1
|
Kerns DD, Yang F, Kerns DL, Stewart SD, Jurat-Fuentes JL. Reduced toxin binding associated with resistance to Vip3Aa in the corn earworm ( Helicoverpa zea). Appl Environ Microbiol 2023; 89:e0164423. [PMID: 38014960 PMCID: PMC10734485 DOI: 10.1128/aem.01644-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Helicoverpa zea is a major crop pest in the United States that is managed with transgenic corn and cotton that produce insecticidal proteins from the bacterium, Bacillus thuringiensis (Bt). However, H. zea has evolved widespread resistance to the Cry proteins produced in Bt corn and cotton, leaving Vip3Aa as the only plant-incorporated protectant in Bt crops that consistently provides excellent control of H. zea. The benefits provided by Bt crops will be substantially reduced if widespread Vip3Aa resistance develops in H. zea field populations. Therefore, it is important to identify resistance alleles and mechanisms that contribute to Vip3Aa resistance to ensure that informed resistance management strategies are implemented. This study is the first report of reduced binding of Vip3Aa to midgut receptors associated with resistance.
Collapse
Affiliation(s)
- Dawson D. Kerns
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - Fei Yang
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
| | - David L. Kerns
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Scott D. Stewart
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
2
|
Williamson LJ, Galchenkova M, Best HL, Bean RJ, Munke A, Awel S, Pena G, Knoska J, Schubert R, Dörner K, Park HW, Bideshi DK, Henkel A, Kremling V, Klopprogge B, Lloyd-Evans E, Young MT, Valerio J, Kloos M, Sikorski M, Mills G, Bielecki J, Kirkwood H, Kim C, de Wijn R, Lorenzen K, Xavier PL, Rahmani Mashhour A, Gelisio L, Yefanov O, Mancuso AP, Federici BA, Chapman HN, Crickmore N, Rizkallah PJ, Berry C, Oberthür D. Structure of the Lysinibacillus sphaericus Tpp49Aa1 pesticidal protein elucidated from natural crystals using MHz-SFX. Proc Natl Acad Sci U S A 2023; 120:e2203241120. [PMID: 38015839 PMCID: PMC10710082 DOI: 10.1073/pnas.2203241120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/18/2023] [Indexed: 11/30/2023] Open
Abstract
The Lysinibacillus sphaericus proteins Tpp49Aa1 and Cry48Aa1 can together act as a toxin toward the mosquito Culex quinquefasciatus and have potential use in biocontrol. Given that proteins with sequence homology to the individual proteins can have activity alone against other insect species, the structure of Tpp49Aa1 was solved in order to understand this protein more fully and inform the design of improved biopesticides. Tpp49Aa1 is naturally expressed as a crystalline inclusion within the host bacterium, and MHz serial femtosecond crystallography using the novel nanofocus option at an X-ray free electron laser allowed rapid and high-quality data collection to determine the structure of Tpp49Aa1 at 1.62 Å resolution. This revealed the packing of Tpp49Aa1 within these natural nanocrystals as a homodimer with a large intermolecular interface. Complementary experiments conducted at varied pH also enabled investigation of the early structural events leading up to the dissolution of natural Tpp49Aa1 crystals-a crucial step in its mechanism of action. To better understand the cooperation between the two proteins, assays were performed on a range of different mosquito cell lines using both individual proteins and mixtures of the two. Finally, bioassays demonstrated Tpp49Aa1/Cry48Aa1 susceptibility of Anopheles stephensi, Aedes albopictus, and Culex tarsalis larvae-substantially increasing the potential use of this binary toxin in mosquito control.
Collapse
Affiliation(s)
| | - Marina Galchenkova
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Hannah L. Best
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | | | - Anna Munke
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Salah Awel
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Gisel Pena
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Juraj Knoska
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | | | | | - Hyun-Woo Park
- Department of Biological Sciences, California Baptist University, Riverside, CA92504
| | - Dennis K. Bideshi
- Department of Biological Sciences, California Baptist University, Riverside, CA92504
| | - Alessandra Henkel
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Viviane Kremling
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Bjarne Klopprogge
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Emyr Lloyd-Evans
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | - Mark T. Young
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | | | - Marco Kloos
- European XFEL GmbH, 22869Schenefeld, Germany
| | | | - Grant Mills
- European XFEL GmbH, 22869Schenefeld, Germany
| | | | | | - Chan Kim
- European XFEL GmbH, 22869Schenefeld, Germany
| | | | | | - Paul Lourdu Xavier
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
- Max-Planck Institute for the Structure and Dynamics of Matter, 22761Hamburg, Germany
| | - Aida Rahmani Mashhour
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Luca Gelisio
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL GmbH, 22869Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Brian A. Federici
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Henry N. Chapman
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
- Centre for Ultrafast Imaging, Universität Hamburg, 22761Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761Hamburg, Germany
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Falmer, BrightonBN1 9QG, United Kingdom
| | | | - Colin Berry
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | - Dominik Oberthür
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| |
Collapse
|
3
|
Perera OP, Little NS, Abdelgaffar H, Jurat-Fuentes JL, Reddy GVP. Genetic Knockouts Indicate That the ABCC2 Protein in the Bollworm Helicoverpa zea Is Not a Major Receptor for the Cry1Ac Insecticidal Protein. Genes (Basel) 2021; 12:1522. [PMID: 34680917 PMCID: PMC8535714 DOI: 10.3390/genes12101522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022] Open
Abstract
Members of the insect ATP binding cassette transporter subfamily C2 (ABCC2) in several moth species are known as receptors for the Cry1Ac insecticidal protein from Bacillus thuringiensis (Bt). Mutations that abolish the functional domains of ABCC2 are known to cause resistance to Cry1Ac, although the reported levels of resistance vary widely depending on insect species. In this study, the function of the ABCC2 gene as a putative Cry1Ac receptor in Helicoverpa zea, a major pest of over 300 crops, was evaluated using CRISPR/Cas9 to progressively eliminate different functional ABCC2 domains. Results from bioassays with edited insect lines support that mutations in ABCC2 were associated with Cry1Ac resistance ratios (RR) ranging from 7.3- to 39.8-fold. No significant differences in susceptibility to Cry1Ac were detected between H. zea with partial or complete ABCC2 knockout, although the highest levels of tolerance were observed when knocking out half of ABCC2. Based on >500-1000-fold RRs reported in similar studies for closely related moth species, the low RRs observed in H. zea knockouts support that ABCC2 is not a major Cry1Ac receptor in this insect.
Collapse
Affiliation(s)
- Omaththage P. Perera
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS 38776, USA; (N.S.L.); (G.V.P.R.)
| | - Nathan S. Little
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS 38776, USA; (N.S.L.); (G.V.P.R.)
| | - Heba Abdelgaffar
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (H.A.); (J.L.J.-F.)
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (H.A.); (J.L.J.-F.)
| | - Gadi V. P. Reddy
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS 38776, USA; (N.S.L.); (G.V.P.R.)
| |
Collapse
|
4
|
Jin M, Liao C, Chakrabarty S, Wu K, Xiao Y. Comparative Proteomics of Peritrophic Matrix Provides an Insight into its Role in Cry1Ac Resistance of Cotton Bollworm Helicoverpa armigera. Toxins (Basel) 2019; 11:E92. [PMID: 30717423 PMCID: PMC6409725 DOI: 10.3390/toxins11020092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
Crystalline (Cry) proteins from Bacillus thuringiensis (Bt) are widely used in sprays and transgenic crops to control insect pests, but the evolution of insect resistance threatens their long-term use. Different resistance mechanisms have been identified, but some have not been completely elucidated. Here, the transcriptome of the midgut and proteome of the peritrophic matrix (PM) were comparatively analyzed to identify potential mechanism of resistance to Cry1Ac in laboratory-selected strain XJ10 of Helicoverpa armigera. This strain had a 146-fold resistance to Cry1Ac protoxin and 45-fold resistance to Cry1Ac activated toxin compared with XJ strain. The mRNA and protein levels for several trypsin genes were downregulated in XJ10 compared to the susceptible strain XJ. Furthermore, 215 proteins of the PM were identified, and nearly all had corresponding mRNAs in the midgut. These results provide new insights that the PM may participate in Bt resistance.
Collapse
Affiliation(s)
- Minghui Jin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing, 100193, China.
| | - Chongyu Liao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Swapan Chakrabarty
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing, 100193, China.
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
5
|
Rodrigues-Silva N, Canuto AF, Oliveira DF, Teixeira AF, Santos-Amaya OF, Picanço MC, Pereira EJG. Negative cross-resistance between structurally different Bacillus thuringiensis toxins may favor resistance management of soybean looper in transgenic Bt cultivars. Sci Rep 2019; 9:199. [PMID: 30655612 PMCID: PMC6336840 DOI: 10.1038/s41598-018-35965-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 11/14/2018] [Indexed: 12/30/2022] Open
Abstract
High adoption rates of single-gene Bacillus thuringiensis (Bt) Cry1Ac soybean impose selection pressure for resistance in the soybean looper, Chrysodeixis includens, a major defoliator in soybean and cotton crops. To anticipate and characterize resistance profiles that can evolve, soybean looper larvae collected from field crops in Brazil in 2013 were selected for resistance to Cry1Ac. Using two methods of selection viz., chronic exposure to Cry1Ac cotton leaves and the seven-day larval exposure to purified Cry1Ac on the artificial diet, 31 and 127-fold resistance was obtained in 11 and 6 generations of selection, respectively. The resistance trait had realized heritability of 0.66 and 0.72, respectively, indicating that most of the phenotypic variation in Cry1Ac susceptibility of the soybean looper larvae was due to additive genetic variation. The Cry1Ac-selected populations showed positive cross-resistance to Cry1Ab (6.7-8.7 fold), likely because these Bt toxins have a very similar molecular structure. Importantly, the Cry1Ac-selected populations became more susceptible to Cry2Aa and Cry1Fa, showing negative cross-resistance (up to 6-fold, P < 0.05). These results indicate that Cry1Ac, Cry1Fa, and Cry2A are compatible in a multi-toxin approach to minimize the risk of rapid adaptation of the soybean looper to Bt toxins.
Collapse
Affiliation(s)
- Nilson Rodrigues-Silva
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
- Campus do Sertão, Universidade Federal de Sergipe, Nossa Senhora da Glória, SE, 49680-000, Brazil
| | - Afonso F Canuto
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Diogo F Oliveira
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - André F Teixeira
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Oscar F Santos-Amaya
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Marcelo C Picanço
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Eliseu J G Pereira
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
6
|
Oliveira AC, Wanderley-Teixeira V, Silva CT, Teixeira ÁA, Siqueira HA, Cruz GS, Neto CJCL, Lima AL, Correia MT. Labeling membrane receptors with lectins and evaluation of the midgut histochemistry of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) populations with different levels of susceptibility to formulated Bt. PEST MANAGEMENT SCIENCE 2018; 74:2608-2617. [PMID: 29700928 DOI: 10.1002/ps.5051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 03/21/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Studies show that insects can adapt to the toxins of Bacillus thuringiensis under field and laboratory conditions through the development of resistance to the bacterium and its formulations. This has been demonstrated in the failure to control Tuta absoluta populations in Brazil. This study evaluated membrane receptors using peroxidase-labeled lectins and the midgut histochemistry of T. absoluta populations to assess susceptibility to the insecticides Bt fomulations. The histochemistry analysis used Periodic Acid-Schiff for glycogen and Ponceau Xylidine for total proteins. The presence of glucose/mannose and N-acetylgalactosamine (GalNAc) was analyzed using specific lectins. One susceptible and one tolerant population were used in the study; insects were exposed to the insecticide concentrations recommended by the manufacturers. The midgut was collected after an interval of 20 min and analyzed using optical microscopy. RESULTS Bt fomulation interferes with the glycogen content, whereas XenTari® interferes with the protein content, irrespective of the level of susceptibility. High expression of GalNAc residues was observed using soybean lectin labeling, indicating a direct relationship between the glycosylation pattern and susceptibility to Bt fomulation in the Pelotas population. CONCLUSION The use of Bt fomulation caused greater alterations in the larval intestinal histophysiology compared to the use of XenTari® . © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andresa Cb Oliveira
- Department of Agronomy-Entomology, Federal Rural University of Pernambuco, Recife, Brazil
| | | | - Cristiane Ts Silva
- Department of Agronomy-Entomology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Álvaro Ac Teixeira
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Herbert Aa Siqueira
- Department of Agronomy-Entomology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Glauciane S Cruz
- Department of Agronomy-Entomology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Clovis J C Lapa Neto
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Amanda Lr Lima
- Departament of Biochemistry, Federal University of Pernambuco, Recife, Brazil
| | - Maria Ts Correia
- Departament of Biochemistry, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
7
|
Gao M, Wang X, Yang Y, Tabashnik BE, Wu Y. Epistasis confers resistance to Bt toxin Cry1Ac in the cotton bollworm. Evol Appl 2018; 11:809-819. [PMID: 29875821 PMCID: PMC5979638 DOI: 10.1111/eva.12598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/10/2018] [Indexed: 01/06/2023] Open
Abstract
Evolution of resistance by insect pests reduces the benefits of extensively cultivated transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt). Previous work showed that resistance to Bt toxin Cry1Ac, which is produced by transgenic cotton, can be conferred by mutations disrupting a cadherin protein that binds this Bt toxin in the larval midgut. However, the potential for epistatic interactions between the cadherin gene and other genes has received little attention. Here, we report evidence of epistasis conferring resistance to Cry1Ac in the cotton bollworm, Helicoverpa armigera, one of the world's most devastating crop pests. Resistance to Cry1Ac in strain LF256 originated from a field-captured male and was autosomal, recessive, and 220-fold relative to susceptible strain SCD. We conducted complementation tests for allelism by crossing LF256 with a strain in which resistance to Cry1Ac is conferred by a recessive allele at the cadherin locus HaCad. The resulting F1 offspring were resistant, suggesting that resistance to Cry1Ac in LF256 is also conferred by resistance alleles at this locus. However, the HaCad amino acid sequence in LF256 lacked insertions and deletions, and did not differ consistently between LF256 and a susceptible strain. In addition, most of the cadherin alleles in LF256 were not derived from the field-captured male. Moreover, Cry1Ac resistance was not genetically linked with the HaCad locus in LF256. Furthermore, LF256 and the susceptible strain were similar in levels of HaCad transcript, cadherin protein, and binding of Cry1Ac to cadherin. Overall, the results imply that epistasis between HaCad and an unknown second locus in LF256 yielded the observed resistance in the F1 progeny from the complementation test. The observed epistasis has important implications for interpreting results of the F1 screen used widely to monitor and analyze resistance, as well as the potential to accelerate evolution of resistance.
Collapse
Affiliation(s)
- Meijing Gao
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Ximeng Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yihua Yang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | | | - Yidong Wu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
8
|
Domain III of Cry1Ac Is Critical to Binding and Toxicity against Soybean Looper (Chrysodeixis includens) but Not to Velvetbean Caterpillar (Anticarsia gemmatalis). Toxins (Basel) 2018; 10:toxins10030095. [PMID: 29495466 PMCID: PMC5869383 DOI: 10.3390/toxins10030095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 01/10/2023] Open
Abstract
Insecticidal proteins Cry1Ac and Cry2Ac7 from the bacterium Bacillus thuringiensis (Bt) belong to the three-domain family of Bt toxins. Commercial transgenic soybean hybrids produce Cry1Ac to control the larvae of the soybean looper (Chrysodeixis includens) and the velvet bean caterpillar (Anticarsia gemmatalis). The specificity of Cry1Ac is determined by loops extending from domain II and regions of domain III in the three-dimensional structure of the toxin. In this study, we constructed a hybrid toxin (H1.2Ac) containing domains I and II of Cry1Ac and domain III of Cry2Ac7, in an attempt to obtain a protein with enhanced toxicity compared to parental toxins. Bioassays with H1.2Ac revealed toxicity against the larvae of A. gemmatalis but not against C. includens. Saturation binding assays with radiolabeled toxins and midgut brush border membrane vesicles demonstrated no specific H1.2Ac binding to C. includens, while binding in A. gemmatalis was specific and saturable. Results from competition binding assays supported the finding that Cry1Ac specificity against A. gemmatalis is mainly dictated by domain II. Taken together, these distinct interactions with binding sites may help explain the differential susceptibility to Cry1Ac in C. includens and A. gemmatalis, and guide the design of improved toxins against soybean pests.
Collapse
|
9
|
Banerjee R, Hasler J, Meagher R, Nagoshi R, Hietala L, Huang F, Narva K, Jurat-Fuentes JL. Mechanism and DNA-based detection of field-evolved resistance to transgenic Bt corn in fall armyworm (Spodoptera frugiperda). Sci Rep 2017; 7:10877. [PMID: 28883440 PMCID: PMC5589895 DOI: 10.1038/s41598-017-09866-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/31/2017] [Indexed: 01/28/2023] Open
Abstract
Evolution of resistance threatens sustainability of transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). The fall armyworm (Spodoptera frugiperda) is a devastating pest of corn in the Western Hemisphere initially controlled by transgenic Bt corn producing the Cry1Fa insecticidal protein (event TC1507). However field-evolved resistance to TC1507 was observed in Puerto Rico in 2007 and has subsequently been reported in a number of locations in North and South America. Early studies on Puerto Rico fall armyworm populations found that the resistance phenotype was associated with reduced expression of alkaline phosphatase. However, in this work we show that field-evolved resistance to Cry1Fa Bt corn in Puerto Rico is closely linked to a mutation in an ATP Binding Cassette subfamily C2 (ABCC2) gene that functions as a Cry1Fa receptor in susceptible insects. Furthermore, we report a DNA-based genotyping test used to demonstrate the presence of the resistant (SfABCC2mut) allele in Puerto Rico populations in 2007, coincident with the first reports of damage to TC1507 corn. These DNA-based field screening data provide strong evidence that resistance to TC1507 in fall armyworm maps to the SfABCC2 gene and provides a useful molecular marker for detecting the SfABCC2mut allele in resistant fall armyworm.
Collapse
Affiliation(s)
- Rahul Banerjee
- Genome Science and Technology Graduate Program, University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Robert Meagher
- Center for Medical, Agricultural and Veterinary Entomology, Insect Behavior and Biocontrol Research Unit, USDA-ARS, Gainesville, FL, 32608, USA
| | - Rodney Nagoshi
- Center for Medical, Agricultural and Veterinary Entomology, Insect Behavior and Biocontrol Research Unit, USDA-ARS, Gainesville, FL, 32608, USA
| | - Lucas Hietala
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | | | - Juan Luis Jurat-Fuentes
- Genome Science and Technology Graduate Program, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
10
|
Toxicity, membrane binding and uptake of the Sclerotinia sclerotiorum agglutinin (SSA) in different insect cell lines. In Vitro Cell Dev Biol Anim 2017; 53:691-698. [DOI: 10.1007/s11626-017-0176-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/06/2017] [Indexed: 12/18/2022]
|
11
|
Bel Y, Sheets JJ, Tan SY, Narva KE, Escriche B. Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens. Appl Environ Microbiol 2017; 83:e00326-17. [PMID: 28363958 PMCID: PMC5440703 DOI: 10.1128/aem.00326-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/23/2017] [Indexed: 11/20/2022] Open
Abstract
Anticarsia gemmatalis (velvetbean caterpillar) and Chrysodeixis includens (soybean looper, formerly named Pseudoplusia includens) are two important defoliating insects of soybeans. Both lepidopteran pests are controlled mainly with synthetic insecticides. Alternative control strategies, such as biopesticides based on the Bacillus thuringiensis (Bt) toxins or transgenic plants expressing Bt toxins, can be used and are increasingly being adopted. Studies on the insect susceptibilities and modes of action of the different Bt toxins are crucial to determine management strategies to control the pests and to delay outbreaks of insect resistance. In the present study, the susceptibilities of both soybean pests to the Bt toxins Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa have been investigated. Bioassays performed in first-instar larvae showed that both insects are susceptible to all these toxins. Competition-binding studies carried out with Cry1Ac and Cry1Fa 125-iodine labeled proteins demonstrated the presence of specific binding sites for both of them on the midgut brush border membrane vesicles (BBMVs) of both A. gemmatalis and C. includens Competition-binding experiments and specific-binding inhibition studies performed with selected sugars and lectins indicated that Cry1Ac and Cry1Fa share some, but not all, binding sites in the midguts of both insects. Also, the Cry1Ac- or Cry1Fa-binding sites were not shared with Cry1Ca or Cry2Aa in either soybean pest. This study contributes to the knowledge of Bt toxicity and midgut toxin binding sites in A. gemmatalis and C. includens and sheds light on the cross-resistance potential of Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa Bt proteins as candidate proteins for Bt-pyramided crops.IMPORTANCE In the present study, the toxicity and the mode of action of the Bacillus thuringiensis (Bt) toxins Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa in Anticarsia gemmatalis and Chrysodeixis includens (important defoliating pests of soybeans) have been investigated. These studies are crucial for determining management strategies for pest control. Bioassays showed that both insects were susceptible to the toxins. Competition-binding studies demonstrated the presence of Cry1Fa- and Cry1Ac-specific binding sites in the midguts of both pests. These results, together with the results from binding inhibition studies performed with sugars and lectins, indicated that Cry1Ac and Cry1Fa share some, but not all, binding sites, and that they were not shared with Cry1Ca or Cry2Aa in either soybean pest. This study contributes to the knowledge of Bt toxicity in A. gemmatalis and C. includens and sheds light on the cross-resistance potential of Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa Bt proteins as candidate proteins for Bt-pyramided crops.
Collapse
Affiliation(s)
- Yolanda Bel
- Department of Genetics, Universitat de València, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, Burjassot, Spain
| | | | - Sek Yee Tan
- Dow AgroSciences, Indianapolis, Indiana, USA
| | | | - Baltasar Escriche
- Department of Genetics, Universitat de València, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, Burjassot, Spain
| |
Collapse
|
12
|
Peterson B, Bezuidenhout CC, Van den Berg J. An Overview of Mechanisms of Cry Toxin Resistance in Lepidopteran Insects. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:362-377. [PMID: 28334065 DOI: 10.1093/jee/tow310] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Indexed: 06/06/2023]
Abstract
Arthropods have the capacity to evolve resistance to insecticides and insecticidal traits in genetically modified crops. Resistance development among Lepidoptera is a common phenomenon, and a repertoire of resistance mechanisms to various Cry toxins have been identified from laboratory, greenhouse, and field studies in this insect order. Elucidation of such resistance mechanisms is crucial for developing IRM (insect resistance management) strategies to ensure sustainable use of genetically modified crops. This mini review provides a comprehensive overview of mechanisms of resistance that have been reported for lepidopteran pests. This study demonstrated that resistance mechanisms are highly complex, and the most common mechanism of resistance is altered binding sites. It is yet to be established whether all these altered binding sites are regulated by an MAPK signaling pathway, which might suggest a universal mechanism of resistance in lepidopterans.
Collapse
Affiliation(s)
- B Peterson
- Potchefstroom Campus, North-West University, Potchefstroom, 2531, South Africa (; ; )
| | - C C Bezuidenhout
- Potchefstroom Campus, North-West University, Potchefstroom, 2531, South Africa (; ; )
| | - J Van den Berg
- Potchefstroom Campus, North-West University, Potchefstroom, 2531, South Africa (; ; )
| |
Collapse
|
13
|
Field-Evolved Mode 1 Resistance of the Fall Armyworm to Transgenic Cry1Fa-Expressing Corn Associated with Reduced Cry1Fa Toxin Binding and Midgut Alkaline Phosphatase Expression. Appl Environ Microbiol 2015; 82:1023-1034. [PMID: 26637593 DOI: 10.1128/aem.02871-15] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/20/2015] [Indexed: 11/20/2022] Open
Abstract
Insecticidal protein genes from the bacterium Bacillus thuringiensis (Bt) are expressed by transgenic Bt crops (Bt crops) for effective and environmentally safe pest control. The development of resistance to these insecticidal proteins is considered the most serious threat to the sustainability of Bt crops. Resistance in fall armyworm (Spodoptera frugiperda) populations from Puerto Rico to transgenic corn producing the Cry1Fa insecticidal protein resulted, for the first time in the United States, in practical resistance, and Bt corn was withdrawn from the local market. In this study, we used a field-collected Cry1Fa corn-resistant strain (456) of S. frugiperda to identify the mechanism responsible for field-evolved resistance. Binding assays detected reduced Cry1Fa, Cry1Ab, and Cry1Ac but not Cry1Ca toxin binding to midgut brush border membrane vesicles (BBMV) from the larvae of strain 456 compared to that from the larvae of a susceptible (Ben) strain. This binding phenotype is descriptive of the mode 1 type of resistance to Bt toxins. A comparison of the transcript levels for putative Cry1 toxin receptor genes identified a significant downregulation (>90%) of a membrane-bound alkaline phosphatase (ALP), which translated to reduced ALP protein levels and a 75% reduction in ALP activity in BBMV from 456 compared to that of Ben larvae. We cloned and heterologously expressed this ALP from susceptible S. frugiperda larvae and demonstrated that it specifically binds with Cry1Fa toxin. This study provides a thorough mechanistic description of field-evolved resistance to a transgenic Bt crop and supports an association between resistance and reduced Cry1Fa toxin binding and levels of a putative Cry1Fa toxin receptor, ALP, in the midguts of S. frugiperda larvae.
Collapse
|
14
|
Coates BS, Siegfried BD. Linkage of an ABCC transporter to a single QTL that controls Ostrinia nubilalis larval resistance to the Bacillus thuringiensis Cry1Fa toxin. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:86-96. [PMID: 26093031 DOI: 10.1016/j.ibmb.2015.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
Field evolved resistance of insect populations to Bacillus thuringiensis (Bt) crystalline (Cry) toxins expressed by crop plants has resulted in reduced control of insect feeding damage to field crops, and threatens the sustainability of Bt transgenic technologies. A single quantitative trait locus (QTL) that determines resistance in Ostrinia nubilalis larvae capable of surviving on reproductive stage transgenic corn that express the Bt Cry1Fa toxin was previously mapped to linkage group 12 (LG12) in a backcross pedigree. Fine mapping with high-throughput single nucleotide polymorphism (SNP) anchor markers, a candidate ABC transporter (abcc2) marker, and de novo mutations predicted from a genotyping-by-sequencing (GBS) data redefined a 268.8 cM LG12. The single QTL on LG12 spanned an approximate 46.1 cM region, in which marker 02302.286 and abcc2 were ≤ 2.81 cM, and the GBS marker 697 was an estimated 1.89 cM distant from the causal genetic factor. This positional mapping data showed that an O. nubilalis genome region encoding an abcc2 transporter is in proximity to a single QTL involved in the inheritance of Cry1F resistance, and will assist in the future identification the mutation(s) involved with this phenotype.
Collapse
Affiliation(s)
- Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, IA 50011, USA; Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| | | |
Collapse
|
15
|
Zhao C, Jurat-Fuentes JL, Abdelgaffar HM, Pan H, Song F, Zhang J. Identification of a New cry1I-Type Gene as a Candidate for Gene Pyramiding in Corn To Control Ostrinia Species Larvae. Appl Environ Microbiol 2015; 81:3699-705. [PMID: 25795679 PMCID: PMC4421046 DOI: 10.1128/aem.00379-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/17/2015] [Indexed: 11/20/2022] Open
Abstract
Pyramiding of diverse cry toxin genes from Bacillus thuringiensis with different modes of action is a desirable strategy to delay the evolution of resistance in the European corn borer (Ostrinia nubilalis). Considering the dependency of susceptibility to Cry toxins on toxin binding to receptors in the midgut of target pests, a diverse mode of action is commonly defined as recognition of unique binding sites in the target insect. In this study, we present a novel cry1Ie toxin gene (cry1Ie2) as a candidate for pyramiding with Cry1Ab or Cry1Fa in corn to control Ostrinia species larvae. The new toxin gene encodes an 81-kDa protein that is processed to a protease-resistant core form of approximately 55 kDa by trypsin digestion. The purified protoxin displayed high toxicity to Ostrinia furnacalis and O. nubilalis larvae but low to no activity against Spodoptera or heliothine species or the coleopteran Tenebrio molitor. Results of binding assays with (125)I-labeled Cry1Ab toxin and brush border membrane vesicles from O. nubilalis larvae demonstrated that Cry1Ie2 does not recognize the Cry1Ab binding sites in that insect. Reciprocal competition binding assays with biotin-labeled Cry1Ie2 confirmed the lack of shared sites with Cry1Ab or Cry1Fa in O. nubilalis brush border membrane vesicles. These data support Cry1Ie2 as a good candidate for pyramiding with Cry1Ab or Cry1Fa in corn to increase the control of O. nubilalis and reduce the risk of resistance evolution.
Collapse
Affiliation(s)
- Can Zhao
- College of Plant Science, Jilin University, Changchun, Jilin, China State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - Heba M Abdelgaffar
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun, Jilin, China
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Binding site concentration explains the differential susceptibility of Chilo suppressalis and Sesamia inferens to Cry1A-producing rice. Appl Environ Microbiol 2014; 80:5134-40. [PMID: 24928872 DOI: 10.1128/aem.01544-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chilo suppressalis and Sesamia inferens are two important lepidopteran rice pests that occur concurrently during outbreaks in paddy fields in the main rice-growing areas of China. Previous and current field tests demonstrate that the transgenic rice line Huahui 1 (HH1) producing a Cry1Ab-Cry1Ac hybrid toxin from the bacterium Bacillus thuringiensis reduces egg and larval densities of C. suppressalis but not of S. inferens. This differential susceptibility to HH1 rice correlates with the reduced susceptibility to Cry1Ab and Cry1Ac toxins in S. inferens larvae compared to C. suppressalis larvae. The goal of this study was to identify the mechanism responsible for this differential susceptibility. In saturation binding assays, both Cry1Ab and Cry1Ac toxins bound with high affinity and in a saturable manner to midgut brush border membrane vesicles (BBMV) from C. suppressalis and S. inferens larvae. While binding affinities were similar, a dramatically lower concentration of Cry1A toxin binding sites was detected for S. inferens BBMV than for C. suppressalis BBMV. In contrast, no significant differences between species were detected for Cry1Ca toxin binding to BBMV. Ligand blotting detected BBMV proteins binding Cry1Ac or Cry1Ca toxins, some of them unique to C. suppressalis or S. inferens. These data support that reduced Cry1A binding site concentration is associated with a lower susceptibility to Cry1A toxins and HH1 rice in S. inferens larvae than in C. suppressalis larvae. Moreover, our data support Cry1Ca as a candidate for pyramiding efforts with Cry1A-producing rice to extend the activity range and durability of this technology against rice stem borers.
Collapse
|
17
|
Coates BS, Sumerford DV, Siegfried BD, Hellmich RL, Abel CA. Unlinked genetic loci control the reduced transcription of aminopeptidase N 1 and 3 in the European corn borer and determine tolerance to Bacillus thuringiensis Cry1Ab toxin. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:1152-1160. [PMID: 24121099 DOI: 10.1016/j.ibmb.2013.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/03/2013] [Accepted: 09/16/2013] [Indexed: 06/02/2023]
Abstract
Transgenic expression of Bacillus thuringiensis (Bt) crystalline (Cry) toxins by crop plants result in reduced insect feeding damage, but sustainability is threatened by the development of resistance traits in target insect populations. We investigated Bt toxin resistance trait in a laboratory colony of the European corn borer, Ostrinia nubilalis, selected for increased survival when exposed to Cry1Ab and correlated survival on Cry1Ab toxin with a constitutive ∼146.2 ± 17.3-fold reduction in midgut aminopeptidase N1 (apn1) transcript levels. A 7.1 ± 1.9-fold reduction apn3 transcript level was also correlated with Cry1Ab resistance. Quantitative trait locus (QTL) mapping identified a single major genome region controlling Cry1Ab resistance on linkage group 24 (LG24), and a minor QTL on LG27. Both QTL were independent of apn1 and apn3 loci on LG02. Positional mapping identified genetic markers that may assist in the identification of causal gene(s) within QTL intervals. This study indicates that genetic factor(s) may act in trans to reduce both apn1 and apn3 expression in Cry1Ab resistant O. nubilalis larvae, and suggest that gene regulatory pathways can influence Bt resistance traits. These findings show that gene interactions (epistasis) may influence Bt resistance in target insect populations.
Collapse
Affiliation(s)
- Brad S Coates
- USDA-ARS, Corn Insect and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, IA 50011, USA; Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | |
Collapse
|
18
|
Hernández-Rodríguez CS, Hernández-Martínez P, Van Rie J, Escriche B, Ferré J. Shared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda. PLoS One 2013; 8:e68164. [PMID: 23861865 PMCID: PMC3702569 DOI: 10.1371/journal.pone.0068164] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/27/2013] [Indexed: 12/29/2022] Open
Abstract
First generation of insect-protected transgenic corn (Bt-corn) was based on the expression of Cry1Ab or Cry1Fa proteins. Currently, the trend is the combination of two or more genes expressing proteins that bind to different targets. In addition to broadening the spectrum of action, this strategy helps to delay the evolution of resistance in exposed insect populations. One of such examples is the combination of Cry1A.105 with Cry1Fa and Cry2Ab to control O. nubilalis and S. frugiperda. Cry1A.105 is a chimeric protein with domains I and II and the C-terminal half of the protein from Cry1Ac, and domain III almost identical to Cry1Fa. The aim of the present study was to determine whether the chimeric Cry1A.105 has shared binding sites either with Cry1A proteins, with Cry1Fa, or with both, in O. nubilalis and in S. frugiperda. Brush-border membrane vesicles (BBMV) from last instar larval midguts were used in competition binding assays with (125)I-labeled Cry1A.105, Cry1Ab, and Cry1Fa, and unlabeled Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab and Cry2Ae. The results showed that Cry1A.105, Cry1Ab, Cry1Ac and Cry1Fa competed with high affinity for the same binding sites in both insect species. However, Cry2Ab and Cry2Ae did not compete for the binding sites of Cry1 proteins. Therefore, according to our results, the development of cross-resistance among Cry1Ab/Ac, Cry1A.105, and Cry1Fa proteins is possible in these two insect species if the alteration of shared binding sites occurs. Conversely, cross-resistance between these proteins and Cry2A proteins is very unlikely in such case.
Collapse
Affiliation(s)
| | | | | | | | - Juan Ferré
- Departamento de Genética, Universitat de València, Burjassot, Spain
| |
Collapse
|
19
|
Pardo-López L, Soberón M, Bravo A. Bacillus thuringiensisinsecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev 2013; 37:3-22. [DOI: 10.1111/j.1574-6976.2012.00341.x] [Citation(s) in RCA: 473] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/10/2012] [Accepted: 04/16/2012] [Indexed: 11/30/2022] Open
|
20
|
Valaitis AP, Podgwaite JD. Bacillus thuringiensis Cry1A toxin-binding glycoconjugates present on the brush border membrane and in the peritrophic membrane of the Douglas-fir tussock moth are peritrophins. J Invertebr Pathol 2013; 112:1-8. [DOI: 10.1016/j.jip.2012.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/19/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
|
21
|
Hernández-Martínez P, Hernández-Rodríguez CS, Krishnan V, Crickmore N, Escriche B, Ferré J. Lack of Cry1Fa binding to the midgut brush border membrane in a resistant colony of Plutella xylostella moths with a mutation in the ABCC2 locus. Appl Environ Microbiol 2012; 78:6759-61. [PMID: 22773634 PMCID: PMC3426719 DOI: 10.1128/aem.01689-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/26/2012] [Indexed: 01/08/2023] Open
Abstract
Previous studies reported "mode 1" Bacillus thuringiensis resistance in a colony of diamondback moths (NO-QA), and recently, this resistance has been mapped to an ABC transporter (ABCC2) locus. We report the lack of binding of Cry1Fa to insects derived from this colony and compare our data with those from other insects with ABCC2-associated resistance.
Collapse
Affiliation(s)
| | | | - Vidisha Krishnan
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Baltasar Escriche
- Departamento de Genética, Facultad de CC. Biológicas, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Juan Ferré
- Departamento de Genética, Facultad de CC. Biológicas, Universidad de Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
22
|
A single major QTL controls expression of larval Cry1F resistance trait in Ostrinia nubilalis (Lepidoptera: Crambidae) and is independent of midgut receptor genes. Genetica 2011; 139:961-72. [DOI: 10.1007/s10709-011-9590-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 06/09/2011] [Indexed: 12/11/2022]
|
23
|
Upadhyay SK, Singh PK. Role of alkaline phosphatase in insecticidal action of Cry1Ac against Helicoverpa armigera larvae. Biotechnol Lett 2011; 33:2027-36. [PMID: 21660568 DOI: 10.1007/s10529-011-0665-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/24/2011] [Indexed: 02/06/2023]
Abstract
Cry1Ac δ-endotoxin produced by Bacillus thuringiensis (Bt) is used as a bio-pesticide for the control of Helicoverpa armigera. Aminopeptidases N (APN) and alkaline phosphatase (ALP) play critical roles in its action against H. armigera larvae. The binding of Cry1Ac with brush border membrane vesicle (BBMV) proteins was increased with the larval development although the sensitivity of larvae to δ-endotoxins decreased. There was higher expression of ALP than APN in early instar larvae with a ~10-fold higher affinity of Cry1Ac towards ALP than to APN. Binding to a specific receptor is therefore more important for the insecticidal activity rather than overall binding to the BBMV proteins. ALP might play a major role in toxicity as compared to APN.
Collapse
Affiliation(s)
- Santosh K Upadhyay
- National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow, UP 226001, India
| | | |
Collapse
|
24
|
Bulushova NV, Zhuzhikov DP, Lyutikova LI, Kirillova NE, Zalunin IA, Chestukhina GG. Toxin-binding proteins isolated from yellow mealworm Tenebrio molitor and wax moth Galleria mellonella. BIOCHEMISTRY (MOSCOW) 2011; 76:202-8. [DOI: 10.1134/s0006297911020064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Jurat-Fuentes JL, Karumbaiah L, Jakka SRK, Ning C, Liu C, Wu K, Jackson J, Gould F, Blanco C, Portilla M, Perera O, Adang M. Reduced levels of membrane-bound alkaline phosphatase are common to lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis. PLoS One 2011; 6:e17606. [PMID: 21390253 PMCID: PMC3046977 DOI: 10.1371/journal.pone.0017606] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 01/29/2011] [Indexed: 12/13/2022] Open
Abstract
Development of insect resistance is one of the main concerns with the use of transgenic crops expressing Cry toxins from the bacterium Bacillus thuringiensis. Identification of biomarkers would assist in the development of sensitive DNA-based methods to monitor evolution of resistance to Bt toxins in natural populations. We report on the proteomic and genomic detection of reduced levels of midgut membrane-bound alkaline phosphatase (mALP) as a common feature in strains of Cry-resistant Heliothis virescens, Helicoverpa armigera and Spodoptera frugiperda when compared to susceptible larvae. Reduced levels of H. virescens mALP protein (HvmALP) were detected by two dimensional differential in-gel electrophoresis (2D-DIGE) analysis in Cry-resistant compared to susceptible larvae, further supported by alkaline phosphatase activity assays and Western blotting. Through quantitative real-time polymerase chain reaction (qRT-PCR) we demonstrate that the reduction in HvmALP protein levels in resistant larvae are the result of reduced transcript amounts. Similar reductions in ALP activity and mALP transcript levels were also detected for a Cry1Ac-resistant strain of H. armigera and field-derived strains of S. frugiperda resistant to Cry1Fa. Considering the unique resistance and cross-resistance phenotypes of the insect strains used in this work, our data suggest that reduced mALP expression should be targeted for development of effective biomarkers for resistance to Cry toxins in lepidopteran pests.
Collapse
Affiliation(s)
- Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abdelkefi-Mesrati L, Boukedi H, Dammak-Karray M, Sellami-Boudawara T, Jaoua S, Tounsi S. Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. J Invertebr Pathol 2011; 106:250-4. [DOI: 10.1016/j.jip.2010.10.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 10/04/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
|
27
|
An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet 2010; 6:e1001248. [PMID: 21187898 PMCID: PMC3002984 DOI: 10.1371/journal.pgen.1001248] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/16/2010] [Indexed: 12/24/2022] Open
Abstract
Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt) are commercially successful in reducing pest damage, yet knowledge of resistance mechanisms that threaten their sustainability is incomplete. Insect resistance to the pore-forming Cry1Ac toxin is correlated with the loss of high-affinity, irreversible binding to the mid-gut membrane, but the genetic factors responsible for this change have been elusive. Mutations in a 12-cadherin-domain protein confer some Cry1Ac resistance but do not block this toxin binding in in vitro assays. We sought to identify mutations in other genes that might be responsible for the loss of binding. We employed a map-based cloning approach using a series of backcrosses with 1,060 progeny to identify a resistance gene in the cotton pest Heliothis virescens that segregated independently from the cadherin mutation. We found an inactivating mutation of the ABC transporter ABCC2 that is genetically linked to Cry1Ac resistance and is correlated with loss of Cry1Ac binding to membrane vesicles. ABC proteins are integral membrane proteins with many functions, including export of toxic molecules from the cell, but have not been implicated in the mode of action of Bt toxins before. The reduction in toxin binding due to the inactivating mutation suggests that ABCC2 is involved in membrane integration of the toxin pore. Our findings suggest that ABC proteins may play a key role in the mode of action of Bt toxins and that ABC protein mutations can confer high levels of resistance that could threaten the continued utilization of Bt-expressing crops. However, such mutations may impose a physiological cost on resistant insects, by reducing export of other toxins such as plant secondary compounds from the cell. This weakness could be exploited to manage this mechanism of Bt resistance in the field.
Collapse
|
28
|
Sousa MEC, Santos FAB, Wanderley-Teixeira V, Teixeira AAC, de Siqueira HÁA, Alves LC, Torres JB. Histopathology and ultrastructure of midgut of Alabama argillacea (Hübner) (Lepidoptera: Noctuidae) fed Bt-cotton. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1913-1919. [PMID: 20804764 DOI: 10.1016/j.jinsphys.2010.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 08/07/2010] [Accepted: 08/13/2010] [Indexed: 05/29/2023]
Abstract
The interaction of Cry toxins from Bacillus thuringiensis in the midgut of some insect larvae determines their efficacies as insecticides, due to the expression and availability of sites of action of the toxin in the midgut. Researches point out cases of resistance to Cry toxin due to alterations in the binding sites in columnar cell membrane. We analyzed the effects of Cry1Ac toxin expressed by Bt-cotton plants on Alabama argillacea midgut morphophysiology clarifying in levels of morphological and ultrastructural. Larvae in the 4th instar of A. argillacea after 20 min from ingesting Bt-cotton leaves expressing 0.183 ng of Cry1Ac exhibited ultrastructural and morphological modifications in the columnar cells with significant changes in the mitochondrial polymorphism, cytoplasmic vacuolization, microvillus and basal labyrinth. Expressive morphological alterations were also observed in the goblet cells indicating that the columnar cells are not the only target of the Cry1Ac toxin. The regenerative cells did not modify their structures and exhibited decrease in regeneration capacity. In conclusion, the ingestion of 0.183 ± 0.077 ng of Cry1Ac was enough to promote alterations in the columnar and goblet cells, besides reducing significantly the number of regenerative cells, which may have contributed to larval death. Nevertheless, further studies are necessary to determine the true cause of death.
Collapse
Affiliation(s)
- Maria Esmeralda C Sousa
- Departamento de Agronomia, Programa de Pós-Graduacão em Entomologia Agrícola, Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, CEP 52171-900 Recife, PE, Brazil
| | | | | | | | | | | | | |
Collapse
|
29
|
Yang Y, Zhu YC, Ottea J, Husseneder C, Leonard BR, Abel C, Huang F. Molecular characterization and RNA interference of three midgut aminopeptidase N isozymes from Bacillus thuringiensis-susceptible and -resistant strains of sugarcane borer, Diatraea saccharalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:592-603. [PMID: 20685334 DOI: 10.1016/j.ibmb.2010.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/18/2010] [Accepted: 05/27/2010] [Indexed: 05/29/2023]
Abstract
Aminopeptidase N (APN) proteins located at the midgut epithelium of some lepidopteran species have been implicated as receptors for insecticidal proteins from Bacillus thuringiensis. cDNAs of three APN isoforms, DsAPN1, DsAPN2, and DsAPN3, from Cry1Ab-susceptible (Cry1Ab-SS) and -resistant (Cry1Ab-RR) strains of the sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), were identified and sequenced using reverse transcriptase polymerase chain reaction (RT-PCR) and 5' rapid amplification of cDNA end (5' RACE). The characteristic APN sequence features were derived from deduced amino acid sequences of the cloned cDNAs. cDNA sequences of the three APN genes were identical between the Cry1Ab-SS and -RR strains. However, total APN proteolytic activity and gene expression of the three APNs from Cry1Ab-RR larvae were significantly lower than those of the Cry1Ab-SS strain. RNA interference (RNAi) was employed using an oral droplet feeding technique for the three APNs of the Cry1Ab-SS strain. Down-regulating expressions of the three APN genes by RNAi were corresponding to the reductions in the specific APN activity. In addition, silencing of all three APNs in D. saccharalis in vivo by RNAi resulted in a decrease in Cry1Ab susceptibility. Our results showed that reduction in expression of the three APNs is functionally associated with the Cry1Ab resistance in D. saccharalis.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Mosquito cell line glycoproteins: an unsuitable model system for the Plasmodium ookinete-mosquito midgut interaction? Parasit Vectors 2010; 3:22. [PMID: 20338056 PMCID: PMC2861666 DOI: 10.1186/1756-3305-3-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/25/2010] [Indexed: 11/10/2022] Open
Abstract
Background Mosquito midgut glycoproteins may act as key recognition sites for the invading malarial ookinete. Effective transmission blocking strategies require the identification of novel target molecules. We have partially characterised the surface glycoproteins of two cell lines from two mosquito species; Anopheles stephensi and Anopheles gambiae, and investigated the binding of Plasmodium berghei ookinetes to carbohydrate ligands on the cells. Cell line extracts were run on SDS-PAGE gels and carbohydrate moieties determined by blotting against a range of biotinylated lectins. In addition, specific glycosidases were used to cleave the oligosaccharides. Results An. stephensi 43 and An. gambiae 55 cell line glycoproteins expressed oligosaccharides containing oligomannose and hybrid oligosaccharides, with and without α1-6 core fucosylation; N-linked oligosaccharides with terminal Galβ1-3GalNAc or GalNAcβ1-3Gal; O-linked α/βGalNAc. An. stephensi 43 cell line glycoproteins also expressed N-linked Galβ1-4R and O-linked Galβ1-3GalNAc. Although P. berghei ookinetes bound to both mosquito cell lines, binding could not be inhibited by GlcNAc, GalNAc or Galactose. Conclusions Anopheline cell lines displayed a limited range of oligosaccharides. Differences between the glycosylation patterns of the cell lines and mosquito midgut epithelial cells could be a factor why ookinetes did not bind in a carbohydrate inhibitable manner. Anopheline cell lines are not suitable as a potential model system for carbohydrate-mediated adhesion of Plasmodium ookinetes.
Collapse
|
31
|
Abdelkefi-Mesrati L, Rouis S, Sellami S, Jaoua S. Prays oleae midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3LB differs from that of Cry1Ac toxin. Mol Biotechnol 2009; 43:15-9. [PMID: 19434523 DOI: 10.1007/s12033-009-9178-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 04/24/2009] [Indexed: 11/27/2022]
Abstract
Vegetative insecticidal protein (Vip) is a class of insecticidal proteins produced by many Bacillus thuringiensis strains during their vegetative growth stage. The vip3LB gene of B. thuringiensis strain BUPM95, which encodes a protein active against the Lepidoptera olive tree pathogenic insect Prays oleae, was cloned into pET-14b vector and overexpressed in Escherichia coli. The expressed Vip3LB protein, found in the E. coli cytoplasmic fraction, was purified and used to produce anti-Vip3LB antibodies. Using the midgut extract of P. oleae, the purified Vip3LB bound to a 65-kDa protein, whereas Cry1Ac toxin bound to a 210-kDa midgut putative receptor. This result justifies the importance of the biological pest control agent Vip3LB that could be used as another alternative particularly in case of resistance to Cry toxins.
Collapse
Affiliation(s)
- Lobna Abdelkefi-Mesrati
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | | | | | | |
Collapse
|
32
|
Coates BS, Sumerford DV, Lewis LC. Segregation of European Corn Borer, Ostrinia nubilalis, Aminopeptidase 1, Cadherin, and Bre5-Like Alleles, from a Colony Resistant to Bacillus thuringiensis Cry1Ab Toxins, are not Associated with F 2 Larval Weights when Fed a Diet Containing Cry1Ab. JOURNAL OF INSECT SCIENCE 2008; 8:21. [PMCID: PMC3061592 DOI: 10.1673/031.008.2101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 06/20/2007] [Indexed: 05/27/2023]
Abstract
Protein receptors may be required for activated Bacillus thuringiensis Cry toxins (Cry1Ab) to bind midgut epithelium prior to pore formation. Single nucleotide polymorphism markers from two Ostrinia nubilalis Hübner (Lepidoptera: Crambidae) midgut peptide receptors, cadherin (OnCad), aminopeptidase N 1 (OnAPN1), and OnBre5 (Onb3GalT5; a β-1,3-galactosyltransferase family 5 member) were used to examine segregation in F2 families derived from paired matings of Cry1Ab-resistant females and Cry1Ab-susceptible males. Genotypic frequencies for these markers did not deviate from Mendelian expectations. Analysis of F2 larvae indicate the segregation of single nucleotide pores in OnAPN1, OnBre5 (Onb3GalT5), and OnCad marker loci were independent of the segregation of logio weights of larvae feeding on Cry1Ab diet.
Collapse
Affiliation(s)
- Brad S. Coates
- USDA-ARS, Corn Insect and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, Iowa 50011
| | - Douglas V. Sumerford
- USDA-ARS, Corn Insect and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, Iowa 50011
- Department of Entomology, Iowa State University, Ames, IA, 50011
| | - Leslie C. Lewis
- USDA-ARS, Corn Insect and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, Iowa 50011
- Department of Entomology, Iowa State University, Ames, IA, 50011
| |
Collapse
|
33
|
Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie). Appl Environ Microbiol 2007; 74:462-9. [PMID: 18024681 DOI: 10.1128/aem.01612-07] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance selection and monitoring. The resistance ratio (RR) for AR exceeded 100-fold after 11 generations and has been maintained at this level for nine generations. This is the first report of stable Cry1Ac resistance in H. zea. MR crashed after 11 generations, reaching only an RR of 12. AR was only partially cross-resistant to MVP II, suggesting that MVP II does not have the same Cry1Ac selection pressure as Cry1Ac toxin against H. zea and that proteases may be involved with resistance. AR was highly cross-resistant to Cry1Ab toxin but only slightly cross-resistant to Cry1Ab expressing corn leaf powder. AR was not cross-resistant to Cry2Aa2, Cry2Ab2-expressing corn leaf powder, Vip3A, and cypermethrin. Toxin-binding assays showed no significant differences, indicating that resistance was not linked to a reduction in binding. These results aid in understanding why this pest has not evolved B. thuringiensis resistance, and highlight the need to choose carefully the form of B. thuringiensis protein used in experiments.
Collapse
|
34
|
Higuchi M, Haginoya K, Yamazaki T, Miyamoto K, Katagiri T, Tomimoto K, Shitomi Y, Hayakawa T, Sato R, Hori H. Binding of Bacillus thuringiensis Cry1A toxins to brush border membrane vesicles of midgut from Cry1Ac susceptible and resistant Plutella xylostella. Comp Biochem Physiol B Biochem Mol Biol 2007; 147:716-24. [PMID: 17543562 DOI: 10.1016/j.cbpb.2007.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 11/24/2022]
Abstract
Plutella xylostella strain resistant (PXR) to Bacillus thuringiensis Cry1Ac toxin was not killed at even more than 1000 microg Cry1Ac/g diet but killed by Cry1Ab at 0.5 microg/g diet. In contrast, susceptible strain (PXS) was killed by Cry1Ac at 1 microg/g diet. Cy3-labeld Cry1A(s) binding to brush border membrane vesicles (BBMV) prepared from both strains were analyzed with direct binding assay. The Kd value of Cry1Aa to both BBMV was almost identical: 213.2 and 205.8 nM, and 263.5 and 265.0 nM for Cry1Ac. The highest Kd values were in Cry1Ab which showed most effective insecticidal activity in PXS and PXR, 2126 and 2463 nM, respectively. These results clearly showed that the BBMV from PXR and PXS could equally bind to Cry1Ac. The binding between BBMV and Cy3-labeled Cry1Ac was inhibited only by anti-175 kDa cadherin-like protein (CadLP) and -252 kDa protein antisera, but not by anti-120 kDa aminopeptidase. This supports that resistance in PXR resulted from the abortion of pore formation after the binding of Cry1Ac to the BBMV. And furthermore, the importance of 175K CadLP and P252 proteins in those bindings was suggested. We briefly discuss possible mechanisms of the resistance.
Collapse
Affiliation(s)
- Masahiro Higuchi
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jurat-Fuentes JL, Adang MJ. A proteomic approach to study Cry1Ac binding proteins and their alterations in resistant Heliothis virescens larvae. J Invertebr Pathol 2007; 95:187-91. [PMID: 17467006 DOI: 10.1016/j.jip.2007.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Accepted: 01/20/2007] [Indexed: 12/11/2022]
Abstract
Binding of the Bacillus thuringiensis Cry1Ac toxin to specific receptors in the midgut brush border membrane is required for toxicity. Alteration of these receptors is the most reported mechanism of resistance. We used a proteomic approach to identify Cry1Ac binding proteins from intestinal brush border membrane (BBM) prepared from Heliothis virescens larvae. Cry1Ac binding BBM proteins were detected in 2D blots and identified using peptide mass fingerprinting (PMF) or de novo sequencing. Among other proteins, the membrane bound alkaline phosphatase (HvALP), and a novel phosphatase, were identified as Cry1Ac binding proteins. Reduction of HvALP expression levels correlated directly with resistance to Cry1Ac in the YHD2-B strain of H. virescens. To study additional proteomic alterations in resistant H. virescens larvae, we used two-dimensional differential in-gel electrophoresis (2D-DIGE) to compare three independent resistant strains with a susceptible strain. Our results validate the use of proteomic approaches to identify toxin binding proteins and proteome alterations in resistant insects.
Collapse
Affiliation(s)
- Juan L Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996-4560, USA.
| | | |
Collapse
|
36
|
|
37
|
Krishnamoorthy M, Jurat-Fuentes JL, McNall RJ, Andacht T, Adang MJ. Identification of novel Cry1Ac binding proteins in midgut membranes from Heliothis virescens using proteomic analyses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:189-201. [PMID: 17296494 DOI: 10.1016/j.ibmb.2006.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 10/18/2006] [Accepted: 10/20/2006] [Indexed: 05/13/2023]
Abstract
Proteins such as aminopeptidases and alkaline phosphatases, both glycosyl-phosphatidyl-inositol (GPI) anchored proteins, were previously identified as Cry1Ac binding proteins in the Heliothis virescens midgut. To identify additional toxin binding proteins, brush border membrane vesicles from H. virescens larvae were treated with phosphatidyl inositol phospholipase C, and released proteins were resolved by two-dimensional electrophoresis. Protein spots selected by their ability to bind Cry1Ac were identified by MALDI-TOF mass spectrometry coupled to peptide mass fingerprinting (PMF) and database searching. As in previous studies, H. virescens alkaline phosphatase was identified as a Cry1Ac binding protein. V-ATP synthase subunit A and actin were identified as novel Cry1Ac binding proteins in H. virescens. Additional toxin-binding proteins were predicted based on MS/MS fragmentation and de novo sequencing, providing amino acid sequences that were used in database searches to identify a phosphatase and a putative protein of the cadherin superfamily as additional Cry1Ac binding proteins.
Collapse
Affiliation(s)
- M Krishnamoorthy
- Departments of Entomology, University of Georgia, Athens, GA 30602-2603, USA
| | | | | | | | | |
Collapse
|
38
|
Karumbaiah L, Oppert B, Jurat-Fuentes JL, Adang MJ. Analysis of midgut proteinases from Bacillus thuringiensis-susceptible and -resistant Heliothis virescens (Lepidoptera: Noctuidae). Comp Biochem Physiol B Biochem Mol Biol 2007; 146:139-46. [PMID: 17145193 DOI: 10.1016/j.cbpb.2006.10.104] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 09/05/2006] [Accepted: 10/10/2006] [Indexed: 11/26/2022]
Abstract
Insects with altered proteinases can avoid intoxication by Bacillus thuringiensis (Bt) toxins. Therefore, proteinase activities from gut extracts of Bt-susceptible (YDK) and -resistant (YHD2-B, CXC and KCBhyb) Heliothis virescens strains were compared. The overall pH of gut extracts from YDK and CXC were statistically similar (9.56 and 9.62, respectively), while the pH of extracts from KCBhyb and YHD2-B were significantly more alkaline (9.81 and 10.0, respectively). Gut extracts from YHD2-B and CXC larvae processed Cry1Ac and Cry2Aa protoxin slower than extracts from YDK larvae, suggesting that differences in proteolysis contribute to resistance in these strains. Casein zymogram analysis of gut extracts revealed both qualitative and quantitative differences in caseinolytic activities among all strains, but the overall caseinolytic activity of YHD2-B gut extract was lower. Kinetic microplate assays with a trypsin substrate (l-BApNA) demonstrated that proteinases in YDK gut extract had increased alkaline pH optima compared to resistant strains YHD2-B, CXC and KCBhyb. Gut extracts from YHD2-B had reduced trypsin-like activity, and activity blots indicated that YHD2-B had lost a trypsin-like proteinase activity. In assays with a chymotrypsin substrate (SAAPFpNA), enzymes from all Bt-resistant strains had increased pH optima, especially those from KCBhyb. Activity blots indicated that CXC had lost a chymotrypsin-like proteinase activity. Because serine proteinases are a critical component of Bt toxin mode of action, these differences may contribute to decreased toxicity in the Bt-resistant strains.
Collapse
|
39
|
Siqueira HAA, González-Cabrera J, Ferré J, Flannagan R, Siegfried BD. Analyses of Cry1Ab binding in resistant and susceptible strains of the European corn borer, Ostrinia nubilalis (Hubner) (Lepidoptera: Crambidae). Appl Environ Microbiol 2006; 72:5318-24. [PMID: 16885282 PMCID: PMC1538724 DOI: 10.1128/aem.00219-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cry1Ab toxin binding analysis was performed to determine whether resistance in laboratory-selected Ostrinia nubilalis strains is associated with target site alteration. Brush border membrane vesicles were prepared using dissected midguts from late instars of susceptible and resistant strains (Europe-R and RSTT) of O. nubilalis. Immunoblot analysis indicated that three different proteins bound to Cry1Ab toxin and were recognized by an anticadherin serum. In a comparison of resistant and susceptible strains, reduced Cry1Ab binding was apparent for all three bands corresponding to cadherin-like proteins in the Europe-R strain, while reduced binding was apparent in only one band for the RSTT strain. Real-time analysis of Cry1Ab binding to gut receptors using surface plasmon resonance suggested slight differences in affinity in both resistant strains. Additional binding analysis was conducted using 125I-labeled Cry1Ab, Cry1Ac, and Cry1Aa. Slight differences were again observed between the resistant and susceptible strains for Cry1Ab binding. However, when binding of 125I-labeled Cry1Aa was tested, a 10-fold reduction in the concentration of binding sites was observed in the Europe-R strain. Expression of the O. nubilalis cadherin gene was similar in both the resistant and susceptible strains and did not account for differences in binding. In combination, the results of the present work suggest that differences in susceptibility to Cry1A toxins in the Europe-R strain of O. nubilalis are associated with altered receptor binding, although the precise nature of this mechanism is still uncertain.
Collapse
|
40
|
Scully LR, Bidochka MJ. Developing insect models for the study of current and emerging human pathogens. FEMS Microbiol Lett 2006; 263:1-9. [PMID: 16958844 DOI: 10.1111/j.1574-6968.2006.00388.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The study of human diseases requires the testing of microorganisms in model systems. Although mammals are typically used, we argue the validity of using insects as models in order to examine human diseases, particularly the growing number of opportunistic microorganisms. Insects can be used in large numbers, are easily manipulated, and are not subject to the same ethical concerns as mammalian systems. Insects and mammals have many parallels with respect to microbial pathogenesis, from proteinaceous integuments that require breaching before infection to similarities in their innate immune responses. Reactions of insects to Candida and Pseudomonas spp. infections show good correlation with mouse models, providing precedent-setting examples of the study of human pathogens using insects. Insects as pathogen hosts also warrant study because they may act as reservoirs for emerging human pathogens. Finally, insect models may be used to examine the evolutionary processes involved in the acquisition of virulence factors and host-jumping mechanisms indispensable to emerging pathogens. Insect models may be used in 'niche' investigations where large sample sizes can facilitate rapid, informative screening of opportunistic diseases and provide insights into pathogen evolution, while reducing the cost and ethical concerns associated with mammalian models.
Collapse
Affiliation(s)
- Lisa R Scully
- Department of Biological Sciences, Brock University, ON, Canada
| | | |
Collapse
|
41
|
Jurat-Fuentes JL, Adang MJ. Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae. J Invertebr Pathol 2006; 92:166-71. [PMID: 16797583 DOI: 10.1016/j.jip.2006.01.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 01/20/2006] [Indexed: 02/04/2023]
Abstract
Many pest insect species are effectively controlled by Bacillus thuringiensis (Bt) Cry toxins delivered in plants and biopesticides. Since the insect midgut epithelium contains receptors and other molecules that determine Bt toxicity, characterization of these molecules is necessary for sustained usage of Bt toxins. Studies of Bt susceptible and resistant strains of Heliothis virescens have provided insights into resistance mechanisms and toxin receptors. For example, the first gene identified as involved in high levels of Cry1Ac resistance in H. virescens encodes a cadherin-like protein, a functional Cry1A receptor in Lepidoptera. This manuscript discusses the most updated information on the mode of action of Cry1A toxins obtained from the characterization of resistant mechanisms in H. virescens strains. Our studies are focused on biochemical and molecular comparison of a susceptible and three resistant H. virescens strains to identify alterations that correlate with toxin resistance. Following this approach we have been able to identify an alkaline phosphatase (HvALP) as a potential receptor and tested the utility of this protein as a marker for resistance to Cry1Ac. Comparison of brush border proteomes from susceptible and resistant larvae has allowed us to identify additional molecules directly involved in the toxicity process.
Collapse
|
42
|
Lee MK, Miles P, Chen JS. Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midguts. Biochem Biophys Res Commun 2005; 339:1043-7. [PMID: 16337146 DOI: 10.1016/j.bbrc.2005.11.112] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 11/16/2005] [Indexed: 10/25/2022]
Abstract
The binding properties of Vip3A, a new family of Bacillus thuringiensis insecticidal toxins, have been examined in the major cotton pests, Heliothis virescens and Helicoverpa zea. Vip3A bound specifically to brush border membrane vesicles (BBMV) prepared from both insect larval midguts. In order to examine the cross-resistance potential of Vip3A to the commercially available Cry1Ac and Cry2Ab2 toxins, the membrane binding site relationship among these toxins was investigated. Competition binding assays demonstrated that Vip3A does not inhibit the binding of either Cry1Ac or Cry2Ab2 and vice versa. BBMV protein blotting experiments showed that Vip3A does not bind to the known Cry1Ac receptors. These distinct binding properties and the unique protein sequence of Vip3A support its use as a novel insecticidal agent. This study indicates a very low cross-resistance potential between Vip3A and currently deployed Cry toxins and hence supports its use in an effective resistance management strategy in cotton.
Collapse
Affiliation(s)
- Mi Kyong Lee
- Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
43
|
Hernández CS, Ferré J. Common receptor for Bacillus thuringiensis toxins Cry1Ac, Cry1Fa, and Cry1Ja in Helicoverpa armigera, Helicoverpa zea, and Spodoptera exigua. Appl Environ Microbiol 2005; 71:5627-9. [PMID: 16151165 PMCID: PMC1214606 DOI: 10.1128/aem.71.9.5627-5629.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Binding studies using (125)I-Cry1Ac and biotinylated Cry1Fa toxins indicate the occurrence of a common receptor for Cry1Ac, Cry1Fa, and Cry1Ja in Helicoverpa armigera, Helicoverpa zea, and Spodoptera exigua. Our results, along with previous binding data and the observed cases of cross-resistance, suggest that this pattern seems to be widespread among lepidopteran species.
Collapse
Affiliation(s)
- Carmen Sara Hernández
- Departament de Genètica, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | | |
Collapse
|
44
|
Gunning RV, Dang HT, Kemp FC, Nicholson IC, Moores GD. New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin. Appl Environ Microbiol 2005; 71:2558-63. [PMID: 15870346 PMCID: PMC1087549 DOI: 10.1128/aem.71.5.2558-2563.2005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Accepted: 12/09/2004] [Indexed: 11/20/2022] Open
Abstract
In Australia, the cotton bollworm, Helicoverpa armigera, has a long history of resistance to conventional insecticides. Transgenic cotton (expressing the Bacillus thuringiensis toxin Cry1Ac) has been grown for H. armigera control since 1996. It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold). Some 70% of resistant H. armigera larvae were able to survive on Cry1Ac transgenic cotton (Ingard) The resistance phenotype is inherited as an autosomal semidominant trait. Resistance was associated with elevated esterase levels, which cosegregated with resistance. In vitro studies employing surface plasmon resonance technology and other biochemical techniques demonstrated that resistant strain esterase could bind to Cry1Ac protoxin and activated toxin. In vivo studies showed that Cry1Ac-resistant larvae fed Cy1Ac transgenic cotton or Cry1Ac-treated artificial diet had lower esterase activity than non-Cry1Ac-fed larvae. A resistance mechanism in which esterase sequesters Cry1Ac is proposed.
Collapse
Affiliation(s)
- Robin V Gunning
- New South Wales Department of Primary Industries, Tamworth, NSW, Australia 2340.
| | | | | | | | | |
Collapse
|
45
|
Griffitts JS, Haslam SM, Yang T, Garczynski SF, Mulloy B, Morris H, Cremer PS, Dell A, Adang MJ, Aroian RV. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 2005; 307:922-5. [PMID: 15705852 DOI: 10.1126/science.1104444] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The development of pest resistance threatens the effectiveness of Bacillus thuringiensis (Bt) toxins used in transgenic and organic farming. Here, we demonstrate that (i) the major mechanism for Bt toxin resistance in Caenorhabditis elegans entails a loss of glycolipid carbohydrates; (ii) Bt toxin directly and specifically binds glycolipids; and (iii) this binding is carbohydrate-dependent and relevant for toxin action in vivo. These carbohydrates contain the arthroseries core conserved in insects and nematodes but lacking in vertebrates. We present evidence that insect glycolipids are also receptors for Bt toxin.
Collapse
Affiliation(s)
- Joel S Griffitts
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The Cry family of Bacillus thuringiensis insecticidal and nematicidal proteins constitutes a valuable source of environmentally benign compounds for the control of insect pests and disease agents. An understanding of Cry toxin resistance at a molecular level will be critical to the long-term utility of this technology; it may also shed light on basic mechanisms used by other bacterial toxins that target specific organisms or cell types. Selection and cross-resistance studies have confirmed that genetic adaptation can elicit varying patterns of Cry toxin resistance, which has been associated with deficient protoxin activation by host proteases, and defective Cry toxin-binding cell surface molecules, such as cadherins, aminopeptidases and glycolipids. Recent work also suggests Cry toxin resistance may be induced in invertebrates as an active immune response. The use of model invertebrates, such as Caenorhabditis elegans and Drosophila melanogaster, as well as advances in insect genomics, are likely to accelerate efforts to clone Cry toxin resistance genes and come to a detailed and broad understanding of Cry toxin resistance.
Collapse
Affiliation(s)
- Joel S Griffitts
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA
| | | |
Collapse
|
47
|
Jurat-Fuentes JL, Adang MJ. Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. ACTA ACUST UNITED AC 2004; 271:3127-35. [PMID: 15265032 DOI: 10.1111/j.1432-1033.2004.04238.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We reported previously a direct correlation between reduced soybean agglutinin binding to 63- and 68-kDa midgut glycoproteins and resistance to Cry1Ac toxin from Bacillus thuringiensis in the tobacco budworm (Heliothis virescens). In the present work we describe the identification of the 68-kDa glycoprotein as a membrane-bound form of alkaline phosphatase we term HvALP. Lectin blot analysis of HvALP revealed the existence of N-linked oligosaccharides containing terminal N-acetylgalactosamine required for [125I]Cry1Ac binding in ligand blots. Based on immunoblotting and alkaline phosphatase activity detection, reduced soybean agglutinin binding to HvALP from Cry1Ac resistant larvae of the H. virescens YHD2 strain was attributable to reduced amounts of HvALP in resistant larvae. Quantification of specific alkaline phosphatase activity in brush border membrane proteins from susceptible (YDK and F1 generation from backcrosses) and YHD2 H. virescens larvae confirmed the observation of reduced HvALP levels. We propose HvALP as a Cry1Ac binding protein that is present at reduced levels in brush border membrane vesicles from YHD2 larvae.
Collapse
|
48
|
Estela A, Escriche B, Ferré J. Interaction of Bacillus thuringiensis toxins with larval midgut binding sites of Helicoverpa armigera (Lepidoptera: Noctuidae). Appl Environ Microbiol 2004; 70:1378-84. [PMID: 15006756 PMCID: PMC368413 DOI: 10.1128/aem.70.3.1378-1384.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 1996, Bt-cotton (cotton expressing a Bacillus thuringiensis toxin gene) expressing the Cry1Ac protein was commercially introduced to control cotton pests. A threat to this first generation of transgenic cotton is the evolution of resistance by the insects. Second-generation Bt-cotton has been developed with either new B. thuringiensis genes or with a combination of cry genes. However, one requirement for the "stacked" gene strategy to work is that the stacked toxins bind to different binding sites. In the present study, the binding of (125)I-labeled Cry1Ab protein ((125)I-Cry1Ab) and (125)I-Cry1Ac to brush border membrane vesicles (BBMV) of Helicoverpa armigera was analyzed in competition experiments with 11 nonlabeled Cry proteins. The results indicate that Cry1Aa, Cry1Ab, and Cry1Ac competed for common binding sites. No other Cry proteins tested competed for either (125)I-Cry1Ab or (125)I-Cry1Ac binding, except Cry1Ja, which competed only at the highest concentrations used. Furthermore, BBMV from four H. armigera populations were also tested with (125)I-Cry1Ac and Cry1Ab to check the influence of the insect population on the binding results. Finally, the inhibitory effect of selected sugars and lectins was also determined. (125)I-Cry1Ac binding was strongly inhibited by N-acetylgalactosamine, sialic acid, and concanavalin A and moderately inhibited by soybean agglutinin. In contrast, (125)I-Cry1Ab binding was only significantly inhibited by concanavalin A. These results show that Cry1Ac and Cry1Ab use different epitopes for binding to BBMV.
Collapse
Affiliation(s)
- Anna Estela
- Departament de Genètica, Facultat CC. Biològiques, Universitat de València, València, Spain
| | - Baltasar Escriche
- Departament de Genètica, Facultat CC. Biològiques, Universitat de València, València, Spain
| | - Juan Ferré
- Departament de Genètica, Facultat CC. Biològiques, Universitat de València, València, Spain
- Corresponding author. Mailing address: Departament de Genètica, Facultat CC. Biològiques, Dr. Moliner 50, 46100-Burjassot, València, Spain. Phone: (34) 96-354-4506. Fax: (34) 96-354-3029. E-mail:
| |
Collapse
|
49
|
de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE. Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 2004; 37:409-33. [PMID: 14616068 DOI: 10.1146/annurev.genet.37.110801.143042] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gram-positive spore-forming entomopathogenic bacteria can utilize a large variety of protein toxins to help them invade, infect, and finally kill their hosts, through their action on the insect midgut. These toxins belong to a number of homology groups containing a diversity of protein structures and modes of action. In many cases, the toxins consist of unique folds or novel combinations of domains having known protein folds. Some of the toxins display a similar structure and mode of action to certain toxins of mammalian pathogens, suggesting a common evolutionary origin. Most of these toxins are produced in large amounts during sporulation and have the remarkable feature that they are localized in parasporal crystals. Localization of multiple toxin-encoding genes on plasmids together with mobilizable elements enables bacteria to shuffle their armory of toxins. Recombination between toxin genes and sequence divergence has resulted in a wide range of host specificities.
Collapse
Affiliation(s)
- Ruud A de Maagd
- Plant Research International B.V., 6700 AA Wageningen, Netherlands.
| | | | | | | | | |
Collapse
|
50
|
Jurat-Fuentes JL, Gould FL, Adang MJ. Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resistance. Appl Environ Microbiol 2004; 69:5898-906. [PMID: 14532042 PMCID: PMC201244 DOI: 10.1128/aem.69.10.5898-5906.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One strategy for delaying evolution of resistance to Bacillus thuringiensis crystal (Cry) endotoxins is the production of multiple Cry toxins in each transgenic plant (gene stacking). This strategy relies upon the assumption that simultaneous evolution of resistance to toxins that have different modes of action will be difficult for insect pests. In B. thuringiensis-transgenic (Bt) cotton, production of both Cry1Ac and Cry2Ab has been proposed to delay resistance of Heliothis virescens (tobacco budworm). After previous laboratory selection with Cry1Ac, H. virescens strains CXC and KCBhyb developed high levels of cross-resistance not only to toxins similar to Cry1Ac but also to Cry2Aa. We studied the role of toxin binding alteration in resistance and cross-resistance with the CXC and KCBhyb strains. In toxin binding experiments, Cry1A and Cry2Aa toxins bound to brush border membrane vesicles from CXC, but binding of Cry1Aa was reduced for the KCBhyb strain compared to susceptible insects. Since Cry1Aa and Cry2Aa do not share binding proteins in H. virescens, our results suggest occurrence of at least two mechanisms of resistance in KCBhyb insects, one of them related to reduction of Cry1Aa toxin binding. Cry1Ac bound irreversibly to brush border membrane vesicles (BBMV) from YDK, CXC, and KCBhyb larvae, suggesting that Cry1Ac insertion was unaffected. These results highlight the genetic potential of H. virescens to become resistant to distinct Cry toxins simultaneously and may question the effectiveness of gene stacking in delaying evolution of resistance.
Collapse
|