isotope effects (AKIE) for carbon and nitrogen were observed by three atzA-harboring bacterial isolates and their membrane-free extracts. The AKIEs obtained from atzA-harboring bacterial isolates (AKIEC = 1.021 ± 0.010, AKIEN = 0.992 ± 0.003) were statistically different from that of trzN-harboring strains (AKIEC = 1.040 ± 0.006, AKIEN = 0.983 ± 0.006), confirming the different activation mechanisms of atrazine preceding to nucleophilic aromatic substitution of Cl atom in actual enzymatic reaction catalyzed by AtzA and TrzN, despite the limitation of variable dual-element isotope plots. The lower degree of normal carbon and inverse nitrogen isotope fractionation observed from atzA-harboring strains, suggesting AtzA catalyzing hydrolytic dechlorination of atrazine by coordination of Cl and one aromatic N to the Fe2+ drawing electron density from carbon-chlorine bond that facilitating the nucleophilic attack, rather than in TrzN case that protonation of aromatic N increasing nucleophilic substitution of Cl atom. This study suggests considering the potential influences of phylogenetic diversity of bacterial isolates and evolution of enzymes on the applications of CSIA method in future study.
Collapse
Affiliation(s)
- Songsong Chen
- College of Architecture and Urban Planning, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China
| | - Limin Ma
- College of Environmental Science and Engineering, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China.
| | - Yuncai Wang
- College of Architecture and Urban Planning, Tongji University, 1239, Siping Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
5
|
Pérez DJ, Doucette WJ, Moore MT. Atrazine uptake, translocation, bioaccumulation and biodegradation in cattail (Typha latifolia) as a function of exposure time. CHEMOSPHERE 2022; 287:132104. [PMID: 34523452 DOI: 10.1016/j.chemosphere.2021.132104] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The extensive use and environmental persistence of atrazine has resulted in its ubiquitous occurrence in water resources. Some reports have described atrazine bioaccumulation and biodegradation pathways in terrestrial plants, but few have done so in aquatic macrophytes. Thus, in this study, we aimed to analyze morphological changes, uptake, translocation and bioaccumulation patterns in tissues of the aquatic macrophyte Typha latifolia (cattail) after long-term atrazine exposure and to determine the presence of atrazine biodegradation metabolites, desethylatrazine (DEA) and desisopropylatrazine (DIA), in tissues. Plants were hydroponically exposed to 20 μg/L atrazine (18 exposed and 18 non-exposed) for 7, 14, 21, 28, 35 and 42 days. Plants were separated into root, rhizome, stem, and lower, middle and upper leaf sections. Atrazine was analyzed by LC-MS/MS and DIA and DEA by LC-DAD. Plants showed reductions in weight (after 21 days) and transpiration (after 28 days), both symptoms of chronic phytotoxicity. The distribution of atrazine within tissues, expressed as concentration levels (μg/kg dry weight), was as follows: middle leaf (406.10 ± 71.77) = upper leaf (339.15 ± 47.60) = lower leaf (262.43 ± 7.66) = sprout (274.53 ± 58.1) > stem (38.63 ± 7.55) = root (36.00 ± 3.49) = rhizome (26.15 ± 3.96). In submerged tissues, DEA and DIA were detected at similar concentrations. In leaves, DIA was the main metabolite identified. Results indicated that atrazine was taken up from roots to shoots and induced phytotoxicity effects that reduced the translocation to shoots. Typha likely is able to biodegrade atrazine via different metabolic pathways.
Collapse
Affiliation(s)
- Débora Jesabel Pérez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1425FQB, Argentina; Instituto de Innovación Para la Producción Agropecuaria y el Desarrollo Sostenible (INTA Balcarce - CONICET), Ruta Nacional 226 Km 73,5, Balcarce, Buenos Aires, 7620, Argentina; Utah Water Research Laboratory, Utah State University, Logan, UT 834341, USA.
| | | | - Matthew Truman Moore
- Water Quality and Ecology Research Unit, United States Department of Agriculture-ARS National Sedimentation Laboratory, 598 McElroy Drive, Oxford, MS 38655, USA
| |
Collapse
|
6
|
Layer-by-Layer Encapsulation of Herbicide-Degrading Bacteria for Improved Surface Properties and Compatibility in Soils. Polymers (Basel) 2021; 13:polym13213814. [PMID: 34771371 PMCID: PMC8588562 DOI: 10.3390/polym13213814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
E. coli cells overexpressing the enzyme atrazine chlorohydrolase were coated using layer-by-layer self-assembly. The polymeric coating was designed to improve the surface properties of the cells and create positively charged, ecologically safe, bio-hybrid capsules that can efficiently degrade the herbicide atrazine in soils. The physio-chemical properties of the bacteria/polymer interface were studied as a function of the polymeric composition of the shell and its thickness. Characterization of cell viability, enzyme activity, morphology, and size of the bio-capsules was done using fluorescence spectroscopy, BET and zeta potential measurements and electron microscopy imaging. Out of several polyelectrolytes, the combination of polydiallyldimethylammonium chloride and polysodium 4-styrenesulfonate improved the surface properties and activity of the cells to the greatest extent. The resulting bio-hybrid capsules were stable, well-dispersed, with a net positive charge and a large surface area compared to the uncoated bacteria. These non-viable, bio-hybrid capsules also exhibited a kinetic advantage in comparison with uncoated cells. When added to soils, they exhibited continuous activity over a six-week period and atrazine concentrations declined by 84%. Thus, the concept of layer-by-layer coated bacteria is a promising avenue for the design of new and sustainable bioremediation and biocatalytic platforms.
Collapse
|
7
|
Kazar Soydan D, Turgut N, Yalçın M, Turgut C, Karakuş PBK. Evaluation of pesticide residues in fruits and vegetables from the Aegean region of Turkey and assessment of risk to consumers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27511-27519. [PMID: 33507511 DOI: 10.1007/s11356-021-12580-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Pesticides may cause a potential risk to human health when applied in excess to control pests, diseases, and weeds in crop fields. In the current study, conducted in the Aegean region of Turkey from 2012 to 2016, a total of 3044 samples of 16 different commodities of fruits and vegetables were screened to identify pesticide residues and health risk to consumers posed by such residues was assessed. Results showed that 354 samples out of the total samples had higher maximum residue limit (MRL) values, while the MRL values were lower in 473 samples. In the study, residues of 64 different pesticides detected in 3044 samples in which 11.6% samples exceeded maximum residue limit (MRL) levels as compared with that of the approved MRL level by the Turkish authorities. Out of total samples, number of samples having high MRL level were as follows: 74 for chlorpyrifos (2.43%), 145 for azoxystrobin (3.8%), 112 for triadimenol (3.8%), 103 for carbendazim (3.4%), 98 for chlorpyrifos (3.2%), 94 for pyrimethanil (3.10%), 90 for cyprodinil (2.9%), 76 for fludioxonil (2.50%), 75 for indoxacarb (2.40%), 66 for imidacloprid (2.10%), and 60 for boscalid (1.90%). Residues of one, two, three, four, and even more than five pesticides were detected, respectively, in 16.1, 5.8, 2.8, 1, and 1.7% of the total test samples. The lowest estimated daily intake (EDI) values ranged from 3.57×10-3 to 8.98. The lower values of hazard quotient (HQ) were obtained in dried apricot, grape, and strawberry with the value of 0.01, although the HQ value in 32 out of 62 pesticides tested was found to be close to 0.
Collapse
Affiliation(s)
- Didem Kazar Soydan
- Private Food Control Laboratory of Commodity Exchange of Aydın Province, 09100, Aydin, Turkey
| | - Nalan Turgut
- Department of Plant Protection, Faculty of Agriculture, Adnan Menderes University, Aydin, Turkey
| | - Melis Yalçın
- Department of Plant Protection, Faculty of Agriculture, Adnan Menderes University, Aydin, Turkey
| | - Cafer Turgut
- Department of Plant Protection, Faculty of Agriculture, Adnan Menderes University, Aydin, Turkey.
| | - Perihan Binnur Kurt Karakuş
- Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| |
Collapse
|
8
|
Chowdhury IF, Rohan M, Stodart BJ, Chen C, Wu H, Doran GS. Persistence of atrazine and trifluralin in a clay loam soil undergoing different temperature and moisture conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116687. [PMID: 33621732 DOI: 10.1016/j.envpol.2021.116687] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 05/21/2023]
Abstract
Dissipation kinetics of atrazine and trifluralin in a clay loam soil was investigated in a laboratory incubation experiment under different temperature and moisture conditions. The soil was spiked with diluted atrazine and trifluralin concentrations at 4.50 and 4.25 mg/kg soil, respectively, the moisture content adjusted to 40, 70, and 100% of field capacity (FC) and then incubated in three climatic chambers at 10, 20, and 30 °C. For each of the herbicides, soil samples were collected at 0, 7, 21, 42, 70, and 105 days and analysed by Gas Chromatography-Electron Capture Detector (GC-ECD). A stochastic gamma model was used to model the dissipation of herbicides from the clay loam soil by incorporating environmental factors as covariates to determine half-life and days to complete dissipation. Results showed that temperature played a greater role on atrazine persistence than soil moisture; while the interaction effect of temperature and moisture was significant on the persistence of trifluralin over time. Atrazine dissipated more rapidly at 30 °C compared to 10 and 20 °C, with a half-life of 7.50 days and 326.23 days to reach complete dissipation. Rapid loss of trifluralin was observed at 70% moisture content when incubated at 30 °C, with a half-life of 5.80 days and 182.01 days to complete dissipation. It was observed that the half-life of both herbicides tended to double with every 10 °C decreases of temperature over the range tested. The model indicated that both atrazine and trifluralin have the potential to persist in clay loam soil for several years at temperature ≤20 °C; which could potentially affect following crops in rotation.
Collapse
Affiliation(s)
- Imtiaz Faruk Chowdhury
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Maheswaran Rohan
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia
| | - Benjamin J Stodart
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| | - Chengrong Chen
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Hanwen Wu
- Graham Centre for Agricultural Innovation, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia
| | - Gregory S Doran
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
9
|
Copley SD. Evolution of new enzymes by gene duplication and divergence. FEBS J 2021; 287:1262-1283. [PMID: 32250558 DOI: 10.1111/febs.15299] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022]
Abstract
Thousands of new metabolic and regulatory enzymes have evolved by gene duplication and divergence since the dawn of life. New enzyme activities often originate from promiscuous secondary activities that have become important for fitness due to a change in the environment or a mutation. Mutations that make a promiscuous activity physiologically relevant can occur in the gene encoding the promiscuous enzyme itself, but can also occur elsewhere, resulting in increased expression of the enzyme or decreased competition between the native and novel substrates for the active site. If a newly useful activity is inefficient, gene duplication/amplification will set the stage for divergence of a new enzyme. Even a few mutations can increase the efficiency of a new activity by orders of magnitude. As efficiency increases, amplified gene arrays will shrink to provide two alleles, one encoding the original enzyme and one encoding the new enzyme. Ultimately, genomic rearrangements eliminate co-amplified genes and move newly evolved paralogs to a distant region of the genome.
Collapse
Affiliation(s)
- Shelley D Copley
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, CO, USA
| |
Collapse
|
10
|
A Bacillus Spore-Based Display System for Bioremediation of Atrazine. Appl Environ Microbiol 2020; 86:AEM.01230-20. [PMID: 32680864 DOI: 10.1128/aem.01230-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/10/2020] [Indexed: 11/20/2022] Open
Abstract
Owing to human activities, a large number of organic chemicals, including petroleum products, industrial solvents, pesticides, herbicides (including atrazine [ATR]), and pharmaceuticals, contaminate soil and aquatic environments. Remediation of these pollutants by conventional approaches is both technically and economically challenging. Bacillus endospores are highly resistant to most physical assaults and are capable of long-term persistence in soil. Spores can be engineered to express, on their surface, important enzymes for bioremediation purposes. We have developed a Bacillus thuringiensis spore platform system that can display a high density of proteins on the spore surface. The spore surface-tethered enzymes exhibit enhanced activity and stability relative to free enzymes in soil and water environments. In this study, we evaluated a B. thuringiensis spore display platform as a bioremediation tool against ATR. The Pseudomonas sp. strain ADP atzA determinant, an ATR chlorohydrolase important to the detoxification of ATR, was expressed as a fusion protein linked to the attachment domain of the BclA spore surface nap layer protein and expressed in B. thuringiensis Spores from this strain are decorated with AtzA N-terminally linked on the surface of the spores. The recombinant spores were assayed for ATR detoxification in liquid and soil environments, and enzyme kinetics and stability were assessed. We successfully demonstrated the utility of this spore-based enzyme display system to detoxify ATR in water and laboratory soil samples.IMPORTANCE Atrazine is one of the most widely applied herbicides in the U.S. midwestern states. The long environmental half-life of atrazine has contributed to the contamination of surface water and groundwater by atrazine and its chlorinated metabolites. The toxic properties of ATR have raised public health and ecological concerns. However, remediation of ATR by conventional approaches has proven to be costly and inefficient. We developed a novel B. thuringiensis spore platform system that is capable of long-term persistence in soil and can be engineered to surface express a high density of enzymes useful for bioremediation purposes. The enzymes are stably attached to the surface of the spore exosporium layer. The spore-based system will likely prove useful for remediation of other environmental pollutants as well.
Collapse
|
11
|
Sun C, Xu Y, Hu N, Ma J, Sun S, Cao W, Klobučar G, Hu C, Zhao Y. To evaluate the toxicity of atrazine on the freshwater microalgae Chlorella sp. using sensitive indices indicated by photosynthetic parameters. CHEMOSPHERE 2020; 244:125514. [PMID: 31812061 DOI: 10.1016/j.chemosphere.2019.125514] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Atrazine is a widely-applied herbicide used primarily to control weeds, which can persist in the ecosystem and exert potential toxicity to phytoplankton in the aquatic environment. In this study, acute toxicity of atrazine on microalgae Chlorella sp. was investigated with different initial cell densities (1 × 105 and 1 × 106 cells mL-1) and exposure periods (4 d and 8 d). Both growth rate and photosynthetic parameters of the microalgae in response of atrazine stress were determined to find out the sensitive indices and toxicological mechanisms. Because of the independence of initial cell density as well as the high sensitivity and reliability, the performance index PIABS was verified as the most convincing photosynthetic parameter for indicating IC50 of atrazine on Chlorella sp., being superior to the traditional parameters of growth rate and FV/FM. The IP amplitude (ΔFIP, fluorescence amplitude of the I-to-P-rise in the OJIP curve) was another sensitive biomarker to reflect atrazine stress. Results from chlorophyll fluorescence transient revealed that atrazine damaged the photosystem II (PS II) reaction center, suppressed the electron transport at the donor and receptor sides, and acted on the absorption, transfer, and utilization of light energy. Our results provide confirmatory references for understanding the toxicity and mechanisms of atrazine on freshwater microalgae.
Collapse
Affiliation(s)
- Chen Sun
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Yinfeng Xu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Naitao Hu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jun Ma
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Shiqing Sun
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Weixing Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Göran Klobučar
- Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China.
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China.
| |
Collapse
|
12
|
Silverman AD, Akova U, Alam KK, Jewett MC, Lucks JB. Design and Optimization of a Cell-Free Atrazine Biosensor. ACS Synth Biol 2020; 9:671-677. [PMID: 32078765 DOI: 10.1021/acssynbio.9b00388] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent advances in cell-free synthetic biology have spurred the development of in vitro molecular diagnostics that serve as effective alternatives to whole-cell biosensors. However, cell-free sensors for detecting manmade organic water contaminants such as pesticides are sparse, partially because few characterized natural biological sensors can directly detect such pollutants. Here, we present a platform for the cell-free detection of one critical water contaminant, atrazine, by combining a previously characterized cyanuric acid biosensor with a reconstituted atrazine-to-cyanuric acid metabolic pathway composed of several protein-enriched bacterial extracts mixed in a one pot reaction. Our cell-free sensor detects atrazine within an hour of incubation at an activation ratio superior to previously reported whole-cell atrazine sensors. We also show that the response characteristics of the atrazine sensor can be tuned by manipulating the ratios of enriched extracts in the cell-free reaction mixture. Our approach of utilizing multiple metabolic steps, encoded in protein-enriched cell-free extracts, to convert a target of interest into a molecule that can be sensed by a transcription factor is modular. Our work thus serves as an effective proof-of-concept for a scheme of "metabolic biosensing", which should enable rapid, field-deployable detection of complex organic water contaminants.
Collapse
Affiliation(s)
| | | | | | - Michael C. Jewett
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Julius B. Lucks
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Center for Water Research, Northwestern University, Evanston, Illinois 60208, United States
- Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Silverman AD, Akova U, Alam KK, Jewett MC, Lucks JB. Design and Optimization of a Cell-Free Atrazine Biosensor. ACS Synth Biol 2020. [PMID: 32078765 DOI: 10.1101/779827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Recent advances in cell-free synthetic biology have spurred the development of in vitro molecular diagnostics that serve as effective alternatives to whole-cell biosensors. However, cell-free sensors for detecting manmade organic water contaminants such as pesticides are sparse, partially because few characterized natural biological sensors can directly detect such pollutants. Here, we present a platform for the cell-free detection of one critical water contaminant, atrazine, by combining a previously characterized cyanuric acid biosensor with a reconstituted atrazine-to-cyanuric acid metabolic pathway composed of several protein-enriched bacterial extracts mixed in a one pot reaction. Our cell-free sensor detects atrazine within an hour of incubation at an activation ratio superior to previously reported whole-cell atrazine sensors. We also show that the response characteristics of the atrazine sensor can be tuned by manipulating the ratios of enriched extracts in the cell-free reaction mixture. Our approach of utilizing multiple metabolic steps, encoded in protein-enriched cell-free extracts, to convert a target of interest into a molecule that can be sensed by a transcription factor is modular. Our work thus serves as an effective proof-of-concept for a scheme of "metabolic biosensing", which should enable rapid, field-deployable detection of complex organic water contaminants.
Collapse
Affiliation(s)
| | | | | | - Michael C Jewett
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Julius B Lucks
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Center for Water Research, Northwestern University, Evanston, Illinois 60208, United States
- Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Esquirol L, Peat TS, Sugrue E, Balotra S, Rottet S, Warden AC, Wilding M, Hartley CJ, Jackson CJ, Newman J, Scott C. Bacterial catabolism of s-triazine herbicides: biochemistry, evolution and application. Adv Microb Physiol 2020; 76:129-186. [PMID: 32408946 DOI: 10.1016/bs.ampbs.2020.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The synthetic s-triazines are abundant, nitrogen-rich, heteroaromatic compounds used in a multitude of applications including, herbicides, plastics and polymers, and explosives. Their presence in the environment has led to the evolution of bacterial catabolic pathways in bacteria that allow use of these anthropogenic chemicals as a nitrogen source that supports growth. Herbicidal s-triazines have been used since the mid-twentieth century and are among the most heavily used herbicides in the world, despite being withdrawn from use in some areas due to concern about their safety and environmental impact. Bacterial catabolism of the herbicidal s-triazines has been studied extensively. Pseudomonas sp. strain ADP, which was isolated more than thirty years after the introduction of the s-triazine herbicides, has been the model system for most of these studies; however, several alternative catabolic pathways have also been identified. Over the last five years, considerable detail about the molecular mode of action of the s-triazine catabolic enzymes has been uncovered through acquisition of their atomic structures. These structural studies have also revealed insights into the evolutionary origins of this newly acquired metabolic capability. In addition, s-triazine-catabolizing bacteria and enzymes have been used in a range of applications, including bioremediation of herbicides and cyanuric acid, introducing metabolic resistance to plants, and as a novel selectable marker in fermentation organisms. In this review, we cover the discovery and characterization of bacterial strains, metabolic pathways and enzymes that catabolize the s-triazines. We also consider the evolution of these new enzymes and pathways and discuss the practical applications that have been considered for these bacteria and enzymes. One Sentence Summary: A detailed understanding of bacterial herbicide catabolic enzymes and pathways offer new evolutionary insights and novel applied tools.
Collapse
Affiliation(s)
- Lygie Esquirol
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Thomas S Peat
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Elena Sugrue
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Sahil Balotra
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Sarah Rottet
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Andrew C Warden
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Matthew Wilding
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia; CSIRO Biomedical Manufacturing, Parkville, VIC, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Carol J Hartley
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Janet Newman
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Colin Scott
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
15
|
Janzen E, Blanco C, Peng H, Kenchel J, Chen IA. Promiscuous Ribozymes and Their Proposed Role in Prebiotic Evolution. Chem Rev 2020; 120:4879-4897. [PMID: 32011135 PMCID: PMC7291351 DOI: 10.1021/acs.chemrev.9b00620] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
The ability of enzymes,
including ribozymes, to catalyze side reactions
is believed to be essential to the evolution of novel biochemical
activities. It has been speculated that the earliest ribozymes, whose
emergence marked the origin of life, were low in activity but high
in promiscuity, and that these early ribozymes gave rise to specialized
descendants with higher activity and specificity. Here, we review
the concepts related to promiscuity and examine several cases of highly
promiscuous ribozymes. We consider the evidence bearing on the question
of whether de novo ribozymes would be quantitatively
more promiscuous than later evolved ribozymes or protein enzymes.
We suggest that while de novo ribozymes appear to
be promiscuous in general, they are not obviously more promiscuous
than more highly evolved or active sequences. Promiscuity is a trait
whose value would depend on selective pressures, even during prebiotic
evolution.
Collapse
Affiliation(s)
- Evan Janzen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93109, United States.,Biomolecular Sciences and Engineering Program, University of California, Santa Barbara, Santa Barbara, California 93109, United States
| | - Celia Blanco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93109, United States
| | - Huan Peng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93109, United States
| | - Josh Kenchel
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93109, United States.,Biomolecular Sciences and Engineering Program, University of California, Santa Barbara, Santa Barbara, California 93109, United States
| | - Irene A Chen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93109, United States.,Biomolecular Sciences and Engineering Program, University of California, Santa Barbara, Santa Barbara, California 93109, United States.,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
16
|
Chen S, Zhang K, Jha RK, Ma L. Impact of atrazine concentration on bioavailability and apparent isotope fractionation in Gram-negative Rhizobium sp. CX-Z. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113614. [PMID: 31761577 DOI: 10.1016/j.envpol.2019.113614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/10/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Compound-specific stable isotope analysis of micropollutants has become an established method for the qualitative and quantitative assessment of biodegradation in the field. However, many of environmental factors may have an influence on the observed isotope fractionation. Herein, we investigate the impact of substrate concentration on the observed enrichment factor derived from Rayleigh plot of batch laboratory experiments conducted to measure the atrazine carbon isotope fractionation of Rhizobium sp. CX-Z subjected to the different initial concentration level of atrazine. The Rayleigh plot (changes in bulk concentration vs. isotopic composition) derived from batch experiments shown divergence from the linear relation towards the end of degradation, confirming bioavailability of atrazine changed along with the decay of substrate concentration, consequently, influenced the isotope fractionation and lowered the observed enrichment factor. When microbial degradation is coupled to a mass transfer step limiting the bioavailability of substrate, the observed enrichment factor displays a dependence on initial atrazine concentration. Observed enrichment factors (ε) (absolute value) derived from the low concentration (i.e. 9.5 μM) are below 3.5‰ to the value of -5.4‰ determined at high bioavailability (membrane-free cells). The observed enrichment factor depended significantly on the atrazine concentration, indicating the concentration level and the bioavailability of a substrate in realistic environments should be considered during the assessment of microbial degradation or in situ bioremediation based on compound-specific stable isotope analysis (CSIA) method.
Collapse
Affiliation(s)
- Songsong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Kai Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Rohit Kumar Jha
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Limin Ma
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
17
|
Leveson-Gower RB, Mayer C, Roelfes G. The importance of catalytic promiscuity for enzyme design and evolution. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0143-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Chen S, Zhang K, Jha RK, Chen C, Yu H, Liu Y, Ma L. Isotope fractionation in atrazine degradation reveals rate-limiting, energy-dependent transport across the cell membrane of gram-negative rhizobium sp. CX-Z. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:857-864. [PMID: 30856501 DOI: 10.1016/j.envpol.2019.02.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 05/22/2023]
Abstract
In the biological mass transfer of organic contaminants like atrazine, the cellular membrane limits bioavailability of pesticides. We aimed to illustrate the roles of cellular membrane physiology and substrate uptake (e.g., passive diffusion and energy-dependent transport) on the limitations of bioavailability in atrazine biodegradation by Gram-negative strain Rhizobium sp. CX-Z. Compound-specific stable isotope analysis revealed energy-dependent transport across cellular membrane led to bioavailability limitations in atrazine biotransformation. Carbon isotope fractionation (ε(C) = -1.8 ± 0.3‰) was observed and significantly smaller in atrazine biodegradation by Rhizobium sp. CX-Z than that expected in acid hydrolysis (ε(C) = -4.8 ± 0.4‰) and hydrolysis by the pure enzyme TrzN (ε(C) = -5.0 ± 0.2‰). However, isotope fractionation was restored in membrane-free cells of Rhizobium sp. CX-Z (ε(C) = -5.4 ± 0.2‰) where no cellular membrane limits substrate uptake. When respiratory chain was inhibited by rotenone, the pseudo-first order kinetic rate constants (0.08 ± 0.03 h-1, 0.09 ± 0.03 h-1) was observed to be statistically less than in the control group (0.23 ± 0.02 h-1, 0.33 ± 0.02 h-1), demonstrating that energy-dependent transport dominated atrazine transfer across the cellular membrane. Therefore, our results revealed energy-dependent transport across cellular membrane existing in Gram-negative strain Rhizobium sp. CX-Z determines bioavailability of atrazine in biotransformation process even at high concentration.
Collapse
Affiliation(s)
- Songsong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Kai Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Rohit Kumar Jha
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Chong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Haiyan Yu
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Ying Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Limin Ma
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
19
|
Exploring the sequence, function, and evolutionary space of protein superfamilies using sequence similarity networks and phylogenetic reconstructions. Methods Enzymol 2019; 620:315-347. [PMID: 31072492 DOI: 10.1016/bs.mie.2019.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Integrative computational methods can facilitate the discovery of new protein functions and enzymatic reactions by enabling the observation and investigation of complex sequence-structure-function and evolutionary relationships within protein superfamilies. Here, we highlight the use of sequence similarity networks (SSNs) and phylogenetic reconstructions to map the functional divergence and evolutionary history of protein superfamilies. We exemplify this approach using the nitroreductase (NTR) flavoenzyme superfamily, demonstrating that SSN investigations can provide a rapid and effective means to classify groups of proteins, expose sequence similarity relationships across the global scale of a protein superfamily, and efficiently support detailed phylogenetic analyses. Integration of such approaches with systematic experimental characterization will expand our understanding of the functional diversity of enzymes, their evolution, and their associated physiological roles.
Collapse
|
20
|
Atashgahi S, Liebensteiner MG, Janssen DB, Smidt H, Stams AJM, Sipkema D. Microbial Synthesis and Transformation of Inorganic and Organic Chlorine Compounds. Front Microbiol 2018; 9:3079. [PMID: 30619161 PMCID: PMC6299022 DOI: 10.3389/fmicb.2018.03079] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
Organic and inorganic chlorine compounds are formed by a broad range of natural geochemical, photochemical and biological processes. In addition, chlorine compounds are produced in large quantities for industrial, agricultural and pharmaceutical purposes, which has led to widespread environmental pollution. Abiotic transformations and microbial metabolism of inorganic and organic chlorine compounds combined with human activities constitute the chlorine cycle on Earth. Naturally occurring organochlorines compounds are synthesized and transformed by diverse groups of (micro)organisms in the presence or absence of oxygen. In turn, anthropogenic chlorine contaminants may be degraded under natural or stimulated conditions. Here, we review phylogeny, biochemistry and ecology of microorganisms mediating chlorination and dechlorination processes. In addition, the co-occurrence and potential interdependency of catabolic and anabolic transformations of natural and synthetic chlorine compounds are discussed for selected microorganisms and particular ecosystems.
Collapse
Affiliation(s)
- Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Dick B. Janssen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
21
|
Li X, Luo J, Deng H, Huang P, Ge C, Yu H, Xu W. Effect of cassava waste biochar on sorption and release behavior of atrazine in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:1617-1624. [PMID: 30743874 DOI: 10.1016/j.scitotenv.2018.07.239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/15/2018] [Accepted: 07/17/2018] [Indexed: 06/09/2023]
Abstract
Biochar, can be used as a sorbent material to sequester organic contaminants in soils. In this study, the sorption-desorption behavior of atrazine (AT) was studied in latosol (L) supplemented with varying doses of cassava waste biochar (CW). Changes in the release of AT were assessed with varying aging time (0-60 days) and environmental factors (pH, ionic strength, solid-liquid ratio and disturbance intensity). Results indicate that the addition of 0.1%-5% (w/w) CW in L, promoted AT adsorption by 1.7- to 36-fold as compared with the natural soil control, after 60 days. The release of AT from biochar-amended soil was significantly affected by pH ranged from 3 to 9 and the amount of desorbed AT increased with increasing pH conditions. 0.05 mol/L Ca2+ enhanced AT sorption by biochar. The release of AT increased with increasing solid-liquid ratio (at the ratio of 1:10, 1:15, 1:20) and disturbance intensity, surface complexation and cation exchange were found to play important roles in sorption mechanisms.
Collapse
Affiliation(s)
- Xue Li
- Institute of Tropical Agriculture and Forestry, Hainan University, Renmin Road, Haikou 570228, China; Key Laboratory of Environmental Toxicology (Hainan University), Ministry of Education, Haikou 570228, China
| | - Jiwei Luo
- Institute of Tropical Agriculture and Forestry, Hainan University, Renmin Road, Haikou 570228, China; Key Laboratory of Environmental Toxicology (Hainan University), Ministry of Education, Haikou 570228, China
| | - Hui Deng
- Institute of Tropical Agriculture and Forestry, Hainan University, Renmin Road, Haikou 570228, China
| | - Peng Huang
- Institute of Tropical Agriculture and Forestry, Hainan University, Renmin Road, Haikou 570228, China; Key Laboratory of Environmental Toxicology (Hainan University), Ministry of Education, Haikou 570228, China
| | - Chengjun Ge
- Institute of Tropical Agriculture and Forestry, Hainan University, Renmin Road, Haikou 570228, China; Key Laboratory of Environmental Toxicology (Hainan University), Ministry of Education, Haikou 570228, China; College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huamei Yu
- Institute of Tropical Agriculture and Forestry, Hainan University, Renmin Road, Haikou 570228, China.
| | - Wen Xu
- Institute of Tropical Agriculture and Forestry, Hainan University, Renmin Road, Haikou 570228, China.
| |
Collapse
|
22
|
Copp JN, Akiva E, Babbitt PC, Tokuriki N. Revealing Unexplored Sequence-Function Space Using Sequence Similarity Networks. Biochemistry 2018; 57:4651-4662. [PMID: 30052428 DOI: 10.1021/acs.biochem.8b00473] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rapidly expanding number of protein sequences found in public databases can improve our understanding of how protein functions evolve. However, our current knowledge of protein function likely represents a small fraction of the diverse repertoire that exists in nature. Integrative computational methods can facilitate the discovery of new protein functions and enzymatic reactions through the observation and investigation of the complex sequence-structure-function relationships within protein superfamilies. Here, we highlight the use of sequence similarity networks (SSNs) to identify previously unexplored sequence and function space. We exemplify this approach using the nitroreductase (NTR) superfamily. We demonstrate that SSN investigations can provide a rapid and effective means to classify groups of proteins, therefore exposing experimentally unexplored sequences that may exhibit novel functionality. Integration of such approaches with systematic experimental characterization will expand our understanding of the functional diversity of enzymes and their associated physiological roles.
Collapse
Affiliation(s)
- Janine N Copp
- Michael Smith Laboratories , University of British Columbia , 2185 East Mall , Vancouver , British Columbia V6T 1Z4 , Canada
| | - Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , California 94158 , United States.,Quantitative Biosciences Institute , University of California , San Francisco , California 94143 , United States
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , California 94158 , United States.,Quantitative Biosciences Institute , University of California , San Francisco , California 94143 , United States
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories , University of British Columbia , 2185 East Mall , Vancouver , British Columbia V6T 1Z4 , Canada
| |
Collapse
|
23
|
Esquirol L, Peat TS, Wilding M, Lucent D, French NG, Hartley CJ, Newman J, Scott C. Structural and biochemical characterization of the biuret hydrolase (BiuH) from the cyanuric acid catabolism pathway of Rhizobium leguminasorum bv. viciae 3841. PLoS One 2018; 13:e0192736. [PMID: 29425231 PMCID: PMC5806882 DOI: 10.1371/journal.pone.0192736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/29/2018] [Indexed: 11/24/2022] Open
Abstract
Biuret deamination is an essential step in cyanuric acid mineralization. In the well-studied atrazine degrading bacterium Pseudomonas sp. strain ADP, the amidase AtzE catalyzes this step. However, Rhizobium leguminosarum bv. viciae 3841 uses an unrelated cysteine hydrolase, BiuH, instead. Herein, structures of BiuH, BiuH with bound inhibitor and variants of BiuH are reported. The substrate is bound in the active site by a hydrogen bonding network that imparts high substrate specificity. The structure of the inactive Cys175Ser BiuH variant with substrate bound in the active site revealed that an active site cysteine (Cys175), aspartic acid (Asp36) and lysine (Lys142) form a catalytic triad, which is consistent with biochemical studies of BiuH variants. Finally, molecular dynamics simulations highlighted the presence of three channels from the active site to the enzyme surface: a persistent tunnel gated by residues Val218 and Gln215 forming a potential substrate channel and two smaller channels formed by Val28 and a mobile loop (including residues Phe41, Tyr47 and Met51) that may serve as channels for co-product (ammonia) or co-substrate (water).
Collapse
Affiliation(s)
- Lygie Esquirol
- CSIRO Biocatalysis and Synthetic Biology, Canberra, Australian Capital Territory, Australia
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Thomas S. Peat
- CSIRO Biomedical Manufacturing, Parkville, Melbourne, Victoria, Australia
| | - Matthew Wilding
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
- CSIRO Biomedical Manufacturing, Parkville, Melbourne, Victoria, Australia
| | - Del Lucent
- Department of Electrical Engineering and Physics, Wilkes University, Wilkes-Barre, Pennsylvania, United States of America
| | - Nigel G. French
- CSIRO Biocatalysis and Synthetic Biology, Canberra, Australian Capital Territory, Australia
| | - Carol J. Hartley
- CSIRO Biocatalysis and Synthetic Biology, Canberra, Australian Capital Territory, Australia
| | - Janet Newman
- CSIRO Biomedical Manufacturing, Parkville, Melbourne, Victoria, Australia
| | - Colin Scott
- CSIRO Biocatalysis and Synthetic Biology, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
24
|
Zhang JJ, Xu JY, Lu FF, Jin SF, Yang H. Detoxification of Atrazine by Low Molecular Weight Thiols in Alfalfa (Medicago sativa). Chem Res Toxicol 2017; 30:1835-1846. [DOI: 10.1021/acs.chemrestox.7b00166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Jing Zhang
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- College
of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiang Yan Xu
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Fan Lu
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - She Feng Jin
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu
Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
25
|
Hartley CJ, Wilding M, Scott C. Hacking nature: genetic tools for reprograming enzymes. MICROBIOLOGY AUSTRALIA 2017. [DOI: 10.1071/ma17032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Enzymes have many modern industrial applications, from biomass decomposition in the production of biofuels to highly stereospecific biotransformations in pharmaceutical manufacture. The capacity to find or engineer enzymes with activities pertinent to specific applications has been essential for the growth of a multibillion dollar enzyme industry. Over the course of the past 50–60 years our capacity to address this issue has become increasingly sophisticated, supported by innumerable advances, from early discoveries such as the co-linearity of DNA and protein sequence1 to modern computational technologies for enzyme design. The design of enzyme function is an exciting nexus of fundamental biochemical understanding and applied engineering. Herein, we will cover some of the methods used in discovery and design, including some ‘next generation’ tools.
Collapse
|
26
|
Guo Y, Zhao P, Zhang W, Li X, Chen X, Chen D. Catalytic improvement and structural analysis of atrazine chlorohydrolase by site-saturation mutagenesis. Biosci Biotechnol Biochem 2016; 80:1336-43. [DOI: 10.1080/09168451.2016.1156481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
To improve the catalytic activity of atrazine chlorohydrolase (AtzA), amino acid residues involved in substrate binding (Gln71) and catalytic efficiency (Val12, Ile393, and Leu395) were targeted to generate site-saturation mutagenesis libraries. Seventeen variants were obtained through Haematococcus pluvialis-based screening, and their specific activities were 1.2–5.2-fold higher than that of the wild type. For these variants, Gln71 tended to be substituted by hydrophobic amino acids, Ile393 and Leu395 by polar ones, especially arginine, and Val12 by alanine, respectively. Q71R and Q71M significantly decreased the Km by enlarging the substrate-entry channel and affecting N-ethyl binding. Mutations at sites 393 and 395 significantly increased the kcat/Km, probably by improving the stability of the dual β-sheet domain and the whole enzyme, owing to hydrogen bond formation. In addition, the contradictory relationship between the substrate affinity improvement by Gln71 mutation and the catalytic efficiency improvement by the dual β-sheet domain modification was discussed.
Collapse
Affiliation(s)
- Yuan Guo
- College of Life Sciences, Nankai University, Tianjin, China
| | - Panjie Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wenhao Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolong Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiwen Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Defu Chen
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
27
|
Molina-Espeja P, Viña-Gonzalez J, Gomez-Fernandez BJ, Martin-Diaz J, Garcia-Ruiz E, Alcalde M. Beyond the outer limits of nature by directed evolution. Biotechnol Adv 2016; 34:754-767. [PMID: 27064127 DOI: 10.1016/j.biotechadv.2016.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/22/2016] [Accepted: 03/27/2016] [Indexed: 01/19/2023]
Abstract
For more than thirty years, biotechnology has borne witness to the power of directed evolution in designing molecules of industrial relevance. While scientists all over the world discuss the future of molecular evolution, dozens of laboratory-designed products are being released with improved characteristics in terms of turnover rates, substrate scope, catalytic promiscuity or stability. In this review we aim to present the most recent advances in this fascinating research field that are allowing us to surpass the limits of nature and apply newly gained attributes to a range of applications, from gene therapy to novel green processes. The use of directed evolution in non-natural environments, the generation of catalytic promiscuity for non-natural reactions, the insertion of unnatural amino acids into proteins or the creation of unnatural DNA, is described comprehensively, together with the potential applications in bioremediation, biomedicine and in the generation of new bionanomaterials. These successful case studies show us that the limits of directed evolution will be defined by our own imagination, and in some cases, stretching beyond that.
Collapse
Affiliation(s)
- Patricia Molina-Espeja
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Javier Viña-Gonzalez
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| | | | - Javier Martin-Diaz
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Eva Garcia-Ruiz
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, IL 61801, USA
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
28
|
Sugrue E, Hartley CJ, Scott C, Jackson CJ. The Evolution of New Catalytic Mechanisms for Xenobiotic Hydrolysis in Bacterial Metalloenzymes. Aust J Chem 2016. [DOI: 10.1071/ch16426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An increasing number of bacterial metalloenzymes have been shown to catalyse the breakdown of xenobiotics in the environment, while others exhibit a variety of promiscuous xenobiotic-degrading activities. Several different evolutionary processes have allowed these enzymes to gain or enhance xenobiotic-degrading activity. In this review, we have surveyed the range of xenobiotic-degrading metalloenzymes, and discuss the molecular and catalytic basis for the development of new activities. We also highlight how our increased understanding of the natural evolution of xenobiotic-degrading metalloenzymes can be been applied to laboratory enzyme design.
Collapse
|
29
|
Renata H, Wang ZJ, Arnold FH. Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew Chem Int Ed Engl 2015; 54:3351-67. [PMID: 25649694 PMCID: PMC4404643 DOI: 10.1002/anie.201409470] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Indexed: 11/10/2022]
Abstract
High selectivity and exquisite control over the outcome of reactions entice chemists to use biocatalysts in organic synthesis. However, many useful reactions are not accessible because they are not in nature's known repertoire. In this Review, we outline an evolutionary approach to engineering enzymes to catalyze reactions not found in nature. We begin with examples of how nature has discovered new catalytic functions and how such evolutionary progression has been recapitulated in the laboratory starting from extant enzymes. We then examine non-native enzyme activities that have been exploited for chemical synthesis, with an emphasis on reactions that do not have natural counterparts. Non-natural activities can be improved by directed evolution, thus mimicking the process used by nature to create new catalysts. Finally, we describe the discovery of non-native catalytic functions that may provide future opportunities for the expansion of the enzyme universe.
Collapse
Affiliation(s)
- Hans Renata
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd. MC 210-41, Pasadena, CA 91125 (USA)
| | - Z. Jane Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd. MC 210-41, Pasadena, CA 91125 (USA)
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd. MC 210-41, Pasadena, CA 91125 (USA)
| |
Collapse
|
30
|
Peat TS, Newman J, Balotra S, Lucent D, Warden AC, Scott C. The structure of the hexameric atrazine chlorohydrolase AtzA. ACTA ACUST UNITED AC 2015; 71:710-20. [PMID: 25760618 PMCID: PMC4356373 DOI: 10.1107/s1399004715000619] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/12/2015] [Indexed: 12/05/2022]
Abstract
The structure of atrazine chlorohydrolase (AtzA) is presented and is used to reinterpret data from genetic, biochemical and evolutionary studies, providing insight into why this recently evolved enzyme appears to be poorly adapted for its physiological substrate compared with the alternative metal-dependent atrazine dechlorinase TrzN. Atrazine chlorohydrolase (AtzA) was discovered and purified in the early 1990s from soil that had been exposed to the widely used herbicide atrazine. It was subsequently found that this enzyme catalyzes the first and necessary step in the breakdown of atrazine by the soil organism Pseudomonas sp. strain ADP. Although it has taken 20 years, a crystal structure of the full hexameric form of AtzA has now been obtained. AtzA is less well adapted to its physiological role (i.e. atrazine dechlorination) than the alternative metal-dependent atrazine chlorohydrolase (TrzN), with a substrate-binding pocket that is under considerable strain and for which the substrate is a poor fit.
Collapse
Affiliation(s)
- T S Peat
- CSIRO Biomedical Manufacturing, Parkville, Australia
| | - J Newman
- CSIRO Biomedical Manufacturing, Parkville, Australia
| | - S Balotra
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - D Lucent
- Division of Engineering and Physics, Wilkes University, Wilkes-Barr, Pennsylvania, USA
| | - A C Warden
- CSIRO Land and Water Flagship, Black Mountain, Canberra, Australia
| | - C Scott
- CSIRO Biomedical Manufacturing, Parkville, Australia
| |
Collapse
|
31
|
Renata H, Wang ZJ, Arnold FH. Ausdehnung des Enzym-Universums: Zugang zu nicht-natürlichen Reaktionen durch mechanismusgeleitete, gerichtete Evolution. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409470] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
300-Fold increase in production of the Zn2+-dependent dechlorinase TrzN in soluble form via apoenzyme stabilization. Appl Environ Microbiol 2014; 80:4003-11. [PMID: 24771025 DOI: 10.1128/aem.00916-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial metalloenzymes constitute a large library of biocatalysts, a number of which have already been shown to catalyze the breakdown of toxic chemicals or industrially relevant chemical transformations. However, while there is considerable interest in harnessing these catalysts for biotechnology, for many of the enzymes, their large-scale production in active, soluble form in recombinant systems is a significant barrier to their use. In this work, we demonstrate that as few as three mutations can result in a 300-fold increase in the expression of soluble TrzN, an enzyme from Arthrobacter aurescens with environmental applications that catalyzes the hydrolysis of triazine herbicides, in Escherichia coli. Using a combination of X-ray crystallography, kinetic analysis, and computational simulation, we show that the majority of the improvement in expression is due to stabilization of the apoenzyme rather than the metal ion-bound holoenzyme. This provides a structural and mechanistic explanation for the observation that many compensatory mutations can increase levels of soluble-protein production without increasing the stability of the final, active form of the enzyme. This study provides a molecular understanding of the importance of the stability of metal ion free states to the accumulation of soluble protein and shows that differences between apoenzyme and holoenzyme structures can result in mutations affecting the stability of either state differently.
Collapse
|
33
|
Rehan M, Kluge M, Fränzle S, Kellner H, Ullrich R, Hofrichter M. Degradation of atrazine by Frankia alni ACN14a: gene regulation, dealkylation, and dechlorination. Appl Microbiol Biotechnol 2014; 98:6125-35. [DOI: 10.1007/s00253-014-5665-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 11/29/2022]
|
34
|
Platero AI, Santero E, Govantes F. Genetic evidence of a high-affinity cyanuric acid transport system in Pseudomonas sp. ADP. FEMS Microbiol Lett 2014; 352:150-6. [PMID: 24484197 DOI: 10.1111/1574-6968.12392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 11/28/2022] Open
Abstract
The Pseudomonas sp. ADP plasmid pADP-1 encodes the activities involved in the hydrolytic degradation of the s-triazine herbicide atrazine. Here, we explore the presence of a specific transport system for the central intermediate of the atrazine utilization pathway, cyanuric acid, in Pseudomonas sp. ADP. Growth in fed-batch cultures containing limiting cyanuric acid concentrations is consistent with high-affinity transport of this substrate. Acquisition of the ability to grow at low cyanuric acid concentrations upon conjugal transfer of pADP1 to the nondegrading host Pseudomonas putida KT2442 suggests that all activities required for this phenotype are encoded in this plasmid. Co-expression of the pADP1-borne atzDEF and atzTUVW genes, encoding the cyanuric acid utilization pathway and the subunits of an ABC-type solute transport system, in P. putida KT2442 was sufficient to promote growth at cyanuric acid concentrations as low as 50 μM in batch culture. Taken together, our results strongly suggest that the atzTUVW gene products are involved in high-affinity transport of cyanuric acid.
Collapse
Affiliation(s)
- Ana I Platero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain; Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | | | | |
Collapse
|
35
|
Wang Y, Li X, Chen X, Chen D. Directed evolution and characterization of atrazine chlorohydrolase variants with enhanced activity. BIOCHEMISTRY (MOSCOW) 2013; 78:1104-11. [DOI: 10.1134/s0006297913100040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Ongoing functional evolution of the bacterial atrazine chlorohydrolase AtzA. Biodegradation 2013; 25:21-30. [DOI: 10.1007/s10532-013-9637-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/03/2013] [Indexed: 10/27/2022]
|
37
|
Udiković-Kolić N, Scott C, Martin-Laurent F. Evolution of atrazine-degrading capabilities in the environment. Appl Microbiol Biotechnol 2012; 96:1175-89. [DOI: 10.1007/s00253-012-4495-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 11/30/2022]
|
38
|
Noor S, Taylor MC, Russell RJ, Jermiin LS, Jackson CJ, Oakeshott JG, Scott C. Intramolecular epistasis and the evolution of a new enzymatic function. PLoS One 2012; 7:e39822. [PMID: 22768133 PMCID: PMC3387218 DOI: 10.1371/journal.pone.0039822] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/28/2012] [Indexed: 01/03/2023] Open
Abstract
Atrazine chlorohydrolase (AtzA) and its close relative melamine deaminase (TriA) differ by just nine amino acid substitutions but have distinct catalytic activities. Together, they offer an informative model system to study the molecular processes that underpin the emergence of new enzymatic function. Here we have constructed the potential evolutionary trajectories between AtzA and TriA, and characterized the catalytic activities and biophysical properties of the intermediates along those trajectories. The order in which the nine amino acid substitutions that separate the enzymes could be introduced to either enzyme, while maintaining significant catalytic activity, was dictated by epistatic interactions, principally between three amino acids within the active site: namely, S331C, N328D and F84L. The mechanistic basis for the epistatic relationships is consistent with a model for the catalytic mechanisms in which protonation is required for hydrolysis of melamine, but not atrazine.
Collapse
Affiliation(s)
- Sajid Noor
- Ecosystem Sciences, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australian Capital Territory, Australia
| | | | | | | | | | | | | |
Collapse
|
39
|
Clinton B, Warden AC, Haboury S, Easton CJ, Kotsonis S, Taylor MC, Oakeshott JG, Russell RJ, Scott C. Bacterial degradation of strobilurin fungicides: a role for a promiscuous methyl esterase activity of the subtilisin proteases? BIOCATAL BIOTRANSFOR 2011. [DOI: 10.3109/10242422.2011.578740] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Degradation of chlorobenzene by strain Ralstonia pickettii L2 isolated from a biotrickling filter treating a chlorobenzene-contaminated gas stream. Appl Microbiol Biotechnol 2011; 91:407-15. [DOI: 10.1007/s00253-011-3255-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/20/2011] [Accepted: 03/16/2011] [Indexed: 10/18/2022]
|
41
|
Scott C, Begley C, Taylor MJ, Pandey G, Momiroski V, French N, Brearley C, Kotsonis SE, Selleck MJ, Carino FA, Bajet CM, Clarke C, Oakeshott JG, Russell RJ. Free-Enzyme Bioremediation of Pesticides. ACS SYMPOSIUM SERIES 2011. [DOI: 10.1021/bk-2011-1075.ch011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Colin Scott
- CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
- Orica Australia Pty Ltd., 1 Nicholson Street, Melbourne Victoria 3000, Australia
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City 1101, Philippines
- Pesticide Toxicology and Chemistry Laboratory, National Crop Protection Center, University of the Philippines, Los Banos, Laguna 4031, Philippines
| | - Cameron Begley
- CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
- Orica Australia Pty Ltd., 1 Nicholson Street, Melbourne Victoria 3000, Australia
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City 1101, Philippines
- Pesticide Toxicology and Chemistry Laboratory, National Crop Protection Center, University of the Philippines, Los Banos, Laguna 4031, Philippines
| | - Matthew J. Taylor
- CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
- Orica Australia Pty Ltd., 1 Nicholson Street, Melbourne Victoria 3000, Australia
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City 1101, Philippines
- Pesticide Toxicology and Chemistry Laboratory, National Crop Protection Center, University of the Philippines, Los Banos, Laguna 4031, Philippines
| | - Gunjan Pandey
- CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
- Orica Australia Pty Ltd., 1 Nicholson Street, Melbourne Victoria 3000, Australia
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City 1101, Philippines
- Pesticide Toxicology and Chemistry Laboratory, National Crop Protection Center, University of the Philippines, Los Banos, Laguna 4031, Philippines
| | - Vinko Momiroski
- CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
- Orica Australia Pty Ltd., 1 Nicholson Street, Melbourne Victoria 3000, Australia
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City 1101, Philippines
- Pesticide Toxicology and Chemistry Laboratory, National Crop Protection Center, University of the Philippines, Los Banos, Laguna 4031, Philippines
| | - Nigel French
- CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
- Orica Australia Pty Ltd., 1 Nicholson Street, Melbourne Victoria 3000, Australia
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City 1101, Philippines
- Pesticide Toxicology and Chemistry Laboratory, National Crop Protection Center, University of the Philippines, Los Banos, Laguna 4031, Philippines
| | - Clint Brearley
- CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
- Orica Australia Pty Ltd., 1 Nicholson Street, Melbourne Victoria 3000, Australia
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City 1101, Philippines
- Pesticide Toxicology and Chemistry Laboratory, National Crop Protection Center, University of the Philippines, Los Banos, Laguna 4031, Philippines
| | - Steve E. Kotsonis
- CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
- Orica Australia Pty Ltd., 1 Nicholson Street, Melbourne Victoria 3000, Australia
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City 1101, Philippines
- Pesticide Toxicology and Chemistry Laboratory, National Crop Protection Center, University of the Philippines, Los Banos, Laguna 4031, Philippines
| | - Michael J. Selleck
- CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
- Orica Australia Pty Ltd., 1 Nicholson Street, Melbourne Victoria 3000, Australia
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City 1101, Philippines
- Pesticide Toxicology and Chemistry Laboratory, National Crop Protection Center, University of the Philippines, Los Banos, Laguna 4031, Philippines
| | - Flerida A. Carino
- CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
- Orica Australia Pty Ltd., 1 Nicholson Street, Melbourne Victoria 3000, Australia
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City 1101, Philippines
- Pesticide Toxicology and Chemistry Laboratory, National Crop Protection Center, University of the Philippines, Los Banos, Laguna 4031, Philippines
| | - Cristina M. Bajet
- CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
- Orica Australia Pty Ltd., 1 Nicholson Street, Melbourne Victoria 3000, Australia
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City 1101, Philippines
- Pesticide Toxicology and Chemistry Laboratory, National Crop Protection Center, University of the Philippines, Los Banos, Laguna 4031, Philippines
| | - Craig Clarke
- CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
- Orica Australia Pty Ltd., 1 Nicholson Street, Melbourne Victoria 3000, Australia
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City 1101, Philippines
- Pesticide Toxicology and Chemistry Laboratory, National Crop Protection Center, University of the Philippines, Los Banos, Laguna 4031, Philippines
| | - John G. Oakeshott
- CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
- Orica Australia Pty Ltd., 1 Nicholson Street, Melbourne Victoria 3000, Australia
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City 1101, Philippines
- Pesticide Toxicology and Chemistry Laboratory, National Crop Protection Center, University of the Philippines, Los Banos, Laguna 4031, Philippines
| | - Robyn J. Russell
- CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
- Orica Australia Pty Ltd., 1 Nicholson Street, Melbourne Victoria 3000, Australia
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City 1101, Philippines
- Pesticide Toxicology and Chemistry Laboratory, National Crop Protection Center, University of the Philippines, Los Banos, Laguna 4031, Philippines
| |
Collapse
|
42
|
Scott C, Lewis SE, Milla R, Taylor MC, Rodgers AJW, Dumsday G, Brodie JE, Oakeshott JG, Russell RJ. A free-enzyme catalyst for the bioremediation of environmental atrazine contamination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2010; 91:2075-2078. [PMID: 20570036 DOI: 10.1016/j.jenvman.2010.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 04/28/2010] [Accepted: 05/06/2010] [Indexed: 05/29/2023]
Abstract
Herbicide contamination from agriculture is a major issue worldwide, and has been identified as a threat to freshwater and marine environments in the Great Barrier Reef World Heritage Area in Australia. The triazine herbicides are of particular concern because of potential adverse effects, both on photosynthetic organisms and upon vertebrate development. To date a number of bioremediation strategies have been proposed for triazine herbicides, but are unlikely to be implemented due to their reliance upon the release of genetically modified organisms. We propose an alternative strategy using a free-enzyme bioremediant, which is unconstrained by the issues surrounding the use of live organisms. Here we report an initial field trial with an enzyme-based product, demonstrating that the technology is technically capable of remediating water bodies contaminated with the most common triazine herbicide, atrazine.
Collapse
Affiliation(s)
- Colin Scott
- CSIRO Division of Entomology, GPO Box 1700, Canberra, ACT 2601, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Seffernick JL, Reynolds E, Fedorov AA, Fedorov E, Almo SC, Sadowsky MJ, Wackett LP. X-ray structure and mutational analysis of the atrazine Chlorohydrolase TrzN. J Biol Chem 2010; 285:30606-14. [PMID: 20659898 DOI: 10.1074/jbc.m110.138677] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atrazine chlorohydrolase, TrzN (triazine hydrolase or atrazine chlorohydrolase 2), initiates bacterial metabolism of the herbicide atrazine by hydrolytic displacement of a chlorine substituent from the s-triazine ring. The present study describes crystal structures and reactivity of wild-type and active site mutant TrzN enzymes. The homodimer native enzyme structure, solved to 1.40 Å resolution, is a (βα)(8) barrel, characteristic of members of the amidohydrolase superfamily. TrzN uniquely positions threonine 325 in place of a conserved aspartate that ligates the metal in most mononuclear amidohydrolases superfamily members. The threonine side chain oxygen atom is 3.3 Å from the zinc atom and 2.6 Å from the oxygen atom of zinc-coordinated water. Mutation of the threonine to a serine resulted in a 12-fold decrease in k(cat)/K(m), largely due to k(cat), whereas the T325D and T325E mutants had immeasurable activity. The structure and kinetics of TrzN are reminiscent of carbonic anhydrase, which uses a threonine to assist in positioning water for reaction with carbon dioxide. An isosteric substitution in the active site glutamate, E241Q, showed a large diminution in activity with ametryn, no detectable activity with atratone, and a 10-fold decrease with atrazine, when compared with wild-type TrzN. Activity with the E241Q mutant was nearly constant from pH 6.0 to 10.0, consistent with the loss of a proton-donating group. Structures for TrzN-E241Q were solved with bound ametryn and atratone to 1.93 and 1.64 Å resolution, respectively. Both structure and kinetic determinations suggest that the Glu(241) side chain provides a proton to N-1 of the s-triazine substrate to facilitate nucleophilic displacement at the adjacent C-2.
Collapse
|
44
|
Arbeli Z, Fuentes C. Prevalence of the gene trzN and biogeographic patterns among atrazine-degrading bacteria isolated from 13 Colombian agricultural soils. FEMS Microbiol Ecol 2010; 73:611-23. [PMID: 20597985 DOI: 10.1111/j.1574-6941.2010.00905.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The following study evaluated the diversity and biogeography of 83 new atrazine-degrading bacteria and the composition of their atrazine degradation genes. These strains were isolated from 13 agricultural soils and grouped according to rep-PCR genomic fingerprinting into 11 major clusters, which showed biogeographic patterns. Three clusters (54 strains) belonged to the genus Arthrobacter, seven clusters (28 strains) were similar to the genus Nocardioides and only one strain was a gram-negative from the genus Ancylobacter. PCR assays for the detection of the genes atzA, B, C, D, E, F and trzN conducted with each of the 83 strains revealed that 82 strains (all gram positive) possessed trzN, 74 of them possessed the combination of trzN, atzB and atzC, while only the gram-negative strain had atzA. A similar PCR assay for the two analogous genes, atzA and trzN, responsible for the first step of atrazine degradation, was performed with DNA extracted directly from the enrichment cultures and microcosms spiked with atrazine. In these assays, the gene trzN was detected in each culture, while atzA was detected in only six out of 13 soils. These results raise an interesting hypothesis on the evolutionary ecology of the two atrazine chlorohydrolase genes (i.e. atzA and trzN) and about the biogeography of atrazine-degrading bacteria.
Collapse
Affiliation(s)
- Ziv Arbeli
- Faculty of Agronomy, National University of Colombia, Bogotá, Colombia.
| | | |
Collapse
|
45
|
Sinha J, Reyes SJ, Gallivan JP. Reprogramming bacteria to seek and destroy an herbicide. Nat Chem Biol 2010; 6:464-70. [PMID: 20453864 PMCID: PMC2873063 DOI: 10.1038/nchembio.369] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 04/06/2010] [Indexed: 12/26/2022]
Abstract
A major goal of synthetic biology is to reprogram cells to perform complex tasks. Here we show how a combination of in vitro and in vivo selection rapidly identifies a synthetic riboswitch that activates protein translation in response to the herbicide atrazine. We further demonstrate that this riboswitch can reprogram bacteria to migrate in the presence of atrazine. Finally, we show that incorporating a gene from an atrazine catabolic pathway allows these cells to seek and destroy atrazine.
Collapse
Affiliation(s)
- Joy Sinha
- Department of Chemistry and Center for Fundamental and Applied Molecular Evolution, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
46
|
Jason Krutz L, Shaner DL, Weaver MA, Webb RM, Zablotowicz RM, Reddy KN, Huang Y, Thomson SJ. Agronomic and environmental implications of enhanced s-triazine degradation. PEST MANAGEMENT SCIENCE 2010; 66:461-481. [PMID: 20127867 DOI: 10.1002/ps.1909] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Novel catabolic pathways enabling rapid detoxification of s-triazine herbicides have been elucidated and detected at a growing number of locations. The genes responsible for s-triazine mineralization, i.e. atzABCDEF and trzNDF, occur in at least four bacterial phyla and are implicated in the development of enhanced degradation in agricultural soils from all continents except Antarctica. Enhanced degradation occurs in at least nine crops and six crop rotation systems that rely on s-triazine herbicides for weed control, and, with the exception of acidic soil conditions and s-triazine application frequency, adaptation of the microbial population is independent of soil physiochemical properties and cultural management practices. From an agronomic perspective, residual weed control could be reduced tenfold in s-triazine-adapted relative to non-adapted soils. From an environmental standpoint, the off-site loss of total s-triazine residues could be overestimated 13-fold in adapted soils if altered persistence estimates and metabolic pathways are not reflected in fate and transport models. Empirical models requiring soil pH and s-triazine use history as input parameters predict atrazine persistence more accurately than historical estimates, thereby allowing practitioners to adjust weed control strategies and model input values when warranted.
Collapse
Affiliation(s)
- L Jason Krutz
- United States Department of Agriculture, Agriculture Research Service, Crop Production Systems Research Unit, Stoneville, MS 38776, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Meyer AH, Penning H, Elsner M. C and N isotope fractionation suggests similar mechanisms of microbial atrazine transformation despite involvement of different enzymes (AtzA and TrzN). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:8079-85. [PMID: 19924926 DOI: 10.1021/es9013618] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Transformation of atrazine to hydroxyatrazine in the environment may be underestimated by current assessment schemes since immobilization and further transformation of the metabolite can render parent-to-daughter compound ratios unreliable. This study reports significant C and N isotope fractionation of atrazine in transformation to hydroxyatrazine by Chelatobacter heintzii, Pseudomonas sp. ADP, and Arthrobacter aurescens TC1 highlighting an alternative approach to detecting this natural transformation pathway. Indistinguishable dual isotope slopes big up tri, open (= delta(15)N/delta(13)C approximately epsilon(N)/epsilon(C)) for Chelatobacter heintzii (-0.65 +/- 0.08) and Arthrobacter aurescens TC1 (-0.61 +/- 0.02) suggest the same biochemical transformation mechanism despite different hydrolyzing enzymes (AtzA versus TrzN). With Pseudomonas sp. ADP (also AtzA) significantly smaller fractionation indicates masking effects by steps prior to enzyme catalysis, while a distinguishable big up tri, open = -0.32 +/- 0.06 suggests that some of these steps showed slight isotope fractionation. Abiotic reference experiments reproduced the pattern of biotic transformation at pH 3 (enrichment of (13)C, depletion of (15)N in atrazine), but showed enrichment of both (13)C and (15)N at pH 12. This indicates that the organisms activated atrazine by a similar Lewis acid complexation (e.g., with H(+)) prior to nucleophilic aromatic substitution, giving the first detailed mechanistic insight into this important enzymatic reaction.
Collapse
Affiliation(s)
- Armin H Meyer
- Institute of Groundwater Ecology, Helmholtz Zentrum Munchen, 85764 Neuherberg, Germany
| | | | | |
Collapse
|
48
|
Naqvi T, Cheesman MJ, Williams MR, Campbell PM, Ahmed S, Russell RJ, Scott C, Oakeshott JG. Heterologous expression of the methyl carbamate-degrading hydrolase MCD. J Biotechnol 2009; 144:89-95. [DOI: 10.1016/j.jbiotec.2009.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/01/2009] [Accepted: 09/11/2009] [Indexed: 12/11/2022]
|