1
|
Balamurugan C, Steenwyk JL, Goldman GH, Rokas A. The evolution of the gliotoxin biosynthetic gene cluster in Penicillium fungi. G3 (BETHESDA, MD.) 2024; 14:jkae063. [PMID: 38507596 PMCID: PMC11075534 DOI: 10.1093/g3journal/jkae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 12/27/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Fungi biosynthesize diverse secondary metabolites, small organic bioactive molecules with key roles in fungal ecology. Fungal secondary metabolites are often encoded by physically clustered genes known as biosynthetic gene clusters (BGCs). Fungi in the genus Penicillium produce a cadre of secondary metabolites, some of which are useful (e.g. the antibiotic penicillin and the cholesterol-lowering drug mevastatin) and others harmful (e.g. the mycotoxin patulin and the immunosuppressant gliotoxin) to human affairs. Fungal genomes often also encode resistance genes that confer protection against toxic secondary metabolites. Some Penicillium species, such as Penicillium decumbens, are known to produce gliotoxin, a secondary metabolite with known immunosuppressant activity. To investigate the evolutionary conservation of homologs of the gliotoxin BGC and of genes involved in gliotoxin resistance in Penicillium, we analyzed 35 Penicillium genomes from 23 species. Homologous, lesser fragmented gliotoxin BGCs were found in 12 genomes, mostly fragmented remnants of the gliotoxin BGC were found in 21 genomes, whereas the remaining 2 Penicillium genomes lacked the gliotoxin BGC altogether. In contrast, broad conservation of homologs of resistance genes that reside outside the BGC across Penicillium genomes was observed. Evolutionary rate analysis revealed that BGCs with higher numbers of genes evolve slower than BGCs with few genes, suggestive of constraint and potential functional significance or more recent decay. Gene tree-species tree reconciliation analyses suggested that the history of homologs in the gliotoxin BGC across the genus Penicillium likely involved multiple duplications, losses, and horizontal gene transfers. Our analyses suggest that genes encoded in BGCs can have complex evolutionary histories and be retained in genomes long after the loss of secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Charu Balamurugan
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Gustavo H Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-903, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
2
|
Ravi, Kumar A, Bhattacharyya S, Singh J. Thiol reductive stress activates the hypoxia response pathway. EMBO J 2023; 42:e114093. [PMID: 37902464 PMCID: PMC10646554 DOI: 10.15252/embj.2023114093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Owing to their capability to disrupt the oxidative protein folding environment in the endoplasmic reticulum (ER), thiol antioxidants, such as dithiothreitol (DTT), are used as ER-specific stressors. We recently showed that thiol antioxidants modulate the methionine-homocysteine cycle by upregulating an S-adenosylmethionine-dependent methyltransferase, rips-1, in Caenorhabditis elegans. However, the changes in cellular physiology induced by thiol stress that modulate the methionine-homocysteine cycle remain uncharacterized. Here, using forward genetic screens in C. elegans, we discover that thiol stress enhances rips-1 expression via the hypoxia response pathway. We demonstrate that thiol stress activates the hypoxia response pathway. The activation of the hypoxia response pathway by thiol stress is conserved in human cells. The hypoxia response pathway enhances thiol toxicity via rips-1 expression and confers protection against thiol toxicity via rips-1-independent mechanisms. Finally, we show that DTT might activate the hypoxia response pathway by producing hydrogen sulfide. Our studies reveal an intriguing interaction between thiol-mediated reductive stress and the hypoxia response pathway and challenge the current model that thiol antioxidant DTT disrupts only the ER milieu in the cell.
Collapse
Affiliation(s)
- Ravi
- Department of Biological SciencesIndian Institute of Science Education and ResearchMohaliIndia
| | - Ajay Kumar
- Department of BiophysicsPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Shalmoli Bhattacharyya
- Department of BiophysicsPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Jogender Singh
- Department of Biological SciencesIndian Institute of Science Education and ResearchMohaliIndia
| |
Collapse
|
3
|
Yurchenko AN, Nesterenko LE, Popov RS, Kirichuk NN, Chausova VE, Chingizova EA, Isaeva MP, Yurchenko EA. The Metabolite Profiling of Aspergillus fumigatus KMM4631 and Its Co-Cultures with Other Marine Fungi. Metabolites 2023; 13:1138. [PMID: 37999234 PMCID: PMC10673247 DOI: 10.3390/metabo13111138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
An Aspergillus fumigatus KMM 4631 strain was previously isolated from a Pacific soft coral Sinularia sp. sample and was found to be a source of a number of bioactive secondary metabolites. The aims of this work are the confirmation of this strain' identification based on ITS, BenA, CaM, and RPB2 regions/gene sequences and the investigation of secondary metabolite profiles of Aspergillus fumigatus KMM 4631 culture and its co-cultures with Penicillium hispanicum KMM 4689, Amphichorda sp. KMM 4639, Penicillium sp. KMM 4672, and Asteromyces cruciatus KMM 4696 from the Collection of Marine Microorganisms (PIBOC FEB RAS, Vladivostok, Russia). Moreover, the DPPH-radical scavenging activity, urease inhibition, and cytotoxicity of joint fungal cultures' extracts on HepG2 cells were tested. The detailed UPLC MS qTOF investigation resulted in the identification and annotation of indolediketopiperazine, quinazoline, and tryptoquivaline-related alkaloids as well as a number of polyketides (totally 20 compounds) in the extract of Aspergillus fumigatus KMM 4631. The metabolite profiles of the co-cultures of A. fumigatus with Penicillium hispanicum, Penicillium sp., and Amphichorda sp. were similar to those of Penicillium hispanicum, Penicillium sp., and Amphichorda sp. monocultures. The metabolite profile of the co-culture of A. fumigatus with Asteromyces cruciatus differed from that of each monoculture and may be more promising for the isolation of new compounds.
Collapse
Affiliation(s)
- Anton N. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (L.E.N.); (R.S.P.); (N.N.K.); (V.E.C.); (E.A.C.); (M.P.I.)
| | | | | | | | | | | | | | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (L.E.N.); (R.S.P.); (N.N.K.); (V.E.C.); (E.A.C.); (M.P.I.)
| |
Collapse
|
4
|
Downes SG, Owens RA, Walshe K, Fitzpatrick DA, Dorey A, Jones GW, Doyle S. Gliotoxin-mediated bacterial growth inhibition is caused by specific metal ion depletion. Sci Rep 2023; 13:16156. [PMID: 37758814 PMCID: PMC10533825 DOI: 10.1038/s41598-023-43300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Overcoming antimicrobial resistance represents a formidable challenge and investigating bacterial growth inhibition by fungal metabolites may yield new strategies. Although the fungal non-ribosomal peptide gliotoxin (GT) is known to exhibit antibacterial activity, the mechanism(s) of action are unknown, although reduced gliotoxin (dithiol gliotoxin; DTG) is a zinc chelator. Furthermore, it has been demonstrated that GT synergises with vancomycin to inhibit growth of Staphylococcus aureus. Here we demonstrate, without precedent, that GT-mediated growth inhibition of both Gram positive and negative bacterial species is reversed by Zn2+ or Cu2+ addition. Both GT, and the known zinc chelator TPEN, mediate growth inhibition of Enterococcus faecalis which is reversed by zinc addition. Moreover, zinc also reverses the synergistic growth inhibition of E. faecalis observed in the presence of both GT and vancomycin (4 µg/ml). As well as zinc chelation, DTG also appears to chelate Cu2+, but not Mn2+ using a 4-(2-pyridylazo)resorcinol assay system and Zn2+ as a positive control. DTG also specifically reacts in Fe3+-containing Siderotec™ assays, most likely by Fe3+ chelation from test reagents. GSH or DTT show no activity in these assays. Confirmatory high resolution mass spectrometry, in negative ion mode, confirmed, for the first time, the presence of both Cu[DTG] and Fe[DTG]2 chelates. Label free quantitative proteomic analysis further revealed major intracellular proteomic remodelling within E. faecalis in response to GT exposure for 30-180 min. Globally, 4.2-7.2% of detectable proteins exhibited evidence of either unique presence/increased abundance or unique absence/decreased abundance (n = 994-1160 total proteins detected), which is the first demonstration that GT affects the bacterial proteome in general, and E. faecalis, specifically. Unique detection of components of the AdcABC and AdcA-II zinc uptake systems was observed, along with apparent ribosomal reprofiling to zinc-free paralogs in the presence of GT. Overall, we hypothesise that GT-mediated bacterial growth inhibition appears to involve intracellular zinc depletion or reduced bioavailability, and based on in vitro chelate formation, may also involve dysregulation of Cu2+ homeostasis.
Collapse
Affiliation(s)
- Shane G Downes
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | | | | | - Amber Dorey
- Molecular Parasitology, University of Galway, Galway, Ireland
| | - Gary W Jones
- Centre for Biomedical Science Research, School of Health, Leeds-Beckett University, Leeds, UK.
| | - Sean Doyle
- Department of Biology, Maynooth University, Co. Kildare, Ireland.
| |
Collapse
|
5
|
Drumm SD, Cormican P, Owens RA, Mitchell J, Keane OM. Immunoproteomic analysis of the serum IgG response to cell wall-associated proteins of Staphylococcus aureus strains belonging to CC97 and CC151. Vet Res 2023; 54:79. [PMID: 37723537 PMCID: PMC10506246 DOI: 10.1186/s13567-023-01212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 07/24/2023] [Indexed: 09/20/2023] Open
Abstract
CC97 and CC151 are two of the most common Staphylococcus aureus lineages associated with bovine intramammary infection. The genotype of the infecting S. aureus strain influences virulence and the progression of intramammary disease. Strains from CC97 and CC151 encode a distinct array of virulence factors. Identification of proteins elaborated in vivo will provide insights into the molecular mechanism of pathogenesis of these lineages, as well as facilitating the development of tailored treatments and pan-lineage vaccines and diagnostics. The repertoire of genes encoding cell wall-anchored (CWA) proteins was identified for S. aureus strains MOK023 (CC97) and MOK124 (CC151); MOK023 encoded more CWA proteins than MOK124. Serum collected during an in vivo challenge trial was used to investigate whether the humoral response to cell wall proteins was strain-specific. Immunoproteomic analysis demonstrated that the humoral response in MOK023-infected cows predominantly targeted high molecular weight proteins while the response in MOK124-infected cows targeted medium or low molecular weight proteins. Antigenic proteins were identified by two-dimensional serum blotting followed by mass spectometry-based identification of immunoreactive spots, with putative antigens subsequently validated. The CWA proteins ClfB, SdrE/Bbp and IsdA were identified as immunogenic regardless of the infecting strain. In addition, a number of putative strain-specific imunogens were identified. The variation in antigens produced by different strains may indicate that these strains have different strategies for exploiting the intramammary niche. Such variation should be considered when developing novel control strategies including vaccines, therapeutics and diagnostics.
Collapse
Affiliation(s)
- Shauna D Drumm
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
- Seed Testing Laboratory, DAFM Laboratories, Backweston, Celbridge, Co. Kildare, Ireland
| | - Paul Cormican
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Jennifer Mitchell
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Orla M Keane
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| |
Collapse
|
6
|
Downes SG, Doyle S, Jones GW, Owens RA. Gliotoxin and related metabolites as zinc chelators: implications and exploitation to overcome antimicrobial resistance. Essays Biochem 2023; 67:769-780. [PMID: 36876884 PMCID: PMC10500201 DOI: 10.1042/ebc20220222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 03/07/2023]
Abstract
Antimicrobial resistance (AMR) is a major global problem and threat to humanity. The search for new antibiotics is directed towards targeting of novel microbial systems and enzymes, as well as augmenting the activity of pre-existing antimicrobials. Sulphur-containing metabolites (e.g., auranofin and bacterial dithiolopyrrolones [e.g., holomycin]) and Zn2+-chelating ionophores (PBT2) have emerged as important antimicrobial classes. The sulphur-containing, non-ribosomal peptide gliotoxin, biosynthesised by Aspergillus fumigatus and other fungi exhibits potent antimicrobial activity, especially in the dithiol form (dithiol gliotoxin; DTG). Specifically, it has been revealed that deletion of the enzymes gliotoxin oxidoreductase GliT, bis-thiomethyltransferase GtmA or the transporter GliA dramatically sensitise A. fumigatus to gliotoxin presence. Indeed, the double deletion strain A. fumigatus ΔgliTΔgtmA is especially sensitive to gliotoxin-mediated growth inhibition, which can be reversed by Zn2+ presence. Moreover, DTG is a Zn2+ chelator which can eject zinc from enzymes and inhibit activity. Although multiple studies have demonstrated the potent antibacterial effect of gliotoxin, no mechanistic details are available. Interestingly, reduced holomycin can inhibit metallo-β-lactamases. Since holomycin and gliotoxin can chelate Zn2+, resulting in metalloenzyme inhibition, we propose that this metal-chelating characteristic of these metabolites requires immediate investigation to identify new antibacterial drug targets or to augment the activity of existing antimicrobials. Given that (i) gliotoxin has been shown in vitro to significantly enhance vancomycin activity against Staphylococcus aureus, and (ii) that it has been independently proposed as an ideal probe to dissect the central 'Integrator' role of Zn2+ in bacteria - we contend such studies are immediately undertaken to help address AMR.
Collapse
Affiliation(s)
- Shane G Downes
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Gary W Jones
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, Leeds LS1 3HE, U.K
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
7
|
Traynor AM, Sarikaya-Bayram Ö, Bayram Ö, Antonio Calera J, Doyle S. Proteomic dissection of the role of GliZ in gliotoxin biosynthesis in Aspergillus fumigatus. Fungal Genet Biol 2023; 166:103795. [PMID: 37023941 DOI: 10.1016/j.fgb.2023.103795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Gliotoxin (GT) biosynthesis in fungi is encoded by the gli biosynthetic gene cluster. While GT addition autoinduces biosynthesis, Zn2+ has been shown to attenuate cluster activity, and it was speculated that identification of Zn2Cys6 binuclear transcription factor GliZ binding partners might provide insight into this observation. Using the Tet-ON induction system, doxycycline (DOX) presence induced GliZ fusion protein expression in, and recovery of GT biosynthesis by, A. fumigatus ΔgliZ::HA-gliZ and ΔgliZ::TAP-gliZ strains, respectively. Quantitative RT-PCR confirmed that DOX induces gli cluster gene expression (n = 5) in both A. fumigatus HA-GliZ and TAP-GliZ strains. GT biosynthesis was evident in Czapek-Dox and in Sabouraud media, however tagged GliZ protein expression was more readily detected in Sabouraud media. Unexpectedly, Zn2+ was essential for GliZ fusion protein expression in vivo, following 3 h DOX induction. Moreover, HA-GliZ abundance was significantly higher in either DOX/GT or DOX/Zn2+, compared to DOX-only. This suggests that while GT induction is still intact, Zn2+ inhibition of HA-GliZ production in vivo is lost. Co-immunoprecipitation revealed that GT oxidoreductase GliT associates with GliZ in the presence of GT, suggesting a potential protective role. Additional putative HA-GliZ interacting proteins included cystathionine gamma lyase, ribosomal protein L15 and serine hydroxymethyltransferase (SHMT). Total mycelial quantitative proteomic data revealed that GliT and GtmA, as well as several other gli cluster proteins, are increased in abundance or uniquely expressed with GT addition. Proteins involved in sulphur metabolism are also differentially expressed with GT or Zn2+ presence. Overall, we disclose that under DOX induction GliZ functionality is unexpectedly evident in zinc-replete media, subject to GT induction and that GliT appears to associate with GliZ, potentially to prevent DTG-mediated GliZ inactivation by zinc ejection.
Collapse
Affiliation(s)
- Aimee M Traynor
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - José Antonio Calera
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain, Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
8
|
Balamurugan C, Steenwyk JL, Goldman GH, Rokas A. The evolution of the gliotoxin biosynthetic gene cluster in Penicillium fungi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524442. [PMID: 36711793 PMCID: PMC9882216 DOI: 10.1101/2023.01.17.524442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fungi biosynthesize a diversity of secondary metabolites, small organic bioactive molecules that play diverse roles in fungal ecology. Fungal secondary metabolites are often encoded by physically clustered sets of genes known as biosynthetic gene clusters (BGCs). Fungi in the genus Penicillium produce diverse secondary metabolites that have been both useful (e.g., the antibiotic penicillin and the cholesterol-lowering drug mevastatin) and harmful (e.g., the mycotoxin patulin and the immunosuppressant gliotoxin) to human affairs. BGCs often also encode resistance genes that confer self-protection to the secondary metabolite-producing fungus. Some Penicillium species, such as Penicillium lilacinoechinulatum and Penicillium decumbens, are known to produce gliotoxin, a secondary metabolite with known immunosuppressant activity; however, an evolutionary characterization of the BGC responsible for gliotoxin biosynthesis among Penicillium species is lacking. Here, we examine the conservation of genes involved in gliotoxin biosynthesis and resistance in 35 Penicillium genomes from 23 species. We found homologous, less fragmented gliotoxin BGCs in 12 genomes, mostly fragmented remnants of the gliotoxin BGC in 21 genomes, whereas the remaining two Penicillium genomes lacked the gliotoxin BGC altogether. In contrast, we observed broad conservation of homologs of resistance genes that reside outside the BGC across Penicillium genomes. Evolutionary rate analysis revealed that BGCs with higher numbers of genes evolve slower than BGCs with few genes. Even though the gliotoxin BGC is fragmented to varying degrees in nearly all genomes examined, ancestral state reconstruction suggests that the ancestor of Penicillium species possessed the gliotoxin BGC. Our analyses suggest that genes that are part of BGCs can be retained in genomes long after the loss of secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Charu Balamurugan
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, United States
| | - Jacob L. Steenwyk
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, United States
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Gustavo H. Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
9
|
Padilla P, Estévez M, Andrade MJ, Peña FJ, Delgado J. Proteomics reveal the protective effects of chlorogenic acid on Enterococcus faecium Q233 in a simulated pro-oxidant colonic environment. Food Res Int 2022; 157:111464. [PMID: 35761697 DOI: 10.1016/j.foodres.2022.111464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Certain phytochemicals have been found to promote the beneficial effects of probiotic bacteria although the molecular mechanisms of such interactions are poorly understood. The objective of the present study was to evaluate the impact of the exposure to 0.5 mM chlorogenic acid (CA) on the redox status and proteome of Enterococcus faecium isolated from cheese and challenged with 2.5 mM hydrogen peroxide (H2O2). The bacterium was incubated in anaerobic conditions for 48 h at 37 °C. CA exposure led to a more intense oxidative stress and accretion of bacterial protein carbonyls than those induced by H2O2. The oxidative damage to bacterial proteins was even more severe in the bacterium treated with both CA and H2O2, yet, such combination led to a strengthening of the antioxidant defenses, namely, a catalase-like activity. The proteomic study indicated that H2O2 caused a decrease in energy supply and the bacterium responded by reinforcing the membrane and wall structures and counteracting the redox and pH imbalance. CA stimulated the accretion of proteins related to translation and transcription regulators, and hydrolases. This phytochemical was able to counteract certain proteomic changes induced by H2O2 (i.e. increase of ATP binding cassete (ABC) transporter complex) and cause the increase of Rex, a redox-sensitive protein implicated in controlling metabolism and responses to oxidative stress. Although this protection should be confirmed under in vivo conditions, such effects point to benefits in animals or humans affected by disorders in which oxidative stress plays a major role.
Collapse
Affiliation(s)
- P Padilla
- Food Technology and Quality (TECAL), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain; Food Hygiene and Safety (HISEALI), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain
| | - M Estévez
- Food Technology and Quality (TECAL), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain.
| | - M J Andrade
- Food Hygiene and Safety (HISEALI), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain
| | - F J Peña
- Spermatology Laboratory, University of Extremadura, Cáceres, Spain
| | - J Delgado
- Food Hygiene and Safety (HISEALI), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain
| |
Collapse
|
10
|
G G, Singh J. Dithiothreitol causes toxicity in C. elegans by modulating the methionine-homocysteine cycle. eLife 2022; 11:76021. [PMID: 35438636 PMCID: PMC9090326 DOI: 10.7554/elife.76021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/17/2022] [Indexed: 11/13/2022] Open
Abstract
The redox reagent dithiothreitol (DTT) causes stress in the endoplasmic reticulum (ER) by disrupting its oxidative protein folding environment, which results in the accumulation and misfolding of the newly synthesized proteins. DTT may potentially impact cellular physiology by ER-independent mechanisms; however, such mechanisms remain poorly characterized. Using the nematode model Caenorhabditis elegans, here we show that DTT toxicity is modulated by the bacterial diet. Specifically, the dietary component vitamin B12 alleviates DTT toxicity in a methionine synthase-dependent manner. Using a forward genetic screen, we discover that loss-of-function of R08E5.3, an S-adenosylmethionine (SAM)-dependent methyltransferase, confers DTT resistance. DTT upregulates R08E5.3 expression and modulates the activity of the methionine–homocysteine cycle. Employing genetic and biochemical studies, we establish that DTT toxicity is a result of the depletion of SAM. Finally, we show that a functional IRE-1/XBP-1 unfolded protein response pathway is required to counteract toxicity at high, but not low, DTT concentrations. Animal and plant cells synthesize a significant fraction of their proteins on a structure known as the endoplasmic reticulum. Researchers often use the molecule dithiothreitol to specifically target this compartment and learn more about its role. The toxin works by disturbing the complex chemical environment present in the reticulum, which is required for the proteins to assemble properly. However, it is important to clarify whether dithiothreitol could also affect other parts of the cell, as this could give rise to misleading results. To explore this possibility, Gokul G and Jogender Singh studied the effects of dithiothreitol on the millimetre-long roundworm Caenorhabditis elegans. Their experiments revealed that vitamin B12 could protect against dithiothreitol toxicity via a complex cascade of molecular events which reduced the levels of an important regulatory molecule known as S-adenosylmethionine. Crucially, the chemical reactions that dithiothreitol targeted took place outside the reticulum, suggesting that the toxin impairs processes in the wider cell. These results suggest that dithiothreitol should be reconsidered for use in endoplasmic reticulum studies. However, they also imply that this toxin could be beneficial in small doses, as a reduced concentration of S-adenosylmethionine increases lifespan and health in a variety of organisms.
Collapse
Affiliation(s)
- Gokul G
- Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| | - Jogender Singh
- Indian Institute of Science Education and Research, Mohali, Mohali, India
| |
Collapse
|
11
|
Immunoproteomic analysis of the secretome of bovine-adapted strains of Staphylococcus aureus demonstrates a strain-specific humoral response. Vet Immunol Immunopathol 2022; 249:110428. [DOI: 10.1016/j.vetimm.2022.110428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
|
12
|
Wang X, Luo X. Precursor Quantitation Methods for Next Generation Food Production. Front Bioeng Biotechnol 2022; 10:849177. [PMID: 35360389 PMCID: PMC8960114 DOI: 10.3389/fbioe.2022.849177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Food is essential for human survival. Nowadays, traditional agriculture faces challenges in balancing the need of sustainable environmental development and the rising food demand caused by an increasing population. In addition, in the emerging of consumers' awareness of health related issues bring a growing trend towards novel nature-based food additives. Synthetic biology, using engineered microbial cell factories for production of various molecules, shows great advantages for generating food alternatives and additives, which not only relieve the pressure laid on tradition agriculture, but also create a new stage in healthy and sustainable food supplement. The biosynthesis of food components (protein, fats, carbohydrates or vitamins) in engineered microbial cells often involves cellular central metabolic pathways, where common precursors are processed into different proteins and products. Quantitation of the precursors provides information of the metabolic flux and intracellular metabolic state, giving guidance for precise pathway engineering. In this review, we summarized the quantitation methods for most cellular biosynthetic precursors, including energy molecules and co-factors involved in redox-reactions. It will also be useful for studies worked on pathway engineering of other microbial-derived metabolites. Finally, advantages and limitations of each method are discussed.
Collapse
Affiliation(s)
- Xinran Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaozhou Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Shenzhen, China
| |
Collapse
|
13
|
de Castro PA, Colabardini AC, Moraes M, Horta MAC, Knowles SL, Raja HA, Oberlies NH, Koyama Y, Ogawa M, Gomi K, Steenwyk JL, Rokas A, Gonçales RA, Duarte-Oliveira C, Carvalho A, Ries LNA, Goldman GH. Regulation of gliotoxin biosynthesis and protection in Aspergillus species. PLoS Genet 2022; 18:e1009965. [PMID: 35041649 PMCID: PMC8797188 DOI: 10.1371/journal.pgen.1009965] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023] Open
Abstract
Aspergillus fumigatus causes a range of human and animal diseases collectively known as aspergillosis. A. fumigatus possesses and expresses a range of genetic determinants of virulence, which facilitate colonisation and disease progression, including the secretion of mycotoxins. Gliotoxin (GT) is the best studied A. fumigatus mycotoxin with a wide range of known toxic effects that impair human immune cell function. GT is also highly toxic to A. fumigatus and this fungus has evolved self-protection mechanisms that include (i) the GT efflux pump GliA, (ii) the GT neutralising enzyme GliT, and (iii) the negative regulation of GT biosynthesis by the bis-thiomethyltransferase GtmA. The transcription factor (TF) RglT is the main regulator of GliT and this GT protection mechanism also occurs in the non-GT producing fungus A. nidulans. However, the A. nidulans genome does not encode GtmA and GliA. This work aimed at analysing the transcriptional response to exogenous GT in A. fumigatus and A. nidulans, two distantly related Aspergillus species, and to identify additional components required for GT protection. RNA-sequencing shows a highly different transcriptional response to exogenous GT with the RglT-dependent regulon also significantly differing between A. fumigatus and A. nidulans. However, we were able to observe homologs whose expression pattern was similar in both species (43 RglT-independent and 11 RglT-dependent). Based on this approach, we identified a novel RglT-dependent methyltranferase, MtrA, involved in GT protection. Taking into consideration the occurrence of RglT-independent modulated genes, we screened an A. fumigatus deletion library of 484 transcription factors (TFs) for sensitivity to GT and identified 15 TFs important for GT self-protection. Of these, the TF KojR, which is essential for kojic acid biosynthesis in Aspergillus oryzae, was also essential for virulence and GT biosynthesis in A. fumigatus, and for GT protection in A. fumigatus, A. nidulans, and A. oryzae. KojR regulates rglT, gliT, gliJ expression and sulfur metabolism in Aspergillus species. Together, this study identified conserved components required for GT protection in Aspergillus species. A. fumigatus secretes mycotoxins that are essential for its virulence and pathogenicity. Gliotoxin (GT) is a sulfur-containing mycotoxin, which is known to impair several aspects of the human immune response. GT is also toxic to different fungal species, which have evolved several GT protection strategies. To further decipher these responses, we used transcriptional profiling aiming to compare the response to GT in the GT producer A. fumigatus and the GT non-producer A. nidulans. This analysis allowed us to identify additional genes with a potential role in GT protection. We also identified 15 transcription factors (TFs) encoded in the A. fumigatus genome that are important for conferring resistance to exogenous gliotoxin. One of these TFs, KojR, which is essential for A. oryzae kojic acid production, is also important for virulence in A. fumigatus and GT protection in A. fumigatus, A. nidulans and A. oryzae. KojR regulates the expression of genes important for gliotoxin biosynthesis and protection, and sulfur metabolism. Together, this work identified conserved components required for gliotoxin protection in Aspergillus species.
Collapse
Affiliation(s)
- Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Maísa Moraes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Sonja L. Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina United States of America
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina United States of America
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina United States of America
| | - Yasuji Koyama
- Noda Institute for Scientific Research, 338 Noda, Chiba, Japan
| | - Masahiro Ogawa
- Noda Institute for Scientific Research, 338 Noda, Chiba, Japan
| | - Katsuya Gomi
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Relber A. Gonçales
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Cláudio Duarte-Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Laure N. A. Ries
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
- * E-mail: (LNAR); (GHG)
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- * E-mail: (LNAR); (GHG)
| |
Collapse
|
14
|
The Toxic Mechanism of Gliotoxins and Biosynthetic Strategies for Toxicity Prevention. Int J Mol Sci 2021; 22:ijms222413510. [PMID: 34948306 PMCID: PMC8705807 DOI: 10.3390/ijms222413510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Gliotoxin is a kind of epipolythiodioxopiperazine derived from different fungi that is characterized by a disulfide bridge. Gliotoxins can be biosynthesized by a gli gene cluster and regulated by a positive GliZ regulator. Gliotoxins show cytotoxic effects via the suppression the function of macrophage immune function, inflammation, antiangiogenesis, DNA damage by ROS production, peroxide damage by the inhibition of various enzymes, and apoptosis through different signal pathways. In the other hand, gliotoxins can also be beneficial with different doses. Low doses of gliotoxin can be used as an antioxidant, in the diagnosis and treatment of HIV, and as an anti-tumor agent in the future. Gliotoxins have also been used in the control of plant pathogens, including Pythium ultimum and Sclerotinia sclerotiorum. Thus, it is important to elucidate the toxic mechanism of gliotoxins. The toxic mechanism of gliotoxins and biosynthetic strategies to reduce the toxicity of gliotoxins and their producing strains are summarized in this review.
Collapse
|
15
|
Moloney NM, Larkin A, Xu L, Fitzpatrick DA, Crean HL, Walshe K, Haas H, Decristoforo C, Doyle S. Generation and characterisation of a semi-synthetic siderophore-immunogen conjugate and a derivative recombinant triacetylfusarinine C-specific monoclonal antibody with fungal diagnostic application. Anal Biochem 2021; 632:114384. [PMID: 34543643 DOI: 10.1016/j.ab.2021.114384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/16/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022]
Abstract
Invasive pulmonary aspergillosis (IPA) is a severe life-threatening condition. Diagnosis of fungal disease in general, and especially that caused by Aspergillus fumigatus is problematic. A. fumigatus secretes siderophores to acquire iron during infection, which are also essential for virulence. We describe the chemoacetylation of ferrated fusarinine C to diacetylated fusarinine C (DAFC), followed by protein conjugation, which facilitated triacetylfusarinine C (TAFC)-specific monoclonal antibody production with specific recognition of the ferrated form of TAFC. A single monoclonal antibody sequence was ultimately elucidated by a combinatorial strategy involving protein LC-MS/MS, cDNA sequencing and RNAseq. The resultant murine IgG2a monoclonal antibody was secreted in, and purified from, mammalian cell culture (5 mg) and demonstrated to be highly specific for TAFC detection by competitive ELISA (detection limit: 15 nM) and in a lateral flow test system (detection limit: 3 ng), using gold nanoparticle conjugated- DAFC-bovine serum albumin for competition. Overall, this work reveals for the first time a recombinant TAFC-specific monoclonal antibody with diagnostic potential for IPA diagnosis in traditional and emerging patient groups (e.g., COVID-19) and presents a useful strategy for murine Ig sequence determination, and expression in HEK293 cells, to overcome unexpected limitations associated with aberrant or deficient murine monoclonal antibody production.
Collapse
Affiliation(s)
- Nicola M Moloney
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - Annemarie Larkin
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Linan Xu
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - David A Fitzpatrick
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - Holly L Crean
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - Kieran Walshe
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland
| | - Hubertus Haas
- Institute of Molecular Biology, Medical University Innsbruck, A-6020, Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 5, A-6020, Innsbruck, Austria
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland.
| |
Collapse
|
16
|
Traynor AM, Owens RA, Coughlin CM, Holton MC, Jones GW, Calera JA, Doyle S. At the metal-metabolite interface in Aspergillus fumigatus: towards untangling the intersecting roles of zinc and gliotoxin. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34738889 PMCID: PMC8743625 DOI: 10.1099/mic.0.001106] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cryptic links between apparently unrelated metabolic systems represent potential new drug targets in fungi. Evidence of such a link between zinc and gliotoxin (GT) biosynthesis in Aspergillus fumigatus is emerging. Expression of some genes of the GT biosynthetic gene cluster gli is influenced by the zinc-dependent transcription activator ZafA, zinc may relieve GT-mediated fungal growth inhibition and, surprisingly, GT biosynthesis is influenced by zinc availability. In A. fumigatus, dithiol gliotoxin (DTG), which has zinc-chelating properties, is converted to either GT or bis-dethiobis(methylthio)gliotoxin (BmGT) by oxidoreductase GliT and methyltransferase GtmA, respectively. A double deletion mutant lacking both GliT and GtmA was previously observed to be hypersensitive to exogenous GT exposure. Here we show that compared to wild-type exposure, exogenous GT and the zinc chelator N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) inhibit A. fumigatus ΔgliTΔgtmA growth, specifically under zinc-limiting conditions, which can be reversed by zinc addition. While GT biosynthesis is evident in zinc-depleted medium, addition of zinc (1 µM) suppressed GT and activated BmGT production. In addition, secretion of the unferrated siderophore, triacetylfusarinine C (TAFC), was evident by A. fumigatus wild-type (at >5 µM zinc) and ΔgtmA (at >1 µM zinc) in a low-iron medium. TAFC secretion suggests that differential zinc-sensing between both strains may influence fungal Fe3+ requirement. Label-free quantitative proteomic analysis of both strains under equivalent differential zinc conditions revealed protein abundance alterations in accordance with altered metabolomic observations, in addition to increased GliT abundance in ΔgtmA at 5 µM zinc, compared to wild-type, supporting a zinc-sensing deficiency in the mutant strain. The relative abundance of a range of oxidoreductase- and secondary metabolism-related enzymes was also evident in a zinc- and strain-dependent manner. Overall, we elaborate new linkages between zinc availability, natural product biosynthesis and oxidative stress homeostasis in A. fumigatus.
Collapse
Affiliation(s)
- Aimee M Traynor
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Claudia M Coughlin
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Maeve C Holton
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Gary W Jones
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, UK
| | - José A Calera
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
17
|
O'Connor E, Doyle S, Amini A, Grogan H, Fitzpatrick DA. Transmission of mushroom virus X and the impact of virus infection on the transcriptomes and proteomes of different strains of Agaricus bisporus. Fungal Biol 2021; 125:704-717. [PMID: 34420697 DOI: 10.1016/j.funbio.2021.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 11/19/2022]
Abstract
Cultivation of Agaricus bisporus is a large horticultural industry for many countries worldwide, where a single variety is almost grown exclusively. Mushroom virus X (MVX), a complex of multiple positive-sense single stranded RNA (ss(+)RNA) viruses, is a major pathogen of typical A. bisporus crops. MVX can manifest a variety of symptoms in crops and is highly infective and difficult to eradicate once established in host mycelium. Currently our knowledge regarding the molecular response of A. bisporus fruit bodies to MVX infection is limited. In order to study the response of different A. bisporus strains with different susceptibilities to MVX, we designed a model system to evaluate the in-vitro transmission of viruses in A. bisporus hyphae over a time-course, at two crucial phases in the crop cycle. The symptom expression of MVX in these varieties and the transcriptomic and proteomic response of fruit bodies to MVX-infection were examined. Transmission studies revealed the high potential of MVX to spread to uninfected mycelium yet not into the fruit bodies of certain strains in a crop. MVX affected colour and quality of multiple fruit bodies. Gene expression is significantly altered in all strains and between times of inoculation in the crop. Genes related to stress responses displayed differential expression. Proteomic responses revealed restriction of cellular signalling and vesicle transport in infected fruit bodies. This in-depth analysis examining many factors relevant to MVX infection in different A. bisporus strains, will provide key insights into host responses for this commercially important food crop.
Collapse
Affiliation(s)
- Eoin O'Connor
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Horticulture Development Department, Teagasc Food Research Centre, Ashtown, Dublin 15, D15 KN3K, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Aniça Amini
- Sylvan-Somycel (ESSC - Unité 2), ZI SUD, Rue Lavoisier, BP 25, 37130 Langeais, France
| | - Helen Grogan
- Horticulture Development Department, Teagasc Food Research Centre, Ashtown, Dublin 15, D15 KN3K, Ireland
| | - David A Fitzpatrick
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
18
|
García-Béjar B, Owens RA, Briones A, Arévalo-Villena M. Proteomic profiling and glycomic analysis of the yeast cell wall in strains with Aflatoxin B 1 elimination ability. Environ Microbiol 2021; 23:5305-5319. [PMID: 34029450 DOI: 10.1111/1462-2920.15606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/18/2021] [Indexed: 11/27/2022]
Abstract
The use of microorganisms for Aflatoxin B1 elimination has been studied as a new alternative tool and it is known that cell wall carried out a critical role. For that reason, cell wall and soluble intracellular fraction of eight yeasts with AFB1 detoxification capability were analysed. The quantitative and qualitative comparative label-free proteomic allowed the identification of diverse common constituent proteins, which revealed that putative cell wall proteins entailed less than 10% of the total proteome. It was possible to characterize different enzymes linked to cell wall polysaccharides biosynthesis as well as other proteins related with the cell wall organization and regulation. Additionally, the concentration of the principal polysaccharides was determined which permitted us to observe that β-glucans concentration was higher than mannans in most of the samples. In order to better understand the biosorption role of the cell wall against the AFB1 , an antimycotic (Caspofungin) was used to damage the cell wall structure. This assay allowed the observation of an effect on the normal growth of those yeasts with damaged cell walls that were exposed to AFB1 . This effect was not observed in yeast with intact cell walls, which may reveal a protective role of this structure against mycotoxins.
Collapse
Affiliation(s)
- Beatriz García-Béjar
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ana Briones
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - María Arévalo-Villena
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| |
Collapse
|
19
|
Understanding the fundamental role of virulence determinants to combat Aspergillus fumigatus infections: exploring beyond cell wall. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01677-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Owens RA, Doyle S. Effects of antifungal agents on the fungal proteome: informing on mechanisms of sensitivity and resistance. Expert Rev Proteomics 2021; 18:185-199. [PMID: 33797307 DOI: 10.1080/14789450.2021.1912601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Antifungal agents are essential in the fight against serious fungal disease, however emerging resistance is threatening an already limited collection of therapeutics. Proteomic analyses of effects of antifungal agents can expand our understanding of multifactorial mechanisms of action and have also proven valuable to elucidate proteomic changes associated with antifungal resistance. AREAS COVERED This review covers the application of proteomic techniques to examine sensitivity and resistance to antifungals including commonly used therapeutics, amphotericin B, echinocandins and the azoles, based predominantly on studies involving Aspergillus fumigatus, Candida albicans and Candida glabrata from the last 10 years. In addition, non-clinical antimicrobial agents are also discussed, which highlight the potential of proteomics to identify new antifungal targets. EXPERT COMMENTARY Fungal proteomics has evolved in the last decade with increased genome availability and developments in mass spectrometry. Collectively, these have led to the advancement of proteomic techniques, allowing increased coverage of the proteome. Gel-based proteomics laid the foundation for these types of studies, which has now shifted to the more powerful gel-free proteomics. This has resulted in the identification of key mediators and potential biomarkers of antifungal resistance, as well as elucidating the mechanisms of action of novel and established antifungal agents.
Collapse
Affiliation(s)
- Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
21
|
Targeting Methionine Synthase in a Fungal Pathogen Causes a Metabolic Imbalance That Impacts Cell Energetics, Growth, and Virulence. mBio 2020; 11:mBio.01985-20. [PMID: 33051366 PMCID: PMC7554668 DOI: 10.1128/mbio.01985-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fungal pathogens are responsible for millions of life-threatening infections on an annual basis worldwide. The current repertoire of antifungal drugs is very limited and, worryingly, resistance has emerged and already become a serious threat to our capacity to treat fungal diseases. The first step to develop new drugs is often to identify molecular targets in the pathogen whose inhibition during infection can prevent its growth. However, the current models are not suitable to validate targets in established infections. Here, we have characterized the promising antifungal target methionine synthase in great detail, using the prominent fungal pathogen Aspergillus fumigatus as a model. We have uncovered the underlying reason for its essentiality and confirmed its druggability. Furthermore, we have optimized the use of a genetic system to show a beneficial effect of targeting methionine synthase in established infections. Therefore, we believe that antifungal drugs to target methionine synthase should be pursued and additionally, we provide a model that permits gaining information about the validity of antifungal targets in established infections. There is an urgent need to develop novel antifungals to tackle the threat fungal pathogens pose to human health. Here, we have performed a comprehensive characterization and validation of the promising target methionine synthase (MetH). We show that in Aspergillus fumigatus the absence of this enzymatic activity triggers a metabolic imbalance that causes a reduction in intracellular ATP, which prevents fungal growth even in the presence of methionine. Interestingly, growth can be recovered in the presence of certain metabolites, which shows that metH is a conditionally essential gene and consequently should be targeted in established infections for a more comprehensive validation. Accordingly, we have validated the use of the tetOFF genetic model in fungal research and improved its performance in vivo to achieve initial validation of targets in models of established infection. We show that repression of metH in growing hyphae halts growth in vitro, which translates into a beneficial effect when targeting established infections using this model in vivo. Finally, a structure-based virtual screening of methionine synthases reveals key differences between the human and fungal structures and unravels features in the fungal enzyme that can guide the design of novel specific inhibitors. Therefore, methionine synthase is a valuable target for the development of new antifungals.
Collapse
|
22
|
McGowan J, O’Hanlon R, Owens RA, Fitzpatrick DA. Comparative Genomic and Proteomic Analyses of Three Widespread Phytophthora Species: Phytophthora chlamydospora, Phytophthora gonapodyides and Phytophthora pseudosyringae. Microorganisms 2020; 8:E653. [PMID: 32365808 PMCID: PMC7285336 DOI: 10.3390/microorganisms8050653] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
The Phytophthora genus includes some of the most devastating plant pathogens. Here we report draft genome sequences for three ubiquitous Phytophthora species-Phytophthora chlamydospora, Phytophthora gonapodyides, and Phytophthora pseudosyringae. Phytophthora pseudosyringae is an important forest pathogen that is abundant in Europe and North America. Phytophthora chlamydospora and Ph. gonapodyides are globally widespread species often associated with aquatic habitats. They are both regarded as opportunistic plant pathogens. The three sequenced genomes range in size from 45 Mb to 61 Mb. Similar to other oomycete species, tandem gene duplication appears to have played an important role in the expansion of effector arsenals. Comparative analysis of carbohydrate-active enzymes (CAZymes) across 44 oomycete genomes indicates that oomycete lifestyles may be linked to CAZyme repertoires. The mitochondrial genome sequence of each species was also determined, and their gene content and genome structure were compared. Using mass spectrometry, we characterised the extracellular proteome of each species and identified large numbers of proteins putatively involved in pathogenicity and osmotrophy. The mycelial proteome of each species was also characterised using mass spectrometry. In total, the expression of approximately 3000 genes per species was validated at the protein level. These genome resources will be valuable for future studies to understand the behaviour of these three widespread Phytophthora species.
Collapse
Affiliation(s)
- Jamie McGowan
- Department of Biology, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland; (R.A.O.); (D.A.F.)
- Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland
| | | | - Rebecca A. Owens
- Department of Biology, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland; (R.A.O.); (D.A.F.)
- Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland
| | - David A. Fitzpatrick
- Department of Biology, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland; (R.A.O.); (D.A.F.)
- Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, W23 F2H6 Co. Kildare, Ireland
| |
Collapse
|
23
|
Proteomic investigation of interhyphal interactions between strains of Agaricus bisporus. Fungal Biol 2020; 124:579-591. [PMID: 32448449 DOI: 10.1016/j.funbio.2020.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 11/23/2022]
Abstract
Hyphae of filamentous fungi undergo polar extension, bifurcation and hyphal fusion to form reticulating networks of mycelia. Hyphal fusion or anastomosis, a ubiquitous process among filamentous fungi, is a vital strategy for how fungi expand over their substrate and interact with or recognise self- and non-self hyphae of neighbouring mycelia in their environment. Morphological and genetic characterisation of anastomosis has been studied in many model fungal species, but little is known of the direct proteomic response of two interacting fungal isolates. Agaricus bisporus, the most widely cultivated edible mushroom crop worldwide, was used as an in vitro model to profile the proteomes of interacting cultures. The globally cultivated strain (A15) was paired with two distinct strains; a commercial hybrid strain and a wild isolate strain. Each co-culture presented a different interaction ranging from complete vegetative compatibility (self), lack of interactions, and antagonistic interactions. These incompatible strains are the focus of research into disease-resistance in commercial crops as the spread of intracellular pathogens, namely mycoviruses, is limited by the lack of interhyphal anastomosis. Unique proteomic responses were detected between all co-cultures. An array of cell wall modifying enzymes, plus fungal growth and morphogenesis proteins were found in significantly (P < 0.05) altered abundances. Nitrogen metabolism dominated in the intracellular proteome, with evidence of nitrogen starvation between competing, non-compatible cultures. Changes in key enzymes of A. bisporus morphogenesis were observed, particularly via increased abundance of glucanosyltransferase in competing interactions and certain chitinases in vegetative compatible interactions only. Carbohydrate-active enzyme arsenals are expanded in antagonistic interactions in A. bisporus. Pathways involved in carbohydrate metabolism and genetic information processing were higher in interacting cultures, most notably during self-recognition. New insights into the differential response of interacting strains of A. bisporus will enhance our understanding of potential barriers to viral transmission through vegetative incompatibility. Our results suggest that a differential proteomic response occurs between A. bisporus at strain-level and findings from this work may guide future proteomic investigation of fungal anastomosis.
Collapse
|
24
|
Traynor AM, Sheridan KJ, Jones GW, Calera JA, Doyle S. Involvement of Sulfur in the Biosynthesis of Essential Metabolites in Pathogenic Fungi of Animals, Particularly Aspergillus spp.: Molecular and Therapeutic Implications. Front Microbiol 2019; 10:2859. [PMID: 31921039 PMCID: PMC6923255 DOI: 10.3389/fmicb.2019.02859] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Fungal sulfur uptake is required for incorporation into the sidechains of the amino acids cysteine and methionine, and is also essential for the biosynthesis of the antioxidant glutathione (GSH), S-adenosylmethionine (SAM), the key source of methyl groups in cellular transmethylation reactions, and S-adenosylhomocysteine (SAH). Biosynthesis of redox-active gliotoxin in the opportunistic fungal pathogen Aspergillus fumigatus has been elucidated over the past 10 years. Some fungi which produce gliotoxin-like molecular species have undergone unexpected molecular rewiring to accommodate this high-risk biosynthetic process. Specific disruption of gliotoxin biosynthesis, via deletion of gliK, which encodes a γ-glutamyl cyclotransferase, leads to elevated intracellular antioxidant, ergothioneine (EGT), levels, and confirms crosstalk between the biosynthesis of both sulfur-containing moieties. Gliotoxin is ultimately formed by gliotoxin oxidoreductase GliT-mediated oxidation of dithiol gliotoxin (DTG). In fact, DTG is a substrate for both GliT and a bis-thiomethyltransferase, GtmA. GtmA converts DTG to bisdethiobis(methylthio)gliotoxin (BmGT), using 2 mol SAM and resultant SAH must be re-converted to SAM via the action of the Methyl/Met cycle. In the absence of GliT, DTG fluxes via GtmA to BmGT, which results in both SAM depletion and SAH overproduction. Thus, the negative regulation of gliotoxin biosynthesis via GtmA must be counter-balanced by GliT activity to avoid Methyl/Met cycle dysregulation, SAM depletion and trans consequences on global cellular biochemistry in A. fumigatus. DTG also possesses potent Zn2+ chelation properties which positions this sulfur-containing metabolite as a putative component of the Zn2+ homeostasis system within fungi. EGT plays an essential role in high-level redox homeostasis and its presence requires significant consideration in future oxidative stress studies in pathogenic filamentous fungi. In certain filamentous fungi, sulfur is additionally indirectly required for the formation of EGT and the disulfide-bridge containing non-ribosomal peptide, gliotoxin, and related epipolythiodioxopiperazines. Ultimately, interference with emerging sulfur metabolite functionality may represent a new strategy for antifungal drug development.
Collapse
Affiliation(s)
- Aimee M Traynor
- Department of Biology, Maynooth University, Maynooth, Ireland
| | | | - Gary W Jones
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - José A Calera
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
25
|
Delgado J, Núñez F, Asensio MA, Owens RA. Quantitative proteomic profiling of ochratoxin A repression in Penicillium nordicum by protective cultures. Int J Food Microbiol 2019; 305:108243. [DOI: 10.1016/j.ijfoodmicro.2019.108243] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/26/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
|
26
|
Waldron R, McGowan J, Gordon N, McCarthy C, Mitchell EB, Fitzpatrick DA. Proteome and allergenome of the European house dust mite Dermatophagoides pteronyssinus. PLoS One 2019; 14:e0216171. [PMID: 31042761 PMCID: PMC6493757 DOI: 10.1371/journal.pone.0216171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/15/2019] [Indexed: 11/18/2022] Open
Abstract
The European house dust mite Dermatophagoides pteronyssinus is of significant medical importance as it is a major elicitor of allergic illnesses. In this analysis we have undertaken comprehensive bioinformatic and proteomic examination of Dermatophagoides pteronyssinus airmid, identified 12,530 predicted proteins and validated the expression of 4,002 proteins. Examination of homology between predicted proteins and allergens from other species revealed as much as 2.6% of the D. pteronyssinus airmid proteins may cause an allergenic response. Many of the potential allergens have evidence for expression (n = 259) and excretion (n = 161) making them interesting targets for future allergen studies. Comparative proteomic analysis of mite body and spent growth medium facilitated qualitative assessment of mite group allergen localisation. Protein extracts from house dust contain a substantial number of uncharacterised D. pteronyssinus proteins in addition to known and putative allergens. Novel D. pteronyssinus proteins were identified to be highly abundant both in house dust and laboratory cultures and included numerous carbohydrate active enzymes that may be involved in cuticle remodelling, bacteriophagy or mycophagy. These data may have clinical applications in the development of allergen-specific immunotherapy that mimic natural exposure. Using a phylogenomic approach utilising a supermatrix and supertree methodologies we also show that D. pteronyssinus is more closely related to Euroglyphus maynei than Dermatophagoides farinae.
Collapse
Affiliation(s)
- Rose Waldron
- Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
- Airmid Healthgroup Ltd., Trinity Enterprise Campus, Dublin, Ireland
| | - Jamie McGowan
- Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
- Human Health Research Institute, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Natasha Gordon
- Airmid Healthgroup Ltd., Trinity Enterprise Campus, Dublin, Ireland
| | - Charley McCarthy
- Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
- Human Health Research Institute, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - David A. Fitzpatrick
- Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
- Human Health Research Institute, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
27
|
Jain S, Sekonyela R, Knox BP, Palmer JM, Huttenlocher A, Kabbage M, Keller NP. Selenate sensitivity of a laeA mutant is restored by overexpression of the bZIP protein MetR in Aspergillus fumigatus. Fungal Genet Biol 2018; 117:1-10. [PMID: 29753128 PMCID: PMC6064392 DOI: 10.1016/j.fgb.2018.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023]
Abstract
LaeA is a conserved global regulator of secondary metabolism and development in filamentous fungi. Examination of Aspergillus fumigatus transcriptome data of laeA deletion mutants have been fruitful in identifying genes and molecules contributing to the laeA mutant phenotype. One of the genes significantly down regulated in A. fumigatus ΔlaeA is metR, encoding a bZIP DNA binding protein required for sulfur and methionine metabolism in fungi. LaeA and MetR deletion mutants exhibit several similarities including down regulation of sulfur assimilation and methionine metabolism genes and ability to grow on the toxic sulfur analog, sodium selenate. However, unlike ΔmetR, ΔlaeA strains are able to grow on sulfur, sulfite, and cysteine. To examine if any parameter of the ΔlaeA phenotype is due to decreased metR expression, an over-expression allele (OE::metR) was placed in a ΔlaeA background. The OE::metR allele could not significantly restore expression of MetR regulated genes in ΔlaeA but did restore sensitivity to sodium selenate. In A. nidulans a second bZIP protein, MetZ, also regulates sulfur and methionine metabolism genes. However, addition of an OE::metZ construct to the A. fumigatus ΔlaeA OE::metR strain still was unable to rescue the ΔlaeA phenotype to wildtype with regards gliotoxin synthesis and virulence in a zebrafish aspergillosis model.
Collapse
Affiliation(s)
- Sachin Jain
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Relebohile Sekonyela
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Benjamin P Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jonathan M Palmer
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Nancy P Keller
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
28
|
The Transcription Factor ZafA Regulates the Homeostatic and Adaptive Response to Zinc Starvation in Aspergillus fumigatus. Genes (Basel) 2018; 9:genes9070318. [PMID: 29949939 PMCID: PMC6070888 DOI: 10.3390/genes9070318] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022] Open
Abstract
One of the most important features that enables Aspergillus fumigatus to grow within a susceptible individual and to cause disease is its ability to obtain Zn2+ ions from the extremely zinc-limited environment provided by host tissues. Zinc uptake from this source in A. fumigatus relies on ZIP transporters encoded by the zrfA, zrfB and zrfC genes. The expression of these genes is tightly regulated by the ZafA transcription factor that regulates zinc homeostasis and is essential for A. fumigatus virulence. We combined the use of microarrays, Electrophoretic Mobility Shift Assays (EMSA) analyses, DNase I footprinting assays and in silico tools to better understand the regulation of the homeostatic and adaptive response of A. fumigatus to zinc starvation. We found that under zinc-limiting conditions, ZafA functions mainly as a transcriptional activator through binding to a zinc response sequence located in the regulatory regions of its target genes, although it could also function as a repressor of a limited number of genes. In addition to genes involved in the homeostatic response to zinc deficiency, ZafA also influenced, either directly or indirectly, the expression of many other genes. It is remarkable that the expression of many genes involved in iron uptake and ergosterol biosynthesis is strongly reduced under zinc starvation, even though only the expression of some of these genes appeared to be influenced directly or indirectly by ZafA. In addition, it appears to exist in A. fumigatus a zinc/iron cross-homeostatic network to allow the adaptation of the fungus to grow in media containing unbalanced Zn:Fe ratios. The adaptive response to oxidative stress typically linked to zinc starvation was also mediated by ZafA, as was the strong induction of genes involved in gliotoxin biosynthesis and self-protection against endogenous gliotoxin. This study has expanded our knowledge about the regulatory and metabolic changes displayed by A. fumigatus in response to zinc starvation and has helped us to pinpoint new ZafA target genes that could be important for fungal pathogens to survive and grow within host tissues and, hence, for virulence.
Collapse
|
29
|
Shankar J, Tiwari S, Shishodia SK, Gangwar M, Hoda S, Thakur R, Vijayaraghavan P. Molecular Insights Into Development and Virulence Determinants of Aspergilli: A Proteomic Perspective. Front Cell Infect Microbiol 2018; 8:180. [PMID: 29896454 PMCID: PMC5986918 DOI: 10.3389/fcimb.2018.00180] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Abstract
Aspergillus species are the major cause of health concern worldwide in immunocompromised individuals. Opportunistic Aspergilli cause invasive to allergic aspergillosis, whereas non-infectious Aspergilli have contributed to understand the biology of eukaryotic organisms and serve as a model organism. Morphotypes of Aspergilli such as conidia or mycelia/hyphae helped them to survive in favorable or unfavorable environmental conditions. These morphotypes contribute to virulence, pathogenicity and invasion into hosts by excreting proteins, enzymes or toxins. Morphological transition of Aspergillus species has been a critical step to infect host or to colonize on food products. Thus, we reviewed proteins from Aspergilli to understand the biological processes, biochemical, and cellular pathways that are involved in transition and morphogenesis. We majorly analyzed proteomic studies on A. fumigatus, A. flavus, A. terreus, and A. niger to gain insight into mechanisms involved in the transition from conidia to mycelia along with the role of secondary metabolites. Proteome analysis of morphotypes of Aspergilli provided information on key biological pathways required to exit conidial dormancy, consortia of virulent factors and mycotoxins during the transition. The application of proteomic approaches has uncovered the biological processes during development as well as intermediates of secondary metabolite biosynthesis pathway. We listed key proteins/ enzymes or toxins at different morphological types of Aspergillus that could be applicable in discovery of novel therapeutic targets or metabolite based diagnostic markers.
Collapse
Affiliation(s)
- Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Shraddha Tiwari
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Sonia K Shishodia
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Manali Gangwar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Shanu Hoda
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Raman Thakur
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | | |
Collapse
|
30
|
Comparative systems analysis of the secretome of the opportunistic pathogen Aspergillus fumigatus and other Aspergillus species. Sci Rep 2018; 8:6617. [PMID: 29700415 PMCID: PMC5919931 DOI: 10.1038/s41598-018-25016-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
Aspergillus fumigatus and multiple other Aspergillus species cause a wide range of lung infections, collectively termed aspergillosis. Aspergilli are ubiquitous in environment with healthy immune systems routinely eliminating inhaled conidia, however, Aspergilli can become an opportunistic pathogen in immune-compromised patients. The aspergillosis mortality rate and emergence of drug-resistance reveals an urgent need to identify novel targets. Secreted and cell membrane proteins play a critical role in fungal-host interactions and pathogenesis. Using a computational pipeline integrating data from high-throughput experiments and bioinformatic predictions, we have identified secreted and cell membrane proteins in ten Aspergillus species known to cause aspergillosis. Small secreted and effector-like proteins similar to agents of fungal-plant pathogenesis were also identified within each secretome. A comparison with humans revealed that at least 70% of Aspergillus secretomes have no sequence similarity with the human proteome. An analysis of antigenic qualities of Aspergillus proteins revealed that the secretome is significantly more antigenic than cell membrane proteins or the complete proteome. Finally, overlaying an expression dataset, four A. fumigatus proteins upregulated during infection and with available structures, were found to be structurally similar to known drug target proteins in other organisms, and were able to dock in silico with the respective drug.
Collapse
|
31
|
Lind AL, Lim FY, Soukup AA, Keller NP, Rokas A. An LaeA- and BrlA-Dependent Cellular Network Governs Tissue-Specific Secondary Metabolism in the Human Pathogen Aspergillus fumigatus. mSphere 2018; 3:e00050-18. [PMID: 29564395 PMCID: PMC5853485 DOI: 10.1128/msphere.00050-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/21/2018] [Indexed: 12/17/2022] Open
Abstract
Biosynthesis of many ecologically important secondary metabolites (SMs) in filamentous fungi is controlled by several global transcriptional regulators, like the chromatin modifier LaeA, and tied to both development and vegetative growth. In Aspergillus molds, asexual development is regulated by the BrlA > AbaA > WetA transcriptional cascade. To elucidate BrlA pathway involvement in SM regulation, we examined the transcriptional and metabolic profiles of ΔbrlA, ΔabaA, and ΔwetA mutant and wild-type strains of the human pathogen Aspergillus fumigatus. We find that BrlA, in addition to regulating production of developmental SMs, regulates vegetative SMs and the SrbA-regulated hypoxia stress response in a concordant fashion to LaeA. We further show that the transcriptional and metabolic equivalence of the ΔbrlA and ΔlaeA mutations is mediated by an LaeA requirement preventing heterochromatic marks in the brlA promoter. These results provide a framework for the cellular network regulating not only fungal SMs but diverse cellular processes linked to virulence of this pathogen. IMPORTANCE Filamentous fungi produce a spectacular variety of small molecules, commonly known as secondary or specialized metabolites (SMs), which are critical to their ecologies and lifestyles (e.g., penicillin, cyclosporine, and aflatoxin). Elucidation of the regulatory network that governs SM production is a major question of both fundamental and applied research relevance. To shed light on the relationship between regulation of development and regulation of secondary metabolism in filamentous fungi, we performed global transcriptomic and metabolomic analyses on mutant and wild-type strains of the human pathogen Aspergillus fumigatus under conditions previously shown to induce the production of both vegetative growth-specific and asexual development-specific SMs. We find that the gene brlA, previously known as a master regulator of asexual development, is also a master regulator of secondary metabolism and other cellular processes. We further show that brlA regulation of SM is mediated by laeA, one of the master regulators of SM, providing a framework for the cellular network regulating not only fungal SMs but diverse cellular processes linked to virulence of this pathogen.
Collapse
Affiliation(s)
- Abigail L. Lind
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Fang Yun Lim
- Department of Medical Microbiology & Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Alexandra A. Soukup
- Department of Genetics, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Nancy P. Keller
- Department of Medical Microbiology & Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Antonis Rokas
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
32
|
Saleh AA, Jones GW, Tinley FC, Delaney SF, Alabbadi SH, Fenlon K, Doyle S, Owens RA. Systems impact of zinc chelation by the epipolythiodioxopiperazine dithiol gliotoxin in Aspergillus fumigatus: a new direction in natural product functionality. Metallomics 2018; 10:854-866. [DOI: 10.1039/c8mt00052b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dithiol gliotoxin (DTG) is a zinc chelator and an inability to dissipate DTG in Aspergillus fumigatus is associated with multiple impacts which are linked to zinc chelation.
Collapse
Affiliation(s)
| | - Gary W. Jones
- Department of Biology
- Maynooth University
- Co. Kildare
- Ireland
- Centre for Biomedical Research
| | | | | | | | - Keith Fenlon
- Department of Biology
- Maynooth University
- Co. Kildare
- Ireland
| | - Sean Doyle
- Department of Biology
- Maynooth University
- Co. Kildare
- Ireland
| | | |
Collapse
|
33
|
Dolan SK, Bock T, Hering V, Owens RA, Jones GW, Blankenfeldt W, Doyle S. Structural, mechanistic and functional insight into gliotoxin bis-thiomethylation in Aspergillus fumigatus. Open Biol 2017; 7:rsob.160292. [PMID: 28179499 PMCID: PMC5356443 DOI: 10.1098/rsob.160292] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/11/2017] [Indexed: 01/02/2023] Open
Abstract
Gliotoxin is an epipolythiodioxopiperazine (ETP) class toxin, contains a disulfide bridge that mediates its toxic effects via redox cycling and is produced by the opportunistic fungal pathogen Aspergillus fumigatus Self-resistance against gliotoxin is effected by the gliotoxin oxidase GliT, and attenuation of gliotoxin biosynthesis is catalysed by gliotoxin S-methyltransferase GtmA. Here we describe the X-ray crystal structures of GtmA-apo (1.66 Å), GtmA complexed to S-adenosylhomocysteine (1.33 Å) and GtmA complexed to S-adenosylmethionine (2.28 Å), providing mechanistic insights into this important biotransformation. We further reveal that simultaneous elimination of the ability of A. fumigatus to dissipate highly reactive dithiol gliotoxin, via deletion of GliT and GtmA, results in the most significant hypersensitivity to exogenous gliotoxin observed to date. Indeed, quantitative proteomic analysis of ΔgliT::ΔgtmA reveals an uncontrolled over-activation of the gli-cluster upon gliotoxin exposure. The data presented herein reveal, for the first time, the extreme risk associated with intracellular dithiol gliotoxin biosynthesis-in the absence of an efficient dismutation capacity. Significantly, a previously concealed protective role for GtmA and functionality of ETP bis-thiomethylation as an ancestral protection strategy against dithiol compounds is now evident.
Collapse
Affiliation(s)
- Stephen K Dolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Tobias Bock
- Helmholtz Centre for Infection Research, Structure and Function of Proteins, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Vanessa Hering
- Helmholtz Centre for Infection Research, Structure and Function of Proteins, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Gary W Jones
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Wulf Blankenfeldt
- Helmholtz Centre for Infection Research, Structure and Function of Proteins, Inhoffenstraße 7, 38124 Braunschweig, Germany .,Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
34
|
Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nat Ecol Evol 2017; 1:1931-1941. [DOI: 10.1038/s41559-017-0347-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022]
|
35
|
Proteomic Characterization of Armillaria mellea Reveals Oxidative Stress Response Mechanisms and Altered Secondary Metabolism Profiles. Microorganisms 2017; 5:microorganisms5030060. [PMID: 28926970 PMCID: PMC5620651 DOI: 10.3390/microorganisms5030060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Armillaria mellea is a major plant pathogen. Yet, the strategies the organism uses to infect susceptible species, degrade lignocellulose and other plant material and protect itself against plant defences and its own glycodegradative arsenal are largely unknown. Here, we use a combination of gel and MS-based proteomics to profile A. mellea under conditions of oxidative stress and changes in growth matrix. 2-DE and LC-MS/MS were used to investigate the response of A. mellea to H2O2 and menadione/FeCl3 exposure, respectively. Several proteins were detected with altered abundance in response to H2O2, but not menadione/FeCl3 (i.e., valosin-containing protein), indicating distinct responses to these different forms of oxidative stress. One protein, cobalamin-independent methionine synthase, demonstrated a common response in both conditions, which may be a marker for a more general stress response mechanism. Further changes to the A. mellea proteome were investigated using MS-based proteomics, which identified changes to putative secondary metabolism (SM) enzymes upon growth in agar compared to liquid cultures. Metabolomic analyses revealed distinct profiles, highlighting the effect of growth matrix on SM production. This establishes robust methods by which to utilize comparative proteomics to characterize this important phytopathogen.
Collapse
|
36
|
Delgado J, Owens RA, Doyle S, Núñez F, Asensio MA. Quantitative proteomics reveals new insights into calcium-mediated resistance mechanisms in Aspergillus flavus against the antifungal protein PgAFP in cheese. Food Microbiol 2017; 66:1-10. [DOI: 10.1016/j.fm.2017.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/24/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
|
37
|
Manfiolli AO, de Castro PA, dos Reis TF, Dolan S, Doyle S, Jones G, Riaño Pachón DM, Ulaş M, Noble LM, Mattern DJ, Brakhage AA, Valiante V, Silva-Rocha R, Bayram O, Goldman GH. Aspergillus fumigatusprotein phosphatase PpzA is involved in iron assimilation, secondary metabolite production, and virulence. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12770] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/28/2017] [Accepted: 07/14/2017] [Indexed: 01/19/2023]
Affiliation(s)
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| | - Stephen Dolan
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | - Sean Doyle
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | - Gary Jones
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | - Diego M. Riaño Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas São Paulo Brazil
| | - Mevlüt Ulaş
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | | | - Derek J. Mattern
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute; Jena Germany
- University of Jena; Jena Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute; Jena Germany
- University of Jena; Jena Germany
| | - Vito Valiante
- Leibniz Research Group-Biobricks of Microbial Natural Product Syntheses; Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute; Jena Germany
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| | - Ozgur Bayram
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto Brazil
| |
Collapse
|
38
|
Alves de Castro P, dos Reis TF, Dolan SK, Manfiolli AO, Brown NA, Jones GW, Doyle S, Riaño-Pachón DM, Squina FM, Caldana C, Singh A, Del Poeta M, Hagiwara D, Silva-Rocha R, Goldman GH. The Aspergillus fumigatus SchA SCH9 kinase modulates SakA HOG1 MAP kinase activity and it is essential for virulence. Mol Microbiol 2016; 102:642-671. [PMID: 27538790 PMCID: PMC5207228 DOI: 10.1111/mmi.13484] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
Abstract
The serine-threonine kinase TOR, the Target of Rapamycin, is an important regulator of nutrient, energy and stress signaling in eukaryotes. Sch9, a Ser/Thr kinase of AGC family (the cAMP-dependent PKA, cGMP- dependent protein kinase G and phospholipid-dependent protein kinase C family), is a substrate of TOR. Here, we characterized the fungal opportunistic pathogen Aspergillus fumigatus Sch9 homologue (SchA). The schA null mutant was sensitive to rapamycin, high concentrations of calcium, hyperosmotic stress and SchA was involved in iron metabolism. The ΔschA null mutant showed increased phosphorylation of SakA, the A. fumigatus Hog1 homologue. The schA null mutant has increased and decreased trehalose and glycerol accumulation, respectively, suggesting SchA performs different roles for glycerol and trehalose accumulation during osmotic stress. The schA was transcriptionally regulated by osmotic stress and this response was dependent on SakA and MpkC. The double ΔschA ΔsakA and ΔschA ΔmpkC mutants were more sensitive to osmotic stress than the corresponding parental strains. Transcriptomics and proteomics identified direct and indirect targets of SchA post-exposure to hyperosmotic stress. Finally, ΔschA was avirulent in a low dose murine infection model. Our results suggest there is a complex network of interactions amongst the A. fumigatus TOR, SakA and SchA pathways.
Collapse
Affiliation(s)
- Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Stephen K. Dolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Adriana Oliveira Manfiolli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Neil Andrew Brown
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | - Gary W. Jones
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Diego M. Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, São Paulo, CEP 13083-970, Brasil
| | - Fábio Márcio Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, São Paulo, CEP 13083-970, Brasil
| | - Camila Caldana
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, São Paulo, CEP 13083-970, Brasil
- Max Planck Partner Group at Brazilian Bioethanol Science and Technology Laboratory, Brazilian Center for Research in Energy and Materials, São Paulo, Brazil
| | - Ashutosh Singh
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
39
|
Sheridan KJ, Lechner BE, Keeffe GO, Keller MA, Werner ER, Lindner H, Jones GW, Haas H, Doyle S. Ergothioneine Biosynthesis and Functionality in the Opportunistic Fungal Pathogen, Aspergillus fumigatus. Sci Rep 2016; 6:35306. [PMID: 27748436 PMCID: PMC5066259 DOI: 10.1038/srep35306] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022] Open
Abstract
Ergothioneine (EGT; 2-mercaptohistidine trimethylbetaine) is a trimethylated and sulphurised histidine derivative which exhibits antioxidant properties. Here we report that deletion of Aspergillus fumigatus egtA (AFUA_2G15650), which encodes a trimodular enzyme, abrogated EGT biosynthesis in this opportunistic pathogen. EGT biosynthetic deficiency in A. fumigatus significantly reduced resistance to elevated H2O2 and menadione, respectively, impaired gliotoxin production and resulted in attenuated conidiation. Quantitative proteomic analysis revealed substantial proteomic remodelling in ΔegtA compared to wild-type under both basal and ROS conditions, whereby the abundance of 290 proteins was altered. Specifically, the reciprocal differential abundance of cystathionine γ-synthase and β-lyase, respectively, influenced cystathionine availability to effect EGT biosynthesis. A combined deficiency in EGT biosynthesis and the oxidative stress response regulator Yap1, which led to extreme oxidative stress susceptibility, decreased resistance to heavy metals and production of the extracellular siderophore triacetylfusarinine C and increased accumulation of the intracellular siderophore ferricrocin. EGT dissipated H2O2 in vitro, and elevated intracellular GSH levels accompanied abrogation of EGT biosynthesis. EGT deficiency only decreased resistance to high H2O2 levels which suggests functionality as an auxiliary antioxidant, required for growth at elevated oxidative stress conditions. Combined, these data reveal new interactions between cellular redox homeostasis, secondary metabolism and metal ion homeostasis.
Collapse
Affiliation(s)
- Kevin J Sheridan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Grainne O' Keeffe
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Markus A Keller
- Division of Biological Chemistry, Biocenter, Medical University Innsbruck, Innrain 80/82, Austria
| | - Ernst R Werner
- Division of Biological Chemistry, Biocenter, Medical University Innsbruck, Innrain 80/82, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University Innsbruck, Innrain 80/82, Austria
| | - Gary W Jones
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Medical University Innsbruck, Innrain 80/82, Austria
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
40
|
Moloney NM, Owens RA, Doyle S. Proteomic analysis of Aspergillus fumigatus – clinical implications. Expert Rev Proteomics 2016; 13:635-49. [DOI: 10.1080/14789450.2016.1203783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
41
|
Moloney NM, Owens RA, Meleady P, Henry M, Dolan SK, Mulvihill E, Clynes M, Doyle S. The iron-responsive microsomal proteome of Aspergillus fumigatus. J Proteomics 2016; 136:99-111. [DOI: 10.1016/j.jprot.2015.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/02/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023]
|
42
|
Smith EB, Dolan SK, Fitzpatrick DA, Doyle S, Jones GW. Towards understanding the gliotoxin detoxification mechanism: in vivo thiomethylation protects yeast from gliotoxin cytotoxicity. MICROBIAL CELL 2016; 3:120-125. [PMID: 28357342 PMCID: PMC5349022 DOI: 10.15698/mic2016.03.485] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gliotoxin (GT) is a mycotoxin produced by some species of ascomycete fungi
including the opportunistic human pathogen Aspergillus
fumigatus. In order to produce GT the host organism needs to have
evolved a self-protection mechanism. GT contains a redox-cycling disulfide
bridge that is important in mediating toxicity. Recently is has been
demonstrated that A. fumigatus possesses a novel
thiomethyltransferase protein called GtmA that has the ability to thiomethylate
GT in vivo, which aids the organism in regulating GT
biosynthesis. It has been suggested that thiomethylation of GT and similar
sulfur-containing toxins may play a role in providing self-protection in host
organisms. In this work we have engineered Saccharomyces
cerevisiae, a GT-naïve organism, to express A.
fumigatus GtmA. We demonstrate that GtmA can readily thiomethylate
GT in yeast, which results in protection of the organism from exogenous GT. Our
work has implications for understanding the evolution of GT self-protection
mechanisms in organisms that are GT producers and non-producers.
Collapse
Affiliation(s)
- Elizabeth B Smith
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Stephen K Dolan
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - David A Fitzpatrick
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Gary W Jones
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| |
Collapse
|
43
|
Manzanares-Miralles L, Sarikaya-Bayram Ö, Smith EB, Dolan SK, Bayram Ö, Jones GW, Doyle S. Quantitative proteomics reveals the mechanism and consequence of gliotoxin-mediated dysregulation of the methionine cycle in Aspergillus niger. J Proteomics 2016; 131:149-162. [DOI: 10.1016/j.jprot.2015.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 12/25/2022]
|