1
|
Fan Y, Yu K, Zheng H, Chen Y, Zhao R, Li Y, Zheng Z. A high-yielding strain of indole-3-acetic acid isolated from food waste compost: metabolic pathways, optimization of fermentation conditions, and application. ENVIRONMENTAL TECHNOLOGY 2023; 44:4199-4209. [PMID: 35678156 DOI: 10.1080/09593330.2022.2082889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Food waste is a potential resource to prepare microbial fertilizer. However, functional microorganisms derived from the food waste compost (FWC) are relatively lacking. We have isolated, identified, characterized and optimized a high-yielding indole-3-acetic acid (IAA) strain from FWC and further evaluated its growth promoting effect on plants. A IAA high-yielding strain, Providencia sp.Y, with an initial IAA yield of 139.98 mg L-1, was obtained through high-throughput screening, and identified by 16S rRNA gene sequence. The novel strain Y may simultaneously involve the following three pathways from L-tryptophan to IAA, which were identified using liquid chromatography-tandem mass spectrometry: (1) L-tryptophan-indole-3-ethanol-indole-3-acetaldehyde-indole-3-acetic acid; (2) L-tryptophan-1-hydroxy-indole-3-ethanol-indole-3-acetic acid; (3) L-tryptophan-indole-3-acetamide-indole-3-acetic acid. The most suitable comprehensive conditions for IAA production, which were optimized by single factor experiment, were: culture time 12 h, inoculation amount 2% (v/v), NaCl concentration 4% (w/v), culture temperature 25℃, initial pH = 5, and L-tryptophan concentration 3.0 g L-1. The yield of IAA after optimization was increased by 590.48%, from 139.98 mg L-1 (before optimization) to 966.54 mg L-1. Diluted 200-fold microbial suspension could significantly improve the growth of pakchoi seedlings. The seedling plant height, root length, leaf width, leaf length, and fresh weight with microbial suspension increased by 17.39%, 107.35%, 77.98%, 37.75%, and 215.38%, respectively, compared with those without microbial suspension. The increase was greater than that of commercial bacterial agents. In conclusion, this isolated strain can be used as an economical microbial inoculant and provides a new germplasm resource for developing microbial fertilizers.
Collapse
Affiliation(s)
- Yueqin Fan
- College of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou, People's Republic of China
| | - Kefei Yu
- College of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou, People's Republic of China
| | - Huabao Zheng
- College of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou, People's Republic of China
| | - Yinyan Chen
- Zhejiang Shuangliang Sunda Environmental Protection Co., Ltd., Hangzhou, People's Republic of China
| | - Ruojin Zhao
- Zhejiang Shuangliang Sunda Environmental Protection Co., Ltd., Hangzhou, People's Republic of China
| | - Yiyi Li
- Zhejiang Shuangliang Sunda Environmental Protection Co., Ltd., Hangzhou, People's Republic of China
| | - Zhanwang Zheng
- College of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou, People's Republic of China
- Zhejiang Shuangliang Sunda Environmental Protection Co., Ltd., Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Roy S, Agarwal T, Das A, Halder T, Upadhyaya G, Chaubey B, Ray S. The C-terminal stretch of glycine-rich proline-rich protein (SbGPRP1) from Sorghum bicolor serves as an antimicrobial peptide by targeting the bacterial outer membrane protein. PLANT MOLECULAR BIOLOGY 2023; 111:131-151. [PMID: 36271987 DOI: 10.1007/s11103-022-01317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The C-terminal stretch in SbGPRP1 (Sorghum glycine-rich proline-rich protein) acts as an antimicrobial peptide in the host innate defense mechanism. Cationic antimicrobial proteins or peptides can either bind to the bacterial membrane or target a specific protein on the bacterial membrane thus leading to membrane perturbation. The 197 amino acid polypeptide of SbGPRP1 showed disordered structure at the N-terminal end and ordered conformation at the C-terminal end. In the present study, the expression of N-SbGPRP1, C-SbGPRP1, and ∆SbGPRP1 followed by antimicrobial assays showed potential antimicrobial property of the C-terminal peptide against gram-positive bacteria Bacillus subtilis and phytopathogen Rhodococcus fascians. The SbGPRP1 protein loses its antimicrobial property when the 23 amino acid sequence (GHGGHGVFGGGYGHGGYGHGYGG) from position 136 to 158 is deleted from the protein. Thus, it can be concluded that the 23 amino acid sequence is vital for the said antimicrobial property. NPN assay, SEM analysis, and electrolyte leakage assays showed potent antimicrobial activity for C-SbGPRP1. Overexpression of the C-SbGPRP1 mutant protein in tobacco followed by infection with Rhodococcus fascians inhibited bacterial growth as shown by SEM analysis. To determine if C-SbGPRP1 might target any protein on the bacterial membrane we isolated the bacterial membrane protein from both Bacillus subtilis and Rhodococcus fascians. Bacterial membrane protein that interacted with the column-bound C-SbGPRP1 was eluted and subjected to LC-MS/MS. LC-MS/MS data analysis showed peptide hit with membrane protein YszA from Bacillus subtilis and a membrane protein from Rhodococcus fascians. Isolated bacterial membrane protein from Bacillus subtilis or Rhodococcus fascians was able to reduce the antimicrobial activity of C-SbGPRP1. Furthermore, BiFC experiments showed interactions between C-SbGPRP1 and YszA protein from Bacillus subtilis leading to the conclusion that bacterial membrane protein was targeted in such membrane perturbation leading to antimicrobial activity.
Collapse
Affiliation(s)
- Shuddhanjali Roy
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Tanushree Agarwal
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Arup Das
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Tanmoy Halder
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Gouranga Upadhyaya
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Binay Chaubey
- Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Sudipta Ray
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
3
|
Gottfriedia endophyticus sp. nov., a novel indole-acetic acid producing bacterium isolated from the roots of rice plant. Antonie van Leeuwenhoek 2022; 115:943-952. [DOI: 10.1007/s10482-022-01748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
|
4
|
Panichikkal J, Mohanan DP, Koramkulam S, Krishnankutty RE. Chitosan nanoparticles augmented indole-3-acetic acid production by rhizospheric Pseudomonas monteilii. J Basic Microbiol 2022; 62:1467-1474. [PMID: 35510957 DOI: 10.1002/jobm.202100358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 11/05/2022]
Abstract
Rhizospheric Pseudomonas spp. are widely used for upgrading sustainable agriculture because of their ability to execute multifaceted plant beneficial functions. In the current study, chitosan nanoparticles (CNPs) were used to analyze their effect on plant beneficial properties of rhizospheric Pseudomonas monteilii. The CNPs were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis. The impact of CNPs on indole-3-acetic acid (IAA) production of P. monteilii was analyzed and quantified by spectrophotometric and confirmed high-performance liquid chromatography analysis. This revealed the beneficial effect of CNPs (1 mg/ml) by enhancing the IAA production of P. monteilii. In planta effect of varied bacterial IAA production was further demonstrated in Vigna unguiculata. Here, enhancement in shoot length (35.79 ± 0.37 cm), leaf number (7 ± 0.54), and fresh weight (3.07 ± 0.11 g) were observed in the plants treated with the culture filtrate collected from P. monteilii cultivated with 1 mg/ml CNPs. The results of the study highlight the beneficial effect of the CNPs to augment the rhizobacterial functioning by inducing the expression of plant beneficial properties.
Collapse
Affiliation(s)
- Jishma Panichikkal
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Deepa P Mohanan
- International and Inter-University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala, India
| | | | | |
Collapse
|
5
|
Rädisch R, Pátek M, Křístková B, Winkler M, Křen V, Martínková L. Metabolism of Aldoximes and Nitriles in Plant-Associated Bacteria and Its Potential in Plant-Bacteria Interactions. Microorganisms 2022; 10:549. [PMID: 35336124 PMCID: PMC8955678 DOI: 10.3390/microorganisms10030549] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022] Open
Abstract
In plants, aldoximes per se act as defense compounds and are precursors of complex defense compounds such as cyanogenic glucosides and glucosinolates. Bacteria rarely produce aldoximes, but some are able to transform them by aldoxime dehydratase (Oxd), followed by nitrilase (NLase) or nitrile hydratase (NHase) catalyzed transformations. Oxds are often encoded together with NLases or NHases in a single operon, forming the aldoxime-nitrile pathway. Previous reviews have largely focused on the use of Oxds and NLases or NHases in organic synthesis. In contrast, the focus of this review is on the contribution of these enzymes to plant-bacteria interactions. Therefore, we summarize the substrate specificities of the enzymes for plant compounds. We also analyze the taxonomic and ecological distribution of the enzymes. In addition, we discuss their importance in selected plant symbionts. The data show that Oxds, NLases, and NHases are abundant in Actinobacteria and Proteobacteria. The enzymes seem to be important for breaking through plant defenses and utilizing oximes or nitriles as nutrients. They may also contribute, e.g., to the synthesis of the phytohormone indole-3-acetic acid. We conclude that the bacterial and plant metabolism of aldoximes and nitriles may interfere in several ways. However, further in vitro and in vivo studies are needed to better understand this underexplored aspect of plant-bacteria interactions.
Collapse
Affiliation(s)
- Robert Rädisch
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Viničná 5, CZ-128 44 Prague, Czech Republic
| | - Miroslav Pátek
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Barbora Křístková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Margit Winkler
- Institute of Molecular Biotechnology, Faculty of Technical Chemistry, Chemical and Process Engineering, Biotechnology, Graz University of Technology, Petersgasse 14, A-8010 Graz, Austria
- Austrian Center of Industrial Biotechnology GmbH, Krenngasse 37, A-8010 Graz, Austria
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Ludmila Martínková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| |
Collapse
|
6
|
Li M, Li T, Zhou M, Li M, Zhao Y, Xu J, Hu F, Li H. Caenorhabditis elegans Extracts Stimulate IAA Biosynthesis in Arthrobacter pascens ZZ21 via the Indole-3-pyruvic Acid Pathway. Microorganisms 2021; 9:microorganisms9050970. [PMID: 33946196 PMCID: PMC8146544 DOI: 10.3390/microorganisms9050970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Inter-organismal metabolites play important roles in regulating organism behavior and the communication between organisms. Nematodes, the most abundant animals on earth, are crucial participants in soil ecosystems through their interactions with microbes. For example, bacterial-feeding nematodes increase the activity of indole-3-acetic acid (IAA)-producing bacteria and the IAA content in soil. However, the way in which these nematodes interact with bacteria and affect IAA biosynthesis is not well understood. Here, using the model nematode Caenorhabditis elegans and the plant-beneficial bacterium Arthrobacter pascens ZZ21, we examined the effects of nematode excretions or extracts on bacterial IAA biosynthesis. To explore the underlying regulatory mechanism in more detail, we performed transcriptome sequencing and metabolomic analysis. Our findings suggest that C. elegans extracts promote IAA biosynthesis in A. pascens ZZ21 by increasing the expression of genes and the abundance of intermediates involved in the indole-3-pyruvic acid (IPyA) pathway. C. elegans extracts also significantly influenced biosynthetic and metabolic activity in A. pascens ZZ21. Treatment with C. elegans extracts promoted pyruvate metabolism, the citrate cycle (TCA) cycle and the production of some TCA-cycle-related amino acids and inhibited oxidative phosphorylation, which induced the accumulation of reduced nicotinamide adenine dinucleotide (NADH). We propose that the extracts altered the metabolism of A. pascens ZZ21 to help the bacteria resist stress caused by their predator. Our findings indicate that bacterial-feeding nematodes mediate the interaction between nematodes and bacteria via their extracts, providing insights into the ecological function of C. elegans in soil.
Collapse
Affiliation(s)
- Mengsha Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (T.L.); (M.Z.); (M.L.); (Y.Z.); (J.X.); (F.H.)
- College of Science & Technology, Ningbo University, Cixi 315300, China
| | - Teng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (T.L.); (M.Z.); (M.L.); (Y.Z.); (J.X.); (F.H.)
| | - Ming Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (T.L.); (M.Z.); (M.L.); (Y.Z.); (J.X.); (F.H.)
| | - Mengdi Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (T.L.); (M.Z.); (M.L.); (Y.Z.); (J.X.); (F.H.)
| | - Yexin Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (T.L.); (M.Z.); (M.L.); (Y.Z.); (J.X.); (F.H.)
| | - Jingjing Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (T.L.); (M.Z.); (M.L.); (Y.Z.); (J.X.); (F.H.)
| | - Feng Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (T.L.); (M.Z.); (M.L.); (Y.Z.); (J.X.); (F.H.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, China
| | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (T.L.); (M.Z.); (M.L.); (Y.Z.); (J.X.); (F.H.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, China
- Correspondence: ; Tel.: +86-025-84395374
| |
Collapse
|
7
|
Jahn L, Hofmann U, Ludwig-Müller J. Indole-3-Acetic Acid Is Synthesized by the Endophyte Cyanodermella asteris via a Tryptophan-Dependent and -Independent Way and Mediates the Interaction with a Non-Host Plant. Int J Mol Sci 2021; 22:2651. [PMID: 33800748 PMCID: PMC7961953 DOI: 10.3390/ijms22052651] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022] Open
Abstract
The plant hormone indole-3-acetic acid (IAA) is one of the main signals playing a role in the communication between host and endophytes. Endophytes can synthesize IAA de novo to influence the IAA homeostasis in plants. Although much is known about IAA biosynthesis in microorganisms, there is still less known about the pathway by which IAA is synthesized in fungal endophytes. The aim of this study is to examine a possible IAA biosynthesis pathway in Cyanodermella asteris. In vitro cultures of C. asteris were incubated with the IAA precursors tryptophan (Trp) and indole, as well as possible intermediates, and they were additionally treated with IAA biosynthesis inhibitors (2-mercaptobenzimidazole and yucasin DF) to elucidate possible IAA biosynthesis pathways. It was shown that (a) C. asteris synthesized IAA without adding precursors; (b) indole-3-acetonitrile (IAN), indole-3-acetamide (IAM), and indole-3-acetaldehyde (IAD) increased IAA biosynthesis; and (c) C. asteris synthesized IAA also by a Trp-independent pathway. Together with the genome information of C. asteris, the possible IAA biosynthesis pathways found can improve the understanding of IAA biosynthesis in fungal endophytes. The uptake of fungal IAA into Arabidopsis thaliana is necessary for the induction of lateral roots and other fungus-related growth phenotypes, since the application of the influx inhibitor 2-naphthoxyacetic acid (NOA) but not the efflux inhibitor N-1-naphtylphthalamic acid (NPA) were altering these parameters. In addition, the root phenotype of the mutation in an influx carrier, aux1, was partially rescued by C. asteris.
Collapse
Affiliation(s)
| | | | - Jutta Ludwig-Müller
- Institute of Botany, Faculty of Biology, Technische Universität Dresden, 01062 Dresden, Germany; (L.J.); (U.H.)
| |
Collapse
|
8
|
Genome-Wide Characterization and Expression of Two-Component System Genes in Cytokinin-Regulated Gall Formation in Zizania latifolia. PLANTS 2020; 9:plants9111409. [PMID: 33105697 PMCID: PMC7690396 DOI: 10.3390/plants9111409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022]
Abstract
The thickening of Zizania latifolia shoots, referred to as gall formation, depends on infection with the fungal endophyte Ustilago esculenta. The swollen and juicy shoots are a popular vegetable in Asia. A key role for cytokinin action in this process was postulated. Here, trans-zeatin stimulated swelling in fungi-infected Z. latifolia. A two-component system (TCS) linked cytokinin binding to receptors with transcriptional regulation in the nucleus and played important roles in diverse biological processes. We characterized 69 TCS genes encoding for 25 histidine kinase/histidine-kinase-like (HK(L)) (21 HKs and 4 HKLs), 8 histidine phosphotransfer proteins (HP) (5 authentic and 3 pseudo), and 36 response regulators (RR; 14 type A, 14 type B, 2 type C, and 6 pseudo) in the genome of Z. latifolia. These TCS genes have a close phylogenetic relationship with their rice counterparts. Nineteen duplicated TCS gene pairs were found and the ratio of nonsynonymous to synonymous mutations indicated that a strong purifying selection acted on these duplicated genes, leading to few mutations during evolution. Finally, ZlCHK1, ZlRRA5, ZIRRA9, ZlRRA10, ZlPRR1, and ZlPHYA expression was associated with gall formation. Among them, ARR5, ARR9, and ZlPHYA are quickly induced by trans-zeatin, suggesting a role for cytokinin signaling in shoot swelling of Z. latifolia.
Collapse
|
9
|
Keswani C, Singh SP, Cueto L, García-Estrada C, Mezaache-Aichour S, Glare TR, Borriss R, Singh SP, Blázquez MA, Sansinenea E. Auxins of microbial origin and their use in agriculture. Appl Microbiol Biotechnol 2020; 104:8549-8565. [PMID: 32918584 DOI: 10.1007/s00253-020-10890-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022]
Abstract
To maintain the world population demand, a sustainable agriculture is needed. Since current global vision is more friendly with the environment, eco-friendly alternatives are desirable. In this sense, plant growth-promoting rhizobacteria could be the choice for the management of soil-borne diseases of crop plants. These rhizobacteria secrete chemical compounds which act as phytohormones. Indole-3-acetic acid (IAA) is the most common plant hormone of the auxin class which regulates various processes of plant growth. IAA compound, in which structure can be found a carboxylic acid attached through a methylene group to the C-3 position of an indole ring, is produced both by plants and microorganisms. Plant growth-promoting rhizobacteria and fungi secrete IAA to promote the plant growth. In this review, IAA production and mechanisms of action by bacteria and fungi along with the metabolic pathways evolved in the IAA secretion and commercial prospects are revised.Key points• Many microorganisms produce auxins which help the plant growth promotion.• These auxins improve the plant growth by several mechanisms.• The auxins are produced through different mechanisms.
Collapse
Affiliation(s)
- Chetan Keswani
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Satyendra Pratap Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Laura Cueto
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av, Real, 1, 24006, León, Spain
| | - Carlos García-Estrada
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av, Real, 1, 24006, León, Spain.,Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | | | - Travis R Glare
- Bio-Protection Research Centre, Lincoln University, PO Box 85084, Lincoln, 7647, New Zealand
| | - Rainer Borriss
- Humboldt-Universität zu Berlin, Institut für Biologie, Berlin, Germany.,Nord Reet UG, Marienstr. 27a, 17489, Greifswald, Germany
| | - Surya Pratap Singh
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Miguel Angel Blázquez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022, Valencia, Spain
| | - Estibaliz Sansinenea
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590, Puebla, Pue, México.
| |
Collapse
|
10
|
Pan L, Chen J, Ren S, Shen H, Rong B, Liu W, Yang Z. Complete genome sequence of Mycobacterium Mya-zh01, an endophytic bacterium, promotes plant growth and seed germination isolated from flower stalk of Doritaenopsis. Arch Microbiol 2020; 202:1965-1976. [DOI: 10.1007/s00203-020-01924-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 11/27/2022]
|
11
|
Seasonal Variation Influence Endophytic Actinobacterial Communities of Medicinal Plants from Tropical Deciduous Forest of Meghalaya and Characterization of Their Plant Growth-Promoting Potentials. Curr Microbiol 2020; 77:1689-1698. [PMID: 32300926 DOI: 10.1007/s00284-020-01988-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
The endophytic actinobacteria constitute a diverse community which has vast potential importance that may be exploited in pharmaceutical, agricultural, and biotechnological industries. However, the effects of seasonal changes on distribution of endophytic actinobacteria in medicinal plants of Meghalaya are largely uncharacterized. Here, we investigated host and seasonal influence on diversity of endophytic actinobacteria residing in roots of six medicinal plant species of Meghalaya. A total of 493 cultivable endophytic actinobacterial isolates representing 41 species were obtained from root segments of six plant species which had been collected during four different seasons of 2011-2012 and 2012-2013. Among the host plant species, maximum actinobacterial colonization was observed in Costus speciosus and minimum in Potentilla fulgens. In regard to seasons, the highest actinobacterial colonization and relative abundance were observed during summer season and least was recorded during the winter season. It was ascertained that though endophytic actinobacteria have varying capacity to colonize in different plant species during the seasons, colonization is not found to be species-specific. Culture-independent attempt also inferred that actinobacterial community varied amongst the six medicinal plants during the different seasons. Hence, seasons are influential factors in the colonization capacity of endophytic actinobacterial community. Furthermore, plant growth-promoting activities were recorded in 34.15% of the isolates. Hence, these results indicate that endophytic actinobacteria from the selected medicinal plants also represent an important source of plant growth-promoting bioactive metabolites.
Collapse
|
12
|
Dodueva IE, Lebedeva MA, Kuznetsova KA, Gancheva MS, Paponova SS, Lutova LL. Plant tumors: a hundred years of study. PLANTA 2020; 251:82. [PMID: 32189080 DOI: 10.1007/s00425-020-03375-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/11/2020] [Indexed: 05/21/2023]
Abstract
The review provides information on the mechanisms underlying the development of spontaneous and pathogen-induced tumors in higher plants. The activation of meristem-specific regulators in plant tumors of various origins suggests the meristem-like nature of abnormal plant hyperplasia. Plant tumor formation has more than a century of research history. The study of this phenomenon has led to a number of important discoveries, including the development of the Agrobacterium-mediated transformation technique and the discovery of horizontal gene transfer from bacteria to plants. There are two main groups of plant tumors: pathogen-induced tumors (e.g., tumors induced by bacteria, viruses, fungi, insects, etc.), and spontaneous ones, which are formed in the absence of any pathogen in plants with certain genotypes (e.g., interspecific hybrids, inbred lines, and mutants). The causes of the transition of plant cells to tumor growth are different from those in animals, and they include the disturbance of phytohormonal balance and the acquisition of meristematic characteristics by differentiated cells. The aim of this review is to discuss the mechanisms underlying the development of most known examples of plant tumors.
Collapse
Affiliation(s)
- Irina E Dodueva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia.
| | - Maria A Lebedeva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Kseniya A Kuznetsova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Maria S Gancheva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Svetlana S Paponova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Ludmila L Lutova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
13
|
Vereecke D, Zhang Y, Francis IM, Lambert PQ, Venneman J, Stamler RA, Kilcrease J, Randall JJ. Functional Genomics Insights Into the Pathogenicity, Habitat Fitness, and Mechanisms Modifying Plant Development of Rhodococcus sp. PBTS1 and PBTS2. Front Microbiol 2020; 11:14. [PMID: 32082278 PMCID: PMC7002392 DOI: 10.3389/fmicb.2020.00014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/06/2020] [Indexed: 01/05/2023] Open
Abstract
Pistachio Bushy Top Syndrome (PBTS) is a recently emerged disease that has strongly impacted the pistachio industry in California, Arizona, and New Mexico. The disease is caused by two bacteria, designated PBTS1 that is related to Rhodococcus corynebacterioides and PBTS2 that belongs to the species R. fascians. Here, we assessed the pathogenic character of the causative agents and examined their chromosomal sequences to predict the presence of particular functions that might contribute to the observed co-occurrence and their effect on plant hosts. In diverse assays, we confirmed the pathogenicity of the strains on "UCB-1" pistachio rootstock and showed that they can also impact the development of tobacco species, but concurrently inconsistencies in the ability to induce symptoms were revealed. We additionally evidence that fas genes are present only in a subpopulation of pure PBTS1 and PBTS2 cultures after growth on synthetic media, that these genes are easily lost upon cultivation in rich media, and that they are enriched for in an in planta environment. Analysis of the chromosomal sequences indicated that PBTS1 and PBTS2 might have complementary activities that would support niche partitioning. Growth experiments showed that the nutrient utilization pattern of both PBTS bacteria was not identical, thus avoiding co-inhabitant competition. PBTS2 appeared to have the potential to positively affect the habitat fitness of PBTS1 by improving its resistance against increased concentrations of copper and penicillins. Finally, mining the chromosomes of PBTS1 and PBTS2 suggested that the bacteria could produce cytokinins, auxins, and plant growth-stimulating volatiles and that PBTS2 might interfere with ethylene levels, in support of their impact on plant development. Subsequent experimentation supported these in silico predictions. Altogether, our data provide an explanation for the observed pathogenic behavior and unveil part of the strategies used by PBTS1 and PBTS2 to interact with plants.
Collapse
Affiliation(s)
- Danny Vereecke
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - Yucheng Zhang
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Isolde M Francis
- Department of Biology, California State University, Bakersfield, CA, United States
| | - Paul Q Lambert
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - Jolien Venneman
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Rio A Stamler
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - James Kilcrease
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - Jennifer J Randall
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
14
|
Cueva-Yesquén LG, Goulart MC, Attili de Angelis D, Nopper Alves M, Fantinatti-Garboggini F. Multiple Plant Growth-Promotion Traits in Endophytic Bacteria Retrieved in the Vegetative Stage From Passionflower. FRONTIERS IN PLANT SCIENCE 2020; 11:621740. [PMID: 33537051 PMCID: PMC7847900 DOI: 10.3389/fpls.2020.621740] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/23/2020] [Indexed: 05/17/2023]
Abstract
Bacteria exhibiting beneficial traits like increasing the bioavailability of essential nutrients and modulating hormone levels in plants are known as plant growth promoting (PGP) bacteria. The occurrence of this specific group of bacteria in the endophytic environment may reflect the decisive role they play in a particular condition. This study aimed to determine the taxonomical diversity of the culturable bacterial endophytes, isolated in the vegetative stage of passionflower (Passiflora incarnata), and assess its potential to promote plant growth by phenotypic and genotypic approaches. The sequencing and phylogenetic analysis of the 16S rRNA gene allowed us to classify 58 bacterial endophytes into nine genera. Bacillus (70.7%) was the most dominant genus, followed by Pseudomonas (8.6%) and Pantoea (6.9%). A few isolates belonged to Rhodococcus and Paenibacillus, whereas the genera Lysinibacillus, Microvirga, Xanthomonas, and Leclercia were represented by only one isolate. The strains were tested for nitrogen fixation, phosphate solubilization, indole-acetic-acid synthesis, and siderophore production. Moreover, PGP related genes (nifH, ipdC, asb, and AcPho) were detected by PCR-based screening. Most of the isolates (94.8%) displayed a potential for at least one of the PGP traits tested by biochemical assays or PCR-based screening. Nine strains were selected based on results from both approaches and were evaluated for boosting the Cape gooseberry (Physalis peruviana) germination and growth. All tested isolates improved germination in vitro, and the majority (78%) increased growth parameters in vivo. The results suggested that most of culturable bacteria inhabiting P. incarnata in the vegetative stage could be used as probiotics for agricultural systems. Besides, their occurrence may be associated with specific physiological needs typical of this development stage.
Collapse
Affiliation(s)
- Luis Gabriel Cueva-Yesquén
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, Paulínia, Brazil
- *Correspondence: Luis Gabriel Cueva-Yesquén,
| | - Marcela Cristina Goulart
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, Paulínia, Brazil
| | - Derlene Attili de Angelis
- Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, Paulínia, Brazil
| | - Marcos Nopper Alves
- Division of Agrotechnology, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, Paulínia, Brazil
| | - Fabiana Fantinatti-Garboggini
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, Paulínia, Brazil
| |
Collapse
|
15
|
Halder T, Upadhyaya G, Roy S, Biswas R, Das A, Bagchi A, Agarwal T, Ray S. Glycine rich proline rich protein from Sorghum bicolor serves as an antimicrobial protein implicated in plant defense response. PLANT MOLECULAR BIOLOGY 2019; 101:95-112. [PMID: 31236845 DOI: 10.1007/s11103-019-00894-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
KEY MESSAGE Sorghum glycine rich proline rich protein (SbGPRP1) exhibit antimicrobial properties and play a crucial role during biotic stress condition. Several proteins in plants build up the innate immune response system in plants which get triggered during the occurrence of biotic stress. Here we report the functional characterization of a glycine-rich proline-rich protein (SbGPRP1) from Sorghum which was previously demonstrated to be involved in abiotic stresses. Expression studies carried out with SbGPRP1 showed induced expression upon application of phytohormones like salicylic acid which might be the key in fine-tuning the expression level. Upon challenging the Sorghum plants with a compatible pathogen the SbGprp1 transcript was found to be upregulated. SbGPRP1 encodes a 197 amino acid polypeptide which was bacterially-expressed and purified for in vitro assays. Gram-positive bacteria like Bacillus and phytopathogen Rhodococcus fascians showed inhibited growth in the presence of the protein. The NPN assay, electrolytic leakage and SEM analysis showed membrane damage in bacterial cells. Ectopic expression of SbGPRP1 in tobacco plants led to enhanced tolerance towards infection caused by R. fascians. Though the N-terminal part of the protein showed disorderness the C-terminal end was quite capable of forming several α-helices which was correlated with CD spectroscopic analysis. Here, we have tried to determine the structural model for the protein and predicted the association of antimicrobial activity with the C-terminal region of the protein.
Collapse
Affiliation(s)
- Tanmoy Halder
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Gouranga Upadhyaya
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Shuddhanjali Roy
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Ria Biswas
- Department of Biochemistry and Biophysics, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Arup Das
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Tanushree Agarwal
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Sudipta Ray
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
16
|
Wang Y, Zhang W, Ding C, Zhang B, Huang Q, Huang R, Su X. Endophytic Communities of Transgenic Poplar Were Determined by the Environment and Niche Rather Than by Transgenic Events. Front Microbiol 2019; 10:588. [PMID: 30972046 PMCID: PMC6445066 DOI: 10.3389/fmicb.2019.00588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/07/2019] [Indexed: 11/13/2022] Open
Abstract
Microbial communities associated with plants represent key determinants of plant health, survival, and growth. However, a good understanding of the structural composition of the bacterial and fungal microbiome present in different plant tissues and growing environments, especially in transgenic woody plants, is required. In the present study, we hypothesized that environmental conditions, ecological niches, and transgenic events could influence the community structure of plant-associated microorganisms (bacterial and fungal endophytes). We sampled the root and stem endospheres of field-grown transgenic and non-transgenic poplar trees (Populus alba × P. berolinensis) and applied 16S rRNA and internal transcribed spacer amplicon Illumina MiSeq sequencing to determine the bacterial and fungal communities associated with the different plant habitats and tissues. We found that actinobacteria, proteobacteria, bacteroidetes, and firmicutes were the dominant endophytic bacteria, and the fungal community was dominated by dothideomycetes, agaricomycetes, leotiomycetes, and sordariomycetes. In conclusion, transgenic events did not affect the endophytic bacterial and fungal diversity of poplar trees. The bacterial and fungal community structure depends on the pH and the soil organic matter content. Each plant tissue represents a unique ecological niche for the microbial communities. Finally, we identified the indicator operational taxonomic units (OTUs) and core microbiome associated with the different plant tissues of Populus and different environmental conditions. The results provide a basis for further study of host-microbial interactions with the identified abundant OTUs of Populus.
Collapse
Affiliation(s)
- Yanbo Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
| | - Bingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
| | - Rongfeng Huang
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
17
|
Abstract
The review is devoted to biocatalysts based on actinobacteria of the genus Rhodococcus, which are promising for environmental biotechnologies. In the review, biotechnological advantages of Rhodococcus bacteria are evaluated, approaches used to develop robust and efficient biocatalysts are discussed, and their relevant applications are given. We focus on Rhodococcus cell immobilization in detail (methods of immobilization, criteria for strains and carriers, and optimization of process parameters) as the most efficient approach for stabilizing biocatalysts. It is shown that advanced Rhodococcus biocatalysts with improved working characteristics, enhanced stress tolerance, high catalytic activities, human and environment friendly, and commercially viable are developed, which are suitable for wastewater treatment, bioremediation, and biofuel production.
Collapse
|
18
|
Palmieri A, Petrini M. Tryptophol and derivatives: natural occurrence and applications to the synthesis of bioactive compounds. Nat Prod Rep 2019; 36:490-530. [DOI: 10.1039/c8np00032h] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This report presents some fundamental aspects related to the natural occurrence and bioactivity of tryptophol as well as the synthesis of tryptophols and their utilization for the preparation of naturally occurring alkaloid metabolites embedding the indole system.
Collapse
Affiliation(s)
- Alessandro Palmieri
- School of Science and Technology
- Chemistry Division
- University of Camerino
- Italy
| | - Marino Petrini
- School of Science and Technology
- Chemistry Division
- University of Camerino
- Italy
| |
Collapse
|
19
|
Singh R, Dubey AK. Diversity and Applications of Endophytic Actinobacteria of Plants in Special and Other Ecological Niches. Front Microbiol 2018; 9:1767. [PMID: 30135681 PMCID: PMC6092505 DOI: 10.3389/fmicb.2018.01767] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
Actinobacteria are wide spread in nature and represent the largest taxonomic group within the domain Bacteria. They are abundant in soil and have been extensively explored for their therapeutic applications. This versatile group of bacteria has adapted to diverse ecological habitats, which has drawn considerable attention of the scientific community in recent times as it has opened up new possibilities for novel metabolites that may help in solving some of the most challenging problems of the day, for example, novel drugs for drug-resistant human pathogens, affordable means to maintain ecological balance in various habitats, and alternative practices for sustainable agriculture. Traditionally, free dwelling soil actinobacteria have been the subject of intensive research. Of late, symbiotic actinobacteria residing as endophytes within the plant tissues have generated immense interest as potential source of novel compounds, which may find applications in medicine, agriculture, and environment. In the light of these possibilities, this review focuses on the diversity of endophytic actinobacteria isolated from the plants of extreme habitats and specific ecological niches. Furthermore, an attempt has been made to assign chemical class to the compounds obtained from endophytic actinobacteria. Potential therapeutic applications of these compounds and the utility of endophytic actinobacteria in agriculture and environment are discussed.
Collapse
Affiliation(s)
| | - Ashok K. Dubey
- Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, New Delhi, India
| |
Collapse
|
20
|
Li M, Guo R, Yu F, Chen X, Zhao H, Li H, Wu J. Indole-3-Acetic Acid Biosynthesis Pathways in the Plant-Beneficial Bacterium Arthrobacter pascens ZZ21. Int J Mol Sci 2018; 19:ijms19020443. [PMID: 29389906 PMCID: PMC5855665 DOI: 10.3390/ijms19020443] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 11/16/2022] Open
Abstract
Arthrobacter pascens ZZ21 is a plant-beneficial, fluoranthene-degrading bacterial strain found in the rhizosphere. The production of the phytohormone indole-3-aectic acid (IAA) by ZZ21 is thought to contribute to its ability to promote plant growth and remediate fluoranthene-contaminated soil. Using genome-wide analysis combined with metabolomic and high-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses, we characterized the potential IAA biosynthesis pathways in A. pascens ZZ21. IAA production increased 4.5-fold in the presence of 200 mg·L−1 tryptophan in the culture medium. The transcript levels of prr and aldH, genes which were predicted to encode aldehyde dehydrogenases, were significantly upregulated in response to exogenous tryptophan. Additionally, metabolomic analysis identified the intermediates indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and the enzymatic reduction product of the latter, indole-3-lactic acid (ILA), among the metabolites of ZZ21, and subsequently also IAM, ILA, and indole-3-ethanol (TOL), which is the enzymatic reduction product of indole-3-acetaldehyde, by HPLC-MS. These results suggest that the tryptophan-dependent IAM and IPyA pathways function in ZZ21.
Collapse
Affiliation(s)
- Mengsha Li
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Rui Guo
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fei Yu
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xu Chen
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Haiyan Zhao
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Huixin Li
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jun Wu
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
21
|
Yamchi A, Ben C, Rossignol M, Zareie SR, Mirlohi A, Sayed-Tabatabaei BE, Pichereaux C, Sarrafi A, Rickauer M, Gentzbittel L. Proteomics analysis ofMedicago truncatularesponse to infection by the phytopathogenic bacteriumRalstonia solanacearumpoints to jasmonate and salicylate defence pathways. Cell Microbiol 2018; 20. [DOI: 10.1111/cmi.12796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Ahad Yamchi
- Department of Plant Breeding and Biotechnology; Gorgan University of Agricultural Sciences and Natural Resources; Gorgan Iran
| | - Cécile Ben
- EcoLab; Université de Toulouse, CNRS, INPT, UPS; Toulouse France
| | - Michel Rossignol
- Universite de Toulouse, IFR40, Plateforme Protéomique du Génopole Toulouse Midi-Pyrénées; Institut de Pharmacologie et de Biologie Structurale; CNRS UMR 5089, 31077 Toulouse France
| | - Sayed Reza Zareie
- Department of Agricultural biotechnology, College of Agriculture; Isfahan University of Technology; 84156-83111 Isfahan Iran
| | - Aghafakhr Mirlohi
- Department of Agricultural biotechnology, College of Agriculture; Isfahan University of Technology; 84156-83111 Isfahan Iran
| | | | - Carole Pichereaux
- Universite de Toulouse, IFR40, Plateforme Protéomique du Génopole Toulouse Midi-Pyrénées; Institut de Pharmacologie et de Biologie Structurale; CNRS UMR 5089, 31077 Toulouse France
| | - Ahmad Sarrafi
- EcoLab; Université de Toulouse, CNRS, INPT, UPS; Toulouse France
| | - Martina Rickauer
- EcoLab; Université de Toulouse, CNRS, INPT, UPS; Toulouse France
| | | |
Collapse
|
22
|
Dolzblasz A, Banasiak A, Vereecke D. Neovascularization during leafy gall formation on Arabidopsis thaliana upon Rhodococcus fascians infection. PLANTA 2018; 247:215-228. [PMID: 28942496 DOI: 10.1007/s00425-017-2778-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Extensive de novo vascularization of leafy galls emerging upon Rhodococcus fascians infection is achieved by fascicular/interfascicular cambium activity and transdifferentiation of parenchyma cells correlated with increased auxin signaling. A leafy gall consisting of fully developed yet growth-inhibited shoots, induced by the actinomycete Rhodococcus fascians, differs in structure compared to the callus-like galls induced by other bacteria. To get insight into the vascular development accompanying the emergence of the leafy gall, the anatomy of infected axillary regions of the inflorescence stem of wild-type Arabidopsis thaliana accession Col-0 plants and the auxin response in pDR5:GUS-tagged plants were followed in time. Based on our observations, three phases can be discerned during vascularization of the symptomatic tissue. First, existing fascicular cambium becomes activated and interfascicular cambium is formed giving rise to secondary vascular elements in a basipetal direction below the infection site in the main stem and in an acropetal direction in the entire side branch. Then, parenchyma cells in the region between both stems transdifferentiate acropetally towards the surface of the developing symptomatic tissue leading to the formation of xylem and vascularize the hyperplasia as they expand. Finally, parenchyma cells in the developing gall also transdifferentiate to vascular elements without any specific direction resulting in excessive vasculature disorderly distributed in the leafy gall. Prior to any apparent anatomical changes, a strong auxin response is mounted, implying that auxin is the signal that controls the vascular differentiation induced by the infection. To conclude, we propose the "sidetracking gall hypothesis" as we discuss the mechanisms driving the formation of superfluous vasculature of the emerging leafy gall.
Collapse
Affiliation(s)
- Alicja Dolzblasz
- Department of Plant Developmental Biology, Faculty of Biological Sciences, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland.
| | - Alicja Banasiak
- Department of Plant Developmental Biology, Faculty of Biological Sciences, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Danny Vereecke
- Department of Applied Biosciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
23
|
Park YG, Mun BG, Kang SM, Hussain A, Shahzad R, Seo CW, Kim AY, Lee SU, Oh KY, Lee DY, Lee IJ, Yun BW. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One 2017; 12:e0173203. [PMID: 28282395 PMCID: PMC5345817 DOI: 10.1371/journal.pone.0173203] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/16/2017] [Indexed: 12/22/2022] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) are diverse, naturally occurring bacteria that establish a close association with plant roots and promote the growth and immunity of plants. Established mechanisms involved in PGPR-mediated plant growth promotion include regulation of phytohormones, improved nutrient availability, and antagonistic effects on plant pathogens. In this study, we isolated a bacterium from the rhizospheric soil of a soybean field in Chungcheong buk-do, South Korea. Using 16S rRNA sequencing, the bacterium was identified as Bacillus aryabhattai strain SRB02. Here we show that this strain significantly promotes the growth of soybean. Gas chromatography-mass spectrometry analysis showed that SRB02 produced significant amounts of abscisic acid, indole acetic acid, cytokinin and different gibberellic acids in culture. SRB02-treated soybean plants showed significantly better heat stress tolerance than did untreated plants. These plants also produced consistent levels of ABA under heat stress and exhibited ABA-mediated stomatal closure. High levels of IAA, JA, GA12, GA4, and GA7, were recorded in SRB02-treated plants. These plants produced longer roots and shoots than those of control plants. B. aryabhattai SRB02 was found to be highly tolerant to oxidative stress induced by H2O2 and MV potentiated by high catalase (CAT) and superoxide dismutase (SOD) activities. SRB02 also tolerated high nitrosative stress induced by the nitric oxide donors GSNO and CysNO. Because of these attributes, B. aryabhattai SRB02 may prove to be a valuable resource for incorporation in biofertilizers and other soil amendments that seek to improve crop productivity.
Collapse
Affiliation(s)
- Yeon-Gyeong Park
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Bong-Gyu Mun
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Adil Hussain
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Agriculture, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Chang-Woo Seo
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ah-Yeong Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Uk Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyeong Yeol Oh
- Gyeongnam Oriental Medicinal Herb Institute, Sancheong, Republic of Korea
| | - Dong Yeol Lee
- Gyeongnam Oriental Medicinal Herb Institute, Sancheong, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Byung-Wook Yun
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
24
|
Sinha RK, Krishnan KP, Hatha AAM, Rahiman M, Thresyamma DD, Kerkar S. Diversity of retrievable heterotrophic bacteria in Kongsfjorden, an Arctic fjord. Braz J Microbiol 2016; 48:51-61. [PMID: 28029589 PMCID: PMC5221401 DOI: 10.1016/j.bjm.2016.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/22/2015] [Indexed: 11/19/2022] Open
Abstract
The diversity and abundance of retrievable pelagic heterotrophic bacteria in Kongsfjorden, an Arctic fjord, was studied during the summer of 2011 (June, August, and September). Retrievable bacterial load ranged from 103 to 107 CFU L−1 in June, while it was 104–106 CFU L−1 in August and September. Based on 16S rRNA gene sequence similarities, a higher number of phylotypes was observed during August (22 phylotypes) compared to that during June (6 phylotypes) and September (12 phylotypes). The groups were classified into four phyla: Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes. Bacteroidetes was represented only by a single member Leewenhoekiella aequorea during the three months and was dominant (40%) in June. However, this dominance changed in August to a well-known phytopathogenic species Rhodococcus fascians (32%), which could be a result of decrease in the phytoplankton biomass following the secondary bloom. It is the first report of Halomonas titanicae isolation from the Arctic waters. It showed an increase in its abundance with the intrusion of Atlantic water into Kongsfjorden. Increased abundance of Psychrobacter species in the late summer months coincided with the presence of cooler waters. Thus, the composition and function of heterotrophic bacterial community was fundamentally different in different months. This could be linked to the changes in the water masses and/or phytoplankton bloom dynamics occurring in Arctic summer.
Collapse
Affiliation(s)
- Rupesh Kumar Sinha
- National Centre for Antarctic and Ocean Research, ESSO-NCAOR, Head land Sada, Vasco-da-Gama, Goa, India.
| | | | | | - Mujeeb Rahiman
- Cochin University of Science and Technology, Microbiology and Biochemistry, Department of Marine Biology, Cochin, Kerala, India
| | - Divya David Thresyamma
- National Centre for Antarctic and Ocean Research, ESSO-NCAOR, Head land Sada, Vasco-da-Gama, Goa, India
| | - Savita Kerkar
- Goa University, Department of Biotechnology, Taleigao Plateau, Goa, India
| |
Collapse
|
25
|
Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol Mol Biol Rev 2016; 80:1-43. [PMID: 26609051 PMCID: PMC4711186 DOI: 10.1128/mmbr.00019-15] [Citation(s) in RCA: 952] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum.
Collapse
Affiliation(s)
- Essaid Ait Barka
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Parul Vatsa
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Lisa Sanchez
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Nathalie Gaveau-Vaillant
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Cedric Jacquard
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christophe Clément
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Yder Ouhdouch
- Faculté de Sciences Semlalia, Université Cadi Ayyad, Laboratoire de Biologie et de Biotechnologie des Microorganismes, Marrakesh, Morocco
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Sylvius Laboratories, Leiden University, Leiden, The Netherlands
| |
Collapse
|
26
|
Mining the genome of Rhodococcus fascians, a plant growth-promoting bacterium gone astray. N Biotechnol 2016; 33:706-717. [PMID: 26877150 DOI: 10.1016/j.nbt.2016.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/16/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022]
Abstract
Rhodococcus fascians is a phytopathogenic Gram-positive Actinomycete with a very broad host range encompassing especially dicotyledonous herbaceous perennials, but also some monocots, such as the Liliaceae and, recently, the woody crop pistachio. The pathogenicity of R. fascians strain D188 is known to be encoded by the linear plasmid pFiD188 and to be dictated by its capacity to produce a mixture of cytokinins. Here, we show that D188-5, the nonpathogenic plasmid-free derivative of the wild-type strain D188 actually has a plant growth-promoting effect. With the availability of the genome sequence of R. fascians, the chromosome of strain D188 was mined for putative plant growth-promoting functions and the functionality of some of these activities was tested. This analysis together with previous results suggests that the plant growth-promoting activity of R. fascians is due to production of plant growth modulators, such as auxin and cytokinin, combined with degradation of ethylene through 1-amino-cyclopropane-1-carboxylic acid deaminase. Moreover, R. fascians has several functions that could contribute to efficient colonization and competitiveness, but there is little evidence for a strong impact on plant nutrition. Possibly, the plant growth promotion encoded by the D188 chromosome is imperative for the epiphytic phase of the life cycle of R. fascians and prepares the plant to host the bacteria, thus ensuring proper continuation into the pathogenic phase.
Collapse
|
27
|
Shao J, Li S, Zhang N, Cui X, Zhou X, Zhang G, Shen Q, Zhang R. Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9. Microb Cell Fact 2015; 14:130. [PMID: 26337367 PMCID: PMC4558970 DOI: 10.1186/s12934-015-0323-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/21/2015] [Indexed: 11/10/2022] Open
Abstract
Background The plant growth-promoting rhizobacteria (PGPR) strain Bacillus amyloliquefaciens SQR9, isolated from the cucumber rhizosphere, protects the host plant from pathogen invasion and promotes plant growth through efficient root colonization. The phytohormone indole-3-acetic acid (IAA) has been suggested to contribute to the plant-growth-promoting effect of Bacillus strains. The possible IAA synthetic pathways in B. amyloliquefaciens SQR9 were investigated in this study, using a combination of chemical and genetic analysis. Results Gene candidates involved in tryptophan-dependent IAA synthesis were identified through tryptophan response transcriptional analysis, and inactivation of genes ysnE, dhaS, yclC, and yhcX in SQR9 led to 86, 77, 55, and 24 % reductions of the IAA production, respectively. The genes patB (encoding a conserved hypothetical protein predicted to be an aminotransferase), yclC (encoding a UbiD family decarboxylase), and dhaS (encoding indole 3-acetaldehyde dehydrogenase), which were proposed to constitute the indole-3-pyruvic acid (IPyA) pathway for IAA biosynthesis, were separately expressed in SQR9 or co-expressed as an entire IAA synthesis pathway cluster in SQR9 and B. subtilis 168, all these recombinants showed increased IAA production. These results suggested that gene products of dhaS, patB, yclB, yclC, yhcX and ysnE were involved in IAA biosynthesis. Genes patB, yclC and dhaS constitute a potential complete IPyA pathway of IAA biosynthesis in SQR9. Conclusions In conclusion, biosynthesis of IAA in B. amyloliquefaciens SQR9 occurs through multiple pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0323-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiahui Shao
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China. .,Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Shuqing Li
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Nan Zhang
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Xiaoshuang Cui
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Xuan Zhou
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Guishan Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Qirong Shen
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Ruifu Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China. .,Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
28
|
Etesami H, Alikhani HA, Mirseyed Hosseini H. Indole-3-Acetic Acid and 1-Aminocyclopropane-1-Carboxylate Deaminase: Bacterial Traits Required in Rhizosphere, Rhizoplane and/or Endophytic Competence by Beneficial Bacteria. BACTERIAL METABOLITES IN SUSTAINABLE AGROECOSYSTEM 2015. [DOI: 10.1007/978-3-319-24654-3_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Arora PK, Bae H. Identification of new metabolites of bacterial transformation of indole by gas chromatography-mass spectrometry and high performance liquid chromatography. Int J Anal Chem 2014; 2014:239641. [PMID: 25548566 PMCID: PMC4274814 DOI: 10.1155/2014/239641] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/09/2014] [Accepted: 11/21/2014] [Indexed: 11/22/2022] Open
Abstract
Arthrobacter sp. SPG transformed indole completely in the presence of an additional carbon source. High performance liquid chromatography and gas chromatography-mass spectrometry detected indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde as biotransformation products. This is the first report of the formation of indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde from indole by any bacterium.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| |
Collapse
|
30
|
Creason AL, Vandeputte OM, Savory EA, Davis EW, Putnam ML, Hu E, Swader-Hines D, Mol A, Baucher M, Prinsen E, Zdanowska M, Givan SA, Jaziri ME, Loper JE, Mahmud T, Chang JH. Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci. PLoS One 2014; 9:e101996. [PMID: 25010934 PMCID: PMC4092121 DOI: 10.1371/journal.pone.0101996] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/12/2014] [Indexed: 12/19/2022] Open
Abstract
Members of Gram-positive Actinobacteria cause economically important diseases to plants. Within the Rhodococcus genus, some members can cause growth deformities and persist as pathogens on a wide range of host plants. The current model predicts that phytopathogenic isolates require a cluster of three loci present on a linear plasmid, with the fas operon central to virulence. The Fas proteins synthesize, modify, and activate a mixture of growth regulating cytokinins, which cause a hormonal imbalance in plants, resulting in abnormal growth. We sequenced and compared the genomes of 20 isolates of Rhodococcus to gain insights into the mechanisms and evolution of virulence in these bacteria. Horizontal gene transfer was identified as critical but limited in the scale of virulence evolution, as few loci are conserved and exclusive to phytopathogenic isolates. Although the fas operon is present in most phytopathogenic isolates, it is absent from phytopathogenic isolate A21d2. Instead, this isolate has a horizontally acquired gene chimera that encodes a novel fusion protein with isopentyltransferase and phosphoribohydrolase domains, predicted to be capable of catalyzing and activating cytokinins, respectively. Cytokinin profiling of the archetypal D188 isolate revealed only one activate cytokinin type that was specifically synthesized in a fas-dependent manner. These results suggest that only the isopentenyladenine cytokinin type is synthesized and necessary for Rhodococcus phytopathogenicity, which is not consistent with the extant model stating that a mixture of cytokinins is necessary for Rhodococcus to cause leafy gall symptoms. In all, data indicate that only four horizontally acquired functions are sufficient to confer the trait of phytopathogenicity to members of the genetically diverse clade of Rhodococcus.
Collapse
Affiliation(s)
- Allison L. Creason
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Olivier M. Vandeputte
- Laboratoire de Biotechnologie Vegetale, Universite Libre de Bruxelles, Gosselies, Belgium
| | - Elizabeth A. Savory
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Edward W. Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Melodie L. Putnam
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Erdong Hu
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - David Swader-Hines
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Adeline Mol
- Laboratoire de Biotechnologie Vegetale, Universite Libre de Bruxelles, Gosselies, Belgium
| | - Marie Baucher
- Laboratoire de Biotechnologie Vegetale, Universite Libre de Bruxelles, Gosselies, Belgium
| | - Els Prinsen
- University of Antwerp, Department of Biology, Laboratory of Plant Growth and Development, Antwerp, Belgium
| | - Magdalena Zdanowska
- University of Antwerp, Department of Biology, Laboratory of Plant Growth and Development, Antwerp, Belgium
| | - Scott A. Givan
- Informatics Research Core Facility, University of Missouri, Columbia, Missouri, United States of America
| | - Mondher El Jaziri
- Laboratoire de Biotechnologie Vegetale, Universite Libre de Bruxelles, Gosselies, Belgium
| | - Joyce E. Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
- United States Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
| | - Taifo Mahmud
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
31
|
Duca D, Lorv J, Patten CL, Rose D, Glick BR. Indole-3-acetic acid in plant-microbe interactions. Antonie van Leeuwenhoek 2014; 106:85-125. [PMID: 24445491 DOI: 10.1007/s10482-013-0095-y] [Citation(s) in RCA: 325] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/07/2013] [Indexed: 01/04/2023]
Abstract
Indole-3-acetic acid (IAA) is an important phytohormone with the capacity to control plant development in both beneficial and deleterious ways. The ability to synthesize IAA is an attribute that many bacteria including both plant growth-promoters and phytopathogens possess. There are three main pathways through which IAA is synthesized; the indole-3-pyruvic acid, indole-3-acetamide and indole-3-acetonitrile pathways. This chapter reviews the factors that effect the production of this phytohormone, the role of IAA in bacterial physiology and in plant-microbe interactions including phytostimulation and phytopathogenesis.
Collapse
Affiliation(s)
- Daiana Duca
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada,
| | | | | | | | | |
Collapse
|
32
|
Nacoulma AP, Vandeputte OM, De Lorenzi M, El Jaziri M, Duez P. Metabolomic-based study of the leafy gall, the ecological niche of the phytopathogen Rhodococcus fascians, as a potential source of bioactive compounds. Int J Mol Sci 2013; 14:12533-49. [PMID: 23771021 PMCID: PMC3709798 DOI: 10.3390/ijms140612533] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/21/2013] [Accepted: 06/04/2013] [Indexed: 01/27/2023] Open
Abstract
Leafy gall is a plant hyperplasia induced upon Rhodococcus fascians infection. Previously, by genomic and transcriptomic analysis, it has been reported that, at the early stage of symptom development, both primary and secondary metabolisms are modified. The present study is based on the hypothesis that fully developed leafy gall, could represent a potential source of new bioactive compounds. Therefore, non-targeted metabolomic analysis of aqueous and chloroform extracts of leafy gall and non-infected tobacco was carried out by 1H-NMR coupled to principal component analysis (PCA) and orthogonal projections to latent structures-discriminant analysis (OPLS-DA). Polar metabolite profiling reflects modifications mainly in the primary metabolites and in some polyphenolics. In contrast, main modifications occurring in non-polar metabolites concern secondary metabolites, and gas chromatography and mass spectrometry (GC-MS) evidenced alterations in diterpenoids family. Analysis of crude extracts of leafy galls and non-infected tobacco leaves exhibited a distinct antiproliferative activity against all four tested human cancer cell lines. A bio-guided fractionation of chloroformic crude extract yield to semi-purified fractions, which inhibited proliferation of glioblastoma U373 cells with IC50 between 14.0 and 2.4 µg/mL. Discussion is focused on the consequence of these metabolic changes, with respect to plant defense mechanisms following infection. Considering the promising role of diterpenoid family as bioactive compounds, leafy gall may rather be a propitious source for drug discovery.
Collapse
Affiliation(s)
- Aminata P. Nacoulma
- Laboratory of Toxicology, Faculty of Pharmacy, Université Libre de Bruxelles, CP 205/1, Boulevard du Triomphe, Brussels B-1050, Belgium; E-Mail:
| | - Olivier M. Vandeputte
- Laboratory of Plant Biotechnology, Faculty of Sciences, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, Gosselies B-6041, Belgium; E-Mails: (O.M.V.); (M.E.J.)
| | - Manuella De Lorenzi
- Laboratory of Toxicology, Faculty of Pharmacy, Université Libre de Bruxelles, CP 205/1, Boulevard du Triomphe, Brussels B-1050, Belgium; E-Mail:
| | - Mondher El Jaziri
- Laboratory of Plant Biotechnology, Faculty of Sciences, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, Gosselies B-6041, Belgium; E-Mails: (O.M.V.); (M.E.J.)
| | - Pierre Duez
- Laboratory of Pharmacognosy, Bromatology and Human Nutrition, Faculty of Pharmacy, Université Libre de Bruxelles, CP 205/9, Boulevard du Triomphe, Brussels B-1050, Belgium; E-Mail:
| |
Collapse
|
33
|
Denancé N, Sánchez-Vallet A, Goffner D, Molina A. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. FRONTIERS IN PLANT SCIENCE 2013; 4:155. [PMID: 23745126 PMCID: PMC3662895 DOI: 10.3389/fpls.2013.00155] [Citation(s) in RCA: 328] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/05/2013] [Indexed: 05/18/2023]
Abstract
Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA), cytokinins, gibberellins, and brassinosteroids, that have been thoroughly described to regulate plant development and growth, have recently emerged as key regulators of plant immunity. Plant hormones interact in complex networks to balance the response to developmental and environmental cues and thus limiting defense-associated fitness costs. The molecular mechanisms that govern these hormonal networks are largely unknown. Moreover, hormone signaling pathways are targeted by pathogens to disturb and evade plant defense responses. In this review, we address novel insights on the regulatory roles of the ABA, SA, and auxin in plant resistance to pathogens and we describe the complex interactions among their signal transduction pathways. The strategies developed by pathogens to evade hormone-mediated defensive responses are also described. Based on these data we discuss how hormone signaling could be manipulated to improve the resistance of crops to pathogens.
Collapse
Affiliation(s)
- Nicolas Denancé
- UMR 5546, Laboratoire de Recherche en Sciences Végétales, Université de ToulouseCastanet-Tolosan, France
- UMR 5546, Laboratoire de Recherche en Sciences Végétales, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Andrea Sánchez-Vallet
- Laboratory of Phytopathology, Wageningen UniversityWageningen, Netherlands
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de MadridPozuelo de Alarcón, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de MadridMadrid, Spain
| | - Deborah Goffner
- UMR 5546, Laboratoire de Recherche en Sciences Végétales, Université de ToulouseCastanet-Tolosan, France
- UMR 5546, Laboratoire de Recherche en Sciences Végétales, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de MadridPozuelo de Alarcón, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de MadridMadrid, Spain
| |
Collapse
|
34
|
Stes E, Francis I, Pertry I, Dolzblasz A, Depuydt S, Vereecke D. The leafy gall syndrome induced byRhodococcus fascians. FEMS Microbiol Lett 2013; 342:187-94. [DOI: 10.1111/1574-6968.12119] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 12/20/2022] Open
Affiliation(s)
- Elisabeth Stes
- Department of Plant Biotechnology and Bioinformatics; Ghent University; Gent; Belgium
| | - Isolde Francis
- Department of Plant Biotechnology and Bioinformatics; Ghent University; Gent; Belgium
| | - Ine Pertry
- Department of Plant Biotechnology and Bioinformatics; Ghent University; Gent; Belgium
| | - Alicja Dolzblasz
- Institute of Experimental Biology; Department of Plant Developmental Biology; Wrocław University; Wrocław; Poland
| | | | - Danny Vereecke
- Department of Plant Production; University College Ghent; Ghent University; Gent; Belgium
| |
Collapse
|
35
|
Quesada V, Sarmiento-Mañús R, González-Bayón R, Hricová A, Ponce MR, Micol JL. PORPHOBILINOGEN DEAMINASE deficiency alters vegetative and reproductive development and causes lesions in Arabidopsis. PLoS One 2013; 8:e53378. [PMID: 23308205 PMCID: PMC3540089 DOI: 10.1371/journal.pone.0053378] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/27/2012] [Indexed: 01/30/2023] Open
Abstract
The Arabidopsis rugosa1 (rug1) mutant has irregularly shaped leaves and reduced growth. In the absence of pathogens, leaves of rug1 plants have spontaneous lesions reminiscent of those seen in lesion-mimic mutants; rug1 plants also express cytological and molecular markers associated with defence against pathogens. These rug1 phenotypes are made stronger by dark/light transitions. The rug1 mutant also has delayed flowering time, upregulation of the floral repressor FLOWERING LOCUS C (FLC) and downregulation of the flowering promoters FT and SOC1/AGL20. Vernalization suppresses the late flowering phenotype of rug1 by repressing FLC. Microarray analysis revealed that 280 nuclear genes are differentially expressed between rug1 and wild type; almost a quarter of these genes are involved in plant defence. In rug1, the auxin response is also affected and several auxin-responsive genes are downregulated. We identified the RUG1 gene by map-based cloning and found that it encodes porphobilinogen deaminase (PBGD), also known as hydroxymethylbilane synthase, an enzyme of the tetrapyrrole biosynthesis pathway, which produces chlorophyll, heme, siroheme and phytochromobilin in plants. PBGD activity is reduced in rug1 plants, which accumulate porphobilinogen. Our results indicate that Arabidopsis PBGD deficiency impairs the porphyrin pathway and triggers constitutive activation of plant defence mechanisms leading to leaf lesions and affecting vegetative and reproductive development.
Collapse
Affiliation(s)
- Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | | | - Rebeca González-Bayón
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | - Andrea Hricová
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| |
Collapse
|
36
|
Denancé N, Sánchez-Vallet A, Goffner D, Molina A. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 23745126 DOI: 10.3389/fpls.2013.00155/abstract] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA), cytokinins, gibberellins, and brassinosteroids, that have been thoroughly described to regulate plant development and growth, have recently emerged as key regulators of plant immunity. Plant hormones interact in complex networks to balance the response to developmental and environmental cues and thus limiting defense-associated fitness costs. The molecular mechanisms that govern these hormonal networks are largely unknown. Moreover, hormone signaling pathways are targeted by pathogens to disturb and evade plant defense responses. In this review, we address novel insights on the regulatory roles of the ABA, SA, and auxin in plant resistance to pathogens and we describe the complex interactions among their signal transduction pathways. The strategies developed by pathogens to evade hormone-mediated defensive responses are also described. Based on these data we discuss how hormone signaling could be manipulated to improve the resistance of crops to pathogens.
Collapse
Affiliation(s)
- Nicolas Denancé
- UMR 5546, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse Castanet-Tolosan, France ; UMR 5546, Laboratoire de Recherche en Sciences Végétales, Centre National de la Recherche Scientifique Castanet-Tolosan, France
| | | | | | | |
Collapse
|
37
|
Patten CL, Blakney AJC, Coulson TJD. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit Rev Microbiol 2012; 39:395-415. [PMID: 22978761 DOI: 10.3109/1040841x.2012.716819] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The capacity to produce the phytohormone indole-3-acetic acid (IAA) is widespread among bacteria that inhabit diverse environments such as soils, fresh and marine waters, and plant and animal hosts. Three major pathways for bacterial IAA synthesis have been characterized that remove the amino and carboxyl groups from the α-carbon of tryptophan via the intermediates indolepyruvate, indoleacetamide, or indoleacetonitrile; the oxidized end product IAA is typically secreted. The enzymes in these pathways often catabolize a broad range of substrates including aromatic amino acids and in some cases the branched chain amino acids. Moreover, expression of some of the genes encoding key IAA biosynthetic enzymes is induced by all three aromatic amino acids. The broad distribution and substrate specificity of the enzymes suggests a role for these pathways beyond plant-microbe interactions in which bacterial IAA has been best studied.
Collapse
Affiliation(s)
- Cheryl L Patten
- Department of Biology, University of New Brunswick , Fredericton, New Brunswick , Canada
| | | | | |
Collapse
|
38
|
Francis I, De Keyser A, De Backer P, Simón-Mateo C, Kalkus J, Pertry I, Ardiles-Diaz W, De Rycke R, Vandeputte OM, El Jaziri M, Holsters M, Vereecke D. pFiD188, the linear virulence plasmid of Rhodococcus fascians D188. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:637-47. [PMID: 22482837 DOI: 10.1094/mpmi-08-11-0215] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Rhodococcus fascians is currently the only phytopathogen of which the virulence genes occur on a linear plasmid. To get insight into the origin of this replicon and into the virulence strategy of this broad-spectrum phytopathogen, the sequence of the linear plasmid of strain D188, pFiD188, was determined. Analysis of the 198,917 bp revealed four syntenic regions with linear plasmids of R. erythropolis, R. jostii, and R. opacus, suggesting a common origin of these replicons. Mutational analysis of pFi_086 and pFi_102, similar to cutinases and type IV peptidases, respectively, showed that conserved region R2 was involved in plasmid dispersal and pointed toward a novel function for actinobacterial cutinases in conjugation. Additionally, pFiD188 had three regions that were unique for R. fascians. Functional analysis of the stk and nrp loci of regions U2 and U3, respectively, indicated that their role in symptom development was limited compared with that of the previously identified fas, att, and hyp virulence loci situated in region U1. Thus, pFiD188 is a typical rhodococcal linear plasmid with a composite structure that encodes core functions involved in plasmid maintenance and accessory functions, some possibly acquired through horizontal gene transfer, implicated in virulence and the interaction with the host.
Collapse
Affiliation(s)
- Isolde Francis
- Department of Plant Biotechnology and Bioinformatics, VIB, 9052 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Stes E, Prinsen E, Holsters M, Vereecke D. Plant-derived auxin plays an accessory role in symptom development upon Rhodococcus fascians infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:513-527. [PMID: 22181713 DOI: 10.1111/j.1365-313x.2011.04890.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The biotrophic phytopathogen Rhodococcus fascians has a profound impact on plant development, mainly through its principal virulence factors, a mix of synergistically acting cytokinins that induce shoot formation. Expression profiling of marker genes for several auxin biosynthesis routes and mutant analysis demonstrated that the bacterial cytokinins stimulate the auxin biosynthesis of plants via specific targeting of the indole-3-pyruvic acid (IPA) pathway, resulting in enhanced auxin signaling in infected tissues. The double mutant tryptophan aminotransferase 1-1 tryptophan aminotransferase related 2-1 (taa1-1 tar2-1) of Arabidopsis (Arabidopsis thaliana), in which the IPA pathway is defective, displayed a decreased responsiveness towards R. fascians infection, although bacterial colonization and virulence gene expression were not impaired. These observations implied that plant-derived auxin was employed to reinforce symptom formation. Furthermore, the increased auxin production and, possibly, the accumulating bacterial cytokinins in infected plants modified the polar auxin transport so that new auxin maxima were repetitively established and distributed, a process that is imperative for symptom onset and maintenance. Based on these findings, we extend our model of the mode of action of bacterial and plant signals during the interaction between R. fascians and Arabidopsis.
Collapse
Affiliation(s)
- Elisabeth Stes
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | | | | | | |
Collapse
|
40
|
Baucher M, Pérez-Morga D, El Jaziri M. Insight into plant annexin function: from shoot to root signaling. PLANT SIGNALING & BEHAVIOR 2012; 7:524-8. [PMID: 22499168 PMCID: PMC3419045 DOI: 10.4161/psb.19647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The multifunctionality of plant annexins and their importance for coordinating development and responses to biotic and abiotic environment have been largely reviewed. We recently described a tobacco annexin, named Ntann12, which is mainly localized in the nucleus of root cells when the plant is grown under light conditions. We also found that auxin and polar auxin transport are essential for Ntann12 accumulation in root cells. Under dark condition, Ntann12 is no longer detected in the root system. In the present addendum, light, regulating auxin signaling, is evidenced as an essential determinant for the synchronization of growth and development between the shoot and the root during light/dark cycle. A speculative model for Ntann12 is described and discussed with regards to relevant literature data.
Collapse
Affiliation(s)
- Marie Baucher
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, Gosselies, Belgium.
| | | | | |
Collapse
|
41
|
Zhang D, Liu Y, Guo Y, Yang Q, Ye J, Chen S, Xu M. Fine-mapping of qRfg2, a QTL for resistance to Gibberella stalk rot in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:585-96. [PMID: 22048640 DOI: 10.1007/s00122-011-1731-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/14/2011] [Indexed: 05/20/2023]
Abstract
Stalk rot is one of the most devastating diseases in maize worldwide. In our previous study, two QTLs, a major qRfg1 and a minor qRfg2, were identified in the resistant inbred line '1145' to confer resistance to Gibberella stalk rot. In the present study, we report on fine-mapping of the minor qRfg2 that is located on chromosome 1 and account for ~8.9% of the total phenotypic variation. A total of 22 markers were developed in the qRfg2 region to resolve recombinants. The progeny-test mapping strategy was developed to accurately determine the phenotypes of all recombinants for fine-mapping of the qRfg2 locus. This fine-mapping process was performed from BC(4)F(1) to BC(8)F(1) generations to narrow down the qRfg2 locus into ~300 kb, flanked by the markers SSRZ319 and CAPSZ459. A predicted gene in the mapped region, coding for an auxin-regulated protein, is believed to be a candidate for qRfg2. The qRfg2 locus could steadily increase the resistance percentage by ~12% across different backcross generations, suggesting its usefulness in enhancing maize resistance against Gibberella stalk rot.
Collapse
Affiliation(s)
- Dongfeng Zhang
- National Maize Improvement Center of China, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
42
|
Lee JH, Kim YG, Kim CJ, Lee JC, Cho MH, Lee J. Indole-3-acetaldehyde from Rhodococcus sp. BFI 332 inhibits Escherichia coli O157:H7 biofilm formation. Appl Microbiol Biotechnol 2012; 96:1071-8. [DOI: 10.1007/s00253-012-3881-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/28/2011] [Accepted: 12/30/2011] [Indexed: 10/14/2022]
|
43
|
Stes E, Biondi S, Holsters M, Vereecke D. Bacterial and plant signal integration via D3-type cyclins enhances symptom development in the Arabidopsis-Rhodococcus fascians interaction. PLANT PHYSIOLOGY 2011; 156:712-25. [PMID: 21459976 PMCID: PMC3177270 DOI: 10.1104/pp.110.171561] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/31/2011] [Indexed: 05/08/2023]
Abstract
The phytopathogenic actinomycete Rhodococcus fascians drives its host to form a nutrient-rich niche by secreting a mixture of cytokinins that triggers plant cell division and shoot formation. The discrepancy between the relatively low amount of secreted cytokinins and the severe impact of R. fascians infection on plant development has puzzled researchers for a long time. Polyamine and transcript profiling of wild-type and cytokinin receptor mutant plants revealed that the bacterial cytokinins directly stimulated the biosynthesis of plant putrescine by activating arginine decarboxylase expression. Pharmacological experiments showed that the increased levels of putrescine contributed to the severity of the symptoms. Thus, putrescine functions as a secondary signal that impinges on the cytokinin-activated pathway, amplifying the hormone-induced changes that lead to the formation of a leafy gall. Exogenous putrescine and treatment with polyamine biosynthesis inhibitors combined with transcript and polyamine analyses of wild-type and mutant plants indicated that the direct target of both the bacterial cytokinins and plant putrescine was the expression of D3-type cyclins. Hence, the activated d-type cyclin/retinoblastoma/E2F transcription factor pathway integrates both external and internal hormonal signals, stimulating mitotic cell divisions and inducing pathological plant organogenesis.
Collapse
Affiliation(s)
| | | | | | - Danny Vereecke
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium (E.S., M.H.); Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (E.S., M.H.); Dipartimento di Biologia Evoluzionistica Sperimentale, Università di Bologna, 40126 Bologna, Italy (S.B.); Department of Plant Production, University College Ghent, Ghent University, 9000 Ghent, Belgium (D.V.)
| |
Collapse
|
44
|
Abstract
Microbial synthesis of the phytohormone auxin has been known for a long time. This property is best documented for bacteria that interact with plants because bacterial auxin can cause interference with the many plant developmental processes regulated by auxin. Auxin biosynthesis in bacteria can occur via multiple pathways as has been observed in plants. There is also increasing evidence that indole-3-acetic acid (IAA), the major naturally occurring auxin, is a signaling molecule in microorganisms because IAA affects gene expression in some microorganisms. Therefore, IAA can act as a reciprocal signaling molecule in microbe-plant interactions. Interest in microbial synthesis of auxin is also increasing in yet another recently discovered property of auxin in Arabidopsis. Down-regulation of auxin signaling is part of the plant defense system against phytopathogenic bacteria. Exogenous application of auxin, e.g., produced by the pathogen, enhances susceptibility to the bacterial pathogen.
Collapse
Affiliation(s)
- Stijn Spaepen
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
45
|
Rajaonson S, Vandeputte OM, Vereecke D, Kiendrebeogo M, Ralambofetra E, Stévigny C, Duez P, Rabemanantsoa C, Mol A, Diallo B, Baucher M, El Jaziri M. Virulence quenching with a prenylated isoflavanone renders the Malagasy legume Dalbergia pervillei resistant to Rhodococcus fascians. Environ Microbiol 2011; 13:1236-52. [DOI: 10.1111/j.1462-2920.2011.02424.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Lin L, Tan RX. Cross-kingdom actions of phytohormones: a functional scaffold exploration. Chem Rev 2011; 111:2734-60. [PMID: 21250668 DOI: 10.1021/cr100061j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lan Lin
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| | | |
Collapse
|
47
|
|
48
|
Stes E, Vandeputte OM, El Jaziri M, Holsters M, Vereecke D. A successful bacterial coup d'état: how Rhodococcus fascians redirects plant development. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:69-86. [PMID: 21495844 DOI: 10.1146/annurev-phyto-072910-095217] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rhodococcus fascians is a gram-positive phytopathogen that induces differentiated galls, known as leafy galls, on a wide variety of plants, employing virulence genes located on a linear plasmid. The pathogenic strategy consists of the production of a mixture of six synergistically acting cytokinins that overwhelm the plant's homeostatic mechanisms, ensuring the activation of a signaling cascade that targets the plant cell cycle and directs the newly formed cells to differentiate into shoot meristems. The shoots that are formed upon infection remain immature and never convert to source tissues resulting in the establishment of a nutrient sink that is a niche for the epiphytic and endophytic R. fascians subpopulations. Niche formation is accompanied by modifications of the transcriptome, metabolome, physiology, and morphology of both host and pathogen. Here, we review a decade of research and set the outlines of the molecular basis of the leafy gall syndrome.
Collapse
Affiliation(s)
- Elisabeth Stes
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium.
| | | | | | | | | |
Collapse
|
49
|
Busch W, Benfey PN. Information processing without brains--the power of intercellular regulators in plants. Development 2010; 137:1215-26. [PMID: 20332147 DOI: 10.1242/dev.034868] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plants exhibit different developmental strategies than animals; these are characterized by a tight linkage between environmental conditions and development. As plants have neither specialized sensory organs nor a nervous system, intercellular regulators are essential for their development. Recently, major advances have been made in understanding how intercellular regulation is achieved in plants on a molecular level. Plants use a variety of molecules for intercellular regulation: hormones are used as systemic signals that are interpreted at the individual-cell level; receptor peptide-ligand systems regulate local homeostasis; moving transcriptional regulators act in a switch-like manner over small and large distances. Together, these mechanisms coherently coordinate developmental decisions with resource allocation and growth.
Collapse
Affiliation(s)
- Wolfgang Busch
- Department of Biology, Institute of Genome Sciences & Policy, Center for Systems Biology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
50
|
What does it take to be a plant pathogen: genomic insights from Streptomyces species. Antonie van Leeuwenhoek 2010; 98:179-94. [DOI: 10.1007/s10482-010-9429-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/09/2010] [Indexed: 11/26/2022]
|