1
|
Lin Y, Chen M, Jiang W, Zhang L, Shen L, Bai Y. Functional Role and Mutational Analysis of the Phytoene Synthase from the Halophilic Euryarchaeon Haloferax volcanii in Bacterioruberin Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2393-2403. [PMID: 39825846 DOI: 10.1021/acs.jafc.4c08894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Phytoene synthase (PSY) is one of key enzymes in carotenogenesis that catalyze two molecules of geranylgeranyl diphosphate to produce phytoene. PSY is widespread in bacteria, archaea, and eukaryotes. Currently, functional role and catalytic mechanism of archaeal PSY homologues have not been fully clarified due to the limited reports. Herein, we identified a rate-limiting role of the PSY from the halophilic euryarchaeon Haloferax volcanii (HVO-PSY) in bacterioruberin biosynthesis and dissected the roles of its seven conserved residues. Compared with the parental H. volcanii strain, the recombinant HVO-PSY strain had the increased bacterioruberin yields, confirming that HVO-PSY is a rate-limiting enzyme in bacterioruberin biosynthesis in H. volcanii. Additionally, we optimized the culture condition for bacterioruberin biosynthesis in the recombinant strain: 150 g/L NaCl, 45 °C, and pH 6.5-7.5. Mutational data demonstrate that residues D47, D51, D110, D168, D172, and R178 of HVO-PSY are essential for catalysis since these recombinant mutant strains harboring these mutations in the enzyme had the reduced bacterioruberin yields relative to the recombinant wild-type strain. Overall, our findings have verified the rate-limiting role of HVO-PSY in bacterioruberin biosynthesis in H. volcanii and clarified the essential roles of its conserved residues D47, D51, D110, D168, D172, and R178 in catalysis.
Collapse
Affiliation(s)
- Yushan Lin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Min Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Wei Jiang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Likui Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Li Shen
- The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese and Western Medicine in Senile Diseases Control (Yangzhou University) & Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, China
| | - Yanchao Bai
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Soborowski AL, Hackley RK, Hwang S, Zhou G, Dulmage KA, Schönheit P, Daniels C, Bisson-Filho AW, Marchfelder A, Maupin-Furlow JA, Allers T, Schmid AK. Genomic re-sequencing reveals mutational divergence across genetically engineered strains of model archaea. mSystems 2025:e0108424. [PMID: 39791890 DOI: 10.1128/msystems.01084-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/12/2024] [Indexed: 01/12/2025] Open
Abstract
Archaeal molecular biology has been a topic of intense research in recent decades as their role in global ecosystems, nutrient cycles, and eukaryotic evolution comes to light. The hypersaline-adapted archaeal species Halobacterium salinarum and Haloferax volcanii serve as important model organisms for understanding archaeal genomics, genetics, and biochemistry, in part because efficient tools enable genetic manipulation. As a result, the number of strains in circulation among the haloarchaeal research community has increased in recent decades. However, the degree of genetic divergence and effects on genetic integrity resulting from the creation and inter-lab transfer of novel lab stock strains remain unclear. To address this, we performed whole-genome re-sequencing on a cross-section of wild-type, parental, and knockout strains in both model species. Integrating these data with existing repositories of re-sequencing data, we identify mutations that have arisen in a collection of 60 strains, sampled from two species across eight different labs. Independent of sequencing, we construct strain lineages, identifying branch points and significant genetic events in strain history. Combining this with our sequencing data, we identify small clusters of mutations that definitively separate lab strains. Additionally, an analysis of gene knockout strains suggests that roughly one in three strains currently in use harbors second-site mutations of potential phenotypic impact. Overall, we find that divergence among lab strains is thus far minimal, though as the archaeal research community continues to grow, careful strain provenance and genomic re-sequencing are required to keep inter-lab divergence to a minimum, prevent the compounding of mutations into fully independent lineages, and maintain the current high degree of reproducible research between lab groups. IMPORTANCE Archaea are a domain of microbial life whose member species play a critical role in the global carbon cycle, climate regulation, the human microbiome, and persistence in extreme habitats. In particular, hypersaline-adapted archaea are important, genetically tractable model organisms for studying archaeal genetics, genomics, and biochemistry. As the archaeal research community grows, keeping track of the genetic integrity of strains of interest is necessary. In particular, routine genetic manipulations and the common practice of sharing strains between labs allow mutations to arise in lab stocks. If these mutations affect cellular processes, they may jeopardize the reproducibility of work between research groups and confound the results of future studies. In this work, we examine DNA sequences from 60 strains across two species of archaea. We identify shared and unique mutations occurring between and within strains. Independently, we trace the lineage of each strain, identifying which genetic manipulations lead to observed off-target mutations. While overall divergence across labs is minimal so far, our work highlights the need for labs to continue proper strain husbandry.
Collapse
Affiliation(s)
- Andrew L Soborowski
- Department of Biology, Duke University, Durham, North Carolina, USA
- Computational Biology and Bioinformatics Graduate Program, Duke University, Durham, North Carolina, USA
| | - Rylee K Hackley
- Department of Biology, Duke University, Durham, North Carolina, USA
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
| | - Sungmin Hwang
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Guangyin Zhou
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Keely A Dulmage
- Department of Biology, Duke University, Durham, North Carolina, USA
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
| | - Peter Schönheit
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Charles Daniels
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Alexandre W Bisson-Filho
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | | | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Thorsten Allers
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Amy K Schmid
- Department of Biology, Duke University, Durham, North Carolina, USA
- Computational Biology and Bioinformatics Graduate Program, Duke University, Durham, North Carolina, USA
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
3
|
Matarredona L, Zafrilla B, Rubio-Portillo E, Bonete MJ, Esclapez J. Deepening the knowledge of universal stress proteins in Haloferax mediterranei. Appl Microbiol Biotechnol 2024; 108:124. [PMID: 38229402 DOI: 10.1007/s00253-023-12899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 01/18/2024]
Abstract
Haloarchaea, like many other microorganisms, have developed defense mechanisms such as universal stress proteins (USPs) to cope with environmental stresses affecting microbial growth. Despite the wide distribution of these proteins in Archaea, their biochemical characteristics still need to be discovered, and there needs to be more knowledge about them focusing on halophilic Archaea. Therefore, elucidating the role of USPs would provide valuable information to improve future biotechnological applications. Accordingly, transcriptional expression of the 37 annotated USPs in the Haloferax mediterranei genome has been examined under different stress conditions. From a global perspective, finding a clear tendency between particular USPs and specific stress conditions was not possible. Contrary, data analysis indicates that there is a recruitment mechanism of proteins with a similar sequence able to modulate the H. mediterranei growth, accelerating or slowing it, depending on their number. In fact, only three of these USPs were expressed in all the tested conditions, pointing to the cell needing a set of USPs to cope with stress conditions. After analysis of the RNA-Seq data, three differentially expressed USPs were selected and homologously overexpressed. According to the growth data, the overexpression of USPs induces a gain of tolerance in response to stress, as a rule. Therefore, this is the only work that studies all the USPs in an archaeon. It represents a significant first base to continue advancing, not only in this important family of stress proteins but also in the field of biotechnology and, at an industrial level, to improve applications such as designing microorganisms resistant to stress situations. KEY POINTS: • Expression of Haloferax mediterranei USPs has been analyzed in stress conditions. • RNA-seq analysis reveals that most of the USPs in H. mediterranei are downregulated. • Homologous overexpression of USPs results in more stress-tolerant strains.
Collapse
Affiliation(s)
- Laura Matarredona
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain
| | - Basilio Zafrilla
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain
| | - Esther Rubio-Portillo
- Department of Physiology, Genetics and Microbiology, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain
| | - María-José Bonete
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain
| | - Julia Esclapez
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain.
| |
Collapse
|
4
|
Vayssières M, Jüttner M, Haas K, Ancelin A, Marchfelder A, Leulliot N, Ferreira-Cerca S, Blaud M. RNase W, a conserved ribonuclease family with a novel active site. Nucleic Acids Res 2024; 52:13386-13401. [PMID: 39445822 PMCID: PMC11602121 DOI: 10.1093/nar/gkae907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Ribosome biogenesis is a complex process requiring multiple precursor ribosomal RNA (rRNA) cleavage steps. In archaea, the full set of ribonucleases (RNases) involved in rRNA processing remains to be discovered. A previous study suggested that FAU-1, a conserved protein containing an RNase G/E-like protein domain fused to a domain of unknown function (DUF402), acts as an RNase in archaea. However, the molecular basis of this activity remained so far elusive. Here, we report two X-ray crystallographic structures of RNase G/E-like-DUF402 hybrid proteins from Pyrococcus furiosus and Sulfolobus acidocaldarius, at 2.1 and 2.0 Å, respectively. The structures highlight a structural homology with the 5' RNA recognition domain of Escherichia coli RNase E but no homology with other known catalytic nuclease domains. Surprisingly, we demonstrate that the C-terminal domain of this hybrid protein, annotated as a putative diphosphatase domain, harbors the RNase activity. Our functional analysis also supports a model by which the RNase G/E-like domain acts as a regulatory subunit of the RNase activity. Finally, in vivo experiments in Haloferax volcanii suggest that this RNase participates in the maturation of pre-16S rRNA. Together, our study defines a new RNase family, which we termed the RNase W family, as the first archaea-specific contributor to archaeal ribosome biogenesis.
Collapse
Affiliation(s)
- Marlène Vayssières
- Université Paris Cité, CNRS, CiTCoM, 4 avenue de l'Observatoire, F-75006 Paris, France
| | - Michael Jüttner
- Regensburg Centre for Biochemistry, Biochemistry III—Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Karina Haas
- Molecular Biology and Biotechnology of Prokaryotes, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Aurélie Ancelin
- Université Paris Cité, CNRS, CiTCoM, 4 avenue de l'Observatoire, F-75006 Paris, France
| | - Anita Marchfelder
- Molecular Biology and Biotechnology of Prokaryotes, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Nicolas Leulliot
- Université Paris Cité, CNRS, CiTCoM, 4 avenue de l'Observatoire, F-75006 Paris, France
| | - Sébastien Ferreira-Cerca
- Regensburg Centre for Biochemistry, Biochemistry III—Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
- Laboratoire de Biologie Structurale de la Cellule (BIOC), UMR 7654—CNRS, École polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| | - Magali Blaud
- Université Paris Cité, CNRS, CiTCoM, 4 avenue de l'Observatoire, F-75006 Paris, France
| |
Collapse
|
5
|
Brown HJ, Duggin IG. MinD proteins regulate CetZ1 localization in Haloferax volcanii. Front Microbiol 2024; 15:1474697. [PMID: 39651350 PMCID: PMC11621097 DOI: 10.3389/fmicb.2024.1474697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/28/2024] [Indexed: 12/11/2024] Open
Abstract
CetZ proteins are archaea-specific homologs of the cytoskeletal proteins FtsZ and tubulin. In the pleomorphic archaeon Haloferax volcanii, CetZ1 contributes to the development of rod shape and motility, and has been implicated in the proper assembly and positioning of the archaellum and chemotaxis motility proteins. CetZ1 shows complex subcellular localization, including irregular midcell structures and filaments along the long axis of developing rods and patches at the cell poles of the motile rod cell type. The polar localizations of archaellum and chemotaxis proteins are also influenced by MinD4, the only previously characterized archaeal member of the MinD family of ATPases, which are better known for their roles in the positioning of the division ring in bacteria. Using minD mutant strains and CetZ1 subcellular localization studies, we show here that a second minD homolog, minD2, has a strong influence on motility and the localization of CetZ1. Knockout of the minD2 gene altered the distribution of a fluorescent CetZ1-mTq2 fusion protein in a broad midcell zone and along the edges of rod cells, and inhibited the localization of CetZ1-mTq2 at the cell poles. MinD4 had a similar but weaker influence on motility and CetZ1-mTq2 localization. The minD2/4 mutant strains formed rod cell shapes like the wildtype at an early log stage of growth. Our results are consistent with distinct roles for CetZ1 in rod shape formation and at the poles of mature rods, that are positioned through the action of the MinD proteins and contribute to the development of swimming motility in multiple ways. They represent the first report of MinD proteins controlling the positioning of tubulin superfamily proteins in archaea.
Collapse
Affiliation(s)
| | - Iain G. Duggin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
6
|
Ortjohann M, Schönheit P. Sugar alcohol degradation in Archaea: uptake and degradation of mannitol and sorbitol in Haloarcula hispanica. Extremophiles 2024; 28:48. [PMID: 39466404 PMCID: PMC11519228 DOI: 10.1007/s00792-024-01365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
The halophilic archaeon Haloarcula hispanica utilizes the sugar alcohols mannitol and sorbitol as carbon and energy sources. Genes, enzymes, and transcriptional regulators involved in uptake and degradation of these sugar alcohols were identified by growth experiments with deletion mutants and enzyme characterization. It is shown that both mannitol and sorbitol are taken up via a single ABC transporter of the CUT1 transporter family. Then, mannitol and sorbitol are oxidized to fructose by two distinct dehydrogenases. Fructose is further phosphorylated to fructose-1-phosphate by a haloarchaeal ketohexokinase, providing the first evidence for a physiological function of ketohexokinase in prokaryotes. Finally, fructose-1-phosphate is phosphorylated via fructose-1-phosphate kinase to fructose-1,6-bisphosphate, which is cleaved to triosephosphates by a Class I fructose-1,6-bisphosphate aldolase. Two distinct transcriptional regulators, acting as activators, have been identified: an IclR-like regulator involved in activating genes for sugar alcohol uptake and oxidation to fructose, and a GfcR-like regulator that likely activates genes involved in the degradation of fructose to pyruvate. This is the first comprehensive analysis of a sugar alcohol degradation pathway in Archaea.
Collapse
Affiliation(s)
- Marius Ortjohann
- Institut Für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Peter Schönheit
- Institut Für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| |
Collapse
|
7
|
Turgeman-Grott I, Shalev Y, Shemesh N, Levy R, Eini I, Pasmanik-Chor M, Gophna U. A Haloarchaeal Transcriptional Regulator That Represses the Expression of CRISPR-Associated Genes. Microorganisms 2024; 12:1772. [PMID: 39338447 PMCID: PMC11434293 DOI: 10.3390/microorganisms12091772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) systems provide acquired heritable protection to bacteria and archaea against selfish DNA elements, such as viruses. These systems must be tightly regulated because they can capture DNA fragments from foreign selfish elements, and also occasionally from self-chromosomes, resulting in autoimmunity. Most known species from the halophilic archaeal genus Haloferax contain type I-B CRISPR-Cas systems, and the strongest hotspot for self-spacer acquisition by H. mediterranei was a locus that contained a putative transposable element, as well as the gene HFX_2341, which was a very frequent target for self-targeting spacers. To test whether this gene is CRISPR-associated, we investigated it using bioinformatics, deletion, over-expression, and comparative transcriptomics. We show that HFX_2341 is a global transcriptional regulator that can repress diverse genes, since its deletion results in significantly higher expression of multiple genes, especially those involved in nutrient transport. When over-expressed, HFX_2341 strongly repressed the transcript production of all cas genes tested, both those involved in spacer acquisition (cas1, 2 and 4) and those required for destroying selfish genetic elements (cas3 and 5-8). Considering that HFX_2341 is highly conserved in haloarchaea, with homologs that are present in species that do not encode the CRISPR-Cas system, we conclude that it is a global regulator that is also involved in cas gene regulation, either directly or indirectly.
Collapse
Affiliation(s)
- Israela Turgeman-Grott
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yarden Shalev
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Netta Shemesh
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rachel Levy
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Inbar Eini
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Uri Gophna
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
8
|
Bonnaud E, Oger PM, Ohayon A, Louis Y. Haloarchaea as Promising Chassis to Green Chemistry. Microorganisms 2024; 12:1738. [PMID: 39203580 PMCID: PMC11357113 DOI: 10.3390/microorganisms12081738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Climate change and the scarcity of primary resources are driving the development of new, more renewable and environmentally friendly industrial processes. As part of this green chemistry approach, extremozymes (extreme microbial enzymes) can be used to replace all or part of the chemical synthesis stages of traditional industrial processes. At present, the production of these enzymes is limited by the cellular chassis available. The production of a large number of extremozymes requires extremophilic cellular chassis, which are not available. This is particularly true of halophilic extremozymes. The aim of this review is to present the current potential and challenges associated with the development of a haloarchaea-based cellular chassis. By overcoming the major obstacle of the limited number of genetic tools, it will be possible to propose a robust cellular chassis for the production of functional halophilic enzymes that can participate in the industrial transition of many sectors.
Collapse
Affiliation(s)
- Emma Bonnaud
- SEGULA Technologies, 13 Bis Avenue Albert Einstein, 69100 Villeurbanne, France; (E.B.)
- INSA de Lyon, UMR5240 CNRS, Université Claude Bernard Lyon 1, 11, Avenue Jean Capelle, 69621 Villeurbanne, France
| | - Philippe M. Oger
- INSA de Lyon, UMR5240 CNRS, Université Claude Bernard Lyon 1, 11, Avenue Jean Capelle, 69621 Villeurbanne, France
| | - Avigaël Ohayon
- SEGULA Technologies, 13 Bis Avenue Albert Einstein, 69100 Villeurbanne, France; (E.B.)
| | - Yoann Louis
- INSA de Lyon, UMR5240 CNRS, Université Claude Bernard Lyon 1, 11, Avenue Jean Capelle, 69621 Villeurbanne, France
| |
Collapse
|
9
|
Üresin D, Schulte J, Morgner N, Soppa J. C(P)XCG Proteins of Haloferax volcanii with Predicted Zinc Finger Domains: The Majority Bind Zinc, but Several Do Not. Int J Mol Sci 2024; 25:7166. [PMID: 39000272 PMCID: PMC11241148 DOI: 10.3390/ijms25137166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
In recent years, interest in very small proteins (µ-proteins) has increased significantly, and they were found to fulfill important functions in all prokaryotic and eukaryotic species. The halophilic archaeon Haloferax volcanii encodes about 400 µ-proteins of less than 70 amino acids, 49 of which contain at least two C(P)XCG motifs and are, thus, predicted zinc finger proteins. The determination of the NMR solution structure of HVO_2753 revealed that only one of two predicted zinc fingers actually bound zinc, while a second one was metal-free. Therefore, the aim of the current study was the homologous production of additional C(P)XCG proteins and the quantification of their zinc content. Attempts to produce 31 proteins failed, underscoring the particular difficulties of working with µ-proteins. In total, 14 proteins could be produced and purified, and the zinc content was determined. Only nine proteins complexed zinc, while five proteins were zinc-free. Three of the latter could be analyzed using ESI-MS and were found to contain another metal, most likely cobalt or nickel. Therefore, at least in haloarchaea, the variability of predicted C(P)XCG zinc finger motifs is higher than anticipated, and they can be metal-free, bind zinc, or bind another metal. Notably, AlphaFold2 cannot correctly predict whether or not the four cysteines have the tetrahedral configuration that is a prerequisite for metal binding.
Collapse
Affiliation(s)
- Deniz Üresin
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany;
| | - Jonathan Schulte
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt, Germany; (J.S.); (N.M.)
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University, 60438 Frankfurt, Germany; (J.S.); (N.M.)
| | - Jörg Soppa
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany;
| |
Collapse
|
10
|
Chatterjee P, Garcia MA, Cote JA, Yun K, Legerme GP, Habib R, Tripepi M, Young C, Kulp D, Dyall-Smith M, Pohlschroder M. Involvement of ArlI, ArlJ, and CirA in archaeal type IV pilin-mediated motility regulation. J Bacteriol 2024; 206:e0008924. [PMID: 38819156 PMCID: PMC11332145 DOI: 10.1128/jb.00089-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
Many prokaryotes use swimming motility to move toward favorable conditions and escape adverse surroundings. Regulatory mechanisms governing bacterial flagella-driven motility are well-established; however, little is yet known about the regulation underlying swimming motility propelled by the archaeal cell surface structure, the archaella. Previous research showed that the deletion of the adhesion pilins (PilA1-6), subunits of the type IV pili cell surface structure, renders the model archaeon Haloferax volcanii non-motile. In this study, we used ethyl methanesulfonate mutagenesis and a motility assay to identify motile suppressors of the ∆pilA[1-6] strain. Of the eight suppressors identified, six contain missense mutations in archaella biosynthesis genes, arlI and arlJ. In trans expression of arlI and arlJ mutant constructs in the respective multi-deletion strains ∆pilA[1-6]∆arlI and ∆pilA[1-6]∆arlJ confirmed their role in suppressing the ∆pilA[1-6] motility defect. Additionally, three suppressors harbor co-occurring disruptive missense and nonsense mutations in cirA, a gene encoding a proposed regulatory protein. A deletion of cirA resulted in hypermotility, while cirA expression in trans in wild-type cells led to decreased motility. Moreover, quantitative real-time PCR analysis revealed that in wild-type cells, higher expression levels of arlI, arlJ, and the archaellin gene arlA1 were observed in motile early-log phase rod-shaped cells compared to non-motile mid-log phase disk-shaped cells. Conversely, ∆cirA cells, which form rods during both early- and mid-log phases, exhibited similar expression levels of arl genes in both growth phases. Our findings contribute to a deeper understanding of the mechanisms governing archaeal motility, highlighting the involvement of ArlI, ArlJ, and CirA in pilin-mediated motility regulation.IMPORTANCEArchaea are close relatives of eukaryotes and play crucial ecological roles. Certain behaviors, such as swimming motility, are thought to be important for archaeal environmental adaptation. Archaella, the archaeal motility appendages, are evolutionarily distinct from bacterial flagella, and the regulatory mechanisms driving archaeal motility are largely unknown. Previous research has linked the loss of type IV pili subunits to archaeal motility suppression. This study reveals three Haloferax volcanii proteins involved in pilin-mediated motility regulation, offering a deeper understanding of motility regulation in this understudied domain while also paving the way for uncovering novel mechanisms that govern archaeal motility. Understanding archaeal cellular processes will help elucidate the ecological roles of archaea as well as the evolution of these processes across domains.
Collapse
Affiliation(s)
- Priyanka Chatterjee
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marco A. Garcia
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jacob A. Cote
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kun Yun
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Georgio P. Legerme
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rumi Habib
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Manuela Tripepi
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Criston Young
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel Kulp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Mike Dyall-Smith
- Computational Biology Group, Max Planck Institute of Biochemistry, Martinsried, Germany
- Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Australia
| | - Mecky Pohlschroder
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Karan R, Renn D, Allers T, Rueping M. A systematic analysis of affinity tags in the haloarchaeal expression system, Haloferax volcanii for protein purification. Front Microbiol 2024; 15:1403623. [PMID: 38873150 PMCID: PMC11169840 DOI: 10.3389/fmicb.2024.1403623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Extremophilic proteins are valuable in various fields, but their expression can be challenging in traditional hosts like Escherichia coli due to misfolding and aggregation. Haloferax volcanii (H. volcanii), a halophilic expression system, offers a solution. This study examined cleavable and non-cleavable purification tags at both the N- and C-termini when fused with the superfolder green fluorescent protein (sfGFP) in H. volcanii. Our findings reveal that an N-terminal 8xHis-tag or Strep-tag®II significantly enhances protein production, purity, and yield in H. volcanii. Further experiments with mCherry and halophilic alcohol dehydrogenase (ADH) showed improved expression and purification yields when the 8xHis-tag or Strep-tag®II was positioned at the C-terminus for mCherry and at the N-terminus for ADH. Co-positioning 8xHis-tag and Twin-Strep-tag® at the N-terminus of sfGFP, mCherry, and ADH yielded significantly enhanced results. These findings highlight the importance of thoughtful purification tag design and selection in H. volcanii, providing valuable insights for improving protein production and purification with the potential to advance biotechnological applications.
Collapse
Affiliation(s)
- Ram Karan
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal, Makkah, Saudi Arabia
| | - Dominik Renn
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal, Makkah, Saudi Arabia
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Magnus Rueping
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal, Makkah, Saudi Arabia
- Institute for Experimental Molecular Imaging, University Clinic, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
12
|
Ithurbide S, de Silva RT, Brown HJ, Shinde V, Duggin IG. A vector system for single and tandem expression of cloned genes and multi-colour fluorescent tagging in Haloferax volcanii. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001461. [PMID: 38787390 PMCID: PMC11165654 DOI: 10.1099/mic.0.001461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Archaeal cell biology is an emerging field expected to identify fundamental cellular processes, help resolve the deep evolutionary history of cellular life, and contribute new components and functions in biotechnology and synthetic biology. To facilitate these, we have developed plasmid vectors that allow convenient cloning and production of proteins and fusion proteins with flexible, rigid, or semi-rigid linkers in the model archaeon Haloferax volcanii. For protein subcellular localization studies using fluorescent protein (FP) tags, we created vectors incorporating a range of codon-optimized fluorescent proteins for N- or C-terminal tagging, including GFP, mNeonGreen, mCherry, YPet, mTurquoise2 and mScarlet-I. Obtaining functional fusion proteins can be challenging with proteins involved in multiple interactions, mainly due to steric interference. We demonstrated the use of the new vector system to screen for improved function in cytoskeletal protein FP fusions, and identified FtsZ1-FPs that are functional in cell division and CetZ1-FPs that are functional in motility and rod cell development. Both the type of linker and the type of FP influenced the functionality of the resulting fusions. The vector design also facilitates convenient cloning and tandem expression of two genes or fusion genes, controlled by a modified tryptophan-inducible promoter, and we demonstrated its use for dual-colour imaging of tagged proteins in H. volcanii cells. These tools should promote further development and applications of archaeal molecular and cellular biology and biotechnology.
Collapse
Affiliation(s)
- Solenne Ithurbide
- The Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Roshali T. de Silva
- The Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Hannah J. Brown
- The Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Vinaya Shinde
- The Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Iain G. Duggin
- The Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
13
|
Gulati P, Singh A, Patra S, Bhat S, Verma A. Restriction modification systems in archaea: A panoramic outlook. Heliyon 2024; 10:e27382. [PMID: 38644887 PMCID: PMC11033074 DOI: 10.1016/j.heliyon.2024.e27382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 04/23/2024] Open
Abstract
Restriction modification (RM) systems are one of the ubiquitous yet primitive defense responses employed by bacteria and archaea with the primary role of safeguarding themselves against invading bacteriophages. Protection of the host occurs by the cleavage of the invading foreign DNA via restriction endonucleases with concomitant methylation of host DNA with the aid of a methyltransferase counterpart. RM systems have been extensively studied in bacteria, however, in the case of archaea there are limited reports of RM enzymes that are investigated to date owing to their inhospitable growth demands. This review aims to broaden the knowledge about what is known about the diversity of RM systems in archaea and encapsulate the current knowledge on restriction and modification enzymes characterized in archaea so far and the role of RM systems in the milieu of archaeal biology.
Collapse
Affiliation(s)
- Pallavi Gulati
- Department of Microbiology, Ram Lal Anand College, University of Delhi South Campus, New Delhi 110021, India
| | - Ashish Singh
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Sandeep Patra
- Department of Microbiology, Ram Lal Anand College, University of Delhi South Campus, New Delhi 110021, India
| | - Shreyas Bhat
- Department of Microbiology, Ram Lal Anand College, University of Delhi South Campus, New Delhi 110021, India
| | - Anil Verma
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA-15213, USA
| |
Collapse
|
14
|
Chatterjee P, Garcia MA, Cote JA, Yun K, Legerme GP, Habib R, Tripepi M, Young C, Kulp D, Dyall-Smith M, Pohlschroder M. Involvement of ArlI, ArlJ, and CirA in Archaeal Type-IV Pilin-Mediated Motility Regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583388. [PMID: 38562816 PMCID: PMC10983859 DOI: 10.1101/2024.03.04.583388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Many prokaryotes use swimming motility to move toward favorable conditions and escape adverse surroundings. Regulatory mechanisms governing bacterial flagella-driven motility are well-established, however, little is yet known about the regulation underlying swimming motility propelled by the archaeal cell surface structure, the archaella. Previous research showed that deletion of the adhesion pilins (PilA1-6), subunits of the type IV pili cell surface structure, renders the model archaeon Haloferax volcanii non-motile. In this study, we used EMS mutagenesis and a motility assay to identify motile suppressors of the ΔpilA[1-6] strain. Of the eight suppressors identified, six contain missense mutations in archaella biosynthesis genes, arlI and arlJ. Overexpression of these arlI and arlJ mutant constructs in the respective multi-deletion strains ΔpilA[1-6]ΔarlI and ΔpilA[1-6]ΔarlJ confirmed their role in suppressing the ΔpilA[1-6] motility defect. Additionally, three suppressors harbor co-occurring disruptive missense and nonsense mutations in cirA, a gene encoding a proposed regulatory protein. A deletion of cirA resulted in hypermotility, while cirA overexpression in wild-type cells led to decreased motility. Moreover, qRT-PCR analysis revealed that in wild-type cells, higher expression levels of arlI, arlJ, and the archaellin gene arlA1 were observed in motile early-log phase rod-shaped cells compared to non-motile mid-log phase disk-shaped cells. Conversely, ΔcirA cells, which form rods during both early and mid-log phases, exhibited similar expression levels of arl genes in both growth phases. Our findings contribute to a deeper understanding of the mechanisms governing archaeal motility, highlighting the involvement of ArlI, ArlJ, and CirA in pilin-mediated motility regulation.
Collapse
Affiliation(s)
- Priyanka Chatterjee
- University of Pennsylvania, Department of Biology, Philadelphia PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Marco A. Garcia
- University of Pennsylvania, Department of Biology, Philadelphia PA, USA
| | - Jacob A. Cote
- University of Pennsylvania, Department of Biology, Philadelphia PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Kun Yun
- University of Pennsylvania, Department of Biology, Philadelphia PA, USA
| | | | - Rumi Habib
- Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia PA, USA
| | - Manuela Tripepi
- University of Pennsylvania, Department of Biology, Philadelphia PA, USA
| | - Criston Young
- University of Pennsylvania, Department of Biology, Philadelphia PA, USA
| | - Daniel Kulp
- Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia PA, USA
| | - Mike Dyall-Smith
- Computational Biology Group, Max Planck Institute of Biochemistry, Martinsreid, Germany
- Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
15
|
Mills J, Gebhard LJ, Schubotz F, Shevchenko A, Speth DR, Liao Y, Duggin IG, Marchfelder A, Erdmann S. Extracellular vesicle formation in Euryarchaeota is driven by a small GTPase. Proc Natl Acad Sci U S A 2024; 121:e2311321121. [PMID: 38408251 DOI: 10.1073/pnas.2311321121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/14/2024] [Indexed: 02/28/2024] Open
Abstract
Since their discovery, extracellular vesicles (EVs) have changed our view on how organisms interact with their extracellular world. EVs are able to traffic a diverse array of molecules across different species and even domains, facilitating numerous functions. In this study, we investigate EV production in Euryarchaeota, using the model organism Haloferax volcanii. We uncover that EVs enclose RNA, with specific transcripts preferentially enriched, including those with regulatory potential, and conclude that EVs can act as an RNA communication system between haloarchaea. We demonstrate the key role of an EV-associated small GTPase for EV formation in H. volcanii that is also present across other diverse evolutionary branches of Archaea. We propose the name, ArvA, for the identified family of archaeal vesiculating GTPases. Additionally, we show that two genes in the same operon with arvA (arvB and arvC) are also involved in EV formation. Both, arvB and arvC, are closely associated with arvA in the majority of other archaea encoding ArvA. Our work demonstrates that small GTPases involved in membrane deformation and vesiculation, ubiquitous in Eukaryotes, are also present in Archaea and are widely distributed across diverse archaeal phyla.
Collapse
Affiliation(s)
- Joshua Mills
- Archaeal Virology, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - L Johanna Gebhard
- Archaeal Virology, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - Florence Schubotz
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen 28359, Germany
| | - Anna Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Daan R Speth
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - Yan Liao
- The Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Iain G Duggin
- The Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW 2007, Australia
| | | | - Susanne Erdmann
- Archaeal Virology, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| |
Collapse
|
16
|
Zhao S, Makarova KS, Zheng W, Zhan L, Wan Q, Liu Y, Gong H, Krupovic M, Lutkenhaus J, Chen X, Koonin EV, Du S. Widespread photosynthesis reaction centre barrel proteins are necessary for haloarchaeal cell division. Nat Microbiol 2024; 9:712-726. [PMID: 38443574 DOI: 10.1038/s41564-024-01615-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/19/2024] [Indexed: 03/07/2024]
Abstract
Cell division is fundamental to all cellular life. Most archaea depend on either the prokaryotic tubulin homologue FtsZ or the endosomal sorting complex required for transport for division but neither system has been robustly characterized. Here, we show that three of the four photosynthesis reaction centre barrel domain proteins of Haloferax volcanii (renamed cell division proteins B1/2/3 (CdpB1/2/3)) play important roles in cell division. CdpB1 interacts directly with the FtsZ membrane anchor SepF and is essential for cell division, whereas deletion of cdpB2 and cdpB3 causes a major and a minor division defect, respectively. Orthologues of CdpB proteins are also involved in cell division in other haloarchaea, indicating a conserved function of these proteins. Phylogenetic analysis shows that photosynthetic reaction centre barrel proteins are widely distributed among archaea and appear to be central to cell division in most if not all archaea.
Collapse
Affiliation(s)
- Shan Zhao
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Wenchao Zheng
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Le Zhan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qianqian Wan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yafei Liu
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Han Gong
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Shishen Du
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
Ortjohann M, Schönheit P. Identification and characterization of a novel type of ketohexokinase from the haloarchaeon Haloferax volcanii. FEMS Microbiol Lett 2024; 371:fnae026. [PMID: 38587824 DOI: 10.1093/femsle/fnae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024] Open
Abstract
Ketohexokinase (KHK) catalyzes the ATP-dependent phosphorylation of fructose, forming fructose-1-phosphate and ADP. The enzyme is well studied in Eukarya, in particular in humans and other vertebrates, but homologs have not been identified in Bacteria and Archaea. Here we report the identification of a novel type of KHK from the haloarchaeon Haloferax volcanii (HvKHK). The encoding gene khk was identified as HVO_1812. The gene was expressed as a 90-kDa homodimeric protein, catalyzing the phosphorylation of fructose with a Vmax value of 59 U/mg and apparent KM values for ATP and fructose of 0.47 and 1.29 mM, respectively. Homologs of HvKHK were only identified in a few haloarchaea and halophilic Bacteria. The protein showed low sequence identity to characterized KHKs from Eukarya and phylogenetic analyses indicate that haloarchaeal KHKs are largely separated from eukaryal KHKs. This is the first report of the identification of KHKs in prokaryotes that form a novel cluster of sugar kinases within the ribokinase/pfkB superfamily.
Collapse
Affiliation(s)
- Marius Ortjohann
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - Peter Schönheit
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| |
Collapse
|
18
|
Turgeman-Grott I, Arsenault D, Yahav D, Feng Y, Miezner G, Naki D, Peri O, Papke RT, Gogarten JP, Gophna U. Neighboring inteins interfere with one another's homing capacity. PNAS NEXUS 2023; 2:pgad354. [PMID: 38024399 PMCID: PMC10643990 DOI: 10.1093/pnasnexus/pgad354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Inteins are mobile genetic elements that invade conserved genes across all domains of life and viruses. In some instances, a single gene will have several intein insertion sites. In Haloarchaea, the minichromosome maintenance (MCM) protein at the core of replicative DNA helicase contains four intein insertion sites within close proximity, where two of these sites (MCM-a and MCM-d) are more likely to be invaded. A haloarchaeon that harbors both MCM-a and MCM-d inteins, Haloferax mediterranei, was studied in vivo to determine intein invasion dynamics and the interactions between neighboring inteins. Additionally, invasion frequencies and the conservation of insertion site sequences in 129 Haloferacales mcm homologs were analyzed to assess intein distribution across the order. We show that the inteins at MCM-a and MCM-d recognize and cleave their respective target sites and, in the event that only one empty intein invasion site is present, readily initiate homing (i.e. single homing). However, when two inteins are present co-homing into an intein-free target sequence is much less effective. The two inteins are more effective when invading alleles that already contain an intein at one of the two sites. Our in vivo and computational studies also support that having a proline in place of a serine as the first C-terminal extein residue of the MCM-d insertion site prevents successful intein splicing, but does not stop recognition of the insertion site by the intein's homing endonuclease.
Collapse
Affiliation(s)
- Israela Turgeman-Grott
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| | - Danielle Arsenault
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06268-3125, USA
| | - Dekel Yahav
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| | - Yutian Feng
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06268-3125, USA
| | - Guy Miezner
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| | - Doron Naki
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| | - Omri Peri
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06268-3125, USA
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06268-3125, USA
- Institute for Systems Genomics, University of Connecticut, 67 North Eagleville Road, Storrs, CT 06268-3003, USA
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801 Tel Aviv, Israel
| |
Collapse
|
19
|
Jia H, Dantuluri S, Margulies S, Smith V, Lever R, Allers T, Koh J, Chen S, Maupin-Furlow JA. RecJ3/4-aRNase J form a Ubl-associated nuclease complex functioning in survival against DNA damage in Haloferax volcanii. mBio 2023; 14:e0085223. [PMID: 37458473 PMCID: PMC10470531 DOI: 10.1128/mbio.00852-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/02/2023] [Indexed: 09/02/2023] Open
Abstract
Nucleases are strictly regulated and often localized in the cell to avoid the uncontrolled degradation of DNA and RNA. Here, a new type of nuclease complex, composed of RecJ3, RecJ4, and aRNase J, was identified through its ATP-dependent association with the ubiquitin-like SAMP1 and AAA-ATPase Cdc48a. The complex was discovered in Haloferax volcanii, an archaeon lacking an RNA exosome. Genetic analysis revealed aRNase J to be essential and RecJ3, RecJ4, and Cdc48a to function in the recovery from DNA damage including genotoxic agents that generate double-strand breaks. The RecJ3:RecJ4:aRNase J complex (isolated in 2:2:1 stoichiometry) functioned primarily as a 3'-5' exonuclease in hydrolyzing RNA and ssDNA, with the mechanism non-processive for ssDNA. aRNase J could also be purified as a homodimer that catalyzed endoribonuclease activity and, thus, was not restricted to the 5'-3' exonuclease activity typical of aRNase J homologs. Moreover, RecJ3 and RecJ4 could be purified as a 560-kDa subcomplex in equimolar subunit ratio with nuclease activities mirroring the full RecJ3/4-aRNase J complex. These findings prompted reconstitution assays that suggested RecJ3/4 could suppress, alter, and/or outcompete the nuclease activities of aRNase J. Based on the phenotypic results, this control mechanism of aRNase J by RecJ3/4 is not necessary for cell growth but instead appears important for DNA repair. IMPORTANCE Nucleases are critical for various cellular processes including DNA replication and repair. Here, a dynamic type of nuclease complex is newly identified in the archaeon Haloferax volcanii, which is missing the canonical RNA exosome. The complex, composed of RecJ3, RecJ4, and aRNase J, functions primarily as a 3'-5' exonuclease and was discovered through its ATP-dependent association with the ubiquitin-like SAMP1 and Cdc48a. aRNase J alone forms a homodimer that has endonuclease function and, thus, is not restricted to 5'-3' exonuclease activity typical of other aRNase J enzymes. RecJ3/4 appears to suppress, alter, and/or outcompete the nuclease activities of aRNase J. While aRNase J is essential for growth, RecJ3/4, Cdc48a, and SAMPs are important for recovery against DNA damage. These biological distinctions may correlate with the regulated nuclease activity of aRNase J in the RecJ3/4-aRNaseJ complex.
Collapse
Affiliation(s)
- Huiyong Jia
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
| | - Swathi Dantuluri
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
| | - Shae Margulies
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
| | - Victoria Smith
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Rebecca Lever
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida, USA
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
20
|
Rados T, Andre K, Cerletti M, Bisson A. A sweet new set of inducible and constitutive promoters in Haloferax volcanii. Front Microbiol 2023; 14:1204876. [PMID: 37637112 PMCID: PMC10448506 DOI: 10.3389/fmicb.2023.1204876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Inducible promoters are one of cellular and molecular biology's most important technical tools. The ability to deplete, replete, and overexpress genes on demand is the foundation of most functional studies. Here, we developed and characterized a new xylose-responsive promoter (Pxyl), the second inducible promoter system for the model haloarcheon Haloferax volcanii. Generating RNA-seq datasets from cultures in the presence of four historically used inducers (arabinose, xylose, maltose, and IPTG), we mapped upregulated genomic regions primarily repressed in the absence of the above inducers. We found a highly upregulated promoter that controls the expression of the xacEA (HVO_B0027-28) operon in the pHV3 chromosome. To characterize this promoter region, we cloned msfGFP (monomeric superfold green fluorescent protein) under the control of two upstream regions into a modified pTA962 vector: the first 250 bp (P250) and the whole 750 bp intergenic fragments (P750). The P250 sequence drove the expression of msfGFP constitutively, and its expression did not respond to the presence or absence of xylose. However, the P750 promoter showed not only to be repressed in the absence of xylose but also expressed higher levels of msfGFP than the previously described inducible promoter PtnaA in the presence of the inducer. Finally, we validated the inducible Pxyl promoter by reproducing morphological phenotypes already described in the literature. By overexpressing the tubulin-like FtsZ1 and FtsZ2, we observed similar but slightly more pronounced morphological defects than the tryptophan-inducible promoter PtnaA. FtsZ1 overexpression created larger, deformed cells, whereas cells overexpressing FtsZ2 were smaller but mostly retained their shape. In summary, this work contributes a new xylose-inducible promoter that could be used simultaneously with the well-established PtnaA in functional studies in H. volcanii in the future.
Collapse
Affiliation(s)
- Theopi Rados
- Department of Biology, Brandeis University, Waltham, MA, United States
| | - Katherine Andre
- Department of Biology, Brandeis University, Waltham, MA, United States
| | - Micaela Cerletti
- Department of Biology, Brandeis University, Waltham, MA, United States
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Alex Bisson
- Department of Biology, Brandeis University, Waltham, MA, United States
| |
Collapse
|
21
|
Johnsen U, Ortjohann M, Reinhardt A, Turner JM, Stratton C, Weber KR, Sanchez KM, Maupin-Furlow J, Davies C, Schönheit P. Discovery of a novel transcriptional regulator of sugar catabolism in archaea. Mol Microbiol 2023; 120:224-240. [PMID: 37387308 PMCID: PMC10838023 DOI: 10.1111/mmi.15114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
Abstract
The haloarchaeon Haloferax volcanii degrades D-glucose via the semiphosphorylative Entner-Doudoroff pathway and D-fructose via a modified Embden-Meyerhof pathway. Here, we report the identification of GfcR, a novel type of transcriptional regulator that functions as an activator of both D-glucose and D-fructose catabolism. We find that in the presence of D-glucose, GfcR activates gluconate dehydratase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase and also acts as activator of the phosphotransferase system and of fructose-1,6-bisphosphate aldolase, which are involved in uptake and degradation of D-fructose. In addition, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase are activated by GfcR in the presence of D-fructose and also during growth on D-galactose and glycerol. Electrophoretic mobility shift assays indicate that GfcR binds directly to promoters of regulated genes. Specific intermediates of the degradation pathways of the three hexoses and of glycerol were identified as inducer molecules of GfcR. GfcR is composed of a phosphoribosyltransferase (PRT) domain with an N-terminal helix-turn-helix motif and thus shows homology to PurR of Gram-positive bacteria that is involved in the transcriptional regulation of nucleotide biosynthesis. We propose that GfcR of H. volcanii evolved from a PRT-like enzyme to attain a function as a transcriptional regulator of central sugar catabolic pathways in archaea.
Collapse
Affiliation(s)
- Ulrike Johnsen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Marius Ortjohann
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Andreas Reinhardt
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Jonathan M. Turner
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Caleb Stratton
- Department of Biochemistry & Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Katherine R. Weber
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
| | - Karol M. Sanchez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
| | - Julie Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Christopher Davies
- Department of Biochemistry & Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Peter Schönheit
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| |
Collapse
|
22
|
Zhao S, Makarova KS, Zheng W, Liu Y, Zhan L, Wan Q, Gong H, Krupovic M, Lutkenhaus J, Chen X, Koonin EV, Du S. Widespread PRC barrel proteins play critical roles in archaeal cell division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534520. [PMID: 37090588 PMCID: PMC10120694 DOI: 10.1101/2023.03.28.534520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Cell division is fundamental to all cellular life. Most of the archaea employ one of two alternative division machineries, one centered around the prokaryotic tubulin homolog FtsZ and the other around the endosomal sorting complex required for transport (ESCRT). However, neither of these mechanisms has been thoroughly characterized in archaea. Here, we show that three of the four PRC (Photosynthetic Reaction Center) barrel domain proteins of Haloferax volcanii (renamed Cell division proteins B1/2/3 (CdpB1/2/3)), play important roles in division. CdpB1 interacts directly with the FtsZ membrane anchor SepF and is essential for division, whereas deletion of cdpB2 and cdpB3 causes a major and a minor division defect, respectively. Orthologs of CdpB proteins are also involved in cell division in other haloarchaea. Phylogenetic analysis shows that PRC barrel proteins are widely distributed among archaea, including the highly conserved CdvA protein of the crenarchaeal ESCRT-based division system. Thus, diverse PRC barrel proteins appear to be central to cell division in most if not all archaea. Further study of these proteins is expected to elucidate the division mechanisms in archaea and their evolution.
Collapse
Affiliation(s)
- Shan Zhao
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Wenchao Zheng
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yafei Liu
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Le Zhan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qianqian Wan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Han Gong
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Shishen Du
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
23
|
Hadjeras L, Bartel J, Maier LK, Maaß S, Vogel V, Svensson SL, Eggenhofer F, Gelhausen R, Müller T, Alkhnbashi OS, Backofen R, Becher D, Sharma CM, Marchfelder A. Revealing the small proteome of Haloferax volcanii by combining ribosome profiling and small-protein optimized mass spectrometry. MICROLIFE 2023; 4:uqad001. [PMID: 37223747 PMCID: PMC10117724 DOI: 10.1093/femsml/uqad001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 05/25/2023]
Abstract
In contrast to extensively studied prokaryotic 'small' transcriptomes (encompassing all small noncoding RNAs), small proteomes (here defined as including proteins ≤70 aa) are only now entering the limelight. The absence of a complete small protein catalogue in most prokaryotes precludes our understanding of how these molecules affect physiology. So far, archaeal genomes have not yet been analyzed broadly with a dedicated focus on small proteins. Here, we present a combinatorial approach, integrating experimental data from small protein-optimized mass spectrometry (MS) and ribosome profiling (Ribo-seq), to generate a high confidence inventory of small proteins in the model archaeon Haloferax volcanii. We demonstrate by MS and Ribo-seq that 67% of the 317 annotated small open reading frames (sORFs) are translated under standard growth conditions. Furthermore, annotation-independent analysis of Ribo-seq data showed ribosomal engagement for 47 novel sORFs in intergenic regions. A total of seven of these were also detected by proteomics, in addition to an eighth novel small protein solely identified by MS. We also provide independent experimental evidence in vivo for the translation of 12 sORFs (annotated and novel) using epitope tagging and western blotting, underlining the validity of our identification scheme. Several novel sORFs are conserved in Haloferax species and might have important functions. Based on our findings, we conclude that the small proteome of H. volcanii is larger than previously appreciated, and that combining MS with Ribo-seq is a powerful approach for the discovery of novel small protein coding genes in archaea.
Collapse
Affiliation(s)
- Lydia Hadjeras
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße 2 / D15, 97080 Würzburg, Germany
| | - Jürgen Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | | | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Verena Vogel
- Biology II, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sarah L Svensson
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße 2 / D15, 97080 Würzburg, Germany
| | - Florian Eggenhofer
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Teresa Müller
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Omer S Alkhnbashi
- Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Cynthia M Sharma
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße 2 / D15, 97080 Würzburg, Germany
| | - Anita Marchfelder
- Biology II, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
24
|
Kropp C, Lipp J, Schmidt AL, Seisenberger C, Linde M, Hinrichs K, Babinger P. Identification of acetylated diether lipids in halophilic Archaea. Microbiologyopen 2022; 11:e1299. [PMID: 35765181 PMCID: PMC9179154 DOI: 10.1002/mbo3.1299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
As a hallmark of Archaea, their cell membranes are comprised of ether lipids. However, Archaea-type ether lipids have recently been identified in Bacteria as well, with a somewhat different composition: In Bacillales, sn-glycerol 1-phosphate is etherified with one C35 isoprenoid chain, which is longer than the typical C20 chain in Archaea, and instead of a second isoprenoid chain, the product heptaprenylglyceryl phosphate becomes dephosphorylated and afterward diacetylated by the O-acetyltransferase YvoF. Interestingly, database searches have revealed YvoF homologs in Halobacteria (Archaea), too. Here, we demonstrate that YvoF from Haloferax volcanii can acetylate geranylgeranylglycerol in vitro. Additionally, we present the first-time identification of acetylated diether lipids in H. volcanii and Halobacterium salinarum by mass spectrometry. A variety of different acetylated lipids, namely acetylated archaeol, and acetylated archaetidylglycerol, were found, suggesting that halobacterial YvoF has a broad substrate range. We suppose that the acetyl group might serve to modify the polarity of the lipid headgroup, with still unknown biological effects.
Collapse
Affiliation(s)
- Cosimo Kropp
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for BiochemistryUniversity of RegensburgRegensburgGermany
| | - Julius Lipp
- MARUM Center for Marine Environmental SciencesUniversity of BremenBremenGermany
| | - Anna Lena Schmidt
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for BiochemistryUniversity of RegensburgRegensburgGermany
| | - Christina Seisenberger
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for BiochemistryUniversity of RegensburgRegensburgGermany
- Present address:
Roche Diagnostics GmbHPenzbergGermany
| | - Mona Linde
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for BiochemistryUniversity of RegensburgRegensburgGermany
- Present address:
Boehringer Ingelheim Pharma GmbH & Co. KG.Biberach an der RißGermany
| | - Kai‐Uwe Hinrichs
- MARUM Center for Marine Environmental SciencesUniversity of BremenBremenGermany
| | - Patrick Babinger
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for BiochemistryUniversity of RegensburgRegensburgGermany
| |
Collapse
|
25
|
Pastor MM, Sakrikar S, Rodriguez DN, Schmid AK. Comparative Analysis of rRNA Removal Methods for RNA-Seq Differential Expression in Halophilic Archaea. Biomolecules 2022; 12:biom12050682. [PMID: 35625610 PMCID: PMC9138242 DOI: 10.3390/biom12050682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Despite intense recent research interest in archaea, the scientific community has experienced a bottleneck in the study of genome-scale gene expression experiments by RNA-seq due to the lack of commercial and specifically designed rRNA depletion kits. The high rRNA:mRNA ratio (80–90%: ~10%) in prokaryotes hampers global transcriptomic analysis. Insufficient ribodepletion results in low sequence coverage of mRNA, and therefore, requires a substantially higher number of replicate samples and/or sequencing reads to achieve statistically reliable conclusions regarding the significance of differential gene expression between case and control samples. Here, we show that after the discontinuation of the previous version of RiboZero (Illumina, San Diego, CA, USA) that was useful in partially or completely depleting rRNA from archaea, archaeal transcriptomics studies have experienced a slowdown. To overcome this limitation, here, we analyze the efficiency for four different hybridization-based kits from three different commercial suppliers, each with two sets of sequence-specific probes to remove rRNA from four different species of halophilic archaea. We conclude that the key for transcriptomic success with the currently available tools is the probe-specificity for the rRNA sequence hybridization. With this paper, we provide insights into the archaeal community for selecting certain reagents and strategies over others depending on the archaeal species of interest. These methods yield improved RNA-seq sensitivity and enhanced detection of low abundance transcripts.
Collapse
Affiliation(s)
- Mar Martinez Pastor
- Biology Department, Duke University, Durham, NC 27708, USA; (M.M.P.); (S.S.)
| | - Saaz Sakrikar
- Biology Department, Duke University, Durham, NC 27708, USA; (M.M.P.); (S.S.)
- University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | | | - Amy K. Schmid
- Biology Department, Duke University, Durham, NC 27708, USA; (M.M.P.); (S.S.)
- University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
- Correspondence: ; Tel.: +919-613-4464
| |
Collapse
|
26
|
Costa MI, Giménez MI. Metal nanoparticles Biosynthesis Using the Halophilic Archaeon Haloferax volcanii. Methods Mol Biol 2022; 2522:345-350. [PMID: 36125761 DOI: 10.1007/978-1-0716-2445-6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoparticle (NP) synthesis using biological resources as reducing agents is an eco-friendly and simple strategy compared to the traditional physical/chemical methods. The ability of microorganisms of the Archaea domain to synthesize metal NPs has been explored to a limited extent. Metal NPs have been applied in several fields including catalysis, agriculture, biomedicine, electronics, and optics. Recently we reported that the halophilic archaeon Haloferax volcanii is capable of synthesizing silver and gold NPs. In this work, we present a simple protocol for the obtention of metal NPs using this microorganism which may be also used as a starting point for assaying NP biosynthesis in other haloarchaea.
Collapse
Affiliation(s)
- Mariana Inés Costa
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| | - María Inés Giménez
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina.
| |
Collapse
|
27
|
Abstract
In this chapter, we describe the reverse genetics methodology behind generating a targeted gene deletion or replacement in archaeal species of the genus Haloferax, which are renowned for their ease of manipulation. Individual steps in the method include the design of a gene-targeting vector, its use in transforming Haloferax to yield "pop-in" and "pop-out" clones, and techniques for validating the genetically manipulated strain. The vector carries DNA fragments of 500-1000 bp that flank the gene of interest (or a mutant allele), in addition to the pyrE2 gene for uracil biosynthesis (Bitan-Banin et al. J Bacteriol 185:772-778, 2003). The latter is used as a selectable marker for the transformation of Haloferax, wherein the vector integrates by homologous recombination at the genomic locus to generate the "pop-in" strain; this is also known as allele-coupled exchange. Culturing of these transformants in nonselective broth and subsequent plating on 5-fluoroorotic acid (5-FOA)-containing media selects for excision of the vector, yielding either wild type or mutant "pop-out" clones. These 5-FOA-resistant clones are screened to confirm the desired mutation, using a combination of phenotypic assays, colony hybridization and Southern blotting. The pop-in/pop-out method allows for the recycling of the pyrE2 marker to enable multiple gene deletions to be carried out in a single strain, thereby providing insights into the function of multiple proteins and how they interact in their respective cellular pathways.
Collapse
Affiliation(s)
- Ambika Dattani
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Catherine Harrison
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| |
Collapse
|
28
|
Schwarz TS, Schreiber SS, Marchfelder A. CRISPR Interference as a Tool to Repress Gene Expression in Haloferax volcanii. Methods Mol Biol 2022; 2522:57-85. [PMID: 36125743 DOI: 10.1007/978-1-0716-2445-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To date, a plethora of tools for molecular biology have been developed on the basis of the CRISPR-Cas system. Almost all use the class 2 systems since here the setup is the simplest with only one protein and one guide RNA, allowing for easy transfer to and expression in other organisms. However, the CRISPR-Cas components harnessed for applications are derived from mesophilic bacteria and are not optimal for use in extremophilic archaea.Here, we describe the application of an endogenous CRISPR-Cas system as a tool for silencing gene expression in a halophilic archaeon. Haloferax volcanii has a CRISPR-Cas system of subtype I-B, which can be easily used to repress the transcription of endogenous genes, allowing to study the effects of their depletion. This article gives a step-by-step introduction on how to use the implemented system for any gene of interest in Haloferax volcanii. The concept of CRISPRi described here for Haloferax can be transferred to any other archaeon, that is genetically tractable and has an endogenous CRISPR-Cas I systems.
Collapse
|
29
|
Schramm F, Borst A, Linne U, Soppa J. Elucidation of the Translation Initiation Factor Interaction Network of Haloferax volcanii Reveals Coupling of Transcription and Translation in Haloarchaea. Front Microbiol 2021; 12:742806. [PMID: 34764944 PMCID: PMC8576121 DOI: 10.3389/fmicb.2021.742806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/29/2021] [Indexed: 02/04/2023] Open
Abstract
Translation is an important step in gene expression. Initiation of translation is rate-limiting, and it is phylogenetically more diverse than elongation or termination. Bacteria contain only three initiation factors. In stark contrast, eukaryotes contain more than 10 (subunits of) initiation factors (eIFs). The genomes of archaea contain many genes that are annotated to encode archaeal homologs of eukaryotic initiation factors (aIFs). However, experimental characterization of aIFs is scarce and mostly restricted to very few species. To broaden the view, the protein-protein interaction network of aIFs in the halophilic archaeon Haloferax volcanii has been characterized. To this end, tagged versions of 14 aIFs were overproduced, affinity isolated, and the co-isolated binding partners were identified by peptide mass fingerprinting and MS/MS analyses. The aIF-aIF interaction network was resolved, and it was found to contain two interaction hubs, (1) the universally conserved factor aIF5B, and (2) a protein that has been annotated as the enzyme ribose-1,5-bisphosphate isomerase, which we propose to rename to aIF2Bα. Affinity isolation of aIFs also led to the co-isolation of many ribosomal proteins, but also transcription factors and subunits of the RNA polymerase (Rpo). To analyze a possible coupling of transcription and translation, seven tagged Rpo subunits were overproduced, affinity isolated, and co-isolated proteins were identified. The Rpo interaction network contained many transcription factors, but also many ribosomal proteins as well as the initiation factors aIF5B and aIF2Bα. These results showed that transcription and translation are coupled in haloarchaea, like in Escherichia coli. It seems that aIF5B and aIF2Bα are not only interaction hubs in the translation initiation network, but also key players in the transcription-translation coupling.
Collapse
Affiliation(s)
- Franziska Schramm
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| | - Andreas Borst
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| | - Uwe Linne
- Mass Spectrometry Facility, Department of Chemistry, Phillipps University Marburg, Marburg, Germany
| | - Jörg Soppa
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| |
Collapse
|
30
|
Gelsinger DR, Reddy R, Whittington K, Debic S, DiRuggiero J. Post-transcriptional regulation of redox homeostasis by the small RNA SHOxi in haloarchaea. RNA Biol 2021; 18:1867-1881. [PMID: 33522404 PMCID: PMC8583180 DOI: 10.1080/15476286.2021.1874717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
While haloarchaea are highly resistant to oxidative stress, a comprehensive understanding of the processes regulating this remarkable response is lacking. Oxidative stress-responsive small non-coding RNAs (sRNAs) have been reported in the model archaeon, Haloferax volc anii, but targets and mechanisms have not been elucidated. Using a combination of high throughput and reverse molecular genetic approaches, we elucidated the functional role of the most up-regulated intergenic sRNA during oxidative stress in H. volcanii, named Small RNA in Haloferax Oxidative Stress (SHOxi). SHOxi was predicted to form a stable secondary structure with a conserved stem-loop region as the potential binding site for trans-targets. NAD-dependent malic enzyme mRNA, identified as a putative target of SHOxi, interacted directly with a putative 'seed' region within the predicted stem loop of SHOxi. Malic enzyme catalyzes the oxidative decarboxylation of malate into pyruvate using NAD+ as a cofactor. The destabilization of malic enzyme mRNA, and the decrease in the NAD+/NADH ratio, resulting from the direct RNA-RNA interaction between SHOxi and its trans-target was essential for the survival of H. volcanii to oxidative stress. These findings indicate that SHOxi likely regulates redox homoeostasis during oxidative stress by the post-transcriptional destabilization of malic enzyme mRNA. SHOxi-mediated regulation provides evidence that the fine-tuning of metabolic cofactors could be a core strategy to mitigate damage from oxidative stress and confer resistance. This study is the first to establish the regulatory effects of sRNAs on mRNAs during the oxidative stress response in Archaea.
Collapse
Affiliation(s)
| | - Rahul Reddy
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Sara Debic
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Jocelyne DiRuggiero
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Renn D, Shepard L, Vancea A, Karan R, Arold ST, Rueping M. Novel Enzymes From the Red Sea Brine Pools: Current State and Potential. Front Microbiol 2021; 12:732856. [PMID: 34777282 PMCID: PMC8578733 DOI: 10.3389/fmicb.2021.732856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
The Red Sea is a marine environment with unique chemical characteristics and physical topographies. Among the various habitats offered by the Red Sea, the deep-sea brine pools are the most extreme in terms of salinity, temperature and metal contents. Nonetheless, the brine pools host rich polyextremophilic bacterial and archaeal communities. These microbial communities are promising sources for various classes of enzymes adapted to harsh environments - extremozymes. Extremozymes are emerging as novel biocatalysts for biotechnological applications due to their ability to perform catalytic reactions under harsh biophysical conditions, such as those used in many industrial processes. In this review, we provide an overview of the extremozymes from different Red Sea brine pools and discuss the overall biotechnological potential of the Red Sea proteome.
Collapse
Affiliation(s)
- Dominik Renn
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen, Aachen, Germany
| | - Lera Shepard
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alexandra Vancea
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ram Karan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Stefan T. Arold
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centre de Biologie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute for Experimental Molecular Imaging (ExMI), University Clinic, RWTH Aachen, Aachen, Germany
| |
Collapse
|
32
|
Jia H, Couto-Rodriguez RL, Gal D, Mondragon P, Wassel PC, Yu D, Maupin-Furlow JA. Expression and tandem affinity purification of 20S proteasomes and other multisubunit complexes in Haloferax volcanii. Methods Enzymol 2021; 659:315-326. [PMID: 34752292 DOI: 10.1016/bs.mie.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tandem affinity purification is a useful strategy to isolate multisubunit complexes of high yield and purity but can be limited when working with halophilic proteins that are not properly expressed in Escherichia coli. Halophilic proteins are desirable for bioindustrial applications as they are often stable and active in organic solvents; however, these proteins can be difficult to express, fold, and purify by traditional technologies. Haloarchaea provide a useful alternative for expression of halophilic proteins. These microorganisms use a salt-in strategy to maintain homeostasis and express most of their proteins with halophilic properties and low pI. Here, we provide detailed protocols for the genetic modification, expression and tandem affinity purification of "salt-loving" multisubunit complexes from the haloarchaeon Haloferax volcanii. The strategy for isolation of affinity tagged 20S proteasomes that form cylindrical proteolytic nanomachines of α1, α2 and β subunits is described.
Collapse
Affiliation(s)
- Huiyong Jia
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Ricardo L Couto-Rodriguez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Daniel Gal
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Paula Mondragon
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Paul C Wassel
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States
| | - David Yu
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
33
|
de Silva RT, Abdul-Halim MF, Pittrich DA, Brown HJ, Pohlschroder M, Duggin IG. Improved growth and morphological plasticity of Haloferax volcanii. MICROBIOLOGY-SGM 2021; 167. [PMID: 33459585 DOI: 10.1099/mic.0.001012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Some microbes display pleomorphism, showing variable cell shapes in a single culture, whereas others differentiate to adapt to changed environmental conditions. The pleomorphic archaeon Haloferax volcanii commonly forms discoid-shaped ('plate') cells in culture, but may also be present as rods, and can develop into motile rods in soft agar, or longer filaments in certain biofilms. Here we report improvement of H. volcanii growth in both semi-defined and complex media by supplementing with eight trace element micronutrients. With these supplemented media, transient development of plate cells into uniformly shaped rods was clearly observed during the early log phase of growth; cells then reverted to plates for the late log and stationary phases. In media prepared with high-purity water and reagents, without supplemental trace elements, rods and other complex elongated morphologies ('pleomorphic rods') were observed at all growth stages of the culture; the highly elongated cells sometimes displayed a substantial tubule at one or less frequently both poles, as well as unusual tapered and highly curved forms. Polar tubules were observed forming by initial mid-cell narrowing or tubulation, causing a dumbbell-like shape, followed by cell division towards one end. Formation of the uniform early log-phase rods, as well as the pleomorphic rods and tubules were dependent on the function of the tubulin-like cytoskeletal protein, CetZ1. Our results reveal the remarkable morphological plasticity of H. volcanii cells in response to multiple culture conditions, and should facilitate the use of this species in further studies of archaeal biology.
Collapse
Affiliation(s)
- Roshali T de Silva
- The iThree Institute, University of Technology Sydney, New South Wales, 2007, Australia
| | - Mohd F Abdul-Halim
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dorothea A Pittrich
- The iThree Institute, University of Technology Sydney, New South Wales, 2007, Australia
| | - Hannah J Brown
- The iThree Institute, University of Technology Sydney, New South Wales, 2007, Australia
| | | | - Iain G Duggin
- The iThree Institute, University of Technology Sydney, New South Wales, 2007, Australia
| |
Collapse
|
34
|
Abstract
Transcriptional regulators that integrate cellular and environmental signals to control cell division are well known in bacteria and eukaryotes, but their existence is poorly understood in archaea. We identified a conserved gene (cdrS) that encodes a small protein and is highly transcribed in the model archaeon Haloferax volcanii. The cdrS gene could not be deleted, but CRISPR interference (CRISPRi)-mediated repression of the cdrS gene caused slow growth and cell division defects and changed the expression of multiple genes and their products associated with cell division, protein degradation, and metabolism. Consistent with this complex regulatory network, overexpression of cdrS inhibited cell division, whereas overexpression of the operon encoding both CdrS and a tubulin-like cell division protein (FtsZ2) stimulated division. Chromatin immunoprecipitation-DNA sequencing (ChIP-Seq) identified 18 DNA-binding sites of the CdrS protein, including one upstream of the promoter for a cell division gene, ftsZ1, and another upstream of the essential gene dacZ, encoding diadenylate cyclase involved in c-di-AMP signaling, which is implicated in the regulation of cell division. These findings suggest that CdrS is a transcription factor that plays a central role in a regulatory network coordinating metabolism and cell division. IMPORTANCE Cell division is a central mechanism of life and is essential for growth and development. Members of the Bacteria and Eukarya have different mechanisms for cell division, which have been studied in detail. In contrast, cell division in members of the Archaea is still understudied, and its regulation is poorly understood. Interestingly, different cell division machineries appear in members of the Archaea, with the Euryarchaeota using a cell division apparatus based on the tubulin-like cytoskeletal protein FtsZ, as in bacteria. Here, we identify the small protein CdrS as essential for survival and a central regulator of cell division in the euryarchaeon Haloferax volcanii. CdrS also appears to coordinate other cellular pathways, including synthesis of signaling molecules and protein degradation. Our results show that CdrS plays a sophisticated role in cell division, including regulation of numerous associated genes. These findings are expected to initiate investigations into conditional regulation of division in archaea.
Collapse
|
35
|
Open Issues for Protein Function Assignment in Haloferax volcanii and Other Halophilic Archaea. Genes (Basel) 2021; 12:genes12070963. [PMID: 34202810 PMCID: PMC8305020 DOI: 10.3390/genes12070963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Annotation ambiguities and annotation errors are a general challenge in genomics. While a reliable protein function assignment can be obtained by experimental characterization, this is expensive and time-consuming, and the number of such Gold Standard Proteins (GSP) with experimental support remains very low compared to proteins annotated by sequence homology, usually through automated pipelines. Even a GSP may give a misleading assignment when used as a reference: the homolog may be close enough to support isofunctionality, but the substrate of the GSP is absent from the species being annotated. In such cases, the enzymes cannot be isofunctional. Here, we examined a variety of such issues in halophilic archaea (class Halobacteria), with a strong focus on the model haloarchaeon Haloferax volcanii. Results: Annotated proteins of Hfx. volcanii were identified for which public databases tend to assign a function that is probably incorrect. In some cases, an alternative, probably correct, function can be predicted or inferred from the available evidence, but this has not been adopted by public databases because experimental validation is lacking. In other cases, a probably invalid specific function is predicted by homology, and while there is evidence that this assigned function is unlikely, the true function remains elusive. We listed 50 of those cases, each with detailed background information, so that a conclusion about the most likely biological function can be drawn. For reasons of brevity and comprehension, only the key aspects are listed in the main text, with detailed information being provided in a corresponding section of the Supplementary Materials. Conclusions: Compiling, describing and summarizing these open annotation issues and functional predictions will benefit the scientific community in the general effort to improve the evaluation of protein function assignments and more thoroughly detail them. By highlighting the gaps and likely annotation errors currently in the databases, we hope this study will provide a framework for experimentalists to systematically confirm (or disprove) our function predictions or to uncover yet more unexpected functions.
Collapse
|
36
|
Born J, Weitzel K, Suess B, Pfeifer F. A Synthetic Riboswitch to Regulate Haloarchaeal Gene Expression. Front Microbiol 2021; 12:696181. [PMID: 34211452 PMCID: PMC8241225 DOI: 10.3389/fmicb.2021.696181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
In recent years, synthetic riboswitches have become increasingly important to construct genetic circuits in all three domains of life. In bacteria, synthetic translational riboswitches are often employed that modulate gene expression by masking the Shine-Dalgarno (SD) sequence in the absence or presence of a cognate ligand. For (halo-)archaeal translation, a SD sequence is not strictly required. The application of synthetic riboswitches in haloarchaea is therefore limited so far, also because of the molar intracellular salt concentrations found in these microbes. In this study, we applied synthetic theophylline-dependent translational riboswitches in the archaeon Haloferax volcanii. The riboswitch variants A through E and E∗ were chosen since they not only mask the SD sequence but also the AUG start codon by forming a secondary structure in the absence of the ligand theophylline. Upon addition of the ligand, the ribosomal binding site and start codon become accessible for translation initiation. Riboswitch E mediated a dose-dependent, up to threefold activation of the bgaH reporter gene expression. Raising the salt concentration of the culture media from 3 to 4 M NaCl resulted in a 12-fold increase in the switching capacity of riboswitch E, and switching activity increased up to 26-fold when the cultivating temperature was reduced from 45 to 30°C. To construct a genetic circuit, riboswitch E was applied to regulate the synthesis of the transcriptional activator GvpE allowing a dose-dependent activation of the mgfp6 reporter gene under P pA promoter control.
Collapse
Affiliation(s)
| | | | - Beatrix Suess
- Synthetic RNA Biology, Department of Biology, Technical University Darmstadt, Darmstadt, Germany.,Centre of Synthetic Biology, Technical University Darmstadt, Darmstadt, Germany
| | | |
Collapse
|
37
|
Analysis of Haloferax mediterranei Lrp Transcriptional Regulator. Genes (Basel) 2021; 12:genes12060802. [PMID: 34070366 PMCID: PMC8229911 DOI: 10.3390/genes12060802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 12/26/2022] Open
Abstract
Haloferax mediterranei is an extremely halophilic archaeon, able to live in hypersaline environments with versatile nutritional requirements, whose study represents an excellent basis in the field of biotechnology. The transcriptional machinery in Archaea combines the eukaryotic basal apparatus and the bacterial regulation mechanisms. However, little is known about molecular mechanisms of gene expression regulation compared with Bacteria, particularly in Haloarchaea. The genome of Hfx. mediterranei contains a gene, lrp (HFX_RS01210), which encodes a transcriptional factor belonging to Lrp/AsnC family. It is located downstream of the glutamine synthetase gene (HFX_RS01205), an enzyme involved in ammonium assimilation and amino acid metabolism. To study this transcriptional factor more deeply, the lrp gene has been homologously overexpressed and purified under native conditions by two chromatographic steps, namely nickel affinity and gel filtration chromatography, showing that Lrp behaves asa tetrameric protein of approximately 67 kDa. Its promoter region has been characterized under different growth conditions using bgaH as a reporter gene. The amount of Lrp protein was also analyzed by Western blotting in different nitrogen sources and under various stress conditions. To sum up, regarding its involvement in the nitrogen cycle, it has been shown that its expression profile does not change in response to the nitrogen sources tested. Differences in its expression pattern have been observed under different stress conditions, such as in the presence of hydrogen peroxide or heavy metals. According to these results, the Lrp seems to be involved in a general response against stress factors, acting as a first-line transcriptional regulator.
Collapse
|
38
|
Ghosh S, Greiserman S, Chemodanov A, Slegers PM, Belgorodsky B, Epstein M, Kribus A, Gozin M, Chen GQ, Golberg A. Polyhydroxyalkanoates and biochar from green macroalgal Ulva sp. biomass subcritical hydrolysates: Process optimization and a priori economic and greenhouse emissions break-even analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145281. [PMID: 33517017 DOI: 10.1016/j.scitotenv.2021.145281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Although macroalgae biomass is an emerging sustainable feedstock for biorefineries, the optimum process parameters for their hydrolysis and fermentation are still not known. In the present study, the simultaneous production of polyhydroxyalkanoates (PHA) and biochar from green macroalgae Ulva sp. is examined, applying subcritical water hydrolysis and Haloferax mediterranei fermentation. First, the effects of temperature, treatment time, salinity, and solid load on the biomass and PHA productivity were optimized following the Taguchi method. Hydrolysis at 170 °C, 20 min residence time, 38 g L-1 salinity with a seaweed solid load of 5% led to the maximum PHA yield of 0.104 g g-1Ulva and a biochar yield of 0.194 ± 1.23 g g-1Ulva. Second, the effect of different initial culture densities on the biomass and PHA productivity was studied. An initial culture density of 50 g L-1 led to the maximum volumetric PHA productivity of 0.024 ± 0.002 g L-1 h-1 with a maximum PHA content of 49.38 ± 0.3% w/w Sensitivity analysis shows that within 90% confidence, the annual PHA production from Ulva sp. is 148.14 g PHA m-2 year-1 with an annual biochar production of 42.6 g m-2 year-1. Priori economic and greenhouse gas break-even analyses of the process were done to estimate annual revenues and allowable greenhouse gas emissions. The study illustrates that PHA production from seaweed hydrolysate using extreme halophiles coupled to biochar production could become a benign and promising step in a marine biorefinery.
Collapse
Affiliation(s)
- Supratim Ghosh
- Porter School of the Environment and Earth Sciences, Faculty of Exact Science, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Semion Greiserman
- Porter School of the Environment and Earth Sciences, Faculty of Exact Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alexander Chemodanov
- Porter School of the Environment and Earth Sciences, Faculty of Exact Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Petronella Margaretha Slegers
- Operations Research and Logistics, Wageningen University & Research, P.O. Box 8130, 6700 EW Wageningen, the Netherlands
| | - Bogdan Belgorodsky
- School of Chemistry, Faculty of Exact Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Epstein
- Porter School of the Environment and Earth Sciences, Faculty of Exact Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Abraham Kribus
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Michael Gozin
- School of Chemistry, Faculty of Exact Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Alexander Golberg
- Porter School of the Environment and Earth Sciences, Faculty of Exact Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
39
|
Li M, Gong L, Cheng F, Yu H, Zhao D, Wang R, Wang T, Zhang S, Zhou J, Shmakov SA, Koonin EV, Xiang H. Toxin-antitoxin RNA pairs safeguard CRISPR-Cas systems. Science 2021; 372:372/6541/eabe5601. [PMID: 33926924 DOI: 10.1126/science.abe5601] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/29/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
CRISPR-Cas systems provide RNA-guided adaptive immunity in prokaryotes. We report that the multisubunit CRISPR effector Cascade transcriptionally regulates a toxin-antitoxin RNA pair, CreTA. CreT (Cascade-repressed toxin) is a bacteriostatic RNA that sequesters the rare arginine tRNAUCU (transfer RNA with anticodon UCU). CreA is a CRISPR RNA-resembling antitoxin RNA, which requires Cas6 for maturation. The partial complementarity between CreA and the creT promoter directs Cascade to repress toxin transcription. Thus, CreA becomes antitoxic only in the presence of Cascade. In CreTA-deleted cells, cascade genes become susceptible to disruption by transposable elements. We uncover several CreTA analogs associated with diverse archaeal and bacterial CRISPR-cas loci. Thus, toxin-antitoxin RNA pairs can safeguard CRISPR immunity by making cells addicted to CRISPR-Cas, which highlights the multifunctionality of Cas proteins and the intricate mechanisms of CRISPR-Cas regulation.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. .,CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Luyao Gong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Feiyue Cheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Rui Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Tian Wang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Shengjie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sergey A Shmakov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. .,College of Life Science, University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
40
|
Cell division in the archaeon Haloferax volcanii relies on two FtsZ proteins with distinct functions in division ring assembly and constriction. Nat Microbiol 2021; 6:594-605. [PMID: 33903747 PMCID: PMC7611241 DOI: 10.1038/s41564-021-00894-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/22/2021] [Indexed: 02/02/2023]
Abstract
In bacteria, the tubulin homologue FtsZ assembles a cytokinetic ring, termed the Z ring, and plays a key role in the machinery that constricts to divide the cells. Many archaea encode two FtsZ proteins from distinct families, FtsZ1 and FtsZ2, with previously unclear functions. Here, we show that Haloferax volcanii cannot divide properly without either or both FtsZ proteins, but DNA replication continues and cells proliferate in alternative ways, such as blebbing and fragmentation, via remarkable envelope plasticity. FtsZ1 and FtsZ2 colocalize to form the dynamic division ring. However, FtsZ1 can assemble rings independent of FtsZ2, and stabilizes FtsZ2 in the ring, whereas FtsZ2 functions primarily in the constriction mechanism. FtsZ1 also influenced cell shape, suggesting it forms a hub-like platform at midcell for the assembly of shape-related systems too. Both FtsZ1 and FtsZ2 are widespread in archaea with a single S-layer envelope, but archaea with a pseudomurein wall and division septum only have FtsZ1. FtsZ1 is therefore likely to provide a fundamental recruitment role in diverse archaea, and FtsZ2 is required for constriction of a flexible S-layer envelope, where an internal constriction force might dominate the division mechanism, in contrast with the single-FtsZ bacteria and archaea that divide primarily by wall ingrowth.
Collapse
|
41
|
Glucose Metabolism and Acetate Switch in Archaea: the Enzymes in Haloferax volcanii. J Bacteriol 2021; 203:JB.00690-20. [PMID: 33558390 DOI: 10.1128/jb.00690-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
The halophilic archaeon Haloferax volcanii has been proposed to degrade glucose via the semiphosphorylative Entner-Doudoroff (spED) pathway. Following our previous studies on key enzymes of this pathway, we now focus on the characterization of enzymes involved in 3-phosphoglycerate conversion to pyruvate, in anaplerosis, and in acetyl coenzyme A (acetyl-CoA) formation from pyruvate. These enzymes include phosphoglycerate mutase, enolase, pyruvate kinase, phosphoenolpyruvate carboxylase, and pyruvate-ferredoxin oxidoreductase. The essential function of these enzymes were shown by transcript analyses and growth experiments with respective deletion mutants. Furthermore, we show that H. volcanii-during aerobic growth on glucose-excreted significant amounts of acetate, which was consumed in the stationary phase (acetate switch). The enzyme catalyzing the conversion of acetyl-CoA to acetate as part of the acetate overflow mechanism, an ADP-forming acetyl-CoA synthetase (ACD), was characterized. The functional involvement of ACD in acetate formation and of AMP-forming acetyl-CoA synthetases (ACSs) in activation of excreted acetate was proven by using respective deletion mutants. Together, the data provide a comprehensive analysis of enzymes of the spED pathway and of anaplerosis and report the first genetic evidence of the functional involvement of enzymes of the acetate switch in archaea.IMPORTANCE In this work, we provide a comprehensive analysis of glucose degradation via the semiphosphorylative Entner-Doudoroff pathway in the haloarchaeal model organism Haloferax volcanii The study includes transcriptional analyses, growth experiments with deletion mutants. and characterization of all enzymes involved in the conversion of 3-phosphoglycerate to acetyl coenzyme A (acetyl-CoA) and in anaplerosis. Phylogenetic analyses of several enzymes indicate various lateral gene transfer events from bacteria to haloarchaea. Furthermore, we analyzed the key players involved in the acetate switch, i.e., in the formation (overflow) and subsequent consumption of acetate during aerobic growth on glucose. Together, the data provide novel aspects of glucose degradation, anaplerosis, and acetate switch in H. volcanii and thus expand our understanding of the unusual sugar metabolism in archaea.
Collapse
|
42
|
Knüppel R, Trahan C, Kern M, Wagner A, Grünberger F, Hausner W, Quax TEF, Albers SV, Oeffinger M, Ferreira-Cerca S. Insights into synthesis and function of KsgA/Dim1-dependent rRNA modifications in archaea. Nucleic Acids Res 2021; 49:1662-1687. [PMID: 33434266 PMCID: PMC7897474 DOI: 10.1093/nar/gkaa1268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Ribosomes are intricate molecular machines ensuring proper protein synthesis in every cell. Ribosome biogenesis is a complex process which has been intensively analyzed in bacteria and eukaryotes. In contrast, our understanding of the in vivo archaeal ribosome biogenesis pathway remains less characterized. Here, we have analyzed the in vivo role of the almost universally conserved ribosomal RNA dimethyltransferase KsgA/Dim1 homolog in archaea. Our study reveals that KsgA/Dim1-dependent 16S rRNA dimethylation is dispensable for the cellular growth of phylogenetically distant archaea. However, proteomics and functional analyses suggest that archaeal KsgA/Dim1 and its rRNA modification activity (i) influence the expression of a subset of proteins and (ii) contribute to archaeal cellular fitness and adaptation. In addition, our study reveals an unexpected KsgA/Dim1-dependent variability of rRNA modifications within the archaeal phylum. Combining structure-based functional studies across evolutionary divergent organisms, we provide evidence on how rRNA structure sequence variability (re-)shapes the KsgA/Dim1-dependent rRNA modification status. Finally, our results suggest an uncoupling between the KsgA/Dim1-dependent rRNA modification completion and its release from the nascent small ribosomal subunit. Collectively, our study provides additional understandings into principles of molecular functional adaptation, and further evolutionary and mechanistic insights into an almost universally conserved step of ribosome synthesis.
Collapse
Affiliation(s)
- Robert Knüppel
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Christian Trahan
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Michael Kern
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Alexander Wagner
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Felix Grünberger
- Chair of Microbiology – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Winfried Hausner
- Chair of Microbiology – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Tessa E F Quax
- Archaeal Virus-Host Interactions, Institute of Biology II, Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Sébastien Ferreira-Cerca
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
43
|
Tästensen JB, Johnsen U, Reinhardt A, Ortjohann M, Schönheit P. D-galactose catabolism in archaea: operation of the DeLey-Doudoroff pathway in Haloferax volcanii. FEMS Microbiol Lett 2021; 367:5736015. [PMID: 32055827 DOI: 10.1093/femsle/fnaa029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/11/2020] [Indexed: 11/12/2022] Open
Abstract
The haloarchaeon Haloferax volcanii was found to grow on D-galactose as carbon and energy source. Here we report a comprehensive analysis of D-galactose catabolism in H. volcanii. Genome analyses indicated a cluster of genes encoding putative enzymes of the DeLey-Doudoroff pathway for D-galactose degradation including galactose dehydrogenase, galactonate dehydratase, 2-keto-3-deoxygalactonate kinase and 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolase. The recombinant galactose dehydrogenase and galactonate dehydratase showed high specificity for D-galactose and galactonate, respectively, whereas KDPGal aldolase was promiscuous in utilizing KDPGal and also the C4 epimer 2-keto-3-deoxy-6-phosphogluconate as substrates. Growth studies with knock-out mutants indicated the functional involvement of galactose dehydrogenase, galactonate dehydratase and KDPGal aldolase in D-galactose degradation. Further, the transcriptional regulator GacR was identified, which was characterized as an activator of genes of the DeLey-Doudoroff pathway. Finally, genes were identified encoding components of an ABC transporter and a knock-out mutant of the substrate binding protein indicated the functional involvement of this transporter in D-galactose uptake. This is the first report of D-galactose degradation via the DeLey-Doudoroff pathway in the domain of archaea.
Collapse
Affiliation(s)
- Julia-Beate Tästensen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9; D-24118 Kiel, Germany
| | - Ulrike Johnsen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9; D-24118 Kiel, Germany
| | - Andreas Reinhardt
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9; D-24118 Kiel, Germany
| | - Marius Ortjohann
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9; D-24118 Kiel, Germany
| | - Peter Schönheit
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9; D-24118 Kiel, Germany
| |
Collapse
|
44
|
Xie M, Li Y, Xu L, Zhang S, Ye H, Sun F, Mei R, Su X. Optimization of bacterial cytokine protein production by response surface methodology for environmental bioremediation. RSC Adv 2021; 11:36105-36115. [PMID: 35492803 PMCID: PMC9043431 DOI: 10.1039/d1ra03565g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
In natural and engineered systems, most microorganisms would enter a state of dormancy termed as “viable but non-culturable” (VBNC) state when they are exposed to unpredictable environmental stress. One of the major advances in resuscitating from such a state is the discovery of a kind of bacterial cytokine protein called resuscitation-promoting factor (Rpf), which is secreted from Micrococcus luteus. In this study, the optimization of Rpf production was investigated by the response surface methodology (RSM). Results showed that an empirical quadratic model well predicted the Rpf yield, and the highest Rpf protein yield could be obtained at the optimal conditions of 59.56 mg L−1 IPTG, cell density 0.69, induction temperature 20.82 °C and culture time 7.72 h. Importantly, Phyre2 web portal characterized the structure of the Rpf domain to have a shared homology with lysozymes, and the highest lysozyme activity was at pH 5 and 50 °C. This study broadens the knowledge of Rpf production and provided potential strategies to apply Rpf as a bioactivator for environmental bioremediation. A group of secreted proteins from M. luteus, recognized as resuscitation promoting factors (Rpf) can resuscitate the viable but non-culturable (VBNC) state bacteria which have the potential function of environmental bioremediation.![]()
Collapse
Affiliation(s)
- Mengqi Xie
- College of Geography and Environmental Science, Zhejiang Normal University, Yingbin Road 688#, Jinhua 321004, China
| | - Yilin Li
- College of Geography and Environmental Science, Zhejiang Normal University, Yingbin Road 688#, Jinhua 321004, China
| | - Luning Xu
- College of Geography and Environmental Science, Zhejiang Normal University, Yingbin Road 688#, Jinhua 321004, China
| | - Shusheng Zhang
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou 325500, China
| | - Hongyu Ye
- Eco-Environmental Science Design & Research Institute of Zhejiang Province, Hangzhou 310007, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Yingbin Road 688#, Jinhua 321004, China
| | - Rongwu Mei
- Eco-Environmental Science Design & Research Institute of Zhejiang Province, Hangzhou 310007, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Yingbin Road 688#, Jinhua 321004, China
| |
Collapse
|
45
|
Cockram C, Thierry A, Gorlas A, Lestini R, Koszul R. Euryarchaeal genomes are folded into SMC-dependent loops and domains, but lack transcription-mediated compartmentalization. Mol Cell 2020; 81:459-472.e10. [PMID: 33382984 DOI: 10.1016/j.molcel.2020.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/01/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022]
Abstract
Hi-C has become a routine method for probing the 3D organization of genomes. However, when applied to prokaryotes and archaea, the current protocols are expensive and limited in their resolution. We develop a cost-effective Hi-C protocol to explore chromosome conformations of these two kingdoms at the gene or operon level. We first validate it on E. coli and V. cholera, generating sub-kilobase-resolution contact maps, and then apply it to the euryarchaeota H. volcanii, Hbt. salinarum, and T. kodakaraensis. With a resolution of up to 1 kb, we explore the diversity of chromosome folding in this phylum. In contrast to crenarchaeota, these euryarchaeota lack (active/inactive) compartment-like structures. Instead, their genomes are composed of self-interacting domains and chromatin loops. In H. volcanii, these structures are regulated by transcription and the archaeal structural maintenance of chromosomes (SMC) protein, further supporting the ubiquitous role of these processes in shaping the higher-order organization of genomes.
Collapse
Affiliation(s)
- Charlotte Cockram
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS UMR 3525, 75015 Paris, France
| | - Agnès Thierry
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS UMR 3525, 75015 Paris, France
| | - Aurore Gorlas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Roxane Lestini
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS UMR7645 - INSERM U1182, IP Paris, 91128 Palaiseau Cedex, France
| | - Romain Koszul
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS UMR 3525, 75015 Paris, France.
| |
Collapse
|
46
|
Kuprat T, Johnsen U, Ortjohann M, Schönheit P. Acetate Metabolism in Archaea: Characterization of an Acetate Transporter and of Enzymes Involved in Acetate Activation and Gluconeogenesis in Haloferax volcanii. Front Microbiol 2020; 11:604926. [PMID: 33343547 PMCID: PMC7746861 DOI: 10.3389/fmicb.2020.604926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/13/2020] [Indexed: 02/01/2023] Open
Abstract
The haloarchaeon Haloferax volcanii grows on acetate as sole carbon and energy source. The genes and proteins involved in uptake and activation of acetate and in gluconeogenesis were identified and analyzed by characterization of enzymes and by growth experiments with the respective deletion mutants. (i) An acetate transporter of the sodium: solute-symporter family (SSF) was characterized by kinetic analyses of acetate uptake into H. volcanii cells. The functional involvement of the transporter was proven with a Δssf mutant. (ii) Four paralogous AMP-forming acetyl-CoA synthetases that belong to different phylogenetic clades were shown to be functionally involved in acetate activation. (iii) The essential involvement of the glyoxylate cycle as an anaplerotic sequence was concluded from growth experiments with an isocitrate lyase knock-out mutant excluding the operation of the methylaspartate cycle reported for Haloarcula species. (iv) Enzymes involved in phosphoenolpyruvate synthesis from acetate, namely two malic enzymes and a phosphoenolpyruvate synthetase, were identified and characterized. Phylogenetic analyses of haloarchaeal malic enzymes indicate a separate evolutionary line distinct from other archaeal homologs. The exclusive function of phosphoenolpyruvate synthetase in gluconeogenesis was proven by the respective knock-out mutant. Together, this is a comprehensive study of acetate metabolism in archaea.
Collapse
Affiliation(s)
- Tom Kuprat
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität, Kiel, Germany
| | - Ulrike Johnsen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität, Kiel, Germany
| | - Marius Ortjohann
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität, Kiel, Germany
| | - Peter Schönheit
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität, Kiel, Germany
| |
Collapse
|
47
|
Pérez-Arnaiz P, Dattani A, Smith V, Allers T. Haloferax volcanii-a model archaeon for studying DNA replication and repair. Open Biol 2020; 10:200293. [PMID: 33259746 PMCID: PMC7776575 DOI: 10.1098/rsob.200293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tree of life shows the relationship between all organisms based on their common ancestry. Until 1977, it comprised two major branches: prokaryotes and eukaryotes. Work by Carl Woese and other microbiologists led to the recategorization of prokaryotes and the proposal of three primary domains: Eukarya, Bacteria and Archaea. Microbiological, genetic and biochemical techniques were then needed to study the third domain of life. Haloferax volcanii, a halophilic species belonging to the phylum Euryarchaeota, has provided many useful tools to study Archaea, including easy culturing methods, genetic manipulation and phenotypic screening. This review will focus on DNA replication and DNA repair pathways in H. volcanii, how this work has advanced our knowledge of archaeal cellular biology, and how it may deepen our understanding of bacterial and eukaryotic processes.
Collapse
Affiliation(s)
| | | | | | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
48
|
Turkowyd B, Schreiber S, Wörtz J, Segal ES, Mevarech M, Duggin IG, Marchfelder A, Endesfelder U. Establishing Live-Cell Single-Molecule Localization Microscopy Imaging and Single-Particle Tracking in the Archaeon Haloferax volcanii. Front Microbiol 2020; 11:583010. [PMID: 33329447 PMCID: PMC7714787 DOI: 10.3389/fmicb.2020.583010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/16/2020] [Indexed: 01/30/2023] Open
Abstract
In recent years, fluorescence microscopy techniques for the localization and tracking of single molecules in living cells have become well-established and are indispensable tools for the investigation of cellular biology and in vivo biochemistry of many bacterial and eukaryotic organisms. Nevertheless, these techniques are still not established for imaging archaea. Their establishment as a standard tool for the study of archaea will be a decisive milestone for the exploration of this branch of life and its unique biology. Here, we have developed a reliable protocol for the study of the archaeon Haloferax volcanii. We have generated an autofluorescence-free H. volcanii strain, evaluated several fluorescent proteins for their suitability to serve as single-molecule fluorescence markers and codon-optimized them to work under optimal H. volcanii cultivation conditions. We found that two of them, Dendra2Hfx and PAmCherry1Hfx, provide state-of-the-art single-molecule imaging. Our strategy is quantitative and allows dual-color imaging of two targets in the same field of view (FOV) as well as DNA co-staining. We present the first single-molecule localization microscopy (SMLM) images of the subcellular organization and dynamics of two crucial intracellular proteins in living H. volcanii cells, FtsZ1, which shows complex structures in the cell division ring, and RNA polymerase, which localizes around the periphery of the cellular DNA. This work should provide incentive to develop SMLM strategies for other archaeal organisms in the near future.
Collapse
Affiliation(s)
- Bartosz Turkowyd
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | | | - Julia Wörtz
- Department of Biology II, Ulm University, Ulm, Germany
| | - Ella Shtifman Segal
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Mevarech
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Iain G. Duggin
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Department of Physics, Mellon College of Science, Carnegie-Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
49
|
Zahn S, Kubatova N, Pyper DJ, Cassidy L, Saxena K, Tholey A, Schwalbe H, Soppa J. Biological functions, genetic and biochemical characterization, and NMR structure determination of the small zinc finger protein HVO_2753 from
Haloferax volcanii. FEBS J 2020; 288:2042-2062. [DOI: 10.1111/febs.15559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/26/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Sebastian Zahn
- Institute for Molecular Biosciences Goethe‐University Frankfurt Germany
| | - Nina Kubatova
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance Goethe‐University Frankfurt/Main Germany
| | - Dennis J. Pyper
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance Goethe‐University Frankfurt/Main Germany
| | - Liam Cassidy
- Systematic Proteome Research & Bioanalytics Institute for Experimental Medicine Christian‐Albrechts‐Universität zu Kiel Kiel Germany
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance Goethe‐University Frankfurt/Main Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics Institute for Experimental Medicine Christian‐Albrechts‐Universität zu Kiel Kiel Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance Goethe‐University Frankfurt/Main Germany
| | - Jörg Soppa
- Institute for Molecular Biosciences Goethe‐University Frankfurt Germany
- Johann Wolfgang Goethe‐Universität Frankfurt am Main Germany
| |
Collapse
|
50
|
Davis CR, Johnson CH, Robertson JB. A bioluminescent reporter for the halophilic archaeon Haloferax volcanii. Extremophiles 2020; 24:773-785. [PMID: 32749548 PMCID: PMC7462420 DOI: 10.1007/s00792-020-01193-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022]
Abstract
Haloarchaea have evolved to thrive in hypersaline environments. Haloferax volcanii is of particular interest due to its genetic tractability; however, few in vivo reporters exist for halophiles. Haloarchaeal proteins evolved characteristics that promote proper folding and function at high salt concentrations, but many mesophilic reporter proteins lack these characteristics. Mesophilic proteins that acquire salt-stabilizing mutations, however, can lead to proper function in haloarchaea. Using laboratory-directed evolution, we developed and demonstrated an in vivo luciferase that functions in the hypersaline cytosol of H. volcanii.
Collapse
Affiliation(s)
- Chris R Davis
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Carl H Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - J Brian Robertson
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA.
| |
Collapse
|