1
|
Farkas D, Proctor K, Kim B, Avignone Rossa C, Kasprzyk-Hordern B, Di Lorenzo M. Assessing the impact of soil microbial fuel cells on atrazine removal in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135473. [PMID: 39151358 DOI: 10.1016/j.jhazmat.2024.135473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Widespread pesticide use in agriculture is a major source of soil pollution, driving biodiversity loss and posing serious threads to human health. The recalcitrant nature of most of these pesticides demands for effective remediation strategies. In this study, we assess the ability of soil microbial fuel cell (SMFC) technology to bioremediate soil polluted by the model pesticide atrazine. To elucidate the degradation mechanism and consequently define effective implementation strategies, we provide the first comprehensive investigation of the SMFC performance, in which the monitoring of the electrochemical performance of the system is combined with Quadrupole Time-of-Flight (QTOF) mass spectrometry and microbial analyses. Our results show that, while both SMFC and natural attenuation lead to a reduction on atrazine levels, the SMFC modulates the activity of different microbial pathways. As a result, atrazine degradation by natural attenuation leads to high levels of deisoproylatrazine (DIPA), a very toxic degradation metabolite, while DIPA levels in soil treated by SMFC remain comparatively low. The beta diversity and differential abundance analyses revealed how the microbial community evolves over time in the SMFCs degrading atrazine, demonstrating the enrichment of electroactive taxa on the anode, and the enrichment of a mixture of electroactive and atrazine-degrading taxa at the cathode. The detection and taxonomic classification of peripheral atrazine degrading genes, atzA, atzB and atzC, was carried out in combination with the differential abundance analysis. Results revealed that these genes are likely harboured by members of the order Rhizobiales enriched at the cathode, thus promoting atrazine degradation via the conversion of hydroxyatrazine (HA) into N-isopropylammelide (NIPA), as confirmed by mass spectrometry data. Overall, the comprehensive approach adopted in this work, provides fundamental insights into the degradation pathways of atrazine in soil by SMFC technology, which is critical for practical applications, thus suggesting an effective approach to advance research in the field.
Collapse
Affiliation(s)
- Daniel Farkas
- Department of Microbial Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Kathryn Proctor
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Bongkyu Kim
- Department of Chemical Engineering and Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath BA2 7AY, UK; SELS Center, Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | | | | | - Mirella Di Lorenzo
- Department of Chemical Engineering and Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
2
|
Wang Q, Peng L, Wang P, Zhou Z, Li C, Chen C, Wang Y. Changes of atrazine dissipation and microbial community under coexistence of graphene oxide in river water. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132708. [PMID: 37856959 DOI: 10.1016/j.jhazmat.2023.132708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/14/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
The coexistence of herbicide atrazine (ATZ) and the nanomaterial graphene oxide (GO) in natural water bodies will be an inevitable scenario due to their widespread application and consequent release into aquatic ecosystems. But the dissipation of ATZ with GO and the response of the microbial community to their combination are still not clear. Here, we investigated the dissipation dynamics and transformation of ATZ with and without GO in river water after 21-d incubation. In the presence of GO, ATZ residue significantly decreased by 11%-43%; the transformation of ATZ markedly increased by 11%-17% when ATZ concentrations were not above 1.0 mg∙L-1. The direct adsorption of ATZ on GO, mainly via π-π interactions, proton transfer and hydrogen bonding, contributed 54%-68% of the total increased ATZ dissipation by GO. ATZ and ATZ+GO exerted effects of similar magnitude on microbial OTU numbers with an increase of bacterial diversity. The coexisting GO increased the relative abundance of ATZ-degradation bacteria and Chitinophagales, thus improving ATZ transformation. This work indicated that the coexistence of GO at environmentally relevant concentrations can effectively reduce ATZ residues and promote the transformation of ATZ to degradation products in river water; nevertheless, the potential risk of GO acting as an ATZ carrier should be given more prominence.
Collapse
Affiliation(s)
- Qinghai Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China.
| | - Lei Peng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Peixin Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Zixin Zhou
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China; College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Cui Li
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Chuansheng Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yu Wang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
3
|
Abass K, Pelkonen O, Rautio A. Chloro-s-triazines-toxicokinetic, Toxicodynamic, Human Exposure, and Regulatory Considerations. Curr Drug Metab 2021; 22:645-656. [PMID: 34218777 PMCID: PMC8811613 DOI: 10.2174/1389200222666210701164945] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
Chloro-s-triazines-atrazine, cyanazine, propazine, simazine, and terbuthylazine-are structurally similar herbicides, differing only in specific s-triazine4-and 6-N alkyl substituents. It is generally regarded that their toxicokinetics, such as, metabolic pathways, biological effects and toxicities, also share more similar features than the differences. Consequently, it is useful to compare their characteristics to potentially find useful structure-activity relationships or other similarities or differences regarding different active compounds, their metabolites, and biological effects including toxic outcomes. The ultimate goal of these exercises is to apply the summarized knowledge-as far as it is possible regarding a patchy and often inadequate database-to cross the in vitro-in vivo and animal-human borders and integrate the available data to enhance toxicological risk assessment for the benefit of humans and ecosystems.
Collapse
Affiliation(s)
- Khaled Abass
- Address correspondence to this author at the Faculty of Medicine, Arctic Health, University of Oulu, FI-90014 Oulu, Finland; E-mails: ,
| | | | | |
Collapse
|
4
|
Esquirol L, Peat TS, Sugrue E, Balotra S, Rottet S, Warden AC, Wilding M, Hartley CJ, Jackson CJ, Newman J, Scott C. Bacterial catabolism of s-triazine herbicides: biochemistry, evolution and application. Adv Microb Physiol 2020; 76:129-186. [PMID: 32408946 DOI: 10.1016/bs.ampbs.2020.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The synthetic s-triazines are abundant, nitrogen-rich, heteroaromatic compounds used in a multitude of applications including, herbicides, plastics and polymers, and explosives. Their presence in the environment has led to the evolution of bacterial catabolic pathways in bacteria that allow use of these anthropogenic chemicals as a nitrogen source that supports growth. Herbicidal s-triazines have been used since the mid-twentieth century and are among the most heavily used herbicides in the world, despite being withdrawn from use in some areas due to concern about their safety and environmental impact. Bacterial catabolism of the herbicidal s-triazines has been studied extensively. Pseudomonas sp. strain ADP, which was isolated more than thirty years after the introduction of the s-triazine herbicides, has been the model system for most of these studies; however, several alternative catabolic pathways have also been identified. Over the last five years, considerable detail about the molecular mode of action of the s-triazine catabolic enzymes has been uncovered through acquisition of their atomic structures. These structural studies have also revealed insights into the evolutionary origins of this newly acquired metabolic capability. In addition, s-triazine-catabolizing bacteria and enzymes have been used in a range of applications, including bioremediation of herbicides and cyanuric acid, introducing metabolic resistance to plants, and as a novel selectable marker in fermentation organisms. In this review, we cover the discovery and characterization of bacterial strains, metabolic pathways and enzymes that catabolize the s-triazines. We also consider the evolution of these new enzymes and pathways and discuss the practical applications that have been considered for these bacteria and enzymes. One Sentence Summary: A detailed understanding of bacterial herbicide catabolic enzymes and pathways offer new evolutionary insights and novel applied tools.
Collapse
Affiliation(s)
- Lygie Esquirol
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Thomas S Peat
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Elena Sugrue
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Sahil Balotra
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Sarah Rottet
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Andrew C Warden
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Matthew Wilding
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia; CSIRO Biomedical Manufacturing, Parkville, VIC, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Carol J Hartley
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Janet Newman
- CSIRO Biomedical Manufacturing, Parkville, VIC, Australia
| | - Colin Scott
- Biocatalysis & Synthetic Biology Team, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia; Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
5
|
Long M, Ilhan ZE, Xia S, Zhou C, Rittmann BE. Complete dechlorination and mineralization of pentachlorophenol (PCP) in a hydrogen-based membrane biofilm reactor (MBfR). WATER RESEARCH 2018; 144:134-144. [PMID: 30025265 DOI: 10.1016/j.watres.2018.06.071] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Complete biodegradation and mineralization of pentachlorophenol (PCP), a priority pollutant in water, is challenging for water treatment. In this study, a hydrogen (H2)-based membrane biofilm reactor (MBfR) was applied to treat PCP, along with nitrate and sulfate, which often coexist in contaminated groundwater. Throughout 120-days of continuous operation, almost 100% of up to 10 mg/L PCP was removed with minimal intermediate accumulation and in parallel with complete denitrification of 20 mg-N/L nitrate. PCP initially was reductively dechlorinated to phenol, which was then mineralized to CO2 through pathways that began with aerobic activation via monooxygenation by Xanthobacter and anaerobic activation via carboxylation by Azospira and Thauera. Sulfur cycling induced by SO42- reduction affected the microbial community: The dominant bacteria became sulfate-reducers Desulfomicrobium, sulfur-oxidizers Sulfuritalea and Flavobacterium. This study provides insights and a promising technology for bioremediation of water contaminated with PCP, nitrate, and sulfate.
Collapse
Affiliation(s)
- Min Long
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Biodesign Swette Center for Environmental Biotechnology, Arizona State University, USA
| | - Zehra Esra Ilhan
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, USA
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, USA.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, USA
| |
Collapse
|
6
|
Lignin peroxidase ligand access channel dysfunction in the presence of atrazine. Sci Rep 2018; 8:5989. [PMID: 29662099 PMCID: PMC5902622 DOI: 10.1038/s41598-018-24478-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/05/2018] [Indexed: 11/23/2022] Open
Abstract
Studies have determined that the white-rot basidiomycete Phanerochaete chrysosporium is capable of biodegrading the atrazine herbicide with its broad-specificity enzymes, but the particular role of biocatalysts is still unclear. In the case of lignin peroxidase, a ligand access channel connected to the active heme cofactor provides access to the active site for potential small-sized substrates. Experimental results show that lignin peroxidase is unable to degrade atrazine, therefore, the primary goal was to determine whether there is any connection between the structural and dynamical properties of the enzyme and its incapability to degrade atrazine. The results of protein-ligand docking and molecular dynamics study correlate with relevant, published NMR and molecular dynamics data, and give the answer to the lack of atrazine degradation by lignin peroxidase which has already been established by numerous authors using experimental methods. Atrazine has no access to heme edge due to the electric charges of the delocalized s-triazine ring. The detected phenomenon suggests that the small size of the ligands only is not a sufficient condition to access the active site. Their physicochemical properties influence the structural behaviour of the channel.
Collapse
|
7
|
Scherr KE, Bielská L, Kosubová P, Dinisová P, Hvězdová M, Šimek Z, Hofman J. Occurrence of Chlorotriazine herbicides and their transformation products in arable soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:283-293. [PMID: 28024812 DOI: 10.1016/j.envpol.2016.12.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 06/06/2023]
Abstract
Chlorotriazine herbicides (CTs) are widely used pest control chemicals. In contrast to groundwater contamination, little attention has been given to the circumstances of residue formation of parent compounds and transformation products in soils. Seventy-five cultivated floodplain topsoils in the Czech Republic were sampled in early spring of 2015, corresponding to a minimum of six months (current-use terbuthylazine, TBA) and a up to a decade (banned atrazine, AT and simazine, SIM) after the last herbicide application. Soil residues of parent compounds and nine transformation products were quantified via multiple residue analysis using liquid chromatography - tandem mass spectrometry of acetonitrile partitioning extracts (QuEChERS). Using principal component analysis (PCA), their relation to soil chemistry, crops and environmental parameters was determined. Of the parent compounds, only TBA was present in more than one sample. In contrast, at least one CT transformation product, particularly hydroxylated CTs, was detected in 89% of the sites, or 54% for banned triazines. Deethylated and bi-dealkylated SIM or AT residues were not detectable. PCA suggests the formation and/or retention of CT hydroxy-metabolite residues to be related to low soil pH, and a direct relation between TBA and soil organic carbon, and between deethyl-TBA and clay or Ca contents, respectively, the latter pointing towards distinct sorption mechanisms. The low historic application of simazine contrasted by the high abundance of its residues, and the co-occurrence with AT residues suggests the post-ban application of AT and SIM banned triazines as a permitted impurity of TBA formulations as a recent, secondary source. The present data indicate that topsoils do not contain abundant extractable residues of banned parent chlorotriazines, and are thus likely not the current source for related ground- and surface water contamination. In contrast, topsoils might pose a long-term source of TBA and CT transformation products for ground and surface water contamination.
Collapse
Affiliation(s)
- Kerstin E Scherr
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czechia; Institute for Environmental Biotechnology, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
| | - Lucie Bielská
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czechia
| | - Petra Kosubová
- Central Institute for Supervising and Testing in Agriculture, Hroznová 2, Brno, 603 00, Czechia
| | | | - Martina Hvězdová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czechia
| | - Zdeněk Šimek
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czechia
| | - Jakub Hofman
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czechia
| |
Collapse
|
8
|
Cortez I, Vitek CJ, Persans MW, Lowe KL. Seasonal detection of atrazine and atzA in man-made waterways receiving agricultural runoff in a subtropical, semi-arid environment (Hidalgo County, Texas, USA). World J Microbiol Biotechnol 2017; 33:38. [DOI: 10.1007/s11274-017-2207-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
|
9
|
Teng Y, Li X, Chen T, Zhang M, Wang X, Li Z, Luo Y. Isolation of the PCB-degrading bacteria Mesorhizobium sp. ZY1 and its combined remediation with Astragalus sinicus L. for contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:141-149. [PMID: 26292091 DOI: 10.1080/15226514.2015.1073667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A bacterial strain ZY1 capable of utilizing PCBs as its carbon source was isolated from the root nodules of Chinese milk vetch (Astragalus sinicus L.). The strain was identified as Mesorhizobium sp. according to its physiological-biochemical properties and the analysis of its 16S rRNA gene sequence. When the initial OD600 was 0.15, 62.7% of 15 mg L(-1) 3,3',4,4'-TCB in a liquid culture was degraded by Mesorhizobium sp. ZY1 within 10 days. Mesorhizobium sp. ZY1 also greatly increased the biotransformation of soil PCBs. Pot experiments indicated that the soil PCB concentrations of a single incubation of strain ZY1 (R) and a single planting of A. sinicus (P) decreased by 20.5% and 23.0%, respectively, and the concentration of PCBs in soil treated with A. sinicus and strain ZY1 decreased by 53.1%. We also observed that A. sinicus-Mesorhizobium sp. ZY1 treatment (PR) improved plant biomass and the concentration of PCBs in plants compared with a single A. sinicus planting treatment (P). The results suggest that the synergistic association between A. sinicus and PCBs-degrading Mesorhizobium sp. ZY1 can stimulate the phytoextraction of PCBs and the rhizosphere microflora to degrade PCBs, and might be a promising bioremediation strategy for PCB-contaminated soil.
Collapse
Affiliation(s)
- Ying Teng
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing China
| | - Xiufen Li
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing China
- b University of Chinese Academy of Sciences , Beijing China
| | - Ting Chen
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing China
| | - Manyun Zhang
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing China
- b University of Chinese Academy of Sciences , Beijing China
| | - Xiaomi Wang
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing China
- b University of Chinese Academy of Sciences , Beijing China
| | - Zhengao Li
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing China
| | - Yongming Luo
- a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing China
| |
Collapse
|
10
|
Kafilzadeh F, Farhadi N. Molecular identification and resistance investigation of atrazine degrading bacteria in the sediments of Karun River, Ahvaz, Iran. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715040098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Zhang Y, Sun G, Wang X, Wang L, Hu M, Wang Z, Tao Y. Efforts on membrane properties and enzymes by adding divalent cations and sodium carboxymethyl cellulose. Carbohydr Polym 2014; 106:94-100. [DOI: 10.1016/j.carbpol.2014.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/30/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
|
12
|
A Role ofBradyrhizobium elkaniiand Closely Related Strains in the Degradation of Methoxychlor in Soil and Surface Water Environments. Biosci Biotechnol Biochem 2014; 77:2222-7. [DOI: 10.1271/bbb.130439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Huyop F, Cooper R. Degradation of Millimolar Concentration of the Herbicide Dalapon (2,2-Dichloropropionic Acid) byRhizobiumSp. Isolated from Soil. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
14
|
Rehan M, Kluge M, Fränzle S, Kellner H, Ullrich R, Hofrichter M. Degradation of atrazine by Frankia alni ACN14a: gene regulation, dealkylation, and dechlorination. Appl Microbiol Biotechnol 2014; 98:6125-35. [DOI: 10.1007/s00253-014-5665-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 11/29/2022]
|
15
|
Denitrifying capacity of rhizobial strains of Argentine soils and herbicide sensitivity. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0619-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Udiković-Kolić N, Scott C, Martin-Laurent F. Evolution of atrazine-degrading capabilities in the environment. Appl Microbiol Biotechnol 2012; 96:1175-89. [DOI: 10.1007/s00253-012-4495-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 11/30/2022]
|
17
|
Changey F, Devers-Lamrani M, Rouard N, Martin-Laurent F. In vitro evolution of an atrazine-degrading population under cyanuric acid selection pressure: evidence for the selective loss of a 47 kb region on the plasmid ADP1 containing the atzA, B and C genes. Gene 2011; 490:18-25. [PMID: 21959051 DOI: 10.1016/j.gene.2011.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/05/2011] [Accepted: 09/09/2011] [Indexed: 02/02/2023]
Abstract
The adaptation of microorganisms to pesticide biodegradation relies on the recruitment of catabolic genes by horizontal gene transfer and homologous recombination mediated by insertion sequences (IS). This environment-friendly function is maintained in the degrading population but it has a cost which could diminish its fitness. The loss of genes in the course of evolution being a major mechanism of ecological specialization, we mimicked evolution in vitro by sub-culturing the atrazine-degrading Pseudomonas sp. ADP in a liquid medium containing cyanuric acid as the sole source of nitrogen. After 120 generations, a new population evolved, which replaced the original one. This new population grew faster on cyanuric acid but showed a similar cyanuric acid degrading ability. Plasmid profiles and Southern blot analyses revealed the deletion of a 47 kb region from pADP1 containing the atzABC genes coding for the enzymes that turn atrazine into cyanuric acid. Long PCR and sequencing analyses revealed that this deletion resulted from a homologous recombination between two direct repeats of a 110-bp, identical to ISPps1 of Pseudomonas huttiensis, flanking the deleted 47 kb region. The loss of a region containing three functional genes constitutively expressed thereby constituting a genetic burden under cyanuric acid selection pressure was responsible for the gain in fitness of the new population. It highlights the IS-mediated plasticity of the pesticide-degrading potential and shows that IS not only favours the expansion of the degrading genetic potential thanks to dispersion and duplication events but also contribute to its reduction thanks to deletion events.
Collapse
Affiliation(s)
- F Changey
- INRA, Université de Bourgogne, Microbiologie du Sol et de l'Environnement, 17 Rue Sully, 21065 Dijon Cedex, France
| | | | | | | |
Collapse
|
18
|
Wang J, Zhu L, Liu A, Ma T, Wang Q, Xie H, Wang J, Jiang T, Zhao R. Isolation and characterization of an Arthrobacter sp. strain HB-5 that transforms atrazine. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2011; 33:259-266. [PMID: 20686824 DOI: 10.1007/s10653-010-9337-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 07/21/2010] [Indexed: 05/29/2023]
Abstract
A bacterial strain (HB-5) capable of utilizing atrazine as sole carbon and nitrogen source for growth was isolated from an industrial wastewater sample by enrichment culture. The isolate was identified as Arthrobacter sp. according to its phenotypic features, physiologic and biochemical characteristics, and phylogenetic analysis. The strain exhibited faster atrazine degradation rates in atrazine-containing mineral media than the well-characterized atrazine-degrading bacteria Pseudomonas sp. ADP. The broad optimum pH and temperature ranges observed for strain HB-5 indicate that it has potential for remediation of atrazine-contaminated sites. Strain HB-5 first metabolizes atrazine to yield hydroxyatrazine. Then, the bacterium metabolizes hydroxyatrazine to cyanuric acid, but could not mineralize atrazine.
Collapse
Affiliation(s)
- Jinhua Wang
- College of Resources and Environment, Shandong Agriculture University, 271018 Taian, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tu C, Teng Y, Luo Y, Li X, Sun X, Li Z, Liu W, Christie P. Potential for biodegradation of polychlorinated biphenyls (PCBs) by Sinorhizobium meliloti. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:1438-1444. [PMID: 21195547 DOI: 10.1016/j.jhazmat.2010.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 10/29/2010] [Accepted: 12/06/2010] [Indexed: 05/30/2023]
Abstract
Resting cell assay and soil microcosms were set up to investigate the biodegradation capability and metabolic intermediate of polychlorinated biphenyls (PCBs) by a rhizobial strain Sinorhizobium meliloti. Biodegradation was observed immediately after 2,4,4'-TCB was supplied as a sole source of carbon and energy in liquid cultures. After 6 days, the percent biodegradation of 2,4,4'-TCB was 77.4% compared with the control. The main intermediate was identified as 2-hydroxy-6-oxo-6-phenylhex-2,4-dienoic acid (HOPDA) for 2,4,4'-TCB as determined by gas chromatography-mass spectrometry (GC-MS). Inoculation with S. meliloti greatly enhanced the degradation of target PCB mixtures in the soil. Moreover, soil culturable bacteria, fungi and biphenyl degrading bacteria counts showed significant increase after inoculation of S. meliloti. This study suggests that S. meliloti is promising in PCB bioremediation.
Collapse
Affiliation(s)
- Chen Tu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang H, Chen X, Xing X, Hao X, Chen D. Transgenic tobacco plants expressing atzA exhibit resistance and strong ability to degrade atrazine. PLANT CELL REPORTS 2010; 29:1391-9. [PMID: 20960204 DOI: 10.1007/s00299-010-0924-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 08/11/2010] [Accepted: 09/12/2010] [Indexed: 05/30/2023]
Abstract
Atrazine chlorohydrolase (AtzA) catalyzes hydrolytic dechlorination and can be used in detoxification of atrazine, a herbicide widely employed in the control of broadleaf weeds. In this study, to investigate the potential use of transgenic tobacco plants for phytoremediation of atrazine, atzA genes from Pseudomonas sp. strain ADP and Arthrobacter strain AD1 were transferred into tobacco. Three and four transgenic lines, expressing atzA-ADP and atzA-AD1, respectively, were produced by Agrobacterium-mediated transformation. Molecular characterization including PCR, RT-PCR and Southern blot revealed that atzA was inserted into the tobacco genome and stably inherited by and expressed in the progenies. Seeds of the T(1) transgenic lines had a higher germination percentage and longer roots than the untransformed plants in the presence of 40-150 mg/l atrazine. The T(2) transgenic lines grew taller, gained more dry biomass, and had higher total chlorophyll content than the untransformed plants after growing in soil containing 1 or 2 mg/kg atrazine for 90 days. No atrazine residue remained in the soil in which the T(2) transgenic lines were grown (except 401), while, in the case of the untransformed plants, 0.91 mg (81.3%) and 1.66 mg (74.1%) of the atrazine still remained in the soil containing 1 and 2 mg/kg of atrazine, respectively, indicating that the transgenic lines could degrade atrazine effectively. The transgenic tobacco lines developed could be useful for phytoremediation of atrazine-contaminated soil and water.
Collapse
Affiliation(s)
- Huizhuan Wang
- Laboratory of Molecular Genetics, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
Drouin P, Sellami M, Prévost D, Fortin J, Antoun H. Tolerance to agricultural pesticides of strains belonging to four genera of Rhizobiaceae. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2010; 45:757-765. [PMID: 20936564 DOI: 10.1080/03601234.2010.515168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In order to determine their tolerance to pesticides, 122 strains of rhizobia isolated from different geographical regions, and belonging to the genera Rhizobium, Mesorhizobium, Sinorhizobium and Bradyrhizobium were tested against eight herbicides, four fungicides and five insecticides. Sensitivity to the pesticides was measured by using the filter paper disk method at four concentrations, 0.45, 4.5, 45 and 450 μg per disk. When the pesticides were used at 0.45 μg per disk, a concentration similar to that found when pesticides are applied under field conditions, no inhibition was observed. Strains growth was affected at concentrations of 45 and 450 μg pesticide per disk. These higher concentrations can be encountered when seeds are treated with pesticides. Pesticides tolerance level was correlated to pesticide function, i.e rhizobial strains were more tolerant to insecticides, followed by herbicides and then fungicides. Two fungicides, captan and mancozeb, inhibited the highest number of strains. Only one insecticide, carbaryl, affected the growth of some rhizobial strains. Strains isolated from the arctic (Mesorhizobium spp. and R. leguminosarum bv. viciae), a putative pesticides-free environment, were either less or equally affected by pesticides compared to strains isolated from agricultural regions.
Collapse
Affiliation(s)
- Pascal Drouin
- Département des Sols et de Génie Agroalimentaire, Université Laval, Québec, Québec, Canada.
| | | | | | | | | |
Collapse
|
22
|
Yang H, McCoy EL, Grewal PS, Dick WA. Dissolved nutrients and atrazine removal by column-scale monophasic and biphasic rain garden model systems. CHEMOSPHERE 2010; 80:929-934. [PMID: 20542315 DOI: 10.1016/j.chemosphere.2010.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 05/29/2023]
Abstract
Rain gardens are bioretention systems that have the potential to reduce peak runoff flow and improve water quality in a natural and aesthetically pleasing manner. We compared hydraulic performance and removal efficiencies of nutrients and atrazine in a monophasic rain garden design versus a biphasic design at a column-scale using simulated runoff. The biphasic rain garden was designed to increase retention time and removal efficiency of runoff pollutants by creating a sequence of water saturated to unsaturated conditions. We also evaluated the effect of C substrate availability on pollutant removal efficiency in the biphasic rain garden. Five simulated runoff events with various concentrations of runoff pollutants (i.e. nitrate, phosphate, and atrazine) were applied to the monophasic and biphasic rain gardens once every 5d. Hydraulic performance was consistent over the five simulated runoff events. Peak flow was reduced by approximately 56% for the monophasic design and 80% for the biphasic design. Both rain garden systems showed excellent removal efficiency of phosphate (89-100%) and atrazine (84-100%). However, significantly (p<0.001) higher removal of nitrate was observed in the biphasic (42-63%) compared to the monophasic rain garden (29-39%). Addition of C substrate in the form of glucose increased removal efficiency of nitrate significantly (p<0.001), achieving up to 87% removal at a treatment C/N ratio of 2.0. This study demonstrates the importance of retention time, environmental conditions (i.e. saturated/unsaturated conditions), and availability of C substrate for bioremediation of pollutants, especially nitrates, in rain gardens.
Collapse
Affiliation(s)
- Hanbae Yang
- Environmental Science Graduate Program, The Ohio State University, 590 Woody Hayes Dr., Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
23
|
de Souza ML, Newcombe D, Alvey S, Crowley DE, Hay A, Sadowsky MJ, Wackett LP. Molecular basis of a bacterial consortium: interspecies catabolism of atrazine. Appl Environ Microbiol 2010; 64:178-84. [PMID: 16349478 PMCID: PMC124690 DOI: 10.1128/aem.64.1.178-184.1998] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas sp. strain ADP contains the genes, atzA, -B, and -C, that encode three enzymes which metabolize atrazine to cyanuric acid. Atrazine-catabolizing pure cultures isolated from around the world contain genes homologous to atzA, -B, and -C. The present study was conducted to determine whether the same genes are present in an atrazine-catabolizing bacterial consortium and how the genes and metabolism are subdivided among member species. The consortium contained four or more bacterial species, but two members, Clavibacter michiganese ATZ1 and Pseudomonas sp. strain CN1, collectively mineralized atrazine. C. michiganese ATZ1 released chloride from atrazine, produced hydroxyatrazine, and contained a homolog to the atzA gene that encoded atrazine chlorohydrolase. C. michiganese ATZ1 stoichiometrically metabolized hydroxyatrazine to N-ethylammelide and contained genes homologous to atzB and atzC, suggesting that either a functional AtzB or -C catalyzed N-isopropylamine release from hydroxyatrazine. C. michiganese ATZ1 grew on isopropylamine as its sole carbon and nitrogen source, explaining the ability of the consortium to use atrazine as the sole carbon and nitrogen source. A second consortium member, Pseudomonas sp. strain CN1, metabolized the N-ethylammelide produced by C. michiganese ATZ1 to transiently form cyanuric acid, a reaction catalyzed by AtzC. A gene homologous to the atzC gene of Pseudomonas sp. strain ADP was present, as demonstrated by Southern hybridization and PCR. Pseudomonas sp. strain CN1, but not C. michiganese, metabolized cyanuric acid. The consortium metabolized atrazine faster than did C. michiganese individually. Additionally, the consortium metabolized a much broader set of triazine ring compounds than did previously described pure cultures in which the atzABC genes had been identified. These data begin to elucidate the genetic and metabolic bases of catabolism by multimember consortia.
Collapse
Affiliation(s)
- M L de Souza
- Department of Biochemistry, Biological Processes Technology Institute, Center for Biodegradation Research & Informatics, Department of Microbiology, and Department of Soil, Water and Climate, University of Minnesota, St. Paul, Minnesota 55108, and Department of Soil and Environmental Sciences, University of California, Riverside, California 92521
| | | | | | | | | | | | | |
Collapse
|
24
|
Arbeli Z, Fuentes C. Prevalence of the gene trzN and biogeographic patterns among atrazine-degrading bacteria isolated from 13 Colombian agricultural soils. FEMS Microbiol Ecol 2010; 73:611-23. [PMID: 20597985 DOI: 10.1111/j.1574-6941.2010.00905.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The following study evaluated the diversity and biogeography of 83 new atrazine-degrading bacteria and the composition of their atrazine degradation genes. These strains were isolated from 13 agricultural soils and grouped according to rep-PCR genomic fingerprinting into 11 major clusters, which showed biogeographic patterns. Three clusters (54 strains) belonged to the genus Arthrobacter, seven clusters (28 strains) were similar to the genus Nocardioides and only one strain was a gram-negative from the genus Ancylobacter. PCR assays for the detection of the genes atzA, B, C, D, E, F and trzN conducted with each of the 83 strains revealed that 82 strains (all gram positive) possessed trzN, 74 of them possessed the combination of trzN, atzB and atzC, while only the gram-negative strain had atzA. A similar PCR assay for the two analogous genes, atzA and trzN, responsible for the first step of atrazine degradation, was performed with DNA extracted directly from the enrichment cultures and microcosms spiked with atrazine. In these assays, the gene trzN was detected in each culture, while atzA was detected in only six out of 13 soils. These results raise an interesting hypothesis on the evolutionary ecology of the two atrazine chlorohydrolase genes (i.e. atzA and trzN) and about the biogeography of atrazine-degrading bacteria.
Collapse
Affiliation(s)
- Ziv Arbeli
- Faculty of Agronomy, National University of Colombia, Bogotá, Colombia.
| | | |
Collapse
|
25
|
Jason Krutz L, Shaner DL, Weaver MA, Webb RM, Zablotowicz RM, Reddy KN, Huang Y, Thomson SJ. Agronomic and environmental implications of enhanced s-triazine degradation. PEST MANAGEMENT SCIENCE 2010; 66:461-481. [PMID: 20127867 DOI: 10.1002/ps.1909] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Novel catabolic pathways enabling rapid detoxification of s-triazine herbicides have been elucidated and detected at a growing number of locations. The genes responsible for s-triazine mineralization, i.e. atzABCDEF and trzNDF, occur in at least four bacterial phyla and are implicated in the development of enhanced degradation in agricultural soils from all continents except Antarctica. Enhanced degradation occurs in at least nine crops and six crop rotation systems that rely on s-triazine herbicides for weed control, and, with the exception of acidic soil conditions and s-triazine application frequency, adaptation of the microbial population is independent of soil physiochemical properties and cultural management practices. From an agronomic perspective, residual weed control could be reduced tenfold in s-triazine-adapted relative to non-adapted soils. From an environmental standpoint, the off-site loss of total s-triazine residues could be overestimated 13-fold in adapted soils if altered persistence estimates and metabolic pathways are not reflected in fate and transport models. Empirical models requiring soil pH and s-triazine use history as input parameters predict atrazine persistence more accurately than historical estimates, thereby allowing practitioners to adjust weed control strategies and model input values when warranted.
Collapse
Affiliation(s)
- L Jason Krutz
- United States Department of Agriculture, Agriculture Research Service, Crop Production Systems Research Unit, Stoneville, MS 38776, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Macías-Flores A, Tafoya-Garnica A, Ruiz-Ordaz N, Salmerón-Alcocer A, Juárez-Ramírez C, Ahuatzi-Chacón D, Mondragón-Parada ME, Galíndez-Mayer J. Atrazine biodegradation by a bacterial community immobilized in two types of packed-bed biofilm reactors. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0125-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Yang C, Li Y, Zhang K, Wang X, Ma C, Tang H, Xu P. Atrazine degradation by a simple consortium of Klebsiella sp. A1 and Comamonas sp. A2 in nitrogen enriched medium. Biodegradation 2009; 21:97-105. [DOI: 10.1007/s10532-009-9284-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 07/01/2009] [Indexed: 11/30/2022]
|
28
|
Cejudo-Espinosa E, Ramos-Valdivia AC, Esparza-García F, Moreno-Casasola P, Rodriguez-Vazquez R. Short-term accumulation of atrazine by three plants from a wetland model system. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 56:201-208. [PMID: 18654811 DOI: 10.1007/s00244-008-9193-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 06/23/2008] [Indexed: 05/26/2023]
Abstract
This work describes the accumulation and distribution of the herbicide atrazine in soil, water, and roots from three wetland model systems using the monocots Typha domingensis, Sagittaria lancifolia, and Echinochloa pyramidalis. Results were analyzed from a 3(3) full factorial experimental design, in order to describe the effect of accumulation of atrazine and times of exposure in the species evaluated. We found that accumulation depends on the species and the herbicide concentration; about 30% was accumulated in soil, 40% in roots, and 10-20% in water. By the end of the experiment, E. pyramidalis accumulated 8.47 mg/l of atrazine and 14.39 mg/l T. domingensis; in all cases, adsorption accounted for 1.4%, fitting a Langmuir model with a k(d) of 14.47.
Collapse
Affiliation(s)
- Eduardo Cejudo-Espinosa
- Departamento de Biotecnología y Bioingeniería CINVESTAV, Av. IPN 2508 San Pedro Zacatenco, México, D.F. 07360, México.
| | | | | | | | | |
Collapse
|
29
|
Govantes F, Porrúa O, García-González V, Santero E. Atrazine biodegradation in the lab and in the field: enzymatic activities and gene regulation. Microb Biotechnol 2008; 2:178-85. [PMID: 21261912 PMCID: PMC3815838 DOI: 10.1111/j.1751-7915.2008.00073.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Atrazine is an herbicide of the s‐triazine family that is used primarily as a nitrogen source by degrading microorganisms. While many catabolic pathways for xenobiotics are subjected to catabolic repression by preferential carbon sources, atrazine utilization is repressed in the presence of preferential nitrogen sources. This phenomenon appears to restrict atrazine elimination in nitrogen‐fertilized soils by indigenous organisms or in bioaugmentation approaches. The mechanisms of nitrogen control have been investigated in the model strain Pseudomonas sp. ADP. Expression of atzA, atzB ad atzC, involved in the conversion of atrazine in cyanuric acid, is constitutive. The atzDEF operon, encoding the enzymes responsible for cyanuric acid mineralization, is a target for general nitrogen control. Regulation of atzDEF involves a complex interplay between the global regulatory elements of general nitrogen control and the pathway‐specific LysR‐type regulator AtzR. In addition, indirect evidence suggests that atrazine transport may also be a target for nitrogen regulation in this strain. The knowledge about regulatory mechanisms may allow the design of rational bioremediation strategies such as biostimulation using carbon sources or the use of mutant strains impaired in the assimilation of nitrogen sources for bioaugmentation.
Collapse
Affiliation(s)
- Fernando Govantes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Spain.
| | | | | | | |
Collapse
|
30
|
Mandal SM, Pati BR, Das AK, Ghosh AK. Characterization of a symbiotically effective Rhizobium resistant to arsenic: Isolated from the root nodules of Vigna mungo (L.) Hepper grown in an arsenic-contaminated field. J GEN APPL MICROBIOL 2008; 54:93-9. [DOI: 10.2323/jgam.54.93] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Singh SB, Lal SP, Pant S, Kulshrestha G. Degradation of atrazine by an acclimatized soil fungal isolate. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2008; 43:27-33. [PMID: 18161570 DOI: 10.1080/03601230701735227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A fungal strain able to use atrazine (2-chloro-4-ethylamino-5-isopropylamino-1,3,5-triazine) as a source of nitrogen was isolated from a corn field soil that has been previously treated with the herbicide. This strain was purified and acclimatized to atrazine at a higher level in the laboratory. A supplemented N was required to trigger the reaction. Atrazine was degraded at a faster rate in inoculated mineral salt medium (MSM) than non-inoculated MSM. Within 20 days, nearly 34% of the atrazine was degraded in inoculated medium while only 2% of the herbicide was degraded in non-inoculated medium. Degradation of atrazine by the isolated fungal strain was also studied in sterile and non-sterile soil to determine the compatibility of the isolated strain with native microorganisms in soil. The degradation of atrazine was found to be more in inoculated sterile soil than in inoculated non-sterile soil. Cell free extract (CFE) of fungal mycelium degraded about 50% of the atrazine in buffer in 96 hours compared to the control. Four atrazine metabolites were isolated and characterized by LCMS. On the basis of morphological parameters the isolate was identified as Penicillium species. Results indicated that the microorganism may be useful for remediation of atrazine-contaminated soil.
Collapse
Affiliation(s)
- Shashi B Singh
- Division of Agricultural Chemicals, Indian Agricultural Research Institute, New Delhi, India.
| | | | | | | |
Collapse
|
32
|
Li Q, Li Y, Zhu X, Cai B. Isolation and characterization of atrazine-degrading Arthrobacter sp. AD26 and use of this strain in bioremediation of contaminated soil. J Environ Sci (China) 2008; 20:1226-1230. [PMID: 19143347 DOI: 10.1016/s1001-0742(08)62213-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A bacterial strain (AD26) capable of utilizing atrazine as a sole nitrogen source for growth was isolated from an industrial wastewater sample by enrichment culture. The 16S rRNA gene sequencing identified AD26 as an Arthrobacter sp. PCR assays indicated that AD26 contained atrazine-degrading genes trzN and atzBC. The trzN gene of AD26 only differs from the trzN of Arthrobacter aurescens TC1 by one base (A-->T at 907) and one amino acid (Met-->Leu at 303). The specific activity of trzN of AD26 in crude atrazine-containing minimal media than two well characterized atrazine-degrading bacteria, Pseudomonas sp. ADP and Arthrobacter aurescens TC1. After incubating for 48 h at 30 degrees C, the OD(600) of AD26 reached 2.6 compared with 1.33 of ADP. AD26 was capable of degrading 500 mg/L of atrazine in minimal medium at 95% in 72 h, while the degradative rates by TC1 and ADP were only 90% and 86%, respectively. A bioremediation trial of contaminated soil has indicated that AD26 can degrade as high as 98% of atrazine contained in soil (300 mg/kg) after incubating for 20 d at 26 degrees C, nominating this strain as a good candidate for use in bioremediation programs.
Collapse
Affiliation(s)
- Qingyan Li
- Department of Microbiology, Ministry of Education, Nankai University, Tianjin 300071, China.
| | | | | | | |
Collapse
|
33
|
Rice PJ, Rice PJ, Arthur EL, Barefoot AC. Advances in pesticide environmental fate and exposure assessments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:5367-76. [PMID: 17552539 DOI: 10.1021/jf063764s] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Globalization of markets and the growing world population increase threats of invasive and exotic species and place greater demands on food and fiber production. Pest management in both agricultural and nonagricultural settings employs established practices and new biological, chemical, and management technologies. Pesticides are an essential tool in integrated pest management. Without pesticides a significant percentage of food and fiber crops would be lost, infectious diseases would increase, and valuable native habitats would be devastated. Therefore, it is important to understand the environmental fate of pesticides and assess their potential exposure and associated risks to human health and the environment. This paper summarizes the Advances in Pesticide Environmental Fate and Exposure Assessment symposium held at the 231st National Meeting of the American Chemical Society (Atlanta, GA, 2006). The focus of the symposium was to provide current information on advances in pesticide environmental fate and exposure assessments. Thirty papers were presented on advances ranging from subcellular processes to watershed-scale studies on topics including chemical degradation, sorption, and transport; improved methodologies; use of modeling and predictive tools; exposure assessment; and treatment and remediation. This information is necessary to develop more effective pesticide use and management practices, to better understand pesticide fate and associated exposures and risks, to develop mitigation and remediation strategies, and to establish sound science-based regulations.
Collapse
Affiliation(s)
- Pamela J Rice
- Agricultural Research Service, U.S. Department of Agriculture, University of Minnesota, 1991 Upper Buford Circle, St. Paul, Minnesota 55108, USA.
| | | | | | | |
Collapse
|
34
|
Segev O, Abeliovich A, Kushmaro A. Biodegradation of dibromoneopentyl glycol by a bacterial consortium. CHEMOSPHERE 2007; 68:958-64. [PMID: 17313969 DOI: 10.1016/j.chemosphere.2007.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 01/07/2007] [Accepted: 01/08/2007] [Indexed: 05/14/2023]
Abstract
Dibromoneopentyl glycol (DBNPG) is a brominated flame retardant that is used as an additive during the manufacture of plastic polymers and as a chemical intermediate for other flame retardants. It is classified as not readily biodegradable and based on experimental studies in animals is believed to be a carcinogen. We have demonstrated, to the best of our knowledge for the first time, the complete biodegradation of DBNPG under aerobic conditions. Total organic carbon (TOC) analysis indicates the complete mineralization of DBNPG. DBNPG biodegradation was accompanied by the release of bromide into the medium, probably due to a biological debromination reaction by bacterial consortia. A denaturing gradient gel electrophoresis (DGGE) analysis of PCR amplified 16S rRNA gene was used, to characterize the bacterial consortia involved in DBNPG biodegradation. At least seven bacterial species were found to be involved in this process, among them species with similarity to strains that are known for their dehalogenating ability.
Collapse
Affiliation(s)
- Osnat Segev
- The Unit of Environmental Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Be'er-Sheva 84105, Israel
| | | | | |
Collapse
|
35
|
Sulmon C, Gouesbet G, Binet F, Martin-Laurent F, El Amrani A, Couée I. Sucrose amendment enhances phytoaccumulation of the herbicide atrazine in Arabidopsis thaliana. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 145:507-15. [PMID: 16769161 DOI: 10.1016/j.envpol.2006.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/14/2006] [Accepted: 04/19/2006] [Indexed: 05/10/2023]
Abstract
Growth in the presence of sucrose was shown to confer to Arabidopsis thaliana (thale cress or mustard weed) seedlings, under conditions of in vitro culture, a high level of tolerance to the herbicide atrazine and to other photosynthesis inhibitors. This tolerance was associated with root-to-shoot transfer and accumulation of atrazine in shoots, which resulted in significant decrease of herbicide levels in the growth medium. In soil microcosms, application of exogenous sucrose was found to confer tolerance and capacity to accumulate atrazine in Arabidopsis thaliana plants grown on atrazine-contaminated soil, and resulted in enhanced decontamination of the soil. Application of sucrose to plants grown on herbicide-polluted soil, which increases plant tolerance and xenobiotic absorption, thus appears to be potentially useful for phytoremediation.
Collapse
Affiliation(s)
- Cécile Sulmon
- UMR 6553 ECOBIO, CNRS, Université de Rennes 1, Campus de Beaulieu, bâtiment 14A, F-35042 Rennes Cedex, France
| | | | | | | | | | | |
Collapse
|
36
|
Dehghani M, Nasseri S, Amin S, Naddafee K, Taghavi M, Yunesian M, Maleky N. Isolation and identification of atrazine-degrading bacteria from corn field soil in Fars province of Iran. Pak J Biol Sci 2007; 10:84-9. [PMID: 19069990 DOI: 10.3923/pjbs.2007.84.89] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study several agricultural fields with a long history of atrazine application in Fars province of Iran have been explored for their potential of atrazine biodegradation. After several subculturing for a period of 300 days acclimation, leads to an enhancement of atrazine biodegradation rate. A successful enrichment culture with a high capability for atrazine degradation was obtained (88%). A combination of enrichment culture technique, in a basal salt medium containing atrazine and carbon sources under nitrogen limitation and plating on indicator atrazine agar, have permitted the isolation of bacterial consortium with high capability of using atrazine as a nitrogen source. Seven gram-negative and one gram-positive bacterial strain, which were able to use this herbicide as a sole source of nitrogen, were isolated from Darehasalouie Kavar corn field soil. Based on physiological, biochemical and nutritional characteristics, the isolated bacteria were identified as Pseudomonas alcaligenes, Acidovorax sp., Pseudomonas putida, Ralstonia eutrophus, Pseudomonas syiringe, Erwinia tracheiphila, Entrobacter agglomerans and Micrococcus varians. Therefore, the bacterial consortium in liquid culture containing carbon sources and atrazine as a sole source of nitrogen, degrade added atrazine more than 80%.
Collapse
Affiliation(s)
- M Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
37
|
Tao QH, Wang DS, Tang HX. Effect of surfactants at low concentrations on the sorption of atrazine by natural sediment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2006; 78:653-60. [PMID: 16929634 DOI: 10.2175/106143006x115886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A series of experiments were carried out to determine the effect of surfactants at low concentrations on the sorption of atrazine by natural sediments. With surfactant concentrations ranging from 0 to 20 mg/ L, anionic and cationic surfactants appreciably reduce the adsorption of atrazine, while nonionic surfactant decreases the adsorption of atrazine at concentrations equal to or less than 1 mg/L and increases adsorption at higher concentrations. Desorption of atrazine in the presence of different sodium dodecylbenzene sulfonate (SDBS) concentrations shows that a portion of the bound pesticide resists desorption in the SDBS free system. However, the addition of SDBS accelerates the desorption of atrazine. Furthermore, the nature of sediment and the contacting sequence of SDBS, at 10 mg/L, with the sediment, also influence the adsorption of atrazine. The conclusions in this study could be explained partially by the effect of the type and concentration of surfactants and the characteristics of sediments.
Collapse
Affiliation(s)
- Qing H Tao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing.
| | | | | |
Collapse
|
38
|
Satsuma K. Characterisation of new strains of atrazine-degrading Nocardioides sp. isolated from Japanese riverbed sediment using naturally derived river ecosystem. PEST MANAGEMENT SCIENCE 2006; 62:340-9. [PMID: 16493696 DOI: 10.1002/ps.1172] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A Gram-positive bacterial strain able to degrade the herbicide atrazine was isolated using a simple model ecosystem constituted with Japanese riverbed sediment and its associated water (microcosm). Treatment of the water phase of the microcosm with 1 mg litre-1 [ring-14C]atrazine resulted in the rapid degradation of atrazine after a 10 day lag phase period. The [ring-14C]cyanuric acid formed was transiently accumulated as an intermediary metabolite in the water phase and was subsequently mineralised through triazine ring cleavage. Possible atrazine-degrading microbes suspended in the water phase of the microcosm were isolated by the plating method while rapid degradation of atrazine was in progress. Among the 48 strains that were isolated, 47 exhibited atrazine-degrading activity. From these 47 isolates, 12 strains that were randomly selected were found to identically convert atrazine to cyanuric acid via hydroxyatrazine. Polymerase chain reaction (PCR) amplification of the genes corresponding to atrazine degradation revealed that these strains at least carried the genes trzN (atrazine chlorohydrolase from Nocardioides C190) and atzC (N-isopropylammelide isopropyl amidohydrolase from Pseudomonas ADP). Physiological characteristics and 16S rDNA partial sequences of six strains that were further selected strongly suggested that all these isolates originated from the same Nocardioides sp. strain. Additionally, only one isolate could mineralise the triazine ring of cyanuric acid. Based on microscopic observations, this strain appears to be a two-membered microbial consortium consisting of Nocardioides sp. and a Gram-negative bacterium. In conclusion, atrazine biodegradation in the microcosm appeared to occur predominantly by Nocardioides sp. to yield cyanuric acid, which could be mineralised by the other relatively ubiquitous microbes.
Collapse
Affiliation(s)
- Koji Satsuma
- Chemistry Division, The Institute of Environmental Toxicology, 303-0043 Ibaraki, Japan.
| |
Collapse
|
39
|
Devers M, Henry S, Hartmann A, Martin-Laurent F. Horizontal gene transfer of atrazine-degrading genes (atz) from Agrobacterium tumefaciens St96-4 pADP1::Tn5 to bacteria of maize-cultivated soil. PEST MANAGEMENT SCIENCE 2005; 61:870-80. [PMID: 16032656 DOI: 10.1002/ps.1098] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The plasmid pADP1::Tn5 derived from pADP1[Atr+] carrying a Tn5 transposon conferring kanamycin and streptomycin resistances was constructed and introduced in Agrobacterium tumefaciens St96-4. This genetically modified strain was inoculated (approximately 10(8) cfu g(-1)) in potted soils planted with maize and treated or not with atrazine (1.5 mg kg(-1)). Bulk and maize rhizosphere soils were sampled 39 days after planting to look for soil indigenous bacteria that had acquired pADP1::Tn5. Four transconjugants were isolated from four different soil samples. The estimated transfer frequency of pADP1::Tn5 was 10(-4) per donor. Maize rhizosphere and atrazine treatment had no obvious effect on pADP1::Tn5 transfer frequency. The sequencing of the 16S rDNA sequences of the transconjugants revealed that they were almost identical and highly similar to that of Variovorax spp (97%). In addition, their characterization suggested that the atzA and atzB genes had been transferred from pADP1::Tn5 to the bacterial chromosome in two of the four transconjugants. These data suggest that the atz degrading genes are horizontally transferred in soil and possibly subjected to gene rearrangement.
Collapse
Affiliation(s)
- Marion Devers
- UMR Microbiologie et Géochimie des Sols, INRA-Université de Bourgogne, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
| | | | | | | |
Collapse
|
40
|
Depret G, Houot S, Allard MR, Breuil MC, Nouaïm R, Laguerre G. Long-term effects of crop management on Rhizobium leguminosarum biovar viciae populations. FEMS Microbiol Ecol 2004; 51:87-97. [PMID: 16329858 DOI: 10.1016/j.femsec.2004.07.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 07/08/2004] [Accepted: 07/19/2004] [Indexed: 11/23/2022] Open
Abstract
Little is known about factors that affect the indigenous populations of rhizobia in soils. We compared the abundance, diversity and genetic structure of Rhizobium leguminosarum biovar viciae populations in soils under different crop managements, i.e., wheat and maize monocultures, crop rotation, and permanent grassland. Rhizobial populations were sampled from nodules of pea- or vetch plants grown in soils collected at three geographically distant sites in France, each site comprising a plot under long-term maize monoculture. Molecular characterization of isolates was performed by PCR-restriction fragment length polymorphism of 16S-23S rDNA intergenic spacer as a neutral marker of the genomic background, and PCR-restriction fragment length 0polymorphism of a nodulation gene region, nodD, as a marker of the symbiotic function. The diversity, estimated by richness in types and Simpson's index, was consistently and remarkably lower in soils under maize monoculture than under the other soil managements at the three sites, except for the permanent grassland. The highest level of diversity was found under wheat monoculture. Nucleotide sequences of the main rDNA intergenic spacer types were determined and sequence analysis showed that the prevalent genotypes in the three maize fields were closely related. These results suggest that long-term maize monoculturing decreased the diversity of R. leguminosarum biovar viciae populations and favored a specific subgroup of genotypes, but the size of these populations was generally preserved. We also observed a shift in the distribution of the symbiotic genotypes within the populations under maize monoculture, but the diversity of the symbiotic genotypes was less affected than that of IGS types. The possible effect of such changes on biological nitrogen fixation remains unknown and this requires further investigation.
Collapse
Affiliation(s)
- Géraldine Depret
- Microbiologie et Géochimie des Sols, Institut National de la Recherche Agronomique, UMR INRA-Universite de Bourgogne, INRA, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | | | | | | | | | | |
Collapse
|
41
|
Sajjaphan K, Shapir N, Wackett LP, Palmer M, Blackmon B, Tomkins J, Sadowsky MJ. Arthrobacter aurescens TC1 atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-kilobase region and are functional in Escherichia coli. Appl Environ Microbiol 2004; 70:4402-7. [PMID: 15240330 PMCID: PMC444770 DOI: 10.1128/aem.70.7.4402-4407.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arthrobacter aurescens strain TC1 metabolizes atrazine to cyanuric acid via TrzN, AtzB, and AtzC. The complete sequence of a 160-kb bacterial artificial chromosome clone indicated that trzN, atzB, and atzC are linked on the A. aurescens genome. TrzN, AtzB, and AtzC were shown to be functional in Escherichia coli. Hybridization studies localized trzN, atzB, and atzC to a 380-kb plasmid in A. aurescens strain TC1.
Collapse
Affiliation(s)
- Kannika Sajjaphan
- Department of Soil, Water, and Climate, Center for Microbial and Plant Genomics, 439 Borlaug Hall, 1991 Upper Buford Cir., University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
García-González V, Govantes F, Shaw LJ, Burns RG, Santero E. Nitrogen control of atrazine utilization in Pseudomonas sp. strain ADP. Appl Environ Microbiol 2004; 69:6987-93. [PMID: 14660340 PMCID: PMC309987 DOI: 10.1128/aem.69.12.6987-6993.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas sp. strain ADP uses the herbicide atrazine as the sole nitrogen source. We have devised a simple atrazine degradation assay to determine the effect of other nitrogen sources on the atrazine degradation pathway. The atrazine degradation rate was greatly decreased in cells grown on nitrogen sources that support rapid growth of Pseudomonas sp. strain ADP compared to cells cultivated on growth-limiting nitrogen sources. The presence of atrazine in addition to the nitrogen sources did not stimulate degradation. High degradation rates obtained in the presence of ammonium plus the glutamine synthetase inhibitor MSX and also with an Nas(-) mutant derivative grown on nitrate suggest that nitrogen regulation operates by sensing intracellular levels of some key nitrogen-containing metabolite. Nitrate amendment in soil microcosms resulted in decreased atrazine mineralization by the wild-type strain but not by the Nas(-) mutant. This suggests that, although nitrogen repression of the atrazine catabolic pathway may have a strong impact on atrazine biodegradation in nitrogen-fertilized soils, the use of selected mutant variants may contribute to overcoming this limitation.
Collapse
Affiliation(s)
- Vicente García-González
- Centro Andaluz de Biología del Desarrollo and Departamento de Ciencias Ambientales, Universidad Pablo de Olavide, 41013 Seville, Spain
| | | | | | | | | |
Collapse
|
43
|
Devers M, Soulas G, Martin-Laurent F. Real-time reverse transcription PCR analysis of expression of atrazine catabolism genes in two bacterial strains isolated from soil. J Microbiol Methods 2004; 56:3-15. [PMID: 14706746 DOI: 10.1016/j.mimet.2003.08.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The level of expression of highly conserved, plasmid-borne, and widely dispersed atrazine catabolic genes (atz) was studied by RT-qPCR in two telluric atrazine-degrading microbes. RT-qPCR assays, based on the use of real-time PCR, were developed in order to quantify atzABCDEF mRNAs in Pseudomonas sp. ADP and atzABC mRNAs in Chelatobacter heintzii. atz gene expression was expressed as mRNA copy number per 10(6) 16S rRNA. In Pseudomonas sp. ADP, atz genes were basally expressed. It confirmed atrazine-degrading kinetics indicating that catabolic activity starts immediately after adding the herbicide. atz gene expression increased transitorily in response to atrazine treatment. This increase was only observed while low amount of atrazine remained in the medium. In C. heintzii, only atzA was basally expressed. atzA and atzB expression levels were similarly and significantly increased in response to atrazine treatment. atzC was not expressed even in the presence of high amounts of atrazine. This study showed that atz genes are basally expressed and up-regulated in response to atrazine treatment. atz gene expression patterns are different in Pseudomonas ADP and C. heintzii suggesting that the host may influence the expression of plasmid-borne atrazine-catabolic potential.
Collapse
Affiliation(s)
- Marion Devers
- INRA-CMSE, UMR 1229 INRA-Université de Bourgogne, Microbiologie et Géochimie des Sols, 17 rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | | | | |
Collapse
|
44
|
Kuhad RC, Johri AK, Singh A, Ward OP. Bioremediation of Pesticide-Contaminated Soils. SOIL BIOLOGY 2004. [DOI: 10.1007/978-3-662-05794-0_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Cai B, Han Y, Liu B, Ren Y, Jiang S. Isolation and characterization of an atrazine-degrading bacterium from industrial wastewater in China. Lett Appl Microbiol 2003; 36:272-6. [PMID: 12680937 DOI: 10.1046/j.1472-765x.2003.01307.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To isolate and characterize atrazine-degrading bacteria in order to identify suitable candidates for potential use in bioremediation of atrazine contamination. METHODS AND RESULTS A high efficiency atrazine-degrading bacterium, strain AD1, which was capable of utilizing atrazine as a sole nitrogen source for growth, was isolated from industrial wastewater. 16S rDNA sequencing identified AD1 as an Arthrobacter sp. The atrazine chlorohydrolase gene (atzA) isolated from strain AD1 differed from that found in the Pseudomonas sp. ADP by only one nucleotide. However, it was found located on the bacterial chromosome rather than on plasmids as previously reported for other bacteria. CONCLUSIONS Atrazine chlorohydrolase gene, atzA, either encoded by chromosome or plasmid, is highly conserved. SIGNIFICANCE AND IMPACT OF THE STUDY Comparison analysis of atrazine degradation gene structure and arrangement in this and other bacteria provides insight into our understanding of the ecology and evolution of atrazine-degrading bacteria.
Collapse
Affiliation(s)
- B Cai
- College of Life Sciences, Naikai University, Tianjin, China
| | | | | | | | | |
Collapse
|
46
|
Martin-Laurent F, Piutti S, Hallet S, Wagschal I, Philippot L, Catroux G, Soulas G. Monitoring of atrazine treatment on soil bacterial, fungal and atrazine-degrading communities by quantitative competitive PCR. PEST MANAGEMENT SCIENCE 2003; 59:259-268. [PMID: 12639042 DOI: 10.1002/ps.630] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report the development of quantitative competitive (QC) PCR assays for quantifying the 16S, 18S ribosomal and atzC genes in nucleic acids directly extracted from soil. QC-PCR assays were standardised, calibrated and evaluated with an experimental study aiming to evaluate the impact of atrazine application on soil microflora. Comparison of QC-PCR 16S and 18S results with those of soil microbial biomass showed that, following atrazine application, the microbial biomass was not affected and that the amount of 16S rDNA gene representing 'bacteria' increased transitorily, while the amount of 18S rDNA gene representing fungi decreased in soil. In addition, comparison of atzC QC-PCR results with those of atrazine mineralisation revealed that, in response to atrazine treatment, the amount of atzC gene increased transitorily in soil pre-treated with atrazine, suggesting that accelerated atrazine biodegradation in soil could be due to a transient increase in the size of the atrazine mineralising community.
Collapse
Affiliation(s)
- Fabrice Martin-Laurent
- INRA-CMSE, UMR 111 INRA-Université de Bourgogne, Microbiologie des Sols-Geosol, 17 rue Sully, BP 86510, 21 065 Dijon Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
47
|
Strong LC, Rosendahl C, Johnson G, Sadowsky MJ, Wackett LP. Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds. Appl Environ Microbiol 2002; 68:5973-80. [PMID: 12450818 PMCID: PMC134431 DOI: 10.1128/aem.68.12.5973-5980.2002] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arthrobacter aurescens strain TC1 was isolated without enrichment by plating atrazine-contaminated soil directly onto atrazine-clearing plates. A. aurescens TC1 grew in liquid medium with atrazine as the sole source of nitrogen, carbon, and energy, consuming up to 3,000 mg of atrazine per liter. A. aurescens TC1 is metabolically diverse and grew on a wider range of s-triazine compounds than any bacterium previously characterized. The 23 s-triazine substrates serving as the sole nitrogen source included the herbicides ametryn, atratone, cyanazine, prometryn, and simazine. Moreover, atrazine substrate analogs containing fluorine, mercaptan, and cyano groups in place of the chlorine substituent were also growth substrates. Analogs containing hydrogen, azido, and amino functionalities in place of chlorine were not growth substrates. A. aurescens TC1 also metabolized compounds containing chlorine plus N-ethyl, N-propyl, N-butyl, N-s-butyl, N-isobutyl, or N-t-butyl substituents on the s-triazine ring. Atrazine was metabolized to alkylamines and cyanuric acid, the latter accumulating stoichiometrically. Ethylamine and isopropylamine each served as the source of carbon and nitrogen for growth. PCR experiments identified genes with high sequence identity to atzB and atzC, but not to atzA, from Pseudomonas sp. strain ADP.
Collapse
Affiliation(s)
- Lisa C Strong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul 55108, USA
| | | | | | | | | |
Collapse
|
48
|
Shapir N, Osborne JP, Johnson G, Sadowsky MJ, Wackett LP. Purification, substrate range, and metal center of AtzC: the N-isopropylammelide aminohydrolase involved in bacterial atrazine metabolism. J Bacteriol 2002; 184:5376-84. [PMID: 12218024 PMCID: PMC135360 DOI: 10.1128/jb.184.19.5376-5384.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-Isopropylammelide isopropylaminohydrolase, AtzC, the third enzyme in the atrazine degradation pathway in Pseudomonas sp. strain ADP, catalyzes the stoichiometric hydrolysis of N-isopropylammelide to cyanuric acid and isopropylamine. The atzC gene was cloned downstream of the tac promoter and expressed in Escherichia coli, where the expressed enzyme comprised 36% of the soluble protein. AtzC was purified to homogeneity by ammonium sulfate precipitation and phenyl column chromatography. It has a subunit size of 44,938 kDa and a holoenzyme molecular weight of 174,000. The K(m) and k(cat) values for AtzC with N-isopropylammelide were 406 micro M and 13.3 s(-1), respectively. AtzC hydrolyzed other N-substituted amino dihydroxy-s-triazines, and those with linear N-alkyl groups had higher k(cat) values than those with branched alkyl groups. Native AtzC contained 0.50 eq of Zn per subunit. The activity of metal-depleted AtzC was restored with Zn(II), Fe(II), Mn(II), Co(II), and Ni(II) salts. Cobalt-substituted AtzC had a visible absorbance band at 540 nm (Delta epsilon = 84 M(-1) cm(-1)) and exhibited an axial electron paramagnetic resonance (EPR) signal with the following effective values: g((x)) = 5.18, g((y)) = 3.93, and g((z)) = 2.24. Incubating cobalt-AtzC with the competitive inhibitor 5-azacytosine altered the effective EPR signal values to g((x)) = 5.11, g((y)) = 4.02, and g((z)) = 2.25 and increased the microwave power at half saturation at 10 K from 31 to 103 mW. Under the growth conditions examined, our data suggest that AtzC has a catalytically essential, five-coordinate Zn(II) metal center in the active site and specifically catalyzes the hydrolysis of intermediates generated during the metabolism of s-triazine herbicides.
Collapse
Affiliation(s)
- Nir Shapir
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | |
Collapse
|
49
|
Rhizospheric effects of alfalfa on biotransformation of polychlorinated biphenyls in a contaminated soil augmented with Sinorhizobium meliloti. Process Biochem 2002. [DOI: 10.1016/s0032-9592(01)00305-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Martinez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ. Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 2001; 183:5684-97. [PMID: 11544232 PMCID: PMC95461 DOI: 10.1128/jb.183.19.5684-5697.2001] [Citation(s) in RCA: 282] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete 108,845-nucleotide sequence of catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP was determined. Plasmid pADP-1 was previously shown to encode AtzA, AtzB, and AtzC, which catalyze the sequential hydrolytic removal of s-triazine ring substituents from the herbicide atrazine to yield cyanuric acid. Computational analyses indicated that pADP-1 encodes 104 putative open reading frames (ORFs), which are predicted to function in catabolism, transposition, and plasmid maintenance, transfer, and replication. Regions encoding transfer and replication functions of pADP-1 had 80 to 100% amino acid sequence identity to pR751, an IncPbeta plasmid previously isolated from Enterobacter aerogenes. pADP-1 was shown to contain a functional mercury resistance operon with 99% identity to Tn5053. Complete copies of transposases with 99% amino acid sequence identity to TnpA from IS1071 and TnpA from Pseudomonas pseudoalcaligenes were identified and flank each of the atzA, atzB, and atzC genes, forming structures resembling nested catabolic transposons. Functional analyses identified three new catabolic genes, atzD, atzE, and atzF, which participate in atrazine catabolism. Crude extracts from Escherichia coli expressing AtzD hydrolyzed cyanuric acid to biuret. AtzD showed 58% amino acid sequence identity to TrzD, a cyanuric acid amidohydrolase, from Pseudomonas sp. strain NRRLB-12227. Two other genes encoding the further catabolism of cyanuric acid, atzE and atzF, reside in a contiguous cluster adjacent to a potential LysR-type transcriptional regulator. E. coli strains bearing atzE and atzF were shown to encode a biuret hydrolase and allophanate hydrolase, respectively. atzDEF are cotranscribed. AtzE and AtzF are members of a common amidase protein family. These data reveal the complete structure of a catabolic plasmid and show that the atrazine catabolic genes are dispersed on three disparate regions of the plasmid. These results begin to provide insight into how plasmids are structured, and thus evolve, to encode the catabolism of compounds recently added to the biosphere.
Collapse
Affiliation(s)
- B Martinez
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | |
Collapse
|