1
|
Gautam I, Yarava JR, Xu Y, Li R, Scott FJ, Mentink-Vigier F, Momany M, Latgé JP, Wang T. Comparative analysis of polysaccharide and cell wall structure in Aspergillus nidulans and Aspergillus fumigatus by solid-state NMR. Carbohydr Polym 2025; 348:122907. [PMID: 39562136 PMCID: PMC11576540 DOI: 10.1016/j.carbpol.2024.122907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024]
Abstract
Invasive aspergillosis poses a significant threat to immunocompromised patients, leading to high mortality rates associated with these infections. Targeting the biosynthesis of cell wall carbohydrates is a promising strategy for antifungal drug development and will be advanced by a molecular-level understanding of the native structures of polysaccharides within their cellular context. Solid-state NMR spectroscopy has recently provided detailed insights into the cell wall organization of Aspergillus fumigatus, but genetic and biochemical evidence highlights species-specific differences among Aspergillus species. In this study, we employed a combination of 13C, 15N, and 1H-detection solid-state NMR, supplemented by Dynamic Nuclear Polarization (DNP), to compare the structural organization of cell wall polymers and their assembly in the cell walls of A. fumigatus and A. nidulans, both of which are key model organisms and human pathogens. The two species exhibited a similar rigid core architecture, consisting of chitin, α-glucan, and β-glucan, which contributed to comparable cell wall properties, including polymer dynamics, water retention, and supramolecular organization. However, differences were observed in the chitin, galactosaminogalactan, protein, and lipid content, as well as in the dynamics of galactomannan and the structure of the glucan matrix.
Collapse
Affiliation(s)
- Isha Gautam
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | | | - Yifan Xu
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Reina Li
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Faith J Scott
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | | | - Michelle Momany
- Fungal Biology Group & Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Jean-Paul Latgé
- Institute of Molecular Biology and Biotechnology, University of Crete, Heraklion, Greece; Fungal Respiratory Infections Research Unit and SFR ICAT, University of Angers, France
| | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Maeshima K, Yamamoto R, Matsumura K, Kaito D, Homma K, Yamakawa K, Tagami T, Hayakawa M, Ogura T, Hirayama A, Yasunaga H, Sasaki J. Fungal infection-related conditions and outcomes in severe COVID-19: a nationwide case-control study. BMC Infect Dis 2024; 24:1435. [PMID: 39695439 DOI: 10.1186/s12879-024-10317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Fungal infections are significant complications of severe coronavirus disease 2019 (COVID-19). Although various risk factors for poor outcomes in patients with COVID-19 have been identified, clinical and treatment factors associated with fungal infections in patients with severe COVID-19 remain unclear. This study aimed to elucidate clinical factors associated with fungal infections during severe COVID-19 treatment. METHODS This was a post hoc analysis of the J-RECOVER study, a multicenter retrospective observational study involving patients with COVID-19 who required admission at 66 hospitals between January and September 2020. Inclusion criteria were ages ≥ 18 years, COVID-19 diagnosis with reverse-transcription polymerase chain reaction, and treatment with mechanical ventilation (MV). Patients who received antifungal drugs before MV were excluded. Potential predictors were identified through univariate analysis of patient and treatment characteristics between patients with- and those without fungal infection, which was defined as antifungal agent use for ≥ 5 days. To account for facility-specific data clustering, generalized estimating equations (GEE) were employed as adjusted analyses to calculate the relative risks of potentially associated factors. Two sensitivity analyses were performed with modified definitions for the two groups: patients who received antifungal drugs for ≤ 4 days were excluded, and fungal infection was re-defined as antifungal drug use for ≥ 14 days. RESULTS Among 4,915 patients in the J-RECOVER study, 559 adults with COVID-19 who required MV were included. Fungal infections occurred in 57 (10.2%) patients. Univariate analyses identified age, age ≥ 65 years, D-dimer level, remdesivir use, steroid use, and duration of steroid therapy as potential predictors of fungal infections. Multivariate analysis using GEE on these six factors revealed that only the duration of steroid use was significantly associated with an increased risk of fungal infection (odds ratio [OR] for a day increase: 1.01; 95% confidence interval [CI]: 1.00-1.01; p < 0.001). The two sensitivity analyses similarly showed that the duration of steroid use was associated with fungal infection (odds ratio for a day increase: 1.01; 95% CI: 1.00-1.01; p < 0.001 for both). CONCLUSIONS In patients with severe COVID-19 requiring MV, each additional day of steroid use was associated with prolonged use of antifungal medications for ≥ 5 days.
Collapse
Affiliation(s)
- Katsuya Maeshima
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Ryo Yamamoto
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
| | - Kazuki Matsumura
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Daiki Kaito
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Koichiro Homma
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Kazuma Yamakawa
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Takashi Tagami
- Department of Emergency and Critical Care Medicine, Nippon Medical School Musashikosugi Hospital, Kawasaki, Kanagawa Japan, Japan
| | - Mineji Hayakawa
- Department of Emergency Medicine, Hokkaido University Hospital, Sapporo, Hokkaido Japan, Japan
| | - Takayuki Ogura
- Department of Emergency Medicine and Critical Care Medicine, Tochigi Prefectural Emergency and Critical Care Centre, Imperial Foundation Saiseikai Utsunomiya Hospital, Tochigi, Japan
| | - Atsushi Hirayama
- Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hideo Yasunaga
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Junichi Sasaki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| |
Collapse
|
3
|
Piatek M, Grassiri B, O'Ferrall LM, Piras AM, Batoni G, Esin S, O'Connor C, Griffith D, Healy AM, Kavanagh K. Quantitative proteomic analysis reveals Ga(III) polypyridyl catecholate complexes disrupt Aspergillus fumigatus mitochondrial function. J Biol Inorg Chem 2024; 29:707-717. [PMID: 39313590 DOI: 10.1007/s00775-024-02074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Infections caused by the airborne fungal pathogen, Aspergillus fumigatus, are increasing in severity due to growing numbers of immunocompromised individuals and the increasing incidence of antifungal drug resistance, exacerbating treatment challenges. Gallium has proven to be a strong candidate in the fight against microbial pathogens due to its iron-mimicking capability and substitution of Ga(III) in place of Fe(III), disrupting iron-dependent pathways. Since the antimicrobial properties of 2,2'-bipyridine and derivatives have been previously reported, we assessed the in vitro activity and proteomic effects of a recently reported heteroleptic Ga(III) polypyridyl catecholate compound against A. fumigatus. This compound has demonstrated promising growth-inhibition and impact on the A. fumigatus proteome compared to untreated controls. Proteins associated with DNA replication and repair mechanisms along with lipid metabolism and the oxidative stress responses were elevated in abundance compared to control. Crucially, a large number of mitochondrial proteins were reduced in abundance. Respiration is an important source of energy to fuel metabolic processes required for growth, survival and virulence, the disruption of which may be a viable strategy for the treatment of microbial infections.
Collapse
Affiliation(s)
- Magdalena Piatek
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Limerick, Ireland.
| | - Brunella Grassiri
- Department of Pharmacy, University of Pisa, via Bonanno 33, Pisa, Italy
| | - Lewis More O'Ferrall
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Limerick, Ireland
- School of Food Science & Environmental Health, Technological University Dublin, Dublin 7, Ireland
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, via Bonanno 33, Pisa, Italy
| | - Giovanna Batoni
- Department of Translational Research and new Technologies in Medicine and Surgery, University of Pisa, via San Zeno 37, Pisa, Italy
| | - Semih Esin
- Department of Translational Research and new Technologies in Medicine and Surgery, University of Pisa, via San Zeno 37, Pisa, Italy
| | - Christine O'Connor
- School of Food Science & Environmental Health, Technological University Dublin, Dublin 7, Ireland
| | - Darren Griffith
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Limerick, Ireland
- Department of Chemistry, RCSI, 123 St. Stephens Green, Dublin 2, Ireland
| | - Anne Marie Healy
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Limerick, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Limerick, Ireland.
| |
Collapse
|
4
|
Houlder EL, Gago S, Vere G, Furlong-Silva J, Conn D, Hickey E, Khan S, Thomson D, Shepherd MW, Lebedinec R, Brown GD, Horsnell W, Bromley M, MacDonald AS, Cook PC. Aspergillus-mediated allergic airway inflammation is triggered by dendritic cell recognition of a defined spore morphotype. J Allergy Clin Immunol 2024:S0091-6749(24)01240-5. [PMID: 39581297 DOI: 10.1016/j.jaci.2024.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Exposure to fungi, especially Aspergillus fumigatus, can elicit potent allergic inflammation that triggers and worsens asthmatic disease. Dendritic cells (DCs) initiate allergic inflammatory responses to allergic stimuli. However, it is unclear if Af spores during isotropic growth (early spore swelling) can activate DCs to initiate allergic responses or if germination is required. This lack of basic understanding of how Af causes disease is a barrier to developing new treatments. OBJECTIVE We sought to show that a precise Af morphotype stage during spore swelling can trigger DCs to mediate allergic inflammatory responses and ascertain if antifungal therapeutics can be effective at suppressing this process. METHODS We used an Af strain deficient in pyrimidine biosynthesis (ΔpyrG) to generate populations of Af spores arrested at different stages of isotropic growth (swelling) via temporal removal of uracil and uridine from growth media. These arrested spore stages were cultured with bone marrow-derived DCs (BMDCs), and their activation was measured via flow cytometry and ELISA to examine which growth stage was able to activate BMDCs. These BMDCs were then adoptively transferred into the airways to assess if they were able to mediate allergic inflammation in naïve recipient mice. Allergic airway inflammation in vivo was determined via flow cytometry, ELISA, and real-time quantitative PCR. This system was also used to determine if antifungal drug (itraconazole) treatment could alter early stages of spore swelling and therefore BMDC activation and in vivo allergic inflammation upon adoptive transfer. RESULTS We found that Af isotropic growth is essential to trigger BMDC activation and mediate allergic airway inflammation. Furthermore, using time-arrested Af stages, we found that at least 3 hours in growth media enabled spores to swell sufficiently to activate BMDCs to elicit allergic airway inflammation in vivo. Incubation of germinating Af with itraconazole reduced spore swelling and partially reduced their ability to activate BMDCs to elicit in vivo allergic airway inflammation. CONCLUSION Our results have pinpointed the precise stage of Af development when germinating spores are able to activate DCs to mediate downstream allergic airway inflammation. Furthermore, we have identified that antifungal therapeutics partially reduced the potential of Af spores to stimulate allergic responses, highlighting a potential mechanism by which antifungal treatment might help prevent the development of fungal allergy.
Collapse
Affiliation(s)
- Emma L Houlder
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Leiden University Center for Infectious Disease, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sara Gago
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - George Vere
- Department of Biosciences, Medical Research Council Centre for Medical Mycology at the University of Exeter, Faculty of Health and Life Sciences, Exeter, United Kingdom
| | - Julio Furlong-Silva
- Department of Biosciences, Medical Research Council Centre for Medical Mycology at the University of Exeter, Faculty of Health and Life Sciences, Exeter, United Kingdom
| | - Daniel Conn
- Department of Biosciences, Medical Research Council Centre for Medical Mycology at the University of Exeter, Faculty of Health and Life Sciences, Exeter, United Kingdom
| | - Emer Hickey
- Department of Biosciences, Medical Research Council Centre for Medical Mycology at the University of Exeter, Faculty of Health and Life Sciences, Exeter, United Kingdom
| | - Saba Khan
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Darren Thomson
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom; Department of Biosciences, Medical Research Council Centre for Medical Mycology at the University of Exeter, Faculty of Health and Life Sciences, Exeter, United Kingdom
| | - Mark W Shepherd
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Ressa Lebedinec
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Gordon D Brown
- Department of Biosciences, Medical Research Council Centre for Medical Mycology at the University of Exeter, Faculty of Health and Life Sciences, Exeter, United Kingdom
| | - William Horsnell
- Department of Biosciences, Medical Research Council Centre for Medical Mycology at the University of Exeter, Faculty of Health and Life Sciences, Exeter, United Kingdom
| | - Mike Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Peter C Cook
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Department of Biosciences, Medical Research Council Centre for Medical Mycology at the University of Exeter, Faculty of Health and Life Sciences, Exeter, United Kingdom.
| |
Collapse
|
5
|
Gonzales-Huerta LE, Williams TJ, Aljohani R, Robertson B, Evans CA, Armstrong-James D. Mycobacterial lipoarabinomannan negatively interferes with macrophage responses to Aspergillus fumigatus in-vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.623945. [PMID: 39605324 PMCID: PMC11601501 DOI: 10.1101/2024.11.18.623945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Introduction Over 1 million people have chronic pulmonary aspergillosis (CPA) secondary to pulmonary tuberculosis. Additionally, Aspergillus fumigatus (Af) has been reported as one of the most common pathogens associated with mycobacteria in patients with cystic fibrosis. Mycobacterial virulence factors, like lipoarabinomannan, have been shown to interfere with host's intracellular pathways required for an effective immune response, however, the immunological basis for mycobacterial-fungal coinfection is still unknown. We therefore investigated the effect of lipoarabinomannan on macrophage responses against Af. Methods Bone marrow-derived macrophages (BMDMs) were stimulated with non-mannose-capped lipoarabinomannan (LAM) from Mycobacterium smegmatis or mannose-capped lipoarabinomannan (ManLAM) from Mycobacterium tuberculosis for 2 hours and then infected with swollen Af conidia. Cell death was assessed by lactate dehydrogenase release. Cytokine release was measured in supernatant using Enzyme Linked Immuno-Sorbent Assay (ELISA). Colony forming units counting and time-lapse fluorescence microscopy was performed for studying conidia killing by macrophages. Results BMDMs stimulated with LAM showed increased cell death and inflammatory cytokine release in a dose-dependent manner, characterised by a significant increase of IL-1β release. Time-lapse fluorescence microscopy and CFUs revealed that both LAM and ManLAM significantly decrease the capacity of macrophages to kill Af conidia within the first 6 hours of infection. Conclusions The mycobacterial virulence factor, lipoarabinomannan, disrupts macrophage capacity to efficiently clear Af at early stages of infection in-vitro.
Collapse
Affiliation(s)
- L E Gonzales-Huerta
- Department of Infectious Diseases, Imperial College London, SW7 2BX, UK
- Carrera de Medicina Humana, Facultad de Ciencias de la Salud, Universidad San Ignacio de Loyola, Lima 15024 Peru
- Departamento de Investigación, Instituto de Medicina Traslacional, Lima 15072, Peru
| | - T J Williams
- Department of Infectious Diseases, Imperial College London, SW7 2BX, UK
| | - R Aljohani
- Department of Infectious Diseases, Imperial College London, SW7 2BX, UK
| | - B Robertson
- Department of Infectious Diseases, Imperial College London, SW7 2BX, UK
| | - C A Evans
- Department of Infectious Diseases, Imperial College London, SW7 2BX, UK
- Innovación Por la Salud Y Desarrollo (IPSYD), Asociación Benéfica PRISMA, Lima, 15073, Peru
- IFHAD: Innovation For Health And Development, Laboratorio de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima 150135 Peru
- IFHAD: Innovation For Health And Development, Department of infectious disease, Imperial College London, London, UK
| | | |
Collapse
|
6
|
Ujie Y, Saito S, Fukaya K, Urabe D, Yaguchi T, Arai MA. Aspergillus terreus IFM 65899-THP-1 cells interaction triggers production of the natural product butyrolactone Ia, an immune suppressive compound. Sci Rep 2024; 14:28278. [PMID: 39550448 PMCID: PMC11569209 DOI: 10.1038/s41598-024-79837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024] Open
Abstract
We focused on the possibility that pathogenic microorganisms might produce immune suppressors to evade the action of immune cells. Based on this possibility, we have recently developed new co-culture method of pathogenic actinomyces and immune cells, however, the interaction mechanism between pathogens and cells was still unclear. In this report, co-culturing pathogenic fungi and immune cells were investigated. Pathogenic fungus Aspergillus terreus IFM 65899 and THP-1 cells were co-cultured and isolated a co-culture specific compound, butyrolactone Ia (1). 1 inhibits the production of nitric oxide by RAW264 cells and exhibits regulatory effects on autophagy, suggesting 1 plays a defensive role in the response of A. terreus IFM 65899 to immune cells. Furthermore, dialysis experiments and micrographs indicated that "physical interaction" between A. terreus IFM 65899 and THP-1 cells may be required for the production of 1. This is the first report of co-culture method of fungi with immune cells and its interaction mechanism.
Collapse
Affiliation(s)
- Yukiko Ujie
- Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - Shun Saito
- Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - Keisuke Fukaya
- Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University, Toyama, 939-0398, Japan
| | - Daisuke Urabe
- Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University, Toyama, 939-0398, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Midori A Arai
- Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan.
| |
Collapse
|
7
|
Smallwood D, Lockey RF, Kolliputi N. PANoptosis opens new treatment options for allergic bronchopulmonary aspergillosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100298. [PMID: 39170913 PMCID: PMC11338086 DOI: 10.1016/j.jacig.2024.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/23/2024] [Accepted: 04/05/2024] [Indexed: 08/23/2024]
Abstract
Background Allergic bronchopulmonary aspergillosis (ABPA) is a rare airway disorder primarily affecting patients with asthma and cystic fibrosis. Persistent airway inflammation brought on by Aspergillus fumigatus exacerbates the underlying condition and can cause significant respiratory damage. Treatments center on reducing inflammation with the use of corticosteroids and antifungals. PANoptosis is a new concept in the field of cell death and inflammation that posits the existence of cross talk and a master control system for the 3 programmed cell death (PCD) pathways, namely, apoptosis, pyroptosis, and necroptosis. This concept has revolutionized the understanding of PCD and opened new avenues for its exploration. Studies show that Aspergillus is one of the pathogens that is capable of activating PANoptosis via the Z-DNA binding protein 1 (ZBP1) pathway and plays an active role in the inflammation caused by this organism. Objective This article explores the nature of inflammation in ABPA and ways in which PCD could lead to novel treatment options. Method PubMed was used to review the literature surrounding Aspergillus infection-related inflammation and PANoptosis. Results There is evidence that apoptosis and pyroptosis protect against Aspergillus-induced inflammation, whereas necroptosis promotes inflammation. Conclusion Experimental medications, in particular, necroptosis inhibitors such as necrosulfonamide and necrostatin-1, should be studied for use in the treatment of ABPA.
Collapse
Affiliation(s)
- Dalan Smallwood
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa Fla
| | - Richard F. Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa Fla
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa Fla
| |
Collapse
|
8
|
Bertuzzi M, Denning DW. Are Aspergillus spp. driving COPD exacerbations? Eur Respir J 2024; 64:2401976. [PMID: 39609042 DOI: 10.1183/13993003.01976-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Affiliation(s)
- Margherita Bertuzzi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Manchester, UK
| | - David W Denning
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Manchester, UK
| |
Collapse
|
9
|
Lafi ASH, Tzar MN, Santhanam J, Huyop F. Comparing ergosterol identification by HPLC with fungal serology in human sera. Heliyon 2024; 10:e38377. [PMID: 39397975 PMCID: PMC11467578 DOI: 10.1016/j.heliyon.2024.e38377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Background Ergosterol, a predominant sterol in fungal cell membranes, holds promise as a specific marker for detecting fungal presence in human samples. This study investigated the performance of ergosterol detection compared to serological tests in identifying the presence of fungi in human sera. Methods Eighty-four non-duplicate human sera were analyzed by high performance liquid chromatography (HPLC) for ergosterol detection. Results were compared to serological tests for Aspergillus antigen, Candida antigen, Cryptococcus antigen, Aspergillus antibody and Candida antibody performed on the same patient sera. Results Out of the 84 serum samples, 51 (60.7 %) were positive for ergosterol. Among the 33 serology-positive sera, 26 (78.8 %) were also ergosterol-positive. In contrast, 26 out of 51 (51 %) serology-negative sera (including 20 negative controls) tested negative for ergosterol. Seven out of 33 (21.2 %) serology-positive sera were ergosterol-negative, while 25 out of 51 (49 %) serology-negative sera were ergosterol-positive. Compared to serological tests, HPLC detection of ergosterol had a sensitivity of 78.8 %, specificity of 51 %, positive predictive value of 51 %, negative predictive value of 78.8 % and overall accuracy of 61.9 %. Conclusions Ergosterol detection may serve as a useful supplementary tool for identifying fungi in human sera, acting as a broad-spectrum diagnostic marker. However, further research with larger sample sizes and clinical comparisons is needed to validate these findings.
Collapse
Affiliation(s)
- Ahmad SH.A. Lafi
- Center of Desert Studies, University of Anbar. Ramadi, Iraq
- Department of Biosciences, Faculty of Science, University Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Mohd Nizam Tzar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Jacinta Santhanam
- Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, University Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| |
Collapse
|
10
|
Kaur M, Thakur P, Verma N, Choksket S, Harshvardhan, Korpole S, Bandarupalli D, Grover V. Invasive Fungal Infections in Immunocompromised Conditions: Emphasis on COVID-19. Curr Microbiol 2024; 81:400. [PMID: 39384659 DOI: 10.1007/s00284-024-03916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
The COVID-19 pandemic caused death of 6 million lives globally, primarily from respiratory failure, but also a significant number from invasive fungal co-infections in these patients, owing to the immune dysfunction in hospitalized patients. Such complications occurred more often in critically ill, hospitalized patients particularly those admitted in intensive care units and were reported as the major reason associated with a high mortality rate worldwide. Fungal pathogens most commonly associated with COVID-19 patients comprise members of the Mucorales (such as Rhizopus, Mucor, and Lichtheimia), as well as genera Aspergillus and Candida. In India, the prevalence rate of mucormycosis is relatively high than aspergillosis and candidiasis, and the predisposing risk factors associated with such infections included uncontrolled diabetes, underlying lung disease, leukopenia, neutropenia, malignancies and prolonged steroid therapy. However, co-infection with other fungi, including Alternaria and Scedosporium was also sporadically reported. These devastating invasive fungal infections are associated with differential mortality (high-low) and morbidity rates even after active management. The diagnosis of such infections is often challenging due to lack of sensitivity in contemporary diagnostic methods and poses an enormous challenge to healthcare experts. Thus, the role of early and accurate diagnosis, and management of such fungal infections, is vital in preventing life-threatening situations. Hence, this review focusses primarily on the epidemiology, predisposing risk factors, host environment, diagnosis and treatment of the most common medically important invasive fungal infections in immunocompromised conditions associated with COVID-19.
Collapse
Affiliation(s)
- Mahaldeep Kaur
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Payal Thakur
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Nandini Verma
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Stanzin Choksket
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Harshvardhan
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suresh Korpole
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devadatha Bandarupalli
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Vishakha Grover
- Dr. HS Judge Institute of Dental Sciences and Hospital, Panjab University, Sector 25, Chandigarh, India.
| |
Collapse
|
11
|
Thrikawala SU, Anderson MH, Rosowski EE. Glucocorticoids Suppress NF-κB-Mediated Neutrophil Control of Aspergillus fumigatus Hyphal Growth. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:971-987. [PMID: 39178124 PMCID: PMC11408098 DOI: 10.4049/jimmunol.2400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024]
Abstract
Glucocorticoids are a major class of therapeutic anti-inflammatory and immunosuppressive drugs prescribed to patients with inflammatory diseases, to avoid transplant rejection, and as part of cancer chemotherapy. However, exposure to these drugs increases the risk of opportunistic infections such as with the fungus Aspergillus fumigatus, which causes mortality in >50% of infected patients. The mechanisms by which glucocorticoids increase susceptibility to A. fumigatus are poorly understood. In this article, we used a zebrafish larva Aspergillus infection model to identify innate immune mechanisms altered by glucocorticoid treatment. Infected larvae exposed to dexamethasone succumb to infection at a significantly higher rate than control larvae. However, both macrophages and neutrophils are still recruited to the site of infection, and dexamethasone treatment does not significantly affect fungal spore killing. Instead, the primary effect of dexamethasone manifests later in infection with treated larvae exhibiting increased invasive hyphal growth. In line with this, dexamethasone predominantly inhibits neutrophil function rather than macrophage function. Dexamethasone-induced mortality also depends on the glucocorticoid receptor. Dexamethasone partially suppresses NF-κB activation at the infection site by inducing the transcription of IκB via the glucocorticoid receptor. Independent CRISPR/Cas9 targeting of IKKγ to prevent NF-κB activation also increases invasive A. fumigatus growth and larval mortality. However, dexamethasone treatment of IKKγ crispant larvae further increases invasive hyphal growth and host mortality, suggesting that dexamethasone may suppress other pathways in addition to NF-κB to promote host susceptibility. Collectively, we find that dexamethasone acts through the glucocorticoid receptor to suppress NF-κB-mediated neutrophil control of A. fumigatus hyphae in zebrafish larvae.
Collapse
Affiliation(s)
- Savini U. Thrikawala
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Molly H. Anderson
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Emily E. Rosowski
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
12
|
Haider MB, Saeed A, Ahmed A, Azeem M, Ismail H, Mehmood S, Taslimi P, Shah SAA, Irfan M, El-Seedi HR. Exploring Acyl Thiotriazinoindole Based Pharmacophores: Design, Synthesis, and SAR Studies with Molecular Docking and Biological Activity Profiling against Urease, α-amylase, α-glucosidase, Antimicrobial, and Antioxidant Targets. Protein J 2024; 43:1009-1024. [PMID: 39222239 DOI: 10.1007/s10930-024-10229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
A diminutive chemical library of acyl thiotriazinoindole (ATTI) based bioactive scaffolds was synthesized, instigated by taking the economical starting material Isatin, through a series of five steps. Isatin was first nitrated followed by the attachment of pentyl moiety via nucleophilic substitution reaction. The obtained compound was reacted with thiosemicarbazide to obtain thiosemicarbazone derivative, which was eventually cyclized using basic conditions in water as solvent. Finally, the reported series was obtained through reaction of nitrated thiotriazinoindole moiety with differently substituted phenacyl bromides. The synthesized compounds were characterized using NMR spectroscopy and elemental analysis. Finally, the synthesized motifs were scrutinized for their potential to impede urease, α-glucosidase, DPPH, and α-amylase. Compound 5 h with para cyano group manifested the most pivotal biological activity among all, displaying IC50 values of 29.7 ± 0.8, 20.5 ± 0.5 and 36.8 ± 3.9 µM against urease, α-glucosidase, and DPPH assay, respectively. Simultaneously, for α-amylase compound 5 g possessing a p-CH3 at phenyl ring unfolded as most active, with calculated IC50 values 90.3 ± 1.1 µM. The scaffolds were additionally gauged for their antifungal and antibacterial activity. Among the tested strains, 5d having bromo as substituent exhibited the most potent antibacterial activity, while it also demonstrated the highest potency against Aspergillus fumigatus. Other derivatives 5b, 5e, 5i, and 5j also exhibited dual inhibition against both antibacterial and antifungal strains. The interaction pattern of derivatives clearly displayed their SAR, and their docking scores were correlated with their IC50 values. In molecular docking studies, the importance of interactions like hydrogen bonding was further asserted. The electronic factors of various substituents engendered variety of interactions between the ligands and targets implying their importance in the structures of the synthesized heterocyclic scaffolds. To conclude, the synthesized compounds had satisfactory biological activity against various important targets. Further studies are therefore encouraged by attachment of different substitutions in the structure at various positions to enhance the activity of these compounds.
Collapse
Affiliation(s)
- Mian Bilal Haider
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Atteeque Ahmed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Azeem
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Hammad Ismail
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, 50700, Pakistan
| | - Sabba Mehmood
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100, Bartin, Turkey
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300, Selangor Darul Ehsan, Malaysia
| | - Madiha Irfan
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia
| |
Collapse
|
13
|
Chatterjee P, Moss CT, Omar S, Dhillon E, Hernandez Borges CD, Tang AC, Stevens DA, Hsu JL. Allergic Bronchopulmonary Aspergillosis (ABPA) in the Era of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulators. J Fungi (Basel) 2024; 10:656. [PMID: 39330416 PMCID: PMC11433030 DOI: 10.3390/jof10090656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is a hypersensitivity disease caused by Aspergillus fumigatus (Af), prevalent in persons with cystic fibrosis (CF) or asthma. In ABPA, Af proteases drive a T-helper cell-2 (Th2)-mediated allergic immune response leading to inflammation that contributes to permanent lung damage. Corticosteroids and antifungals are the mainstays of therapies for ABPA. However, their long-term use has negative sequelae. The treatment of patients with CF (pwCF) has been revolutionized by the efficacy of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy. Pharmacological improvement in CFTR function with highly effective elexacaftor/tezacaftor/ivacaftor (ETI) provides unprecedented improvements in lung function and other clinical outcomes of pwCF. The mechanism behind the improvement in patient outcomes is a continued topic of investigation as our understanding of the role of CFTR function evolves. As ETI therapy gains traction in CF management, understanding its potential impact on ABPA, especially on the allergic immune response pathways and Af infection becomes increasingly crucial for optimizing patient outcomes. This literature review aims to examine the extent of these findings and expand our understanding of the already published research focusing on the intersection between ABPA therapeutic approaches in CF and the rapid impact of the evolving CFTR modulator landscape. While our literature search yielded limited reports specifically focusing on the role of CFTR modulator therapy on CF-ABPA, findings from epidemiologic and retrospective studies suggest the potential for CFTR modulator therapies to positively influence pulmonary outcomes by addressing the underlying pathophysiology of CF-ABPA, especially by decreasing inflammatory response and Af colonization. Thus, this review highlights the promising scope of CFTR modulator therapy in decreasing the overall prevalence and incidence of CF-ABPA.
Collapse
Affiliation(s)
- Paulami Chatterjee
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | - Carson Tyler Moss
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Sarah Omar
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | - Ekroop Dhillon
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| | | | - Alan C. Tang
- Department of Medicine, Keck School of Medicine, Los Angeles, CA 90089, USA;
| | - David A. Stevens
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA;
| | - Joe L. Hsu
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (P.C.); (S.O.); (E.D.)
| |
Collapse
|
14
|
Gong X, Zhou Y, Qin Q, Wang B, Wang L, Jin C, Fang W. Nitrate assimilation compensates for cell wall biosynthesis in the absence of Aspergillus fumigatus phosphoglucose isomerase. Appl Environ Microbiol 2024; 90:e0113824. [PMID: 39158312 PMCID: PMC11412302 DOI: 10.1128/aem.01138-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
Phosphoglucose isomerase (PGI) links glycolysis, the pentose phosphate pathway (PPP), and the synthesis of cell wall precursors in fungi by facilitating the reversible conversion between glucose-6-phosphate (Glc6p) and fructose-6-phosphate (Fru6P). In a previous study, we established the essential role of PGI in cell wall biosynthesis in the opportunistic human fungal pathogen Aspergillus fumigatus, highlighting its potential as a therapeutic target. In this study, we conducted transcriptomic analysis and discovered that the Δpgi mutant exhibited enhanced glycolysis, reduced PPP, and an upregulation of cell wall precursor biosynthesis pathways. Phenotypic analysis revealed defective protein N-glycosylation in the mutant, notably the absence of glycosylated virulence factors DPP V and catalase 1. Interestingly, the cell wall defects in the mutant were not accompanied by activation of the MpkA-dependent cell wall integrity (CWI) signaling pathway. Instead, nitrate assimilation was activated in the Δpgi mutant, stimulating glutamine synthesis and providing amino donors for chitin precursor biosynthesis. Blocking the nitrate assimilation pathway severely impaired the growth of the Δpgi mutant, highlighting the crucial role of nitrate assimilation in rescuing cell wall defects. This study unveils the connection between nitrogen assimilation and cell wall compensation in A. fumigatus.IMPORTANCEAspergillus fumigatus is a common and serious human fungal pathogen that causes a variety of diseases. Given the limited availability of antifungal drugs and increasing drug resistance, it is imperative to understand the fungus' survival mechanisms for effective control of fungal infections. Our previous study highlighted the essential role of A. fumigatus PGI in maintaining cell wall integrity, phosphate sugar homeostasis, and virulence. The present study further illuminates the involvement of PGI in protein N-glycosylation. Furthermore, this research reveals that the nitrogen assimilation pathway, rather than the canonical MpkA-dependent CWI pathway, compensates for cell wall deficiencies in the mutant. These findings offer valuable insights into a novel adaptation mechanism of A. fumigatus to address cell wall defects, which could hold promise for the treatment of infections.
Collapse
Affiliation(s)
- Xiufang Gong
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
- State Key Laboratory
of Mycology, Institute of Microbiology, Chinese Academy of
Sciences, Beijing,
China
| | - Yao Zhou
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
| | - Qijian Qin
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
| | - Bin Wang
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
| | - Linqi Wang
- State Key Laboratory
of Mycology, Institute of Microbiology, Chinese Academy of
Sciences, Beijing,
China
| | - Cheng Jin
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
- State Key Laboratory
of Mycology, Institute of Microbiology, Chinese Academy of
Sciences, Beijing,
China
| | - Wenxia Fang
- Institute of
Biological Sciences and Technology, Guangxi Academy of
Sciences, Nanning,
Guangxi, China
| |
Collapse
|
15
|
Onoda Y, Nagahashi M, Yamashita M, Fukushima S, Aizawa T, Yamauchi S, Fujikawa Y, Tanaka T, Kadomura-Ishikawa Y, Ishida K, Uebanso T, Mawatari K, Blatchley ER, Takahashi A. Accumulated melanin in molds provides wavelength-dependent UV tolerance. Photochem Photobiol Sci 2024; 23:1791-1806. [PMID: 39287919 DOI: 10.1007/s43630-024-00632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Fungal contamination poses a serious threat to public health and food safety because molds can grow under stressful conditions through melanin accumulation. Although ultraviolet (UV) irradiation is popular for inhibiting microorganisms, its effectiveness is limited by our insufficient knowledge about UV tolerance in melanin-accumulating molds. In this study, we first confirmed the protective effect of melanin by evaluating the UV sensitivity of young and mature spores. Additionally, we compared UV sensitivity between spores with accumulated melanin and spores prepared with melanin biosynthesis inhibitors. We found that mature spores were less UV-sensitive than young spores, and that reduced melanin accumulation by inhibitors led to reduced UV sensitivity. These results suggest that melanin protects cells against UV irradiation. To determine the most effective wavelength for inhibition, we evaluated the wavelength dependence of UV tolerance in a yeast (Rhodotorula mucilaginosa) and in molds (Aspergillus fumigatus, Cladosporium halotolerans, Cladosporium sphaerospermum, Aspergillus brasiliensis, Penicillium roqueforti, and Botrytis cinerea). We assessed UV tolerance using a UV-light emitting diode (LED) irradiation system with 13 wavelength-ranked LEDs between 250 and 365 nm, a krypton chlorine (KrCl) excimer lamp device, and a low pressure (LP) Hg lamp device. The inhibition of fungi peaked at around 270 nm, and most molds showed reduced UV sensitivity at shorter wavelengths as they accumulated pigment. Absorption spectra of the pigments showed greater absorption at shorter wavelengths, suggesting greater UV protection at these wavelengths. These results will assist in the development of fungal disinfection systems using UV, such as closed systems of air and water purification.
Collapse
Affiliation(s)
- Yushi Onoda
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Nichia Corporation, Anan, Tokushima, Japan
| | - Miharu Nagahashi
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Michiyo Yamashita
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Shiho Fukushima
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | | | | | | | | | - Yasuko Kadomura-Ishikawa
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Kai Ishida
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Takashi Uebanso
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Kazuaki Mawatari
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, Purdue University, 610 Purdue Mall, West Lafayette, IN, USA
- Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Akira Takahashi
- Department of Microbial Control, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan.
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Tokushima, Japan.
| |
Collapse
|
16
|
Vogel T, Kohlmann S, Abboud Z, Thusek S, Fella F, Teßmar J, Sekimizu K, Miyashita A, Beilhack A, Groll J, Yu Y, Albrecht K. Beyond the Charge: Interplay of Nanogels' Functional Group and Zeta-Potential for Antifungal Drug Delivery to Human Pathogenic Fungus Aspergillus Fumigatus. Macromol Biosci 2024; 24:e2400082. [PMID: 38850104 DOI: 10.1002/mabi.202400082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/25/2024] [Indexed: 06/09/2024]
Abstract
The ubiquitous mold Aspergillus fumigatus (A. fumigatus) is one of the main fungal pathogens causing invasive infections in immunocompromised humans. Conventional antifungal agents exhibit limited efficacy and often cause severe side effects. Nanoparticle-based antifungal delivery provides a promising alternative, which can increase local drug concentration; while, mitigating toxicity, thereby enhancing treatment efficacy. Previous research underscores the potential of poly(glycidol)-based nanogels (NG) with negative surface charge as carriers for delivering antifungals to A. fumigatus hyphae. In this study, NG is tailored with 2-carboxyethyl acrylate (CEA) or with phosphoric acid 2-hydroxyethyl acrylate (PHA). It is discovered that quenching with PHA clearly improves the adhesion of NG to hyphal surface and the internalization of NG into the hyphae under protein-rich conditions, surpassing the outcomes of non-quenched and CEA-quenched NG. This enhancement cannot be solely attributed to an increase in negative surface charge but appears to be contingent on the functional group of the quencher. Further, it is demonstrated that itraconazole-loaded, PHA-functionalized nanogels (NGxPHA-ITZ) show lower MIC in vitro and superior therapeutic effect in vivo against A. fumigatus compared to pure itraconazole. This confirms NGxPHA as a promising antifungal delivery system.
Collapse
Affiliation(s)
- Theresa Vogel
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, 97070, Würzburg, Germany
| | - Simon Kohlmann
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, 97070, Würzburg, Germany
| | - Zahraa Abboud
- Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, 97078, Würzburg, Germany
| | - Sina Thusek
- Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, 97078, Würzburg, Germany
| | - Franziska Fella
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, 97070, Würzburg, Germany
| | - Joerg Teßmar
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, 97070, Würzburg, Germany
| | - Kazuhisa Sekimizu
- Endowed Course "Drug Discoveries by Silkworm Models,", Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, 192-0395, Japan
| | - Atsushi Miyashita
- Institute of Medical Mycology, Teikyo University, Tokyo, 192-0395, Japan
| | - Andreas Beilhack
- Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, 97078, Würzburg, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, 97070, Würzburg, Germany
| | - Yidong Yu
- Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, 97078, Würzburg, Germany
- JSPS International Research Fellow Endowed Course "Drug Discoveries by Silkworm Models,", Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, 192-0395, Japan
| | - Krystyna Albrecht
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, 97070, Würzburg, Germany
| |
Collapse
|
17
|
Memon R, Niazi JH, Qureshi A. Biosensors for detection of airborne pathogenic fungal spores: a review. NANOSCALE 2024; 16:15419-15445. [PMID: 39078286 DOI: 10.1039/d4nr01175a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The excessive presence of airborne fungal spores presents major concerns with potential adverse impacts on public health and food safety. These spores are recognized as pathogens and allergens prevalent in both outdoor and indoor environments, particularly in public spaces such as hospitals, schools, offices and hotels. Indoor environments pose a heightened risk of pulmonary diseases due to continuous exposure to airborne fungal spore particles through constant inhalation, especially in those individuals with weakened immunity and immunocompromised conditions. Detection methods for airborne fungal spores are often expensive, time-consuming, and lack sensitivity, making them unsuitable for indoor/outdoor monitoring. However, the emergence of micro-nano biosensor systems offers promising solutions with miniaturized designs, nanomaterial integration, and microfluidic systems. This review provides a comprehensive overview of recent advancements in bio-nano-sensor system technology for detecting airborne fungal spores, while also discussing future trends in biosensor device development aimed at achieving rapid and selective identification of pathogenic airborne fungi.
Collapse
Affiliation(s)
- Roomia Memon
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Orta Mah. Tuzla 34956, Istanbul, Turkey.
| | - Javed H Niazi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Orta Mah. Tuzla 34956, Istanbul, Turkey.
| | - Anjum Qureshi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Orta Mah. Tuzla 34956, Istanbul, Turkey.
| |
Collapse
|
18
|
Gautam I, Yarava JR, Xu Y, Li R, Scott FJ, Mentink-Vigier F, Momany M, Latgé JP, Wang T. Comparative Analysis of Polysaccharide and Cell Wall Structure in Aspergillus nidulans and Aspergillus fumigatus by Solid-State NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607833. [PMID: 39185159 PMCID: PMC11343165 DOI: 10.1101/2024.08.13.607833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Invasive aspergillosis poses a significant threat to immunocompromised patients, leading to high mortality rates associated with these infections. Targeting the biosynthesis of cell wall carbohydrates is a promising strategy for antifungal drug development and will be advanced by a molecular-level understanding of the native structures of polysaccharides within their cellular context. Solid-state NMR spectroscopy has recently provided detailed insights into the cell wall organization of Aspergillus fumigatus, but genetic and biochemical evidence highlights species-specific differences among Aspergillus species. In this study, we employed a combination of 13C, 15N, and 1H-detection solid-state NMR, supplemented by Dynamic Nuclear Polarization (DNP), to compare the structural organization of cell wall polymers and their assembly in the cell walls of A. fumigatus and A. nidulans, both of which are key model organisms and human pathogens. The two species exhibited a similar rigid core architecture, consisting of chitin, α-glucan, and β-glucan, which contributed to comparable cell wall properties, including polymer dynamics, water retention, and supramolecular organization. However, differences were observed in the chitin, galactosaminogalactan, protein, and lipid content, as well as in the dynamics of galactomannan and the structure of the glucan matrix.
Collapse
Affiliation(s)
- Isha Gautam
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | | | - Yifan Xu
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Reina Li
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Faith J. Scott
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | | | - Michelle Momany
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Jean-Paul Latgé
- Institute of Molecular Biology and Biotechnology, University of Crete, Heraklion, Greece
- Fungal Respiratory Infections Research Unit and SFR ICAT, University of Angers, France
| | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
19
|
Shah S, Lai J, Basuli F, Martinez-Orengo N, Patel R, Turner ML, Wang B, Shi ZD, Sourabh S, Peiravi M, Lyndaker A, Liu S, Seyedmousavi S, Williamson PR, Swenson RE, Hammoud DA. Development and preclinical validation of 2-deoxy 2-[ 18F]fluorocellobiose as an Aspergillus-specific PET tracer. Sci Transl Med 2024; 16:eadl5934. [PMID: 39141701 DOI: 10.1126/scitranslmed.adl5934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
The global incidence of invasive fungal infections (IFIs) has increased over the past few decades, mainly in immunocompromised patients, and is associated with high mortality and morbidity. Aspergillus fumigatus is one of the most common and deadliest IFI pathogens. Major hurdles to treating fungal infections remain the lack of rapid and definitive diagnosis, including the frequent need for invasive procedures to provide microbiological confirmation, and the lack of specificity of structural imaging methods. To develop an Aspergillus-specific positron emission tomography (PET) imaging agent, we focused on fungal-specific sugar metabolism. We radiolabeled cellobiose, a disaccharide known to be metabolized by Aspergillus species, and synthesized 2-deoxy-2-[18F]fluorocellobiose ([18F]FCB) by enzymatic conversion of 2-deoxy-2-[18F]fluoroglucose ([18F]FDG) with a radiochemical yield of 60 to 70%, a radiochemical purity of >98%, and 1.5 hours of synthesis time. Two hours after [18F]FCB injection in A. fumigatus pneumonia as well as A. fumigatus, bacterial, and sterile inflammation myositis mouse models, retained radioactivity was only seen in foci with live A. fumigatus infection. In vitro testing confirmed production of β-glucosidase enzyme by A. fumigatus and not by bacteria, resulting in hydrolysis of [18F]FCB into glucose and [18F]FDG, the latter being retained by the live fungus. The parent molecule was otherwise promptly excreted through the kidneys, resulting in low background radioactivity and high target-to-nontarget ratios at A. fumigatus infectious sites. We conclude that [18F]FCB is a promising and clinically translatable Aspergillus-specific PET tracer.
Collapse
Affiliation(s)
- Swati Shah
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Jianhao Lai
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute (NHLBI), NIH, Rockville, MD 20852, USA
| | - Neysha Martinez-Orengo
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Reema Patel
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Mitchell L Turner
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Benjamin Wang
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Zhen-Dan Shi
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute (NHLBI), NIH, Rockville, MD 20852, USA
| | - Suman Sourabh
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Morteza Peiravi
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Anna Lyndaker
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| | - Sichen Liu
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20852, USA
| | | | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), NIAID, NIH, Bethesda, MD 20852, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute (NHLBI), NIH, Rockville, MD 20852, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD 20852, USA
| |
Collapse
|
20
|
Tanase OI, Pavel G, Hritcu OM, Dascalu MA, Bratuleanu BE, Rimbu CM, Bocaneti FD. Disseminated Infection with Aspergillus fumigatus in a Scarlet Macaw Parrot ( Ara macao)-A Case Report. Animals (Basel) 2024; 14:2282. [PMID: 39123808 PMCID: PMC11311102 DOI: 10.3390/ani14152282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
A 3-year-old male scarlet macaw parrot (Ara macao) was presented to the Exotic Animal Clinic at the Faculty of Veterinary Medicine, Iași University of Life Sciences (Iași, Romania) for its postmortem examination. According to the owner, the parrot had been raised only in captivity and after 5 days of inappetence, lethargy, and mild respiratory clinical signs, the parrot died. The post mortem examination revealed various-sized granulomas and caseous plaques in the lungs, air sacs, spleen, intestinal serosa, and liver. Microscopically, the granulomas were characterized by a necrotic center and the infiltration of numerous multinucleated giant cells and epithelioid-like cells and by the presence of hyphae typical of Aspergillus spp. Moreover, in the liver tissue, a diffuse inflammation, with numerous fungal hyphae, was noted. The fungal culture and the PCR assay allowed for the isolation and identification of Aspergillus fumigatus from the lung and liver samples. The macroscopical lesions and the histopathological findings, with the fungal isolation and molecular confirmation of Aspergillus fumigatus by nested PCR, provided the basis for the diagnosis of disseminated aspergillosis. To the authors' best knowledge, this is the first report of disseminated infection caused by Aspergillus fumigatus in a scarlet macaw parrot (Ara macao).
Collapse
Affiliation(s)
- Oana Irina Tanase
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences Ion Ionescu de la Brad, 700489 Iasi, Romania (C.M.R.)
| | - Geta Pavel
- Department of Preclinics, Faculty of Veterinary Medicine, Iasi University of Life Sciences Ion Ionescu de la Brad, 700489 Iasi, Romania
| | - Ozana Maria Hritcu
- Department of Preclinics, Faculty of Veterinary Medicine, Iasi University of Life Sciences Ion Ionescu de la Brad, 700489 Iasi, Romania
| | - Mihaela Anca Dascalu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences Ion Ionescu de la Brad, 700489 Iasi, Romania (C.M.R.)
| | - Bianca Elena Bratuleanu
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety (ROVETEMERG), Iasi University of Life Sciences Ion Ionescu de la Brad, 700489 Iasi, Romania
| | - Cristina Mihaela Rimbu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences Ion Ionescu de la Brad, 700489 Iasi, Romania (C.M.R.)
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety (ROVETEMERG), Iasi University of Life Sciences Ion Ionescu de la Brad, 700489 Iasi, Romania
| | - Florentina Daraban Bocaneti
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences Ion Ionescu de la Brad, 700489 Iasi, Romania (C.M.R.)
| |
Collapse
|
21
|
Dickwella Widanage MC, Gautam I, Sarkar D, Mentink-Vigier F, Vermaas JV, Ding SY, Lipton AS, Fontaine T, Latgé JP, Wang P, Wang T. Adaptative survival of Aspergillus fumigatus to echinocandins arises from cell wall remodeling beyond β-1,3-glucan synthesis inhibition. Nat Commun 2024; 15:6382. [PMID: 39085213 PMCID: PMC11291495 DOI: 10.1038/s41467-024-50799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Antifungal echinocandins inhibit the biosynthesis of β-1,3-glucan, a major and essential polysaccharide component of the fungal cell wall. However, the efficacy of echinocandins against the pathogen Aspergillus fumigatus is limited. Here, we use solid-state nuclear magnetic resonance (ssNMR) and other techniques to show that echinocandins induce dynamic changes in the assembly of mobile and rigid polymers within the A. fumigatus cell wall. The reduction of β-1,3-glucan induced by echinocandins is accompanied by a concurrent increase in levels of chitin, chitosan, and highly polymorphic α-1,3-glucans, whose physical association with chitin maintains cell wall integrity and modulates water permeability. The rearrangement of the macromolecular network is dynamic and controls the permeability and circulation of the drug throughout the cell wall. Thus, our results indicate that echinocandin treatment triggers compensatory rearrangements in the cell wall that may help A. fumigatus to tolerate the drugs' antifungal effects.
Collapse
Affiliation(s)
- Malitha C Dickwella Widanage
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- National High Magnetic Field Laboratory, Tallahassee, FL, USA
| | - Isha Gautam
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | | | | | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, East Lansing, MI, USA
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Shi-You Ding
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Andrew S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thierry Fontaine
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, F-, 75015, Paris, France
| | - Jean-Paul Latgé
- Institute of Molecular Biology and Biotechnology, University of Crete, Heraklion, Greece
| | - Ping Wang
- Departments of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
22
|
Portaels J, Van Crombrugge E, Van Den Broeck W, Lagrou K, Laval K, Nauwynck H. Aspergillus Fumigatus Spore Proteases Alter the Respiratory Mucosa Architecture and Facilitate Equine Herpesvirus 1 Infection. Viruses 2024; 16:1208. [PMID: 39205182 PMCID: PMC11358968 DOI: 10.3390/v16081208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Numerous Aspergillus fumigatus (Af) airborne spores are inhaled daily by humans and animals due to their ubiquitous presence. The interaction between the spores and the respiratory epithelium, as well as its impact on the epithelial barrier function, remains largely unknown. The epithelial barrier protects the respiratory epithelium against viral infections. However, it can be compromised by environmental contaminants such as pollen, thereby increasing susceptibility to respiratory viral infections, including alphaherpesvirus equine herpesvirus type 1 (EHV-1). To determine whether Af spores disrupt the epithelial integrity and enhance susceptibility to viral infections, equine respiratory mucosal ex vivo explants were pretreated with Af spore diffusate, followed by EHV-1 inoculation. Spore proteases were characterized by zymography and identified using mass spectrometry-based proteomics. Proteases of the serine protease, metalloprotease, and aspartic protease groups were identified. Morphological analysis of hematoxylin-eosin (HE)-stained sections of the explants revealed that Af spores induced the desquamation of epithelial cells and a significant increase in intercellular space at high and low concentrations, respectively. The increase in intercellular space in the epithelium caused by Af spore proteases correlated with an increase in EHV-1 infection. Together, our findings demonstrate that Af spore proteases disrupt epithelial integrity, potentially leading to increased viral infection of the respiratory epithelium.
Collapse
Affiliation(s)
- Joren Portaels
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (J.P.); (E.V.C.)
| | - Eline Van Crombrugge
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (J.P.); (E.V.C.)
| | - Wim Van Den Broeck
- Department of Morphology, Medical Imaging, Orthopedics and Nutrition, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, 3000 Leuven, Belgium;
| | - Kathlyn Laval
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (J.P.); (E.V.C.)
| | - Hans Nauwynck
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (J.P.); (E.V.C.)
| |
Collapse
|
23
|
Sedik S, Boyer J, Egger M, Dichtl K, Prattes J, Prüller F, Hoenigl M. Comparative Analysis of the Clarus Aspergillus Galactomannan Enzyme Immunoassay Prototype for the Diagnosis of Invasive Pulmonary Aspergillosis in Bronchoalveolar Lavage Fluid. Mycopathologia 2024; 189:67. [PMID: 39023825 PMCID: PMC11258175 DOI: 10.1007/s11046-024-00876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Galactomannan (GM) testing using Platelia Aspergillus enzyme immunoassay (Platelia AGM) from bronchoalveolar lavage fluid (BALF) aids in early diagnosis of invasive pulmonary aspergillosis (IPA). Globally, only a minority of laboratories have the capability to perform on-site GM testing, necessitating accessible and affordable alternatives. Hence, we conducted a comparative evaluation of the new clarus Aspergillus GM enzyme immunoassay prototype (clarus AGM prototype) with Platelia AGM using BALF samples. METHODS This is a single-center, prospective, cross-sectional study, where Platelia AGM testing was routinely performed followed by clarus AGM prototype testing in those with true positive or true negative AGM test results according to the 2020 EORTC/MSG and the 2024 FUNDICU consensus definitions. Descriptive statistics, ROC curve analysis, and Spearman's correlation analysis were used to evaluate analytical performance of the clarus AGM prototype assay. RESULTS This study enrolled 259 adult patients, of which 53 (20%) were classified as probable IPA, while 206 did not fulfill IPA-criteria. Spearman's correlation analysis revealed a strong correlation between the two assays (rho = 0.727, p < 0.001). The clarus AGM prototype had a sensitivity of 96% (51/53) and a specificity of 74% (153/206) for differentiating probable versus no IPA when using the manufacturer recommended cut-off. ROC curve analysis showed an AUC of 0.936 (95% CI 0.901-0.971) for the clarus AGM prototype, while the Platelia AGM yielded an AUC of 0.918 (95% CI 0.876-0.959). CONCLUSIONS Clarus AGM prototype demonstrated a strong correlation and promising test performance, comparable to Platelia AGM, rendering it a viable alternative in patients at risk of IPA.
Collapse
Affiliation(s)
- Sarah Sedik
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Auenbruggerplatz 15, 8036, Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
| | - Johannes Boyer
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Auenbruggerplatz 15, 8036, Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
| | - Matthias Egger
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Auenbruggerplatz 15, 8036, Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
| | - Karl Dichtl
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Auenbruggerplatz 15, 8036, Graz, Austria.
- Translational Mycology, Medical University of Graz, Graz, Austria.
| | - Florian Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Auenbruggerplatz 15, 8036, Graz, Austria.
- Translational Mycology, Medical University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
24
|
Scalabrini M, Loquet D, Rochard C, Baudin Marie M, Assailly C, Brissonnet Y, Daligault F, Saumonneau A, Lambert A, Grandjean C, Deniaud D, Lottin P, Pascual S, Fontaine L, Balloy V, Gouin SG. Multivalent inhibition of the Aspergillus fumigatus KDNase. Org Biomol Chem 2024; 22:5783-5789. [PMID: 38938184 DOI: 10.1039/d4ob00601a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Aspergillus fumigatus is a saprophytic fungus and opportunistic pathogen often causing fatal infections in immunocompromised patients. Recently AfKDNAse, an exoglycosidase hydrolyzing 3-deoxy-D-galacto-D-glycero-nonulosonic acid (KDN), a rare sugar from the sialic acid family, was identified and characterized. The principal function of AfKDNAse is still unclear, but a study suggests a critical role in fungal cell wall morphology and virulence. Potent AfKDNAse inhibitors are required to better probe the enzyme's biological role and as potential antivirulence factors. In this work, we developed a set of AfKDNAse inhibitors based on enzymatically stable thio-KDN motifs. C2, C9-linked heterodi-KDN were designed to fit into unusually close KDN sugar binding pockets in the protein. A polymeric compound with an average of 54 KDN motifs was also designed by click chemistry. Inhibitory assays performed on recombinant AfKDNAse showed a moderate and strong enzymatic inhibition for the two classes of compounds, respectively. The poly-KDN showed more than a nine hundred fold improved inhibitory activity (IC50 = 1.52 ± 0.37 μM, 17-fold in a KDN molar basis) compared to a monovalent KDN reference, and is to our knowledge, the best synthetic inhibitor described for a KDNase. Multivalency appears to be a relevant strategy for the design of potent KDNase inhibitors. Importantly, poly-KDN was shown to strongly decrease filamentation when co-cultured with A. fumigatus at micromolar concentrations, opening interesting perspectives in the development of antivirulence factors.
Collapse
Affiliation(s)
| | - Denis Loquet
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Camille Rochard
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | | | - Coralie Assailly
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Yoan Brissonnet
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Franck Daligault
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Amélie Saumonneau
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Annie Lambert
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Cyrille Grandjean
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - David Deniaud
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Paul Lottin
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Av. O. Messiaen, 72085 Le Mans cedex 9, France
| | - Sagrario Pascual
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Av. O. Messiaen, 72085 Le Mans cedex 9, France
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Av. O. Messiaen, 72085 Le Mans cedex 9, France
| | - Viviane Balloy
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | | |
Collapse
|
25
|
Chakraborty A, Alsharqi L, Kostrzewa M, Armstrong-James D, Larrouy-Maumus G. Intact cell lipidomics using the Bruker MBT lipid Xtract assay allows the rapid detection of glycosyl-inositol-phospho-ceramides from Aspergillus fumigatus. Mol Omics 2024; 20:390-396. [PMID: 38623711 PMCID: PMC11228930 DOI: 10.1039/d4mo00030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
Glycosyl-inositol-phospho-ceramides (GIPCs) or glycosylphosphatidylinositol-anchored fungal polysaccharides are major lipids in plant and fungal plasma membranes and play an important role in stress adaption. However, their analysis remains challenging due to the multiple steps involved in their extraction and purification prior to mass spectrometry analysis. To address this challenge, we report here a novel simplified method to identify GIPCs from Aspergillus fumigatus using the new Bruker MBT lipid Xtract assay. A. fumigatus reference strains and clinical isolates were cultured, harvested, heat-inactivated and suspended in double-distilled water. A fraction of this fungal preparation was then dried in a microtube, mixed with an MBT lipid Xtract matrix (Bruker Daltonik, Germany) and loaded onto a MALDI target plate. Analysis was performed using a Bruker MALDI Biotyper Sirius system in the linear negative ion mode. Mass spectra were scanned from m/z 700 to m/z 2 000. MALDI-TOF MS analysis of cultured fungi showed a clear signature of GIPCs in Aspergillus fumigatus reference strains and clinical isolates. Here, we have demonstrated that routine MALDI-TOF in the linear negative ion mode combined with the MBT lipid Xtract is able to detect Aspergillus fumigatus GIPCs.
Collapse
Affiliation(s)
- Aishani Chakraborty
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Leila Alsharqi
- Centre for Bacterial Resistance Biology, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.
| | | | - Darius Armstrong-James
- Centre for Bacterial Resistance Biology, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.
| | - Gerald Larrouy-Maumus
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
26
|
Debergh H, Castelain P, Goens K, Lefevere P, Claessens J, De Vits E, Vissers M, Blindeman L, Bataille C, Saegerman C, Packeu A. Detection of pan-azole resistant Aspergillus fumigatus in horticulture and a composting facility in Belgium. Med Mycol 2024; 62:myae055. [PMID: 38769604 PMCID: PMC11223581 DOI: 10.1093/mmy/myae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024] Open
Abstract
Azole resistance in Aspergillus fumigatus (ARAf) is becoming a worldwide health threat due to increasing occurrence in the environment. However, environmental surveillance programs are not commonly in place and are lacking in Belgium. Since no data on the occurrence of ARAf and the presence of hotspots for the selection of azole resistance is available in Belgium, a first study on the prevalence of ARAf in the environment was conducted. A total of 232 air and compost or soil samples were taken from two composting facilities, and from horticultural and agricultural crops. The azole susceptibility pattern was determined using the EUCAST method (E. Def. 9.4), and the cyp51A gene and its promotor region were sequenced in A. fumigatus isolates with phenotypic azole resistance. Six pan-azole-resistant A. fumigatus isolates were identified, originating from compost and horticultural crops. Four isolates carried the TR34/L98H mutation, and one isolate carried the TR46/Y121F/T289A mutation. However, we did not observe any ARAf isolates from agricultural crops. In conclusion, this study reported the first TR34/L98H and TR46/Y121F/T289A mutation isolated from a composting facility and horticulture in Belgium. The implementation of standardization in environmental surveillance of A. fumigatus on a European level would be beneficial in order to identify hotspots.
Collapse
Affiliation(s)
- Hanne Debergh
- Mycology and Aerobiology, Sciensano, 1050 Brussels, Belgium
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, 4000 Liège, Belgium
| | | | - Karine Goens
- Mycology and Aerobiology, Sciensano, 1050 Brussels, Belgium
| | | | | | - Elien De Vits
- Mycology and Aerobiology, Sciensano, 1050 Brussels, Belgium
| | - Marc Vissers
- Ornamental Plant Research, PCS, 9070 Destelbergen, Belgium
| | | | | | - Claude Saegerman
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, 4000 Liège, Belgium
| | - Ann Packeu
- Mycology and Aerobiology, Sciensano, 1050 Brussels, Belgium
- BCCM/IHEM, Mycology and Aerobiology, Sciensano, 1050 Brussels, Belgium
| |
Collapse
|
27
|
El Eid R, Chowdhary A, El Zakhem A, Kanj SS. Invasive fungal infections in wars, following explosives and natural disasters: A narrative review. Mycoses 2024; 67:e13762. [PMID: 38951663 DOI: 10.1111/myc.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
Infections are well-known complications in patients following traumatic injuries, frequently leading to high morbidity and mortality. In particular, trauma occurring in disaster settings, both natural and man-made, such as armed conflicts and explosives detonation, results in challenging medical conditions that impede the best management practices. The incidence of invasive fungal infections (IFI) is increasing in trauma patients who lack the typical risk factors like an immune compromised state or others. This narrative review will focus on IFI as a direct complication after natural disasters, wars, and man-made mass destruction with a summary of the available evidence about the epidemiology, clinical manifestations, risk factors, microbiology, and proper management. In this setting, the clinical manifestations of IFI may include skin and soft tissue infections, osteomyelitis, visceral infections, and pneumonia. IFI should be considered in the war inflicted patients who are exposed to unsterile environments or have wounds contaminated with soil and decaying organic matter.
Collapse
Affiliation(s)
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Aline El Zakhem
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut Medical Center, Beirut, Lebanon
| | - Souha S Kanj
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
28
|
Pontes L, Perini Leme Giordano AL, Reichert-Lima F, Gualtieri Beraquet CA, Leite Pigolli G, Arai T, Ribeiro JD, Gonçalves AC, Watanabe A, Goldman GH, Moretti ML, Zaninelli Schreiber A. Insights into Aspergillus fumigatus Colonization in Cystic Fibrosis and Cross-Transmission between Patients and Hospital Environments. J Fungi (Basel) 2024; 10:461. [PMID: 39057346 PMCID: PMC11277961 DOI: 10.3390/jof10070461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Approximately 60% of individuals with cystic fibrosis (CF) are affected by Aspergillus fumigatus infection. This condition is correlated with a decline in lung function and is identified as an independent risk factor contributing to hospital admissions among CF patients. This study investigates the dynamic interplay of A. fumigatus within the context of CF patients, tracing its evolution over time, with a specific emphasis on colonization dynamics. METHODS An analysis was conducted on 83 sequential A. fumigatus isolates derived from sputum samples of six patients receiving care at a renowned CF hospital in Brazil. Employing microsatellite genotyping techniques, alongside an investigation into cyp51A gene mutations, this research sheds light on the genetic variations, colonization, and resistance of A. fumigatus within the CF respiratory environment. RESULTS Our research findings indicate that CF patients can harbor A. fumigatus strains from the same clonal complexes for prolonged periods. Additionally, we identified that clinical isolates have the potential to spread among patients in the same healthcare facility, evidencing hospital contamination. Two patients who underwent long-term Itraconazole treatment did not show phenotypic resistance. However, one of these patients exhibited mutations in the cyp51A gene, indicating the need to monitor resistance to azoles in these patients colonized for long periods by A. fumigatus. We also observed co-colonization or co-infection involving multiple genotypes in all patients over time. CONCLUSION This comprehensive examination offers valuable insights into the pathogenesis of A. fumigatus infections in CF patients, potentially shaping future therapeutic strategies and management approaches. This enhanced understanding contributes to our knowledge of A. fumigatus impact on disease progression in individuals with cystic fibrosis. Additionally, the study provides evidence of cross-contamination among patients undergoing treatment at the same hospital.
Collapse
Affiliation(s)
- Laís Pontes
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas 13083-887, Brazil; (A.L.P.L.G.); (F.R.-L.); (C.A.G.B.); (G.L.P.); (J.D.R.); (A.C.G.); (M.L.M.)
| | - Ana Luisa Perini Leme Giordano
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas 13083-887, Brazil; (A.L.P.L.G.); (F.R.-L.); (C.A.G.B.); (G.L.P.); (J.D.R.); (A.C.G.); (M.L.M.)
| | - Franqueline Reichert-Lima
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas 13083-887, Brazil; (A.L.P.L.G.); (F.R.-L.); (C.A.G.B.); (G.L.P.); (J.D.R.); (A.C.G.); (M.L.M.)
| | - Caio Augusto Gualtieri Beraquet
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas 13083-887, Brazil; (A.L.P.L.G.); (F.R.-L.); (C.A.G.B.); (G.L.P.); (J.D.R.); (A.C.G.); (M.L.M.)
| | - Guilherme Leite Pigolli
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas 13083-887, Brazil; (A.L.P.L.G.); (F.R.-L.); (C.A.G.B.); (G.L.P.); (J.D.R.); (A.C.G.); (M.L.M.)
| | - Teppei Arai
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba 260-0856, Japan; (T.A.); (A.W.)
| | - José Dirceu Ribeiro
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas 13083-887, Brazil; (A.L.P.L.G.); (F.R.-L.); (C.A.G.B.); (G.L.P.); (J.D.R.); (A.C.G.); (M.L.M.)
| | - Aline Cristina Gonçalves
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas 13083-887, Brazil; (A.L.P.L.G.); (F.R.-L.); (C.A.G.B.); (G.L.P.); (J.D.R.); (A.C.G.); (M.L.M.)
| | - Akira Watanabe
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba 260-0856, Japan; (T.A.); (A.W.)
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil;
| | - Maria Luiza Moretti
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas 13083-887, Brazil; (A.L.P.L.G.); (F.R.-L.); (C.A.G.B.); (G.L.P.); (J.D.R.); (A.C.G.); (M.L.M.)
| | - Angélica Zaninelli Schreiber
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas 13083-887, Brazil; (A.L.P.L.G.); (F.R.-L.); (C.A.G.B.); (G.L.P.); (J.D.R.); (A.C.G.); (M.L.M.)
| |
Collapse
|
29
|
Neher DA, Brown AR, Andrews TD, Weicht TR. Anaerobic Soil Disinfestation and Vermicompost to Manage Bottom Rot in Organic Lettuce. PLANT DISEASE 2024; 108:1833-1841. [PMID: 38277652 DOI: 10.1094/pdis-12-23-2569-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Rhizoctonia solani Kühn (teleomorph: Thanatephorus cucumeris [Frank] Donk) is an aggressive soilborne pathogen with a wide host range that survives saprophytically between crops, presenting a challenge for organic vegetable farmers who lack effective management tools. A 2-year field experiment was conducted at two organic farms to compare anaerobic soil disinfestation (ASD) and worm-cured compost (vermicompost) to manage bottom rot caused by R. solani subspecies AG1-IB in field-grown organic lettuce (Lactuca sativa). At each farm, four replicate plots of seven treatments were arranged in a randomized complete block design. Randomization was restricted by grouping treatments to evaluate ASD, and treatments to evaluate vermicompost in starter plugs. ASD experiment treatments were three different ASD carbon sources that are commonly used and widely available to local farmers in Vermont: compost, cover crop residues, and poultry manure fertilizer, as well as a tarped control. Vermicompost experimental treatments were vermicompost compared with two types of controls: a commercial biocontrol product (RootShield PLUS + G), and unamended (untarped control). This study demonstrated that the ASD method is achievable in a field setting on Vermont farms. However, neither ASD nor vermicompost produced significant disease suppression or resulted in higher marketable yields than standard growing practices. Given the laborious nature of ASD, it is likely more appropriate in a greenhouse setting with high-value crops that could especially benefit from being grown in plastic tarped beds (e.g., tomatoes and strawberries). This study is the first known attempt of field-implemented ASD for soil pathogen control in the northeastern United States.
Collapse
Affiliation(s)
- Deborah A Neher
- Department of Plant and Soil Science, University of Vermont, Burlington, VT 05405
| | - Anna R Brown
- Department of Plant and Soil Science, University of Vermont, Burlington, VT 05405
| | - Tucker D Andrews
- Department of Plant and Soil Science, University of Vermont, Burlington, VT 05405
| | - Thomas R Weicht
- Department of Plant and Soil Science, University of Vermont, Burlington, VT 05405
| |
Collapse
|
30
|
Dai M, Liu X, Goldman GH, Lu L, Zhang S. The EH domain-containing protein, EdeA, is involved in endocytosis, cell wall integrity, and pathogenicity in Aspergillus fumigatus. mSphere 2024; 9:e0005724. [PMID: 38687129 PMCID: PMC11237632 DOI: 10.1128/msphere.00057-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Endocytosis has been extensively studied in yeasts, where it plays crucial roles in growth, signaling regulation, and cell-surface receptor internalization. However, the biological functions of endocytosis in pathogenic filamentous fungi remain largely unexplored. In this study, we aimed to functionally characterize the roles of EdeA, an ortholog of the Saccharomyces cerevisiae endocytic protein Ede1, in Aspergillus fumigatus. EdeA was observed to be distributed as patches on the plasma membrane and concentrated in the subapical collar of hyphae, a localization characteristic of endocytic proteins. Loss of edeA caused defective hyphal polarity, reduced conidial production, and fewer sites of endocytosis initiations than that of the parental wild type. Notably, the edeA null mutant exhibited increased sensitivity to cell wall-disrupting agents, indicating a role for EdeA in maintaining cell wall integrity in A. fumigatus. This observation was further supported by the evidence showing that the thickness of the cell wall in the ΔedeA mutant increased, accompanied by abnormal activation of MpkA, a key component in the cell wall integrity pathway. Additionally, the ΔedeA mutant displayed increased pathogenicity in the Galleria mellonella wax moth infection model, possibly due to alterations in cell wall morphology. Site-directed mutagenesis identified the conserved residue E348 within the third EH (Eps15 homology) domain of EdeA as crucial for its subcellular localization and functions. In conclusion, our results highlight the involvement of EdeA in endocytosis, hyphal polarity, cell wall integrity, and pathogenicity in A. fumigatus. IMPORTANCE Aspergillus fumigatus is a significant human pathogenic fungus known to cause invasive aspergillosis, a disease with a high mortality rate. Understanding the basic principles of A. fumigatus pathogenicity is crucial for developing effective strategies against this pathogen. Previous research has underscored the importance of endocytosis in the infection capacity of pathogenic yeasts; however, its biological function in pathogenic mold remains largely unexplored. Our characterization of EdeA in A. fumigatus sheds light on the role of endocytosis in the development, stress response, and pathogenicity of pathogenic molds. These findings suggest that the components of the endocytosis process may serve as potential targets for antifungal therapy.
Collapse
Affiliation(s)
- Mengyao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xintian Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shizhu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
31
|
Wang C, Miller N, Vines D, Severns PM, Momany M, Brewer MT. Azole resistance mechanisms and population structure of the human pathogen Aspergillus fumigatus on retail plant products. Appl Environ Microbiol 2024; 90:e0205623. [PMID: 38651929 PMCID: PMC11107156 DOI: 10.1128/aem.02056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/30/2024] [Indexed: 04/25/2024] Open
Abstract
Aspergillus fumigatus is a ubiquitous saprotroph and human-pathogenic fungus that is life-threatening to the immunocompromised. Triazole-resistant A. fumigatus was found in patients without prior treatment with azoles, leading researchers to conclude that resistance had developed in agricultural environments where azoles are used against plant pathogens. Previous studies have documented azole-resistant A. fumigatus across agricultural environments, but few have looked at retail plant products. Our objectives were to determine if azole-resistant A. fumigatus is prevalent in retail plant products produced in the United States (U.S.), as well as to identify the resistance mechanism(s) and population genetic structure of these isolates. Five hundred twenty-five isolates were collected from retail plant products and screened for azole resistance. Twenty-four isolates collected from compost, soil, flower bulbs, and raw peanuts were pan-azole resistant. These isolates had the TR34/L98H, TR46/Y121F/T289A, G448S, and H147Y cyp51A alleles, all known to underly pan-azole resistance, as well as WT alleles, suggesting that non-cyp51A mechanisms contribute to pan-azole resistance in these isolates. Minimum spanning networks showed two lineages containing isolates with TR alleles or the F46Y/M172V/E427K allele, and discriminant analysis of principle components identified three primary clusters. This is consistent with previous studies detecting three clades of A. fumigatus and identifying pan-azole-resistant isolates with TR alleles in a single clade. We found pan-azole resistance in U.S. retail plant products, particularly compost and flower bulbs, which indicates a risk of exposure to these products for susceptible populations and that highly resistant isolates are likely distributed worldwide on these products.IMPORTANCEAspergillus fumigatus has recently been designated as a critical fungal pathogen by the World Health Organization. It is most deadly to people with compromised immune systems, and with the emergence of antifungal resistance to multiple azole drugs, this disease carries a nearly 100% fatality rate without treatment or if isolates are resistant to the drugs used to treat the disease. It is important to determine the relatedness and origins of resistant A. fumigatus isolates in the environment, including plant-based retail products, so that factors promoting the development and propagation of resistant isolates can be identified.
Collapse
Affiliation(s)
- Caroline Wang
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| | - Natalie Miller
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| | - Douglas Vines
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| | - Paul M. Severns
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| | - Michelle Momany
- Fungal Biology Group, Plant Biology Department, University of Georgia, Athens, Georgia, USA
| | - Marin T. Brewer
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
32
|
Fageräng B, Götz MP, Cyranka L, Lau C, Nilsson PH, Mollnes TE, Garred P. The Inflammatory Response Induced by Aspergillus fumigatus Conidia Is Dependent on Complement Activation: Insight from a Whole Blood Model. J Innate Immun 2024; 16:324-336. [PMID: 38768576 PMCID: PMC11250388 DOI: 10.1159/000539368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
INTRODUCTION We aimed to elucidate the inflammatory response of Aspergillus fumigatus conidia in a whole-blood model of innate immune activation and to compare it with the well-characterized inflammatory reaction to Escherichia coli. METHODS Employing a human lepirudin whole-blood model, we analyzed complement and leukocyte activation by measuring the sC5b-9 complex and assessing CD11b expression. A 27-multiplex system was used for quantification of cytokines. Selective cell removal from whole blood and inhibition of C3, C5, and CD14 were also applied. RESULTS Our findings demonstrated a marked elevation in sC5b-9 and CD11b post-A. fumigatus incubation. Thirteen cytokines (TNF, IL-1β, IL-1ra, IL-4, IL-6, IL-8, IL-17, IFNγ, MCP-1, MIP-1α, MIP-1β, FGF-basic, and G-CSF) showed increased levels. A generally lower level of cytokine release and CD11b expression was observed with A. fumigatus conidia than with E. coli. Notably, monocytes were instrumental in releasing all cytokines except MCP-1. IL-1ra was found to be both monocyte and granulocyte-dependent. Pre-inhibiting with C3 and CD14 inhibitors resulted in decreased release patterns for six cytokines (TNF, IL-1β, IL-6, IL-8, MIP-1α, and MIP-1β), with minimal effects by C5-inhibition. CONCLUSION A. fumigatus conidia induced complement activation comparable to E. coli, whereas CD11b expression and cytokine release were lower, underscoring distinct inflammatory responses between these pathogens. Complement C3 inhibition attenuated cytokine release indicating a C3-level role of complement in A. fumigatus immunity.
Collapse
Affiliation(s)
- Beatrice Fageräng
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Peter Götz
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leon Cyranka
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Corinna Lau
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - Per H. Nilsson
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- Linnæus Center of Biomaterials Chemistry, Linnæus University, Kalmar, Sweden
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Jangid H, Garg S, Kashyap P, Karnwal A, Shidiki A, Kumar G. Bioprospecting of Aspergillus sp. as a promising repository for anti-cancer agents: a comprehensive bibliometric investigation. Front Microbiol 2024; 15:1379602. [PMID: 38812679 PMCID: PMC11133633 DOI: 10.3389/fmicb.2024.1379602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Cancer remains a significant global health challenge, claiming nearly 10 million lives in 2020 according to the World Health Organization. In the quest for novel treatments, fungi, especially Aspergillus species, have emerged as a valuable source of bioactive compounds with promising anticancer properties. This study conducts a comprehensive bibliometric analysis to map the research landscape of Aspergillus in oncology, examining publications from 1982 to the present. We observed a marked increase in research activity starting in 2000, with a notable peak from 2005 onwards. The analysis identifies key contributors, including Mohamed GG, who has authored 15 papers with 322 citations, and El-Sayed Asa, with 14 papers and 264 citations. Leading countries in this research field include India, Egypt, and China, with King Saud University and Cairo University as the leading institutions. Prominent research themes identified are "endophyte," "green synthesis," "antimicrobial," "anti-cancer," and "biological activities," indicating a shift towards environmentally sustainable drug development. Our findings highlight the considerable potential of Aspergillus for developing new anticancer therapies and underscore the necessity for further research to harness these natural compounds for clinical use.
Collapse
Affiliation(s)
- Himanshu Jangid
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Sonu Garg
- Department of Biotechnology, Mahatma Jyoti Rao Phoole University, Jaipur, Rajasthan, India
| | - Piyush Kashyap
- School of Agriculture, Lovely Professional University, Jalandhar, Punjab, India
| | - Arun Karnwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Amrullah Shidiki
- Department of Microbiology, National Medical College & Teaching Hospital, Birgunj, Nepal
| | - Gaurav Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| |
Collapse
|
34
|
Kofoed VC, Campion C, Rasmussen PU, Møller SA, Eskildsen M, Nielsen JL, Madsen AM. Exposure to resistant fungi across working environments and time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171189. [PMID: 38447726 DOI: 10.1016/j.scitotenv.2024.171189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
Antifungal resistance has emerged as a significant health concern with increasing reports of resistant variants in previously susceptible species. At present, little is known about occupational exposure to antifungal-resistant fungi. This study aimed to investigate Danish workers' occupational exposure to airborne fungi resistant to first-line treatment drugs. A retrospective study was performed on a unique collection of personal exposure samples gathered over a twenty-year period from Danish working environments, in sectors including agriculture, animal handling, waste management, and healthcare. A total of 669 samples were cultivated at 37 °C and fungal colonies were identified using MALDI-TOF MS. Subsequently, identification was confirmed by amplicon sequencing the genes of calmodulin and beta-tubulin to unveil potential cryptic species. Infectious fungi (495 isolates from 23 species) were tested for resistance against Itraconazole, Voriconazole, Posaconazole, and Amphotericin B. Working environments were highly variable in the overall fungal exposure, and showed vastly different species compositions. Resistance was found in 30 isolates of the species Aspergillus fumigatus (4 of 251 isolates), A. nidulans (2 of 13), A. niger complex (19 of 131), A. versicolor (3 of 18), and A. lentulus (2 of 2). Sequence analysis revealed several cryptic species within the A. niger complex including A. tubingensis, A. luchuensis, and A. phoenicis. Among the resistant A. fumigatus isolates, two contained the well-described TR34/L98H mutation in the cyp51A gene and promoter region, while the remainder harbored silent mutations. The results indicate that the working environment significantly contributes to exposure to resistant fungi, with particularly biofuel plant workers experiencing high exposure. Differences in the prevalence of resistance across working environments may be linked to the underlying species composition.
Collapse
Affiliation(s)
- Victor Carp Kofoed
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Christopher Campion
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Pil Uthaug Rasmussen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Signe Agnete Møller
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark; Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Mathias Eskildsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
35
|
Hu X, Zhou Y, Liu R, Wang J, Guo L, Huang X, Li J, Yan Y, Liu F, Li X, Tan X, Luo Y, Wang P, Zhou S. Protein disulfide isomerase 1 is required for RodA assembling-based conidial hydrophobicity of Aspergillus fumigatus. Appl Environ Microbiol 2024; 90:e0126023. [PMID: 38501925 PMCID: PMC11022560 DOI: 10.1128/aem.01260-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024] Open
Abstract
The hydrophobic layer of Aspergillus conidia, composed of RodA, plays a crucial role in conidia transfer and immune evasion. It self-assembles into hydrophobic rodlets through intramolecular disulfide bonds. However, the secretory process of RodA and its regulatory elements remain unknown. Since protein disulfide isomerase (PDI) is essential for the secretion of many disulfide-bonded proteins, we investigated whether PDI is also involved in RodA secretion and assembly. By gene knockout and phenotypic analysis, we found that Pdi1, one of the four PDI-related proteins of Aspergillus fumigatus, determines the hydrophobicity and integrity of the rodlet layer of the conidia. Preservation of the thioredoxin-active domain of Pdi1 was sufficient to maintain conidial hydrophobicity, suggesting that Pdi1 mediates RodA assembly through its disulfide isomerase activity. In the absence of Pdi1, the disulfide mismatch of RodA in conidia may prevent its delivery from the inner to the outer layer of the cell wall for rodlet assembly. This was demonstrated using a strain expressing a key cysteine-mutated RodA. The dormant conidia of the Pdi1-deficient strain (Δpdi) elicited an immune response, suggesting that the defective conidia surface in the absence of Pdi1 exposes internal immunogenic sources. In conclusion, Pdi1 ensures the correct folding of RodA in the inner layer of conidia, facilitating its secretion into the outer layer of the cell wall and allowing self-assembly of the hydrophobic layer. This study has identified a regulatory element for conidia rodlet assembly.IMPORTANCEAspergillus fumigatus is the major cause of invasive aspergillosis, which is mainly transmitted by the inhalation of conidia. The spread of conidia is largely dependent on their hydrophobicity, which is primarily attributed to the self-assembly of the hydrophobic protein RodA on the cell wall. However, the mechanisms underlying RodA secretion and transport to the outermost layer of the cell wall are still unclear. Our study identified a critical role for Pdi1, a fungal protein disulfide isomerase found in regulating RodA secretion and assembly. Inhibition of Pdi1 prevents the formation of correct S-S bonds in the inner RodA, creating a barrier to RodA delivery and resulting in a defective hydrophobic layer. Our findings provided insight into the formation of the conidial hydrophobic layer and suggested potential drug targets to inhibit A. fumigatus infections by limiting conidial dispersal and altering their immune inertia.
Collapse
Affiliation(s)
- Xiaotao Hu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yao Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Renning Liu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Lingyan Guo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xiaofei Huang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jingyi Li
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yunfeng Yan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Feiyun Liu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xueying Li
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xinyu Tan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yiqing Luo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Twin Cities, Saint Paul, Minnesota, USA
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
36
|
Shankar J, Thakur R, Clemons KV, Stevens DA. Interplay of Cytokines and Chemokines in Aspergillosis. J Fungi (Basel) 2024; 10:251. [PMID: 38667922 PMCID: PMC11051073 DOI: 10.3390/jof10040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Aspergillosis is a fungal infection caused by various species of Aspergillus, most notably A. fumigatus. This fungus causes a spectrum of diseases, including allergic bronchopulmonary aspergillosis, aspergilloma, chronic pulmonary aspergillosis, and invasive aspergillosis. The clinical manifestations and severity of aspergillosis can vary depending on individual immune status and the specific species of Aspergillus involved. The recognition of Aspergillus involves pathogen-associated molecular patterns (PAMPs) such as glucan, galactomannan, mannose, and conidial surface proteins. These are recognized by the pathogen recognition receptors present on immune cells such as Toll-like receptors (TLR-1,2,3,4, etc.) and C-type lectins (Dectin-1 and Dectin-2). We discuss the roles of cytokines and pathogen recognition in aspergillosis from both the perspective of human and experimental infection. Several cytokines and chemokines have been implicated in the immune response to Aspergillus infection, including interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), CCR4, CCR17, and other interleukins. For example, allergic bronchopulmonary aspergillosis (ABPA) is characterized by Th2 and Th9 cell-type immunity and involves interleukin (IL)-4, IL-5, IL-13, and IL-10. In contrast, it has been observed that invasive aspergillosis involves Th1 and Th17 cell-type immunity via IFN-γ, IL-1, IL-6, and IL-17. These cytokines activate various immune cells and stimulate the production of other immune molecules, such as antimicrobial peptides and reactive oxygen species, which aid in the clearance of the fungal pathogen. Moreover, they help to initiate and coordinate the immune response, recruit immune cells to the site of infection, and promote clearance of the fungus. Insight into the host response from both human and animal studies may aid in understanding the immune response in aspergillosis, possibly leading to harnessing the power of cytokines or cytokine (receptor) antagonists and transforming them into precise immunotherapeutic strategies. This could advance personalized medicine.
Collapse
Affiliation(s)
- Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan 173234, Himachal Pradesh, India
| | - Raman Thakur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar 144001, Punjab, India;
| | - Karl V. Clemons
- California Institute for Medical Research, San Jose, CA 95128, USA; (K.V.C.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (K.V.C.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| |
Collapse
|
37
|
Shukla R, Soni J, Kumar A, Pandey R. Uncovering the diversity of pathogenic invaders: insights into protozoa, fungi, and worm infections. Front Microbiol 2024; 15:1374438. [PMID: 38596382 PMCID: PMC11003270 DOI: 10.3389/fmicb.2024.1374438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Post COVID-19, there has been renewed interest in understanding the pathogens challenging the human health and evaluate our preparedness towards dealing with health challenges in future. In this endeavour, it is not only the bacteria and the viruses, but a greater community of pathogens. Such pathogenic microorganisms, include protozoa, fungi and worms, which establish a distinct variety of disease-causing agents with the capability to impact the host's well-being as well as the equity of ecosystem. This review summarises the peculiar characteristics and pathogenic mechanisms utilized by these disease-causing organisms. It features their role in causing infection in the concerned host and emphasizes the need for further research. Understanding the layers of pathogenesis encompassing the concerned infectious microbes will help expand targeted inferences with relation to the cause of the infection. This would strengthen and augment benefit to the host's health along with the maintenance of ecosystem network, exhibiting host-pathogen interaction cycle. This would be key to discover the layers underlying differential disease severities in response to similar/same pathogen infection.
Collapse
Affiliation(s)
- Richa Shukla
- Division of Immunology and Infectious Disease Biology, INGEN-HOPE (INtegrative GENomics of HOst-PathogEn) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Jyoti Soni
- Division of Immunology and Infectious Disease Biology, INGEN-HOPE (INtegrative GENomics of HOst-PathogEn) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish Kumar
- Division of Immunology and Infectious Disease Biology, INGEN-HOPE (INtegrative GENomics of HOst-PathogEn) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INGEN-HOPE (INtegrative GENomics of HOst-PathogEn) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
38
|
Calvo AM, Dabholkar A, Wyman EM, Lohmar JM, Cary JW. Regulatory functions of homeobox domain transcription factors in fungi. Appl Environ Microbiol 2024; 90:e0220823. [PMID: 38421174 PMCID: PMC10952592 DOI: 10.1128/aem.02208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Homeobox domain (HD) proteins present a crucial involvement in morphological differentiation and other functions in eukaryotes. Most HD genes encode transcription factors (TFs) that orchestrate a regulatory role in cellular and developmental decisions. In fungi, multiple studies have increased our understanding of these important HD regulators in recent years. These reports have revealed their role in fungal development, both sexual and asexual, as well as their importance in governing other biological processes in these organisms, including secondary metabolism, pathogenicity, and sensitivity to environmental stresses. Here, we provide a comprehensive review of the current knowledge on the regulatory roles of HD-TFs in fungi, with a special focus on Aspergillus species.
Collapse
Affiliation(s)
- A. M. Calvo
- Department of Biological Sciences, Northern Illinois University, Dekalb, Illinois, USA
| | - A. Dabholkar
- Department of Biological Sciences, Northern Illinois University, Dekalb, Illinois, USA
| | - E. M. Wyman
- Department of Biological Sciences, Northern Illinois University, Dekalb, Illinois, USA
| | - J. M. Lohmar
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - J. W. Cary
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, Louisiana, USA
| |
Collapse
|
39
|
Sonnberger J, Kasper L, Lange T, Brunke S, Hube B. "We've got to get out"-Strategies of human pathogenic fungi to escape from phagocytes. Mol Microbiol 2024; 121:341-358. [PMID: 37800630 DOI: 10.1111/mmi.15149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023]
Abstract
Human fungal pathogens are a deadly and underappreciated risk to global health that most severely affect immunocompromised individuals. A virulence attribute shared by some of the most clinically relevant fungal species is their ability to survive inside macrophages and escape from these immune cells. In this review, we discuss the mechanisms behind intracellular survival and elaborate how escape is mediated by lytic and non-lytic pathways as well as strategies to induce programmed host cell death. We also discuss persistence as an alternative to rapid host cell exit. In the end, we address the consequences of fungal escape for the host immune response and provide future perspectives for research and development of targeted therapies.
Collapse
Affiliation(s)
- Johannes Sonnberger
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
40
|
Trinh N, Bhuskute KR, Varghese NR, Buchanan JA, Xu Y, McCutcheon FM, Medcalf RL, Jolliffe KA, Sunde M, New EJ, Kaur A. A Coumarin-Based Array for the Discrimination of Amyloids. ACS Sens 2024; 9:615-621. [PMID: 38315454 DOI: 10.1021/acssensors.3c01334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Self-assembly of misfolded proteins can lead to the formation of amyloids, which are implicated in the onset of many pathologies including Alzheimer's disease and Parkinson's disease. The facile detection and discrimination of different amyloids are crucial for early diagnosis of amyloid-related pathologies. Here, we report the development of a fluorescent coumarin-based two-sensor array that is able to correctly discriminate between four different amyloids implicated in amyloid-related pathologies with 100% classification. The array was also applied to mouse models of Alzheimer's disease and was able to discriminate between samples from mice corresponding to early (6 months) and advanced (12 months) stages of Alzheimer's disease. Finally, the flexibility of the array was assessed by expanding the analytes to include functional amyloids. The same two-sensor array was able to correctly discriminate between eight different disease-associated and functional amyloids with 100% classification.
Collapse
Affiliation(s)
- Natalie Trinh
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kaustubh R Bhuskute
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Melbourne, Victoria 3052, Australia
| | - Nikhil R Varghese
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jessica A Buchanan
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yijia Xu
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Fiona M McCutcheon
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Katrina A Jolliffe
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Margaret Sunde
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Amandeep Kaur
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Melbourne, Victoria 3052, Australia
| |
Collapse
|
41
|
Heylen J, Vanbiervliet Y, Maertens J, Rijnders B, Wauters J. Acute Invasive Pulmonary Aspergillosis: Clinical Presentation and Treatment. Semin Respir Crit Care Med 2024; 45:69-87. [PMID: 38211628 DOI: 10.1055/s-0043-1777769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Among all clinical manifestations of pulmonary aspergillosis, invasive pulmonary aspergillosis (IPA) is the most acute presentation. IPA is caused by Aspergillus hyphae invading the pulmonary tissue, causing either tracheobronchitis and/or bronchopneumonia. The degree of fungal invasion into the respiratory tissue can be seen as a spectrum, going from colonization to deep tissue penetration with angio-invasion, and largely depends on the host's immune status. Patients with prolonged, severe neutropenia and patients with graft-versus-host disease are at particularly high risk. However, IPA also occurs in other groups of immunocompromised and nonimmunocompromised patients, like solid organ transplant recipients or critically ill patients with severe viral disease. While a diagnosis of proven IPA is challenging and often warranted by safety and feasibility, physicians must rely on a combination of clinical, radiological, and mycological features to assess the likelihood for the presence of IPA. Triazoles are the first-choice regimen, and the choice of the drug should be made on an individual basis. Adjunctive therapy such as immunomodulatory treatment should also be taken into account. Despite an improving and evolving diagnostic and therapeutic armamentarium, the burden and mortality of IPA still remains high. This review aims to give a comprehensive and didactic overview of the current knowledge and best practices regarding the epidemiology, clinical presentation, diagnosis, and treatment of acute IPA.
Collapse
Affiliation(s)
- Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Yuri Vanbiervliet
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Haematology, University Hospitals Leuven, Leuven, Belgium
| | - Johan Maertens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Haematology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Rijnders
- Department of Internal Medicine and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
42
|
Yosief RHS, Lone IM, Nachshon A, Himmelbauer H, Gat‐Viks I, Iraqi FA. Identifying genetic susceptibility to Aspergillus fumigatus infection using collaborative cross mice and RNA-Seq approach. Animal Model Exp Med 2024; 7:36-47. [PMID: 38356021 PMCID: PMC10961901 DOI: 10.1002/ame2.12386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/15/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Aspergillus fumigatus (Af) is one of the most ubiquitous fungi and its infection potency is suggested to be strongly controlled by the host genetic background. The aim of this study was to search for candidate genes associated with host susceptibility to Aspergillus fumigatus (Af) using an RNAseq approach in CC lines and hepatic gene expression. METHODS We studied 31 male mice from 25 CC lines at 8 weeks old; the mice were infected with Af. Liver tissues were extracted from these mice 5 days post-infection, and next-generation RNA-sequencing (RNAseq) was performed. The GENE-E analysis platform was used to generate a clustered heat map matrix. RESULTS Significant variation in body weight changes between CC lines was observed. Hepatic gene expression revealed 12 top prioritized candidate genes differentially expressed in resistant versus susceptible mice based on body weight changes. Interestingly, three candidate genes are located within genomic intervals of the previously mapped quantitative trait loci (QTL), including Gm16270 and Stox1 on chromosome 10 and Gm11033 on chromosome 8. CONCLUSIONS Our findings emphasize the CC mouse model's power in fine mapping the genetic components underlying susceptibility towards Af. As a next step, eQTL analysis will be performed for our RNA-Seq data. Suggested candidate genes from our study will be further assessed with a human cohort with aspergillosis.
Collapse
Affiliation(s)
- Roa'a H. S. Yosief
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Aharon Nachshon
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Heinz Himmelbauer
- Institute of Computational Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 181190 ViennaAustria
| | - Irit Gat‐Viks
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| |
Collapse
|
43
|
Dabholkar A, Pandit S, Devkota R, Dhingra S, Lorber S, Puel O, Calvo AM. Role of the osaA Gene in Aspergillus fumigatus Development, Secondary Metabolism and Virulence. J Fungi (Basel) 2024; 10:103. [PMID: 38392775 PMCID: PMC10890407 DOI: 10.3390/jof10020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Aspergillus fumigatus is the leading cause of aspergillosis, associated with high mortality rates, particularly in immunocompromised individuals. In search of novel genetic targets against aspergillosis, we studied the WOPR transcription factor OsaA. The deletion of the osaA gene resulted in colony growth reduction. Conidiation is also influenced by osaA; both osaA deletion and overexpression resulted in a decrease in spore production. Wild-type expression levels of osaA are necessary for the expression of the conidiation regulatory genes brlA, abaA, and wetA. In addition, osaA is necessary for normal cell wall integrity. Furthermore, the deletion of osaA resulted in a reduction in the ability of A. fumigatus to adhere to surfaces, decreased thermotolerance, as well as increased sensitivity to oxidative stress. Metabolomics analysis indicated that osaA deletion or overexpression led to alterations in the production of multiple secondary metabolites, including gliotoxin. This was accompanied by changes in the expression of genes in the corresponding secondary metabolite gene clusters. These effects could be, at least in part, due to the observed reduction in the expression levels of the veA and laeA global regulators when the osaA locus was altered. Importantly, our study shows that osaA is indispensable for virulence in both neutropenic and corticosteroid-immunosuppressed mouse models.
Collapse
Affiliation(s)
- Apoorva Dabholkar
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Sandesh Pandit
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Ritu Devkota
- Department of Biological Sciences and Eukaryotic Pathogen Innovation Center, Clemson University, Clemson, SC 29634, USA
| | - Sourabh Dhingra
- Department of Biological Sciences and Eukaryotic Pathogen Innovation Center, Clemson University, Clemson, SC 29634, USA
| | - Sophie Lorber
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Ana M Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
44
|
Thakur R, Shishodia SK, Sharma A, Chauhan A, Kaur S, Shankar J. Accelerating the understanding of Aspergillus terreus: Epidemiology, physiology, immunology and advances. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100220. [PMID: 38303967 PMCID: PMC10831165 DOI: 10.1016/j.crmicr.2024.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Aspergillus species encompass a variety of infections, ranging from invasive aspergillosis to allergic conditions, contingent upon the immune status of the host. In this spectrum, Aspergillus terreus stands out due to its emergence as a notable pathogen and its intrinsic resistance to amphotericin-B. The significance of Aspergillus-associated infections has witnessed a marked increase in the past few decades, particularly with the increasing number of immunocompromised individuals. The exploration of epidemiology, morphological transitions, immunopathology, and novel treatment approaches such as new antifungal drugs (PC945, olorofim) and combinational therapy using antifungal drugs and phytochemicals (Phytochemicals: quercetin, shikonin, artemisinin), also using immunotherapies to modulate immune response has resulted in better outcomes. Furthermore, in the context COVID-19 era and its aftermath, fungal infections have emerged as a substantial challenge for both immunocompromised and immunocompetent individuals. This is attributed to the use of immune-suppressing therapies during COVID-19 infections and the increase in transplant cases. Consequently, this review aims to provide an updated overview encompassing the epidemiology, germination events, immunopathology, and novel drug treatment strategies against Aspergillus terreus-associated infections.
Collapse
Affiliation(s)
- Raman Thakur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar, Punjab, India
| | | | - Ananya Sharma
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan, Himachal Pradesh, India
| | - Arjun Chauhan
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Sumanpreet Kaur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar, Punjab, India
| | - Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan, Himachal Pradesh, India
| |
Collapse
|
45
|
Xu H, Gao Y, Liang T, Wang Q, Wan Z, Li R, Liu W. Isolation of triazole-resistant Aspergillus fumigatus harbouring cyp51A mutations from five patients with invasive pulmonary aspergillosis in Yunnan, China. Mycology 2024; 15:85-90. [PMID: 38558838 PMCID: PMC10976991 DOI: 10.1080/21501203.2023.2299472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/20/2023] [Indexed: 04/04/2024] Open
Abstract
Invasive aspergillosis (IA) is the most severe type of Aspergillus infection. Yunnan has developed agriculture, and the proportion of triazole-resistant A. fumigatus induced by triazole fungicides is much higher than that in other regions of China. Inhalation of triazole-resistant A. fumigatus is one of the main factors inducing IA. We gathered five strains of A. fumigatus from the sputum or bronchoalveolar lavage fluid (BALF) of patients with IA in Yunnan. Subsequent testing showed that all of these strains were resistant to triazoles and harboured mutations in the tandem repeat sequence of the cyp51A promoter region, suggesting that they may be triazole-resistant A. fumigatus present in the environment.
Collapse
Affiliation(s)
- Hui Xu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Yuhong Gao
- Department of clinical laboratory, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Tianyu Liang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Qiqi Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Zhe Wan
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Wei Liu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| |
Collapse
|
46
|
Tashiro M, Takazono T, Izumikawa K. Chronic pulmonary aspergillosis: comprehensive insights into epidemiology, treatment, and unresolved challenges. Ther Adv Infect Dis 2024; 11:20499361241253751. [PMID: 38899061 PMCID: PMC11186400 DOI: 10.1177/20499361241253751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/23/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic pulmonary aspergillosis (CPA) is a challenging respiratory infection caused by the environmental fungus Aspergillus. CPA has a poor prognosis, with reported 1-year mortality rates ranging from 7% to 32% and 5-year mortality rates ranging from 38% to 52%. A comprehensive understanding of the pathogen, pathophysiology, risk factors, diagnosis, surgery, hemoptysis treatment, pharmacological therapy, and prognosis is essential to manage CPA effectively. In particular, Aspergillus drug resistance and cryptic species pose significant challenges. CPA lacks tissue invasion and has specific features such as aspergilloma. The most critical risk factor for the development of CPA is pulmonary cavitation. Diagnostic approaches vary by CPA subtype, with computed tomography (CT) imaging and Aspergillus IgG antibodies being key. Treatment strategies include surgery, hemoptysis management, and antifungal therapy. Surgery is the curative option. However, reported postoperative mortality rates range from 0% to 5% and complications range from 11% to 63%. Simple aspergilloma generally has a low postoperative mortality rate, making surgery the first choice. Hemoptysis, observed in 50% of CPA patients, is a significant symptom and can be life-threatening. Bronchial artery embolization achieves hemostasis in 64% to 100% of cases, but 50% experience recurrent hemoptysis. The efficacy of antifungal therapy for CPA varies, with itraconazole reported to be 43-76%, voriconazole 32-80%, posaconazole 44-61%, isavuconazole 82.7%, echinocandins 42-77%, and liposomal amphotericin B 52-73%. Combinatorial treatments such as bronchoscopic triazole administration, inhalation, or direct injection of amphotericin B at the site of infection also show efficacy. A treatment duration of more than 6 months is recommended, with better efficacy reported for periods of more than 1 year. In anticipation of improvements in CPA management, ongoing advances in basic and clinical research are expected to contribute to the future of CPA management.
Collapse
Affiliation(s)
- Masato Tashiro
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Takahiro Takazono
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
47
|
Álvarez Duarte E, Cepeda N, Miranda J. Azole resistance in a clinical isolate of Aspergillus fumigatus from Chile. Rev Iberoam Micol 2024; 41:7-12. [PMID: 39304433 DOI: 10.1016/j.riam.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/28/2023] [Accepted: 04/19/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Aspergillus fumigatus is a ubiquitous opportunistic pathogen. This fungus can acquire resistance to azole antifungals due to different mutations in the cyp51A gene. Azole resistance has been observed in several continents and appears to be a globally distributed phenomenon. Specific mutations in cyp51A that lead to azole resistance, such as the TR34/L98H modification, have been reported. AIMS To evaluate the azole resistance in clinically isolated A. fumigatus strains. METHODS As a result of our passive surveillance strategy, a total of 23 A. fumigatus isolates from clinical origins were identified through a phylogenetic analysis using the ITS region and β-tubulin gene fragments, and typed with the CSP microsatellite. Azole susceptibility profiles were performed by disk diffusion and microdilution broth methodologies according to CLSI guidelines. RESULTS Here we describe, for the first time, the detection of azole-resistant A. fumigatus isolates from clinical origins in Chile with mutations in the cyp51A gene. In addition to the TR34/L98H mutation, one isolate exhibited an F46Y/M172V/E427K-type mutation. Furthermore, microsatellite typing based on cell surface protein (CSP) was performed, showing the t02 (TR34/L98H), t15 (F46Y/M172V/E427K) and t01 (susceptible clinical isolates) genotypes. CONCLUSIONS Our study demonstrates the presence of mutations related to azole resistance in A. fumigatus strains isolated from clinical samples in Chile. In order to obtain information that may help to tackle the spread of antifungal resistance among A. fumigatus populations, and to ensure the efficacy of future treatments against aspergillosis, a further research is necessary.
Collapse
Affiliation(s)
| | - Nicolás Cepeda
- Clinical Chemistry and Hematology, Hospital del Salvador, Chile
| | - Jean Miranda
- Laboratorio Micología, ICBM - F. de Medicina, Universidad de Chile, Chile
| |
Collapse
|
48
|
Son YE, Han J, Lee KT, Park HS. Pleiotropic functions of SscA on the asexual spore of the human pathogenic fungus Aspergillus fumigatus. Mycology 2023; 15:238-254. [PMID: 38813476 PMCID: PMC11132850 DOI: 10.1080/21501203.2023.2294061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 05/31/2024] Open
Abstract
Asexual spores, called conidia, are key reproductive fungal particles that enable survival in harsh environmental conditions or host systems. The conidia can infect humans, animals, and plants to cause various fungal diseases. Transcription factors, including VosA, WetA, and SscA, have key roles in conidia formation and long-term survival in Aspergillus nidulans. Herein, we report the pleiotropic functions of SscA in the conidia of the human pathogen A. fumigatus. The deletion of sscA increased conidia formation despite decreased fungal growth. Absence of sscA impaired long-term survival and reduced spore resistance to various stresses, including heat, UV, and oxidation. Transcriptomic analyses showed that SscA involved the mRNA expression of cell wall organisation-related genes. Importantly, the sscA deletion mutant conidia contained an increased amount of β-glucan and chitin compared to wild type conidia. In addition, conidial gliotoxin production was decreased in the sscA deletion strain. Overall, SscA has pleiotropic roles in conidia formation, maturation and dormancy and mycotoxin production in A. fumigatus.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Jiwoo Han
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Kyung-Tae Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
49
|
Borman AM, Johnson EM. Changes in fungal taxonomy: mycological rationale and clinical implications. Clin Microbiol Rev 2023; 36:e0009922. [PMID: 37930182 PMCID: PMC10732072 DOI: 10.1128/cmr.00099-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/13/2023] [Indexed: 11/07/2023] Open
Abstract
Numerous fungal species of medical importance have been recently subjected to and will likely continue to undergo nomenclatural changes as a result of the application of molecular approaches to fungal classification together with abandonment of dual nomenclature. Here, we summarize those changes affecting key groups of fungi of medical importance, explaining the mycological (taxonomic) rationale that underpinned the changes and the clinical relevance/importance (where such exists) of the key nomenclatural revisions. Potential mechanisms to mitigate unnecessary taxonomic instability are suggested, together with approaches to raise awareness of important changes to minimize potential clinical confusion.
Collapse
Affiliation(s)
- Andrew M. Borman
- UK HSA National Mycology Reference Laboratory, Science Quarter, Southmead Hospital, Bristol, United Kingdom
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, United Kingdom
| | - Elizabeth M. Johnson
- UK HSA National Mycology Reference Laboratory, Science Quarter, Southmead Hospital, Bristol, United Kingdom
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, United Kingdom
| |
Collapse
|
50
|
Sasse C, Bastakis E, Bakti F, Höfer AM, Zangl I, Schüller C, Köhler AM, Gerke J, Krappmann S, Finkernagel F, Harting R, Strauss J, Heimel K, Braus GH. Induction of Aspergillus fumigatus zinc cluster transcription factor OdrA/Mdu2 provides combined cellular responses for oxidative stress protection and multiple antifungal drug resistance. mBio 2023; 14:e0262823. [PMID: 37982619 PMCID: PMC10746196 DOI: 10.1128/mbio.02628-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE An overexpression screen of 228 zinc cluster transcription factor encoding genes of A. fumigatus revealed 11 genes conferring increased tolerance to antifungal drugs. Out of these, four oxidative stress and drug tolerance transcription factor encoding odr genes increased tolerance to oxidative stress and antifungal drugs when overexpressed. This supports a correlation between oxidative stress response and antifungal drug tolerance in A. fumigatus. OdrA/Mdu2 is required for the cross-tolerance between azoles, polyenes, and oxidative stress and activates genes for detoxification. Under oxidative stress conditions or when overexpressed, OdrA/Mdu2 accumulates in the nucleus and activates detoxifying genes by direct binding at their promoters, as we describe with the mdr1 gene encoding an itraconazole specific efflux pump. Finally, this work gives new insights about drug and stress resistance in the opportunistic pathogenic fungus A. fumigatus.
Collapse
Affiliation(s)
- Christoph Sasse
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Emmanouil Bastakis
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Fruzsina Bakti
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Annalena M. Höfer
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Isabella Zangl
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
- Core Facility Bioactive Molecules–Screening and Analysis, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Christoph Schüller
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
- Core Facility Bioactive Molecules–Screening and Analysis, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Anna M. Köhler
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Jennifer Gerke
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Sven Krappmann
- Institute of Microbiology–Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Center for Infection Research (ECI) and Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
| | - Florian Finkernagel
- Center for Tumor Biology and Immunology, Core Facility Bioinformatics, Philipps University, Marburg, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
| | - Kai Heimel
- Department of Microbial Cell Biology, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| |
Collapse
|