1
|
Cheng C, Sun M, Li J, Xue Y, Cai X, Liu J, Wang X, Xu S, Xie Y, Zhang J. Nucleic Acid Aptamers for Human Norovirus GII.4 and GII.17 Virus-Like Particles (VLPs) Exhibit Specific Binding and Inhibit VLPs from Entering Cells. Int J Nanomedicine 2025; 20:1789-1805. [PMID: 39958321 PMCID: PMC11829585 DOI: 10.2147/ijn.s495399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/25/2025] [Indexed: 02/18/2025] Open
Abstract
Purpose Human noroviruses (HuNoVs) are the main cause of non-bacterial acute gastroenteritis. Due to antigenic diversity, the discovery of ligands that can sensitively and specifically detect HuNoVs remains challenging. Limited by laboratory culture, no vaccines or drugs have been developed against HuNoVs. Here, we screened nucleic acid aptamers against the widespread HuNoV GII.4 and emerging HuNoV GII.17. Methods After ten rounds of sieving for HuNoV GII.4 and GII.17 virus-like particles (VLPs), eight ssDNA aptamers were generated and characterized for each genotype. Results Four of the eight aptamers generated for GII.4 VLP had dissociation constants (Kd) less than 100 nM, and all aptamers for GII.17 VLP had Kd less than 10 nM. All aptamers bound to their targets in VLP concentration-dependent manner. Two aptamers (AP4-2 and AP17-4) were selected for enzyme-linked aptamer sorbent assay (ELASA) and further analysis. Binding affinity was enhanced as the concentration of both aptamer and VLPs increased. The specificity of the aptamers was verified by ELASA and dot blotting. AP4-2 and AP17-4 were able to differentiate HuNoV from other diarrhea-causing pathogens or unrelated proteins (P < 0.0001). VLP/porcine gastric mucin (PGM) binding blockade assays revealed that AP4-2 and AP17-4 blocked the binding of HuNoV VLPs to PGM. VLP internalization inhibition assays showed that at a concentration of 0.5 µM, both AP4-2 and AP17-4 effectively inhibited attachment and internalization of HuNoV VLPs into 293T cell (P < 0.05). Cell viability assays confirmed that aptamers did not induce cellular toxicity. Conclusion AP4-2 and AP17-4 showed strong affinity and specificity for their target VLPs and represent promising candidates for HuNoV capture and detection. This is the first study to demonstrate that aptamers can effectively inhibit HuNoV VLPs from binding to or entering cells, thus providing a new concept for the treatment of HuNoVs.
Collapse
Affiliation(s)
- Chao Cheng
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Minjia Sun
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
- Key Laboratory for Advanced Materials and Department of Chemistry, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
- Zhejiang CONBA Pharmaceutical Co., Ltd, Hangzhou, 310052, People’s Republic of China
| | - Jingjing Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Yitong Xue
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Xia Cai
- Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Jing Liu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Xiaolian Wang
- Department of Pathogeny Microbiology and Preventive Medicine, School of Medicine, Hexi University, Zhangye, 734000, People’s Republic of China
| | - Shouhong Xu
- Key Laboratory for Advanced Materials and Department of Chemistry, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Youhua Xie
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Junqi Zhang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
2
|
Cohen A, Rasheduzzaman M, O'Connell B, Brown T, Taniuchi M, Krometis LA, Hubbard A, Scheuerman P, Edwards M, Darling A, Pennala B, Price S, Lytton B, Wettstone E, Pholwat S, Ward H, Hallinger DR, Simmons SO, Griffin SM, Kobylanski J, Egorov AI, Wade TJ. Drinking water sources, quality, and associated health outcomes in Appalachian Virginia: A risk characterization study in two counties. Int J Hyg Environ Health 2024; 260:114390. [PMID: 38772087 DOI: 10.1016/j.ijheh.2024.114390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
OBJECTIVES In the US, violations of drinking water regulations are highest in lower-income rural areas overall, and particularly in Central Appalachia. However, data on drinking water use, quality, and associated health outcomes in rural Appalachia are limited. We sought to assess public and private drinking water sources and associated risk factors for waterborne pathogen exposures for individuals living in rural regions of Appalachian Virginia. METHODS We administered surveys and collected tap water, bottled water, and saliva samples in lower-income households in two adjacent rural counties in southwest Virginia (bordering Kentucky and Tennessee). Water samples were tested for pH, temperature, conductivity, total coliforms, E. coli, free chlorine, nitrate, fluoride, heavy metals, and specific pathogen targets. Saliva samples were analyzed for antibody responses to potentially waterborne infections. We also shared water analysis results with households. RESULTS We enrolled 33 households (83 individuals), 82% (n = 27) with utility-supplied water and 18% with private wells (n = 3) or springs (n = 3). 58% (n = 19) reported household incomes of <$20,000/year. Total coliforms were detected in water samples from 33% (n = 11) of homes, E. coli in 12%, all with wells or springs (n = 4), and Aeromonas, Campylobacter, and Enterobacter in 9%, all spring water (n = 3). Diarrhea was reported for 10% of individuals (n = 8), but was not associated with E. coli detection. 34% (n = 15) of saliva samples had detectable antibody responses for Cryptosporidium spp., C. jejuni, and Hepatitis E. After controlling for covariates and clustering, individuals in households with septic systems and straight pipes had significantly higher likelihoods of antibody detection (risk ratios = 3.28, 95%CI = 1.01-10.65). CONCLUSIONS To our knowledge, this is the first study to collect and analyze drinking water samples, saliva samples, and reported health outcome data from low-income households in Central Appalachia. Our findings indicate that utility-supplied water in this region was generally safe, and individuals in low-income households without utility-supplied water or sewerage have higher exposures to waterborne pathogens.
Collapse
Affiliation(s)
- Alasdair Cohen
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| | - Md Rasheduzzaman
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Bethesda O'Connell
- Department of Community and Behavioral Health, East Tennessee State University, Johnson City, TN, USA
| | - Teresa Brown
- Department of Natural Sciences, University of Virginia's College at Wise, Wise, VA, USA
| | - Mami Taniuchi
- Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA, USA; Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Leigh-Anne Krometis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Alan Hubbard
- Department of Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Phillip Scheuerman
- Department of Environmental and Occupational Health and Safety Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Marc Edwards
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Amanda Darling
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Blaine Pennala
- Department of Community and Behavioral Health, East Tennessee State University, Johnson City, TN, USA
| | - Sarah Price
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Breanna Lytton
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Erin Wettstone
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Suporn Pholwat
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | - Daniel R Hallinger
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Steven O Simmons
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Shannon M Griffin
- Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH, USA
| | - Jason Kobylanski
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Andrey I Egorov
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Timothy J Wade
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
3
|
Ibaraki M, Lai L, Huerta C, Natrajan MS, Collins MH, Anderson EJ, Mulligan MJ, Rouphael N, Moe CL, Liu P. Blockade Antibody Responses in Human Subjects Challenged with a New Snow Mountain Virus Inoculum. ARCHIVES OF MICROBIOLOGY & IMMUNOLOGY 2023; 7:318-325. [PMID: 38707746 PMCID: PMC11067712 DOI: 10.26502/ami.936500129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Background Noroviruses (NoVs) are a leading cause of non-bacterial gastroenteritis in young children and adults worldwide. Snow Mountain Virus (SMV) is the prototype of NoV GII genotype 2 (GII.2) that has been developed as a viral model for human challenge studies, an important tool for studying pathogenesis and immune response of NoV infections and for evaluating NoV vaccine candidates. Previous studies have identified blockade antibodies that block the binding of NoV virus-like particles (VLPs) to histo-blood group antigens (HBGAs) as a surrogate for neutralization in human Norwalk virus and GII.4 infections but little is known about SMV blockade antibodies. Methods In this secondary data analysis study, blockade antibodies were characterized in pre-challenge and post-challenge serum samples from human subjects challenged with a new SMV inoculum. The correlation between blockade antibody geometric mean antibody titers (GMTs) and SMV-specific serum IgG/IgA GMTs were examined after stratifying the subjects by infection status. A linear mixed model was applied to test the association between HBGA blockade antibody concentrations and post-challenge days accounting for covariates and random effects. Results Laboratory results from 33 SMV inoculated individuals were analyzed and 75.7% (25/33) participants became infected. Serum SMV-specific blockade antibodies, IgA, and IgG were all significantly different between infected and uninfected individuals beginning day 15 post-challenge. Within infected individuals, a significant correlation was observed between both IgG and IgA and blockade antibody concentration as early as day 6 post-challenge. Analysis of blockade antibody using the linear mixed model showed that infected individuals, when compared to uninfected individuals, had a statistically significant increase in blockade antibody concentrations across the post-challenge days. Among the post-challenge days, blockade antibody concentrations on days 15, 30, and 45 were significantly higher than those observed pre-challenge. The intraclass correlation coefficient (ICC) analysis indicated that the variability of blockade antibody titers is more observed between individuals rather than within subjects. Conclusions These results indicate that HBGA-blockade antibody GMTs are generated after SMV challenge and the blockade antibodies were still detectable at day 45 post-challenge. These data indicate that the second-generation of SMV inoculum is highly effective.
Collapse
Affiliation(s)
- Makoto Ibaraki
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Lilin Lai
- Grossman School of Medicine and New York University Vaccine Center, New York University, New York, USA
| | - Christopher Huerta
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Muktha S Natrajan
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Matthew H Collins
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Evan J Anderson
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Mark J Mulligan
- Grossman School of Medicine and New York University Vaccine Center, New York University, New York, USA
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Christine L Moe
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Pengbo Liu
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Kabue JP, Khumela R, Meader E, Baroni de Moraes MT, Traore AN, Potgieter N. Norovirus-Associated Gastroenteritis Vesikari Score and Pre-Existing Salivary IgA in Young Children from Rural South Africa. Viruses 2023; 15:2185. [PMID: 38005863 PMCID: PMC10674611 DOI: 10.3390/v15112185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Norovirus (NoV) is the leading cause of viral gastroenteritis, mostly affecting young children worldwide. However, limited data are available to determine the severity of norovirus-associated AGE (acute gastroenteritis) and to correlate it with the NoV-specific IgA antibodies' level. Between October 2019 and September 2021, two hundred stool samples were randomly collected from symptomatic cases for the vesikari score and NoV-specific IgA assessment in young children from rural South Africa. Additionally, one hundred saliva specimens were concomitantly sampled within the same cohort to evaluate the NoV-specific salivary IgA levels. In addition, 50 paired saliva and stool samples were simultaneously collected from asymptomatic children to serve as controls. NoV strains in stool samples were detected using real-time RT-PCR, amplified, and genotyped with RT-PCR and Sanger sequencing. ELISA using NoV VLP (virus-like particles) GII.4 as antigens was performed on the saliva specimens. Dehydrated children were predominantly those with NoV infections (65/74, 88%; p < 0.0001). NoV-positive infections were significantly associated with the severe diarrhea cases having a high vesikari score (55%, 33/60) when compared to the non-severe diarrheal score (29.3%, 41/140; p < 0.0308). NoV of the GII genogroup was mainly detected in severe diarrhea cases (50.9%, 30/59; p = 0.0036). The geometric means of the NoV-specific IgA level were higher in the asymptomatic NoV-infected group (0.286) as compared to the symptomatic group (0.174). This finding suggests that mucosal immunity may not protect the children from the NoV infection. However, the findings indicated the contribution of the pre-existing NoV-specific IgA immune response in reducing the severity of diarrheal disease. A high vesikari score of AGE associated with the NoV GII genogroup circulating in the study area underscores the need for an appropriate treatment of AGE based on the severity level of NoV-associated clinical symptoms in young children.
Collapse
Affiliation(s)
- Jean-Pierre Kabue
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (R.K.); (A.N.T.); (N.P.)
| | - Ronewa Khumela
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (R.K.); (A.N.T.); (N.P.)
| | - Emma Meader
- Clinical Microbiology, Pathology Department, East Kent Hospitals University NHS Foundation Trust, Ashford TN24 OLZ, UK;
| | - Marcia Terezinha Baroni de Moraes
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brazil, 4365-Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Afsatou Ndama Traore
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (R.K.); (A.N.T.); (N.P.)
| | - Natasha Potgieter
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (R.K.); (A.N.T.); (N.P.)
| |
Collapse
|
5
|
Recreational water exposure and waterborne infections in a prospective salivary antibody study at a Lake Michigan beach. Sci Rep 2021; 11:20540. [PMID: 34654825 PMCID: PMC8519948 DOI: 10.1038/s41598-021-00059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/29/2021] [Indexed: 12/03/2022] Open
Abstract
In a prospective observational study, seroconversion to a specific pathogen can serve as a marker of an incident infection, whether or not that infection is symptomatic or clinically diagnosed. While self-reported symptoms can be affected by reporting bias, seroconversion is likely to be free of this bias as it is based on objective measurements of antibody response. Non-invasive salivary antibody tests can be used instead of serum tests to detect seroconversions in prospective studies. In the present study, individuals and families were recruited at a Lake Michigan beach in Wisconsin in August 2011. Data on recreational water exposure and baseline saliva samples (S1) were collected at recruitment. Follow-up data on gastrointestinal symptoms were collected via a telephone interview approximately 10 days post-recruitment. Follow-up saliva samples were self-collected approximately 2 weeks (S2) and 30–40 days post-recruitment (S3) and mailed to the study laboratory. Samples were analyzed for immunoglobulin (Ig) G responses to recombinant antigens of three noroviruses and Cryptosporidium, as well as protein purification tags as internal controls, using an in-house multiplex suspension immunoassay on the Luminex platform. Responses were defined as ratios of antibody reactivities with a target protein and its purification tag. Seroconversions were defined as at least four-fold and three-fold increases in responses in S2 and S3 samples compared to S1, respectively. In addition, an S2 response had to be above the upper 90% one-sided prediction limit of a corresponding spline function of age. Among 872 study participants, there were seven (0.8%) individuals with seroconversions, including six individuals with seroconversions to noroviruses and two to Cryptosporidium (one individual seroconverted to both pathogens). Among 176 (20%) individuals who reported swallowing lake water, there were six (3.4%) seroconversions compared to one (0.14%) seroconversion among the remaining 696 individuals: the crude and age-standardized risk differences per 1000 beachgoers were 32.7 (95% confidence limits 5.7; 59.6) and 94.8 (4.6; 276), respectively. The age-adjusted odds ratio of seroconversion in those who swallowed water vs. all others was 49.5 (4.5; 549), p = 0.001. Individuals with a norovirus seroconversion were more likely to experience vomiting symptoms within 4 days of the index beach visit than non-converters with an odds ratio of 34 (3.4, 350), p = 0.003. This study contributed further evidence that recreational water exposure is associated with symptomatic and asymptomatic waterborne infections, and that salivary antibody assays can be used in epidemiological surveys of norovirus and Cryptosporidium infections.
Collapse
|
6
|
Augustine SAJ, Eason TN, Wade T, Griffin SM, Sams E, Simmons K, Ramudit M, Oshima K, Dufour A. Salivary Antibodies against Multiple Environmental Pathogens Found in Individuals Recreating at an Iowa Beach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115797. [PMID: 34071402 PMCID: PMC8199218 DOI: 10.3390/ijerph18115797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
Detecting environmental exposures and mitigating their impacts are growing global public health challenges. Antibody tests show great promise and have emerged as fundamental tools for large-scale exposure studies. Here, we apply, demonstrate and validate the utility of a salivary antibody multiplex immunoassay in measuring antibody prevalence and immunoconversions to six pathogens commonly found in the environment. The study aimed to assess waterborne infections in consenting beachgoers recreating at an Iowa riverine beach by measuring immunoglobulin G (IgG) antibodies against select pathogens in serially collected saliva samples. Results showed that nearly 80% of beachgoers had prior exposures to at least one of the targeted pathogens at the beginning of the study. Most of these exposures were to norovirus GI.1 (59.41%), norovirus GII.4 (58.79%) and Toxoplasma gondii (22.80%) and over half (56.28%) of beachgoers had evidence of previous exposure to multiple pathogens. Of individuals who returned samples for each collection period, 6.11% immunoconverted to one or more pathogens, largely to noroviruses (GI.1: 3.82% and GII.4: 2.29%) and T. gondii (1.53%). Outcomes of this effort illustrate that the multiplex immunoassay presented here serves as an effective tool for evaluating health risks by providing valuable information on the occurrence of known and emerging pathogens in population surveillance studies.
Collapse
Affiliation(s)
- Swinburne A. J. Augustine
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Cincinnati, OH 45268, USA;
- Correspondence: ; Tel.: +1-513-569-7132
| | - Tarsha N. Eason
- Center for Environmental Methods and Measurement, United States Environmental Protection Agency, Athens, GA 30605, USA;
| | - Tim Wade
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA; (T.W.); (E.S.)
| | - Shannon M. Griffin
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Cincinnati, OH 45268, USA;
| | - Elizabeth Sams
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27709, USA; (T.W.); (E.S.)
| | - Kaneatra Simmons
- Department of Arts and Sciences/Learning Support, Fort Valley State University, Fort Valley, GA 31030, USA;
| | - Malini Ramudit
- Oak Ridge Institute for Science Education, Oak Ridge, TN 37831, USA;
| | - Kevin Oshima
- Center for Environmental Methods and Measurement, United States Environmental Protection Agency, Cincinnati, OH 45268, USA; (K.O.); (A.D.)
| | - Alfred Dufour
- Center for Environmental Methods and Measurement, United States Environmental Protection Agency, Cincinnati, OH 45268, USA; (K.O.); (A.D.)
| |
Collapse
|
7
|
Costantini VP, Cooper EM, Hardaker HL, Lee LE, DeBess EE, Cieslak PR, Hall AJ, Vinjé J. Humoral and Mucosal Immune Responses to Human Norovirus in the Elderly. J Infect Dis 2021; 221:1864-1874. [PMID: 31957785 DOI: 10.1093/infdis/jiaa021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Most information on mucosal and systemic immune response to norovirus infection is derived from human challenge studies, birth cohort studies, or vaccine trials in healthy adults. However, few data are available on immune responses to norovirus in the elderly. METHODS To study the mucosal and systemic immune response against norovirus, 43 long-term care facilities were enrolled prospectively in 2010-2014. Baseline saliva samples from 17 facilities, cases and controls up to day 84 from 10 outbreaks, as well as acute and convalescent sera were collected. RESULTS Norovirus-specific immunoglobulin A (IgA) levels in baseline saliva samples were low and increased in both symptomatic patients and asymptomatic shedders at day 5 after onset during outbreaks. Receiver operating characteristics analysis correctly assigned prior norovirus infection in 23 (92%) of 25 participants. Cases and asymptomatic shedders showed seroconversion for IgG (80%), IgA (78%), and blockade antibodies (87%). Salivary IgA levels strongly correlated with increased convalescent serum IgA titers and blockade antibodies. CONCLUSIONS Salivary IgA levels strongly correlated with serum IgA titers and blockade antibodies and remained elevated 3 months after a norovirus outbreak. A single salivary sample collected on day 14 could be used to identify recent infection in a suspected outbreak or to monitor population salivary IgA.
Collapse
Affiliation(s)
- Veronica P Costantini
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Emilie M Cooper
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Hope L Hardaker
- Public Health Division, Oregon Health Authority, Portland, Oregon, USA
| | - Lore E Lee
- Public Health Division, Oregon Health Authority, Portland, Oregon, USA
| | - Emilio E DeBess
- Public Health Division, Oregon Health Authority, Portland, Oregon, USA
| | - Paul R Cieslak
- Public Health Division, Oregon Health Authority, Portland, Oregon, USA
| | - Aron J Hall
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jan Vinjé
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Pisanic N, Ballard SB, Colquechagua FD, François R, Exum N, Yori PP, Schwab KJ, Granger DA, Detrick B, Olortegui MP, Mayta H, Sánchez GJ, Gilman RH, Heaney CD, Vinjé J, Kosek MN. Minimally Invasive Saliva Testing to Monitor Norovirus Infection in Community Settings. J Infect Dis 2020; 219:1234-1242. [PMID: 30517651 PMCID: PMC6452293 DOI: 10.1093/infdis/jiy638] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022] Open
Abstract
Background Norovirus is a leading cause of acute gastroenteritis worldwide. Routine norovirus diagnosis requires stool collection. The goal of this study was to develop and validate a noninvasive method to diagnose norovirus to complement stool diagnostics and to facilitate studies on transmission. Methods A multiplex immunoassay to measure salivary immunoglobulin G (IgG) responses to 5 common norovirus genotypes (GI.1, GII.2, GII.4, GII.6, and GII.17) was developed. The assay was validated using acute and convalescent saliva samples collected from Peruvian children <5 years of age with polymerase chain reaction (PCR)–diagnosed norovirus infections (n = 175) and controls (n = 32). The assay sensitivity and specificity were calculated to determine infection status based on fold rise of salivary norovirus genotype-specific IgG using norovirus genotype from stool as reference. Results The salivary assay detected recent norovirus infections and correctly assigned the infecting genotype. Sensitivity was 71% and specificity was 96% across the evaluated genotypes compared to PCR-diagnosed norovirus infection. Conclusions This saliva-based assay will be a useful tool to monitor norovirus transmission in high-risk settings such as daycare centers or hospitals. Cross-reactivity is limited between the tested genotypes, which represent the most commonly circulating genotypes.
Collapse
Affiliation(s)
- Nora Pisanic
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Sarah-Blythe Ballard
- Departments of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore.,Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Fabiola D Colquechagua
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ruthly François
- Departments of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Natalie Exum
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Pablo Peñataro Yori
- Departments of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Kellogg J Schwab
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Douglas A Granger
- Institute for Interdisciplinary Salivary Bioscience, University of California, Irvine.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Acute and Chronic Care, Johns Hopkins University School of Nursing, Baltimore, Maryland.,Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Barbara Detrick
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Holger Mayta
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gerardo J Sánchez
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Robert H Gilman
- Departments of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Christopher D Heaney
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore.,Departments of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jan Vinjé
- National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Margaret N Kosek
- Departments of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore
| |
Collapse
|
9
|
Wade TJ, Griffin SM, Egorov AI, Sams E, Hudgens E, Augustine S, DeFlorio-Barker S, Plunkett T, Dufour AP, Styles JN, Oshima K. Application of a multiplex salivary immunoassay to detect sporadic incident norovirus infections. Sci Rep 2019; 9:19576. [PMID: 31862970 PMCID: PMC6925267 DOI: 10.1038/s41598-019-56040-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/04/2019] [Indexed: 11/30/2022] Open
Abstract
Norovirus is one of the most common causes of gastroenteritis. Following infection, anti-norovirus salivary immunoglobulin G (IgG) rises steeply within 2 weeks and remains elevated for several months; this immunoconversion can serve as an indicator of infection. We used a multiplex salivary immunoassay to study norovirus infections among 483 visitors to a Lake Michigan beach in 2015. Saliva was collected on the day of the beach visit (S1); after 10–14 days (S2); and after 30–40 days (S3). Luminex microspheres were coupled to recombinant antigens of genogroup I (GI) and II (GII) noroviruses and incubated with saliva. Immunoconversion was defined as at least 4-fold increase in anti-norovirus IgG antibody response from S1 to S2 and a 3-fold increase from S1 to S3. Ten (2.1%) immunoconverted to either GI (2) or GII (8) norovirus. Among those who immunoconverted, 40% reported at least one gastrointestinal symptom and 33% reported diarrhea, compared to 15% (p = 0.06) and 8% (p = 0.04) among those who did not immunoconvert, respectively. The two participants who immunoconverted to GI norovirus both swallowed water during swimming (p = 0.08). This study demonstrated the utility of a non-invasive salivary immunoassay to detect norovirus infections and an efficient approach to study infectious agents in large cohorts.
Collapse
Affiliation(s)
- Timothy J Wade
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina, USA.
| | - Shannon M Griffin
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA
| | - Andrey I Egorov
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA
| | - Elizabeth Sams
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina, USA
| | - Edward Hudgens
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina, USA
| | - Swinburne Augustine
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA
| | - Stephanie DeFlorio-Barker
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina, USA
| | - Trevor Plunkett
- Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | - Alfred P Dufour
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA
| | - Jennifer N Styles
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina, USA.,University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Environmental Sciences and Engineering Department, Chapel Hill, NC, USA
| | - Kevin Oshima
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Simmons KJ, Eason TN, Curioso CL, Griffin SM, Ramudit MKD, Oshima KH, Sams EA, Wade TJ, Grimm A, Dufour A, Augustine SAJ. Visitors to a Tropical Marine Beach Show Evidence of Immunoconversions to Multiple Waterborne Pathogens. Front Public Health 2019; 7:231. [PMID: 31482082 PMCID: PMC6709658 DOI: 10.3389/fpubh.2019.00231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Determining infections from environmental exposures, particularly from waterborne pathogens is a challenging proposition. The study design must be rigorous and account for numerous factors including study population selection, sample collection, storage, and processing, as well as data processing and analysis. These challenges are magnified when it is suspected that individuals may potentially be infected by multiple pathogens at the same time. Previous work demonstrated the effectiveness of a salivary antibody multiplex immunoassay in detecting the prevalence of immunoglobulin G (IgG) antibodies to multiple waterborne pathogens and helped identify asymptomatic norovirus infections in visitors to Boquerón Beach, Puerto Rico. In this study, we applied the immunoassay to three serially collected samples from study participants within the same population to assess immunoconversions (incident infections) to six waterborne pathogens: Helicobacter pylori, Campylobacter jejuni, Toxoplasma gondii, hepatitis A virus, and noroviruses GI. I and GII.4. Further, we examined the impact of sampling on the detection of immunoconversions by comparing the traditional immunoconversion definition based on two samples to criteria developed to capture trends in three sequential samples collected from study participants. The expansion to three samples makes it possible to capture the IgG antibody responses within the survey population to more accurately assess the frequency of immunoconversions to target pathogens. Based on the criteria developed, results showed that when only two samples from each participant were used in the analysis, 25.9% of the beachgoers immunoconverted to at least one pathogen; however, the addition of the third sample reduced immunoconversions to 6.5%. Of these incident infections, the highest levels were to noroviruses followed by T. gondii. Moreover, many individuals displayed evidence of immunoconversions to multiple pathogens. This study suggests that detection of simultaneous infections is possible, with far reaching consequences for the population. The results may lead to further studies to understand the complex interactions that occur within the body as the immune system attempts to ward off these infections. Such an approach is critical to our understanding of medically important synergistic or antagonistic interactions and may provide valuable and critical information to public health officials, water treatment personnel, and environmental managers.
Collapse
Affiliation(s)
- Kaneatra J Simmons
- Department of Arts & Sciences/Learning Support, Fort Valley State University, Fort Valley, GA, United States
| | - Tarsha N Eason
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | | | - Shannon M Griffin
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | | | - Kevin H Oshima
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Elizabeth A Sams
- National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, United States
| | - Timothy J Wade
- National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, United States
| | - Ann Grimm
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Alfred Dufour
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Swinburne A J Augustine
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| |
Collapse
|
11
|
Egorov AI, Griffin SM, Ward HD, Reilly K, Fout GS, Wade TJ. Application of a salivary immunoassay in a prospective community study of waterborne infections. WATER RESEARCH 2018; 142:289-300. [PMID: 29890477 PMCID: PMC6781621 DOI: 10.1016/j.watres.2018.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 05/10/2023]
Abstract
Quantifying sporadic waterborne infections in community settings can be challenging. Salivary antibody immunoassays are a promising non-invasive tool that can be used in prospective studies of common infections, especially those involving children. This study was conducted in a Massachusetts city, which uses a microbiologically contaminated river as its water source, during summer-early winter periods before and after construction of a new drinking water treatment plant. Monthly saliva samples (7480 samples from 1170 children and 816 adults) were analyzed for immunoglobulin G (IgG) responses to recombinant proteins of Cryptosporidium, one genogroup I (GI) and two GII noroviruses. Immunoconversion was defined as at least four-fold increase in specific antibody responses between two monthly samples with a post-conversion response above a flexible age-dependent cut-off. Episodes of gastroenteritis (diarrhea or vomiting or cramps) were associated with 3.2 (95% confidence limits 1.1; 9.5) adjusted odds ratio (aOR) of immunoconversion to Cryptosporidium; episodes of combined diarrhea and vomiting symptoms were associated with 3.5 (0.8; 15.0) and 4.6 (1.7; 12.6) aORs of an immunoconversion to GI and GII noroviruses, respectively. Swimming in natural water bodies or chlorinated pools was associated with 2.3 (0.4; 15.4) and 4.9 (1.6; 15.5) aORs of immunoconversion to Cryptosporidium, respectively. In a subset of study participants who did not use home water filters, consumption of at least some amount of non-boiled tap water reported in a monthly recall survey was associated with 11.1 (1.2; 100.0) and 0.6 (0.1; 2.5) aORs of immunoconversion to Cryptosporidium before and after the new water treatment plant construction, respectively. Among individuals who used home water filters, associations between non-boiled tap water consumption and Cryptosporidium immunoconversion were not significant before and after new plant construction with aORs of 0.8 (0.2; 3.3) and 0.3 (0.1; 1.6), respectively. The interaction effect of study phase and non-boiled tap water consumption on Cryptosporidium immunoconversions was statistically significant in the entire study population with aOR of 5.4 (1.1; 25.6). This was the first study that has used a salivary antibody immunoassay to demonstrate significant associations between gastrointestinal symptoms and Cryptosporidium and norovirus infections, and between water-related exposures and Cryptosporidium infections.
Collapse
Affiliation(s)
- Andrey I Egorov
- National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, RTP, NC, USA.
| | - Shannon M Griffin
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - Honorine D Ward
- Division of Geographic Medicine and Infectious Diseases, Dept. of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Kevin Reilly
- EPA Region 1 (New England), United States Environmental Protection Agency, Boston, MA, USA
| | - G Shay Fout
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - Timothy J Wade
- National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, RTP, NC, USA
| |
Collapse
|
12
|
Tamminen K, Malm M, Vesikari T, Blazevic V. Norovirus-specific mucosal antibodies correlate to systemic antibodies and block norovirus virus-like particles binding to histo-blood group antigens. Clin Immunol 2018; 197:110-117. [PMID: 30244152 DOI: 10.1016/j.clim.2018.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/08/2018] [Accepted: 09/17/2018] [Indexed: 12/29/2022]
Abstract
The best acknowledged correlate of protection from norovirus (NoV) infection is the ability of serum antibodies to block binding of NoV virus-like particles (VLPs) to histo-blood group antigens (HBGAs). We investigated mucosal NoV-specific antibody levels in adult volunteers and used saliva from a single donor to determine whether purified saliva antibodies confer blocking. NoV-specific IgG and IgA levels in saliva and plasma samples were measured against four NoV genotype VLPs. NoV-specific IgG and IgA titers in saliva and plasma samples correlated significantly. Antibodies were detected against all VLPs with the highest level of antibodies directed against ancestral GII.4 99 genotype. Affinity chromatography purified salivary IgA and IgG blocked binding of GII.4 99 VLPs to HBGAs. Saliva sampling is a non-invasive alternative to blood drawing and an excellent biological fluid to study NoV-specific immune responses. Mucosal anti-NoV antibodies block binding of NoV VLPs to HBGAs, and may therefore be protective.
Collapse
Affiliation(s)
- Kirsi Tamminen
- Vaccine Research Center, Faculty of Medicine and Life Sciences, University of Tampere, Biokatu 10, Tampere FI-33520, Finland.
| | - Maria Malm
- Vaccine Research Center, Faculty of Medicine and Life Sciences, University of Tampere, Biokatu 10, Tampere FI-33520, Finland
| | - Timo Vesikari
- Vaccine Research Center, Faculty of Medicine and Life Sciences, University of Tampere, Biokatu 10, Tampere FI-33520, Finland
| | - Vesna Blazevic
- Vaccine Research Center, Faculty of Medicine and Life Sciences, University of Tampere, Biokatu 10, Tampere FI-33520, Finland
| |
Collapse
|
13
|
Gomez EV, Bishop JL, Jackson K, Muram TM, Phillips D. Response to Tetanus and Pneumococcal Vaccination Following Administration of Ixekizumab in Healthy Participants. BioDrugs 2018; 31:545-554. [PMID: 29116597 PMCID: PMC5696443 DOI: 10.1007/s40259-017-0249-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Ixekizumab (IXE) is an interleukin (IL)-17A antagonist approved for the treatment of adults with moderate-to-severe psoriasis. Objective The objective of this study was to determine if the immune response to tetanus and pneumococcal vaccines in healthy subjects administered IXE was noninferior to control. Methods In a randomized, open-label, parallel-group study, adult subjects received vaccinations alone (N = 42, control) or in combination with 160 mg IXE subcutaneously 2 weeks prior to vaccination and 80 mg IXE on the day of vaccination (N = 41, IXE). Response to tetanus vaccination was defined as anti-tetanus antibodies ≥ 1.0 IU and a ≥ 1.5-fold increase if baseline was ≤ 1.0 IU or a ≥ 2.5-fold increase if baseline was > 1.0 IU. Response to pneumococcal vaccination was defined as a ≥ 2-fold increase from baseline in anti-pneumococcal antibodies against > 50% of the 23 serotypes. The primary outcomes were the percentages of patients with a response to the tetanus and pneumococcal vaccines 4 weeks after vaccination. A noninferiority analysis of IXE to control using a 40% margin was evaluated for the primary outcomes. Safety and pharmacokinetics were also assessed. Results IXE (38 completers) was noninferior to control (41 completers) based on the difference in the proportion of responders to tetanus [1.4%; 90% confidence interval (CI) − 16.6 to 19.2] and pneumococcal (− 0.8%; 90% CI − 12.9 to 11.0) vaccines. Twenty subjects (14 IXE, six control) reported 43 mild treatment-emergent adverse events. Conclusion IXE does not suppress the humoral immune response to non-live vaccines and was well tolerated in healthy subjects. ClinicalTrial.gov identifier: NCT02543918. Electronic supplementary material The online version of this article (doi:10.1007/s40259-017-0249-y) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Bat Caliciviruses and Human Noroviruses Are Antigenically Similar and Have Overlapping Histo-Blood Group Antigen Binding Profiles. mBio 2018; 9:mBio.00869-18. [PMID: 29789360 PMCID: PMC5964351 DOI: 10.1128/mbio.00869-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Emerging zoonotic viral diseases remain a challenge to global public health. Recent surveillance studies have implicated bats as potential reservoirs for a number of viral pathogens, including coronaviruses and Ebola viruses. Caliciviridae represent a major viral family contributing to emerging diseases in both human and animal populations and have been recently identified in bats. In this study, we blended metagenomics, phylogenetics, homology modeling, and in vitro assays to characterize two novel bat calicivirus (BtCalV) capsid sequences, corresponding to strain BtCalV/A10/USA/2009, identified in Perimyotis subflavus near Little Orleans, MD, and bat norovirus. We observed that bat norovirus formed virus-like particles and had epitopes and receptor-binding patterns similar to those of human noroviruses. To determine whether these observations stretch across multiple bat caliciviruses, we characterized a novel bat calicivirus, BtCalV/A10/USA/2009. Phylogenetic analysis revealed that BtCalV/A10/USA/2009 likely represents a novel Caliciviridae genus and is most closely related to "recoviruses." Homology modeling revealed that the capsid sequences of BtCalV/A10/USA/2009 and bat norovirus resembled human norovirus capsid sequences and retained host ligand binding within the receptor-binding domains similar to that seen with human noroviruses. Both caliciviruses bound histo-blood group antigens in patterns that overlapped those seen with human and animal noroviruses. Taken together, our results indicate the potential for bat caliciviruses to bind histo-blood group antigens and overcome a significant barrier to cross-species transmission. Additionally, we have shown that bat norovirus maintains antigenic epitopes similar to those seen with human noroviruses, providing further evidence of evolutionary descent. Our results reiterate the importance of surveillance of wild-animal populations, especially of bats, for novel viral pathogens.IMPORTANCE Caliciviruses are rapidly evolving viruses that cause pandemic outbreaks associated with significant morbidity and mortality globally. The animal reservoirs for human caliciviruses are unknown; bats represent critical reservoir species for several emerging and zoonotic diseases. Recent reports have identified several bat caliciviruses but have not characterized biological functions associated with disease risk, including their potential emergence in other mammalian populations. In this report, we identified a novel bat calicivirus that is most closely related to nonhuman primate caliciviruses. Using this new bat calicivirus and a second norovirus-like bat calicivirus capsid gene sequence, we generated virus-like particles that have host carbohydrate ligand binding patterns similar to those of human and animal noroviruses and that share antigens with human noroviruses. The similarities to human noroviruses with respect to binding patterns and antigenic epitopes illustrate the potential for bat caliciviruses to emerge in other species and the importance of pathogen surveillance in wild-animal populations.
Collapse
|
15
|
Wade TJ, Augustine SAJ, Griffin SM, Sams EA, Oshima KH, Egorov AI, Simmons KJ, Eason TN, Dufour AP. Asymptomatic norovirus infection associated with swimming at a tropical beach: A prospective cohort study. PLoS One 2018; 13:e0195056. [PMID: 29590196 PMCID: PMC5874074 DOI: 10.1371/journal.pone.0195056] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/15/2018] [Indexed: 02/01/2023] Open
Abstract
Background Swimming in fecally-contaminated waterbodies can result in gastrointestinal infections. However, the pathogenic microorganisms responsible are not well understood because sporadic cases of illness are not reported completely, exposure information is often not collected, and epidemiology studies rely on self-reported symptoms. Noroviruses are considered a likely cause because they are found in high densities in sewage, resistant to wastewater treatment and survive in the environment. In this study, saliva samples were collected from subjects at a beach in Puerto Rico and tested for evidence of norovirus-specific IgG responses as an indicator of incident norovirus infection. Methods Saliva samples were collected from 1298 participants using an oral swab. Samples were collected on the day of the beach visit (S1); after 10–12 days (S2); and after three weeks (S3). Saliva was tested for IgG responses to GI.1 and GII.4 noroviruses using a microsphere based multiplex salivary immunoassay. Immunoconversion was defined as a four-fold increase in median fluorescence intensity (MFI) from S1 to S2 with the S3 sample at least three times above the S1 MFI. Results Thirty-four subjects (2.6%) immunoconverted to GI.1 or GII.4 norovirus. Swimmers who immersed their head in water had a higher rate of immunoconversion (3.4%), compared to either non-swimmers (0.0%, p = 0.003) or waders and non-swimmers combined (0.4%, Odds Ratio: 5.07, 95% Confidence Interval:1.48–17.00). Immunoconversion was not associated with gastrointestinal symptoms. Conclusions This is the first study to demonstrate an association between swimming at a beach impacted by fecal contamination and asymptomatic norovirus infection. The findings implicate recreational water as potentially important transmission pathway for norovirus infection.
Collapse
Affiliation(s)
- Timothy J. Wade
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, United States of America
- * E-mail:
| | - Swinburne A. J. Augustine
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States of America
| | - Shannon M. Griffin
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States of America
| | - Elizabeth A. Sams
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Kevin H. Oshima
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States of America
| | - Andrey I. Egorov
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | | | - Tarsha N. Eason
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Alfred P. Dufour
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States of America
| |
Collapse
|
16
|
Pisanic N, Rahman A, Saha SK, Labrique AB, Nelson KE, Granger DA, Granger SW, Detrick B, Heaney CD. Development of an oral fluid immunoassay to assess past and recent hepatitis E virus (HEV) infection. J Immunol Methods 2017; 448:1-8. [PMID: 28478117 DOI: 10.1016/j.jim.2017.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) infection causes significant morbidity and mortality worldwide, particularly among pregnant women. In clinical settings blood-based testing protocols are commonly used to diagnose HEV infection, but in community settings such invasive sampling can hinder study participation and limit discovery of the ecology and natural history of HEV infection. Oral fluid is a non-invasive biospecimen that can harbor pathogen-specific antibodies and has the potential to replace blood-based testing protocols. OBJECTIVES To develop an immunoassay to assess past and recent HEV infection that uses oral fluid instead of serum or plasma. METHODS The assay was validated using paired oral fluid and serum samples collected from 141 patients who presented either with (n=76) or without (n=65) symptoms of acute viral hepatitis at a clinical diagnostics center in Dhaka, Bangladesh. The sensitivity and specificity of the oral fluid-based immunoassay for HEV IgG (past HEV infection) and HEV IgA (recent HEV infection) antibodies was calculated in reference to Wantai's (Beijing Wantai) serum-based HEV enzyme-linked immunosorbent assay (ELISA) kits for IgG and IgM antibodies, respectively. RESULTS The sensitivity and specificity of the oral fluid-based immunoassay for HEV-IgG antibodies were 98.7% and 98.4%, respectively. The sensitivity and specificity of the oral fluid-based immunoassay for HEV IgA were 89.5% and 98.3%, respectively. CONCLUSIONS The high concordance of our non-invasive oral fluid-based immunoassays (HEV IgG and HEV IgA) with commercial high-performance serum HEV ELISA kits (IgG and IgM) means that population-based surveillance of past and recent HEV infection could be expanded to improve understanding of its ecology and natural history.
Collapse
Affiliation(s)
- Nora Pisanic
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Atiqur Rahman
- Department of Microbiology, Dhaka Shishu (Children's) Hospital, Dhaka 1207, Bangladesh
| | - Samir K Saha
- Department of Microbiology, Dhaka Shishu (Children's) Hospital, Dhaka 1207, Bangladesh
| | - Alain B Labrique
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Population, Family, and Reproductive, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kenrad E Nelson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Douglas A Granger
- Institute for Interdisciplinary Salivary Bioscience, University of California at Irvine, Irvine, CA, USA; Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Acute and Chronic Care, Johns Hopkins University School of Nursing, Baltimore, MD, USA; Research and Technology Center, Salimetrics, LLC, Carlsbad, CA, USA
| | - Steve W Granger
- Research and Technology Center, Salimetrics, LLC, Carlsbad, CA, USA
| | - Barbara Detrick
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Christopher D Heaney
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Interdisciplinary Salivary Bioscience, University of California at Irvine, Irvine, CA, USA.
| |
Collapse
|
17
|
Augustine SAJ, Simmons KJ, Eason TN, Curioso CL, Griffin SM, Wade TJ, Dufour A, Fout GS, Grimm AC, Oshima KH, Sams EA, See MJ, Wymer LJ. Immunoprevalence to Six Waterborne Pathogens in Beachgoers at Boquerón Beach, Puerto Rico: Application of a Microsphere-Based Salivary Antibody Multiplex Immunoassay. Front Public Health 2017; 5:84. [PMID: 28507984 PMCID: PMC5410637 DOI: 10.3389/fpubh.2017.00084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
Waterborne infectious diseases are a major public health concern worldwide. Few methods have been established that are capable of measuring human exposure to multiple waterborne pathogens simultaneously using non-invasive samples such as saliva. Most current methods measure exposure to only one pathogen at a time, require large volumes of individual samples collected using invasive procedures, and are very labor intensive. In this article, we applied a multiplex bead-based immunoassay capable of measuring IgG antibody responses to six waterborne pathogens simultaneously in human saliva to estimate immunoprevalence in beachgoers at Boquerón Beach, Puerto Rico. Further, we present approaches for determining cutoff points to assess immunoprevalence to the pathogens in the assay. For the six pathogens studied, our results show that IgG antibodies against antigens from noroviruses GI.I and GII.4 were more prevalent (60 and 51.6%, respectively) than Helicobacter pylori (21.4%), hepatitis A virus (20.2%), Campylobacter jejuni (8.7%), and Toxoplasma gondii (8%) in the saliva of the study participants. The salivary antibody multiplex immunoassay can be used to examine immunoprevalence of specific pathogens in human populations.
Collapse
Affiliation(s)
- Swinburne A J Augustine
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | | | - Tarsha N Eason
- National Risk Management Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | | | - Shannon M Griffin
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - Timothy J Wade
- National Health and Environmental Effects Laboratory, Research Triangle Park, NC, USA
| | - Alfred Dufour
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - G Shay Fout
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - Ann C Grimm
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - Kevin H Oshima
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - Elizabeth A Sams
- National Health and Environmental Effects Laboratory, Research Triangle Park, NC, USA
| | - Mary Jean See
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Larry J Wymer
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| |
Collapse
|
18
|
Augustine SAJ, Eason TN, Simmons KJ, Curioso CL, Griffin SM, Ramudit MKD, Plunkett TR. Developing a Salivary Antibody Multiplex Immunoassay to Measure Human Exposure to Environmental Pathogens. J Vis Exp 2016. [PMID: 27685162 DOI: 10.3791/54415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The etiology and impacts of human exposure to environmental pathogens are of major concern worldwide and, thus, the ability to assess exposure and infections using cost effective, high-throughput approaches would be indispensable. This manuscript describes the development and analysis of a bead-based multiplex immunoassay capable of measuring the presence of antibodies in human saliva to multiple pathogens simultaneously. Saliva is particularly attractive in this application because it is noninvasive, cheaper and easier to collect than serum. Antigens from environmental pathogens were coupled to carboxylated microspheres (beads) and used to measure antibodies in very small volumes of human saliva samples using a bead-based, solution-phase assay. Beads were coupled with antigens from Campylobacter jejuni, Helicobacter pylori, Toxoplasma gondii, noroviruses (G I.1 and G II.4) and hepatitis A virus. To ensure that the antigens were sufficiently coupled to the beads, coupling was confirmed using species-specific, animal-derived primary capture antibodies, followed by incubation with biotinylated anti-species secondary detection antibodies and streptavidin-R-phycoerythrin reporter (SAPE). As a control to measure non-specific binding, one bead set was treated identically to the others except it was not coupled to any antigen. The antigen-coupled and control beads were then incubated with prospectively-collected human saliva samples, measured on a high throughput analyzer based on the principles of flow cytometry, and the presence of antibodies to each antigen was measured in Median Fluorescence Intensity units (MFI). This multiplex immunoassay has a number of advantages, including more data with less sample; reduced costs and labor; and the ability to customize the assay to many targets of interest. Results indicate that the salivary multiplex immunoassay may be capable of identifying previous exposures and infections, which can be especially useful in surveillance studies involving large human populations.
Collapse
Affiliation(s)
| | - Tarsha N Eason
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency
| | - Kaneatra J Simmons
- National Exposure Research Laboratory, U.S. Environmental Protection Agency
| | | | - Shannon M Griffin
- National Exposure Research Laboratory, U.S. Environmental Protection Agency
| | - Malini K D Ramudit
- National Exposure Research Laboratory, U.S. Environmental Protection Agency
| | - Trevor R Plunkett
- Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati
| |
Collapse
|
19
|
Exum NG, Pisanic N, Granger DA, Schwab KJ, Detrick B, Kosek M, Egorov AI, Griffin SM, Heaney CD. Use of Pathogen-Specific Antibody Biomarkers to Estimate Waterborne Infections in Population-Based Settings. Curr Environ Health Rep 2016; 3:322-34. [PMID: 27352014 PMCID: PMC5424709 DOI: 10.1007/s40572-016-0096-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review discusses the utility of pathogen-specific antibody biomarkers for improving estimates of the population burden of waterborne infections, assessing the fraction of infections that can be prevented by specific water treatments, and understanding transmission routes and the natural history and ecology of disease in different populations (including asymptomatic infection rates). RECENT FINDINGS We review recent literature on the application of pathogen-specific antibody response data to estimate incidence and prevalence of acute infections and their utility to assess the contributions of waterborne transmission pathways. Advantages and technical challenges associated with the use of serum versus minimally invasive salivary antibody biomarkers in cross-sectional and prospective surveys are discussed. We highlight recent advances and challenges and outline future directions for research, development, and application of antibody-based and other immunological biomarkers of waterborne infections.
Collapse
Affiliation(s)
- Natalie G Exum
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nora Pisanic
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Douglas A Granger
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Acute and Chronic Care, School of Nursing, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kellogg J Schwab
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Barbara Detrick
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Margaret Kosek
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrey I Egorov
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Shannon M Griffin
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Christopher D Heaney
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Room W7033B, 615 North Wolfe Street, Baltimore, Maryland, 21205-2179, USA.
| |
Collapse
|
20
|
Moore MD, Escudero-Abarca BI, Suh SH, Jaykus LA. Generation and characterization of nucleic acid aptamers targeting the capsid P domain of a human norovirus GII.4 strain. J Biotechnol 2015; 209:41-9. [PMID: 26080079 DOI: 10.1016/j.jbiotec.2015.06.389] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/03/2015] [Accepted: 06/09/2015] [Indexed: 12/20/2022]
Abstract
Human noroviruses (NoV) are the leading cause of acute viral gastroenteritis worldwide. Significant antigenic diversity of NoV strains has limited the availability of broadly reactive ligands for design of detection assays. The purpose of this work was to produce and characterize single stranded (ss)DNA aptamers with binding specificity to human NoV using an easily produced NoV target-the P domain protein. Aptamer selection was done using SELEX (Systematic Evolution of Ligands by EXponential enrichment) directed against an Escherichia coli-expressed and purified epidemic NoV GII.4 strain P domain. Two of six unique aptamers (designated M1 and M6-2) were chosen for characterization. Inclusivity testing using an enzyme-linked aptamer sorbent assay (ELASA) against a panel of 14 virus-like particles (VLPs) showed these aptamers had broad reactivity and exhibited strong binding to GI.7, GII.2, two GII.4 strains, and GII.7 VLPs. Aptamer M6-2 exhibited at least low to moderate binding to all VLPs tested. Aptamers significantly (p<0.05) bound virus in partially purified GII.4 New Orleans outbreak stool specimens as demonstrated by ELASA and aptamer magnetic capture (AMC) followed by RT-qPCR. This is the first demonstration of human NoV P domain protein as a functional target for the selection of nucleic acid aptamers that specifically bind and broadly recognize diverse human NoV strains.
Collapse
Affiliation(s)
- Matthew D Moore
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 315 Schaub Hall, 400 Dan Allen Drive, Raleigh, NC 27695, USA.
| | - Blanca I Escudero-Abarca
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 315 Schaub Hall, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| | - Soo Hwan Suh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 315 Schaub Hall, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| | - Lee-Ann Jaykus
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 315 Schaub Hall, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| |
Collapse
|
21
|
Application of salivary antibody immunoassays for the detection of incident infections with Norwalk virus in a group of volunteers. J Immunol Methods 2015; 424:53-63. [PMID: 25985985 DOI: 10.1016/j.jim.2015.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/23/2015] [Accepted: 05/06/2015] [Indexed: 02/06/2023]
Abstract
Norovirus infection is the most common cause of acute gastroenteritis in developed countries. Developing an assay based on a non-invasive biomarker for detecting incident norovirus infections could improve disease surveillance and epidemiological investigations. This project involved analysis of IgA and IgG norovirus-specific antibody responses in saliva samples from a Norwalk virus (Genogroup I, genotype 1 norovirus) challenge study involving infected and symptomatic, and non-infected asymptomatic individuals. Saliva was collected at the challenge, and two weeks and 40 days post-challenge. Samples were analyzed using the Luminex fluorometric and Meso Scale Discovery (MSD) electrochemiluminescence immunoassays. Recombinant P domains of Norwalk virus capsid protein, as well as similar recombinant proteins of two genogroup II noroviruses (VA387 and VA207) were used as antigens. Immunoconversions were defined as >4-fold increase in antibody responses to the norovirus antigens. Various sample pre-treatment options, buffers, saliva dilution ratios, and data adjustment approaches to control for sample-to-sample variability in saliva composition were compared using the Luminex assay. The results suggest that adjusting responses to the norovirus antigens for responses to the protein purification tag, glutathione-S-transferase (GST), significantly improved the odds of producing a correct immunoconversion test result. IgG-based tests were more accurate compared to IgA-based tests. At optimal conditions, both Luminex and MSD assays for Norwalk-specific IgG antibodies correctly identified all infected and non-infected individuals. There was no evidence of cross-reactivity of anti-Norwalk virus antibodies with genogroup II noroviruses. These results suggest that salivary antibody responses can be used for the detection of incident infections with Norwalk virus in prospective surveys.
Collapse
|
22
|
Ramani S, Atmar RL. Acute Gastroenteritis Viruses. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Characterization of blockade antibody responses in GII.2.1976 Snow Mountain virus-infected subjects. J Virol 2013; 88:829-37. [PMID: 24173225 DOI: 10.1128/jvi.02793-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Snow Mountain virus (GII.2.1976) is the prototype strain of GII.2 noroviruses (NoVs), which cause an estimated 8% of norovirus outbreaks, yet little is known about the immunobiology of these viruses. To define the human immune response induced by SMV infection and the antigenic relationship between different GII.2 strains that have circulated between 1976 and 2010, we developed a panel of four GII.2 variant virus-like particles (VLPs) and compared their antigenicities by enzyme immunoassay (EIA) and surrogate antibody neutralization (blockade) assays. Volunteers infected with GII.2.1976 developed a mean 167-fold increase in blockade response against the homotypic VLP by day 8 postchallenge. Blockade extended cross-genotype activity in some individuals but not cross-genogroup activity. Polyclonal sera from GII.2.1976-infected volunteers blocked GII.2.1976 significantly better than they blocked GII.2.2002, GII.2.2008, and GII.2.2010, suggesting that blockade epitopes within the GII.2 strains have evolved in the past decade. To potentially map these epitope changes, we developed mouse monoclonal antibodies (MAbs) against GII.2.1976 VLPs and compared their reactivities to a panel of norovirus VLPs. One MAb had broad cross-genogroup EIA reactivity to a nonblockade, linear, conserved epitope. Six MAbs recognized conformational epitopes exclusive to the GII.2 strains. Two MAbs recognized GII.2 blockade epitopes, and both blocked the entire panel of GII.2 variants. These data indicate that the GII.2 strains, unlike the predominant GII.4 strains, have undergone only a limited amount of evolution in blockade epitopes between 1976 and 2010 and indicate that the GII.2-protective component of a multivalent norovirus vaccine may not require frequent reformulation.
Collapse
|
24
|
Laboratory evidence of norwalk virus contamination on the hands of infected individuals. Appl Environ Microbiol 2013; 79:7875-81. [PMID: 24123733 DOI: 10.1128/aem.02576-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human norovirus (NoV) outbreak investigations suggest that the hands of infected individuals play an important role in NoV transmission. However, there is no experimental evidence documenting the likelihood and degree of NoV contamination on hands. As part of a clinical trial designed to evaluate the efficacy of high-pressure processing for Norwalk virus (NV) inactivation in oysters, 159 hand rinse samples were collected from 6 infected and 6 uninfected subjects. NV was concentrated from the samples by polyethylene glycol precipitation, followed by RNA extraction using an automated guanidinium isothiocyanate-silica method. NV RNA was detected and quantified using multiple NV-specific reverse transcription-quantitative PCR (RT-qPCR) assays. A total of 25.4% (18/71) of the hand rinse samples collected from 6 infected volunteers were presumptively positive for NV, with an average of 3.86 log10 genomic equivalent copies (GEC) per hand. Dot blot hybridization of PCR products obtained using a different primer set, and DNA sequencing of selected amplicons, provided further confirmation of the presence of NV in the hand rinses. NV contamination was also detected in two hand rinse samples obtained from one uninfected subject. These findings provide definitive evidence of NV contamination on the hands of infected subjects observed under controlled clinical research conditions. Such data support the need for better hand hygiene strategies to prevent NoV transmission.
Collapse
|
25
|
Abstract
BACKGROUND Diagnostics that involve the use of oral fluids have become increasingly available commercially in recent years and are of particular interest because of their relative ease of use, low cost and noninvasive collection of oral fluid for testing. TYPES OF STUDIES REVIEWED The authors discuss the use of salivary diagnostics for virus detection with an emphasis on rapid detection of infection by using point-of-care devices. In particular, they review salivary diagnostics for human immunodeficiency virus, hepatitis C virus and human papillomavirus. Oral mucosal transudate contains secretory immunoglobulin (Ig) A, as well as IgM and IgG, which makes it a good source for immunodiagnostic-based devices. CLINICAL IMPLICATIONS Because patients often visit a dentist more regularly than they do a physician, there is increased discussion in the dental community regarding the need for practitioners to be aware of salivary diagnostics and to be willing and able to administer these tests to their patients.
Collapse
|
26
|
Zhang Y, Riley LK, Lin M, Purdy GA, Hu Z. Development of a virus concentration method using lanthanum-based chemical flocculation coupled with modified membrane filtration procedures. J Virol Methods 2013; 190:41-8. [PMID: 23557666 DOI: 10.1016/j.jviromet.2013.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 12/24/2022]
Abstract
Direct membrane filtration is often used to concentrate viruses in water but it may suffer from severe membrane fouling and clogging. Here, a lanthanum-based flocculation method coupled with modified membrane filtration procedures was developed and evaluated to detect viruses in large volume (40 L) water samples. The lanthanum-based flocculation method could easily reduce the water sample volume by a factor of 40. Additional volume reduction was achieved by a two-step membrane filtration approach. First, selected membrane filters (including 1MDS electropositive filters and nitrocellulose electronegative filters-Millipore HATF filters) were used to reduce water sample volume further and compare their efficiencies in virus recovery. The Mg²⁺-modified HATF membrane performed better on MS2 retention with an average virus recovery of 83.4% (±4.5% [standard deviation]). After HATF membrane filtration and elution, centrifugal ultrafiltration through a 30 kDa cut-off membrane resulted in an overall concentration factor of 20,000. Results from the infectivity assay showed that the MS2 recovery efficiencies from the NanoCeram- and 1MDS-based direct filtration and the lanthanum-based concentration coupled with the modified filtration procedure were 10.1% (±1.0%), 3.3% (±0.1%), and 17.5% (±1.1%), respectively. Results from the PCR analysis showed that the virus recoveries of the lanthanum-based method were 20.6% (±2.9%) and 19.5% (±3.4%) for MS2 and adenovirus, respectively, while no adenovirus could be detected through the NanoCeram- and 1MDS-based direct filtration. The lanthanum-based concentration method coupled with modified membrane filtration procedures is therefore a promising method for detecting waterborne viruses.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
27
|
Sauer U, Pultar J, Preininger C. Critical role of the sample matrix in a point-of-care protein chip for sepsis. J Immunol Methods 2012; 378:44-50. [PMID: 22342572 DOI: 10.1016/j.jim.2012.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/03/2012] [Accepted: 02/03/2012] [Indexed: 02/01/2023]
Abstract
Both highly specific antibodies and appropriate assay buffers are key elements in the development of sensitive multi-analyte diagnostic tests and essential assay components to minimize interferences from the sample matrix. Herein, we investigate the influence of 0.1 M Tris (pH 7.4)/0.1 M NaCl/10 mM CaCl(2)/0.1% Tween-20 used as assay buffer and diluent for serum, plasma and saliva samples in a protein biomarker chip for the diagnosis of sepsis. In detail, on-chip sandwich assays for detection of IL-6 and PCT are established using pure assay buffer and serum, plasma, and saliva, each diluted by a factor of 10 and 100 with assay buffer. The dilution linearity as well as the cross-reactivity to immobilized IL-8, IL-10 and TNF-α antibodies (<1.8% in plasma and serum) is investigated; furthermore the influence of immunoglobulin G, fibrinogen and lysozyme, highly abundant proteins in serum, plasma and saliva. This effect is two times more pronounced in serum than in plasma and saliva and strongly decreases with increasing analyte concentration. Though the matrix proteins bind unspecifically to the immobilized receptors, they do not prevent the analyte binding; on the contrary, the analyte is reliably detected with high sensitivity, featuring limits of detection of 16 ng/L and 0.31 μg/L, and coefficients of variation of 18% and 29% for IL-6 and PCT in 10% serum.
Collapse
Affiliation(s)
- Ursula Sauer
- Austrian Institute of Technology GmbH, Department of Health and Environment/Bioresources, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria.
| | | | | |
Collapse
|
28
|
Development of a multiplex microsphere immunoassay for the quantitation of salivary antibody responses to selected waterborne pathogens. J Immunol Methods 2010; 364:83-93. [PMID: 21093445 DOI: 10.1016/j.jim.2010.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 11/01/2010] [Accepted: 11/10/2010] [Indexed: 02/01/2023]
Abstract
Saliva has an important advantage over serum as a medium for antibody detection due to non-invasive sampling, which is critical for community-based epidemiological surveys. The development of a Luminex multiplex immunoassay for measurement of salivary IgG and IgA responses to potentially waterborne pathogens, Helicobacter pylori, Toxoplasma gondii, Cryptosporidium, and four noroviruses, involved selection of antigens and optimization of antigen coupling to Luminex microspheres. Coupling confirmation was conducted using antigen specific antibody or control sera at serial dilutions. Dose-response curves corresponding to different coupling conditions were compared using statistical tests. Control proteins in the specific antibody assay and a separate duplex assay for total immunoglobulins G and A were employed to assess antibody cross-reactivity and variability in saliva composition. 200 saliva samples prospectively collected from 20 adult volunteers and 10 paired sera from a subset of these volunteers were used to test this method. For chronic infections, H. pylori and T. gondii, individuals who tested IgG seropositive using commercial diagnostic ELISA also had the strongest salivary antibody responses in salivary antibody tests. A steep increase in anti-norovirus salivary antibody response (immunoconversion) was observed after an episode of acute diarrhea and vomiting in a volunteer. The Luminex assay also detected seroconversions to Cryptosporidium using control sera from infected children. Ongoing efforts involve further verification of salivary antibody tests and their application in larger pilot community studies.
Collapse
|
29
|
The development of oral fluid-based diagnostics and applications in veterinary medicine. Anim Health Res Rev 2010; 11:207-16. [PMID: 20202287 DOI: 10.1017/s1466252310000010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The purpose of this review was to discuss the history of the development and implementation of oral fluid diagnostics for infectious diseases of humans and domestic animals. The use of oral fluid for the assessment of health and diagnosis of disease in humans and animals has a surprisingly long history. As early as 1909, Pollaci and Ceraulo reported sensitive and specific agglutination of 'Micrococcus melitensis' (Brucella melitensis) by oral fluid from patients diagnosed with Malta Fever. A 1986 report of the detection of antibodies against human immunodeficiency virus (HIV) in oral fluid from patients with acquired immunodeficiency syndrome (AIDS) marked the start of a remarkably rapid series of developments in oral fluid-based assays. Cumulatively, the literature strongly supports implementation of oral fluid-based diagnostics in veterinary diagnostic medicine. Pathogen-specific IgA, IgM and IgG antibodies have all been demonstrated in oral fluid collected from diverse domestic animal species in response to infection. A variety of infectious agents, both local and systemic, are shed in oral fluid, including some of the most economically significant pathogens of production animals (e.g. foot-and-mouth disease virus, classical swine fever virus and porcine reproductive and respiratory syndrome virus) Ultimately, point-of-care rapid assays (i.e. cow-side, sow-side or pen-side tests) and access to real-time infectious disease data will revolutionize our delivery of health management services.
Collapse
|
30
|
Prickett J, Simer R, Christopher-Hennings J, Yoon KJ, Evans RB, Zimmerman JJ. Detection of Porcine reproductive and respiratory syndrome virus infection in porcine oral fluid samples: a longitudinal study under experimental conditions. J Vet Diagn Invest 2008; 20:156-63. [PMID: 18319427 DOI: 10.1177/104063870802000203] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Isolation of Porcine reproductive and respiratory syndrome virus (PRRSV) from oral fluids was first reported in 1997. The objective of the present study was to determine whether PRRSV and/or anti-PRRSV antibodies were present in oral fluids at diagnostic levels. The level and duration of PRRSV and anti-PRRSV antibodies in serum and oral fluids was evaluated in 3 age groups of pigs (4, 8, or 12 weeks of age) inoculated with a type 2 (North American) PRRSV isolate. Serum, buccal swabs, and pen-based oral fluid samples were collected for 63 days following inoculation. Specimens were assayed for PRRSV by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), and for anti-PRRSV antibodies by enzyme-linked immunosorbent assay (ELISA) and indirect fluorescent antibody test (IFAT). Porcine reproductive and respiratory syndrome virus was detected by real-time qRT-PCR in serum for approximately 5 weeks and in oral fluids for approximately 4 weeks postinoculation. Pig age at the time of inoculation had no effect on the quantity or duration of virus in oral fluid samples. Low levels of anti-PRRSV antibody were detected in oral fluid samples by ELISA and IFAT. Although the approach remains to be validated in the field, the results of this experiment suggest that pen-based oral fluid sampling could be an efficient, cost-effective approach to PRRSV surveillance in swine populations.
Collapse
Affiliation(s)
- John Prickett
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA
| | | | | | | | | | | |
Collapse
|
31
|
Leon JS, Souza M, Wang Q, Smith ER, Saif LJ, Moe CL. Immunology of Norovirus Infection. IMMUNITY AGAINST MUCOSAL PATHOGENS 2008. [PMCID: PMC7120028 DOI: 10.1007/978-1-4020-8412-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Noroviruses are the leading cause of epidemic non-bacterial gastroenteritis worldwide. Despite their discovery over three decades ago, little is known about the host immune response to norovirus infection. The purpose of this chapter is to review the field of norovirus immunology and discuss the contributions of outbreak investigations, human and animal challenge studies and population-based studies. This chapter will survey both humoral and cellular immunity as well as recent advances in norovirus vaccine development.
Collapse
|
32
|
Millea KM, Krull IS, Chakraborty AB, Gebler JC, Berger SJ. Comparative profiling of human saliva by intact protein LC/ESI-TOF mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:897-906. [PMID: 17574941 DOI: 10.1016/j.bbapap.2007.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 04/24/2007] [Accepted: 04/25/2007] [Indexed: 11/29/2022]
Abstract
Human saliva is finding increasing interest for proteomic and biomarker-discovery studies, due to the ease of collection and potential for simpler processing workflows compared to serum or plasma. However, it is known that salivary protein composition can vary with physiological and environmental factors. In this work, we have examined intra- and inter-person variability of saliva protein composition using an LC/MS methodology to profile low molecular weight human salivary proteins. Whole saliva was analyzed from four individuals over three consecutive days. Additional samples were used to determine baseline analytical and sample processing variation and to identify phosphoproteins. Individuals were observed to have a similar salivary protein pattern over multiple days, although the expression levels of particular proteins were variable. Significant differences in protein profiles were observed between subjects, allowing for delineation of individuals based on their protein profile. Comparison with alkaline phosphatase treated saliva revealed that several identified proteins were singly, doubly, or triply phosphorylated.
Collapse
Affiliation(s)
- Kevin M Millea
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
33
|
Souza M, Cheetham SM, Azevedo MSP, Costantini V, Saif LJ. Cytokine and antibody responses in gnotobiotic pigs after infection with human norovirus genogroup II.4 (HS66 strain). J Virol 2007; 81:9183-92. [PMID: 17581999 PMCID: PMC1951422 DOI: 10.1128/jvi.00558-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A human norovirus genogroup II.4 strain HS66 (HuNoV-HS66) infects and causes mild diarrhea in gnotobiotic (Gn) pigs (S. Cheetham, M. Souza, T. Meulia, S. Grimes, M. G. Han, and L. J. Saif, J. Virol. 80:10372-10381, 2006). In this study we evaluated systemic and intestinal humoral and cellular immune responses to HuNoV-HS66 in orally inoculated pigs. Antibodies and type I interferon (IFN-I or IFN-alpha), proinflammatory interleukin-6 (IL-6), Th1 (IL-12 and IFN-gamma), Th2 (IL-4), and Th2/regulatory T ([T(reg)] IL-10) cytokine profiles in serum and intestinal contents (IC) of the HuNoV-HS66-inoculated pigs and controls were assessed by enzyme-linked immunosorbent assay at selected postinoculation days (0 to 28). Using an enzyme-linked immunospot assay, we evaluated immunoglobulin M (IgM), IgA, and IgG antibody-secreting cells (ASC) and cytokine-secreting cells (CSC) in intestine, spleen, and blood. In the HuNoV-inoculated pigs, antibody titers in serum and IC were generally low, and 65% seroconverted. Pigs with higher diarrhea scores were more likely to seroconvert and developed higher intestinal IgA and IgG antibody titers. The numbers of IgA and IgG ASC were higher systemically than in the gut. In serum, HuNoV induced persistently higher Th1 (low transient IFN-gamma and high IL-12) than the other cytokines, but also low Th2 (IL-4) and Th2/T(reg) (IL-10) levels; low, transient proinflammatory (IL-6) cytokines; and, notably, a delayed IFN-alpha response. In contrast, intestinal innate (IFN-alpha early and late) and Th1 (IL-12 late) cytokines were significantly elevated postinfection. HuNoV-HS66 also elicited higher numbers of Th1 (IL-12 and IFN-gamma) CSC than Th2 (IL-4) and proinflammatory (IL-6) CSC, with the latter responses low in blood and intestine, reflecting low intestinal inflammation in the absence of gut lesions. These data provide insights into the kinetics of cytokine secretion in serum and IC of HuNoV-inoculated Gn pigs and new information on intestinal humoral and cellular immune responses to HuNoV that are difficult to assess in human volunteers.
Collapse
Affiliation(s)
- M Souza
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | | | | | | | | |
Collapse
|
34
|
Kremer JR, Muller CP. Evaluation of commercial assay detecting specific immunoglobulin g in oral fluid for determining measles immunity in vaccinees. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:668-70. [PMID: 15879031 PMCID: PMC1112091 DOI: 10.1128/cdli.12.5.668-670.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A commercial assay for detection of measles immunoglobulin G (IgG) in oral fluid was evaluated in a highly vaccinated cohort using serum IgG as gold standard. In contrast to previous studies from cohorts protected by natural immunity, antibody prevalence was significantly underestimated (-7.4%; confidence interval: -1.5 to -13.2%; P = 0.01) due to a reduced sensitivity when antibody levels were low.
Collapse
Affiliation(s)
- Jacques R Kremer
- Institute of Immunology, WHO Collaborative Centre for Measles, WHO European Regional Reference Laboratory for Measles and Rubella, Laboratoire National de Santé, L-1011 Luxembourg
| | | |
Collapse
|