1
|
Hernández-Hernández G, Vera-Salazar LA, Gutiérrez-Escobedo G, Gómez-Hernández N, Leiva-Peláez O, De Las Peñas A, Castaño I. Abf1 negatively regulates the expression of EPA1 and affects adhesion in Candida glabrata. J Med Microbiol 2024; 73. [PMID: 39360930 DOI: 10.1099/jmm.0.001905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Introduction. Adherence is a major virulence trait in Candida glabrata that, in many strains, depends on the EPA (epithelial adhesin) genes, which confer the ability to adhere to epithelial and endothelial cells of the host. The EPA genes are generally found at subtelomeric regions, which makes them subject to subtelomeric silencing. In C. glabrata, subtelomeric silencing depends on different protein complexes, such as silent information regulator and yKu complexes, and other proteins, such as Repressor/activator protein 1 (Rap1) and Abf1. At the EPA1 locus, which encodes the main adhesin Epa1, we previously found at least two cis-acting elements, the protosilencer Sil2126 and the negative element, that contribute to the propagation of silencing from the telomere to the subtelomeric region.Hypothesis. Abf1 binds to the regulatory regions of EPA1 and other regions at the telomere E-R, thereby negatively regulating EPA1 transcription.Aim. To determine whether Abf1 and Rap1 silencing proteins bind to previously identified cis-acting elements on the right telomere of chromosome E (E-R subtelomeric region), resulting in negative regulation of EPA1 transcription and infer Abf1 and Rap1 recognition sites in C. glabrata.Methodology. We used chromatin immunoprecipitation (ChIP) followed by quantitative PCR to determine the binding sites for Abf1 and Rap1 in the intergenic regions between EPA1 and EPA2 and HYR1 and EPA1, and mutants were used to determine the silencing level of the EPA1 promoter region.Results. We found that Abf1 predominantly binds to the EPA1 promoter region, leading to negative regulation of EPA1 expression. Furthermore, the mutant abf1-43, which lacks the last 43 amino acids at its C-terminal end and is defective for subtelomeric silencing, exhibits hyperadherence to epithelial cells in vitro compared to the parental strain, suggesting that EPA1 is derepressed. We also determined the motif-binding sequences for Abf1 and Rap1 in C. glabrata using data from the ChIP assays.Conclusion. Together these data indicate that Abf1 negatively regulates EPA1 expression, leading to decreased adhesion of C. glabrata to epithelial cells.
Collapse
Affiliation(s)
- Grecia Hernández-Hernández
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Laura A Vera-Salazar
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Guadalupe Gutiérrez-Escobedo
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Nicolás Gómez-Hernández
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Osney Leiva-Peláez
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Alejandro De Las Peñas
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Irene Castaño
- División de Biología Molecular. IPICYT. Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª sección. San Luis Potosí, San Luis Potosí 78216, Mexico
| |
Collapse
|
2
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
3
|
Raj K, Paul D, Rishi P, Shukla G, Dhotre D, YogeshSouche. Decoding the role of oxidative stress resistance and alternative carbon substrate assimilation in the mature biofilm growth mode of Candida glabrata. BMC Microbiol 2024; 24:128. [PMID: 38641593 PMCID: PMC11031924 DOI: 10.1186/s12866-024-03274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Biofilm formation is viewed as a vital mechanism in C. glabrata pathogenesis. Although, it plays a significant role in virulence but transcriptomic architecture and metabolic pathways governing the biofilm growth mode of C. glabrata remain elusive. The present study intended to investigate the genes implicated in biofilm growth phase of C. glabrata through global transcriptomic approach. RESULTS Functional analysis of Differentially expressed genes (DEGs) using gene ontology and pathways analysis revealed that upregulated genes are involved in the glyoxylate cycle, carbon-carbon lyase activity, pre-autophagosomal structure membrane and vacuolar parts whereas, down- regulated genes appear to be associated with glycolysis, ribonucleoside biosynthetic process, ribosomal and translation process in the biofilm growth condition. The RNA-Seq expression of eight selected DEGs (CgICL1, CgMLS1, CgPEP1, and CgNTH1, CgERG9, CgERG11, CgTEF3, and CgCOF1) was performed with quantitative real-time PCR (RT-qPCR). The gene expression profile of selected DEGs with RT-qPCR displayed a similar pattern of expression as observed in RNA-Seq. Phenotype screening of mutant strains generated for genes CgPCK1 and CgPEP1, showed that Cgpck1∆ failed to grow on alternative carbon substrate (Glycerol, Ethanol, Oleic acid) and similarly, Cgpep1∆ unable to grow on YPD medium supplemented with hydrogen peroxide. Our results suggest that in the absence of glucose, C. glabrata assimilate glycerol, oleic acid and generate acetyl coenzyme-A (acetyl-CoA) which is a central and connecting metabolite between catabolic and anabolic pathways (glyoxylate and gluconeogenesis) to produce glucose and fulfil energy requirements. CONCLUSIONS The study was executed using various approaches (transcriptomics, functional genomics and gene deletion) and it revealed that metabolic plasticity of C. glabrata (NCCPF-100,037) in biofilm stage modulates its virulence and survival ability to counter the stress and may promote its transition from commensal to opportunistic pathogen. The observations deduced from the present study along with future work on characterization of the proteins involved in this intricate process may prove to be beneficial for designing novel antifungal strategies.
Collapse
Affiliation(s)
- Khem Raj
- Department of Microbiology Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014, India.
| | - Dhiraj Paul
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Praveen Rishi
- Department of Microbiology Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Geeta Shukla
- Department of Microbiology Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Dhiraj Dhotre
- National Centre for Microbial Resource, National Centre for Cell Sciences (NCCS), Pune, India
| | - YogeshSouche
- National Centre for Microbial Resource, National Centre for Cell Sciences (NCCS), Pune, India
| |
Collapse
|
4
|
Pärnänen P, Sorsa T, Tervahartiala T, Nikula-Ijäs P. Preparation and Purification of β-1,3-glucan-Linked Candida glabrata Cell Wall Proteases by Ion-Exchange Chromatography, Gel Filtration, and MDPF-Gelatin-Zymography Assay. Bio Protoc 2024; 14:e4958. [PMID: 38841286 PMCID: PMC10958166 DOI: 10.21769/bioprotoc.4958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 06/07/2024] Open
Abstract
Candida glabrata is an opportunistic pathogen that may cause serious infections in an immunocompromised host. C. glabrata cell wall proteases directly interact with host cells and affect yeast virulence and host immune responses. This protocol describes methods to purify β-1,3-glucan-bonded cell wall proteases from C. glabrata. These cell wall proteases are detached from the cell wall glucan network by lyticase treatment, which hydrolyzes β-1,3-glucan bonds specifically without rupturing cells. The cell wall supernatant is further fractioned by centrifugal devices with cut-offs of 10 and 50 kDa, ion-exchange filtration (charge), and gel filtration (size exclusion). The enzymatic activity of C. glabrata proteases is verified with MDPF-gelatin zymography and the degradation of gelatin is visualized by loss of gelatin fluorescence. With this procedure, the enzymatic activities of the fractions are kept intact, differing from methods used in previous studies with trypsin digestion of the yeast cell wall. The protein bands may be eventually located from a parallel silver-stained gel and identified with LC-MS/MS spectrometry. The advantage of this methodology is that it allows further host protein degradation assays; the protocol is also suitable for studying other Candida yeast species. Key features • Uses basic materials and laboratory equipment, enabling low-cost studies. • Facilitates the selection and identification of proteases with certain molecular weights. • Enables further functional studies with host proteins, such as structural or immune response-related, or enzymes and candidate protease inhibitors (e.g., from natural substances). • This protocol has been optimized for C. glabrata but may be applied with modifications to other Candida species.
Collapse
Affiliation(s)
- Pirjo Pärnänen
- Department of Oral and Maxillofacial Diseases,
University of Helsinki and Helsinki University Central Hospital, Helsinki,
Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases,
University of Helsinki and Helsinki University Central Hospital, Helsinki,
Finland
- Department of Dental Medicine, Karolinska Institute,
Huddinge, Sweden
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases,
University of Helsinki and Helsinki University Central Hospital, Helsinki,
Finland
| | | |
Collapse
|
5
|
Angiolella L, Rojas F, Giammarino A, Bellucci N, Giusiano G. Identification of Virulence Factors in Isolates of Candida haemulonii, Candida albicans and Clavispora lusitaniae with Low Susceptibility and Resistance to Fluconazole and Amphotericin B. Microorganisms 2024; 12:212. [PMID: 38276197 PMCID: PMC10819056 DOI: 10.3390/microorganisms12010212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Emerging life-threatening multidrug-resistant (MDR) species such as the C. haemulonii species complex, Clavispora lusitaniae (sin. C. lusitaniae), and other Candida species are considered as an increasing risk for human health in the near future. (1) Background: Many studies have emphasized that the increase in drug resistance can be associated with several virulence factors in Candida and its knowledge is also essential in developing new antifungal strategies. (2) Methods: Hydrophobicity, adherence, biofilm formation, lipase activity, resistance to osmotic stress, and virulence 'in vivo' on G. mellonella larvae were studied in isolates of C. haemulonii, C. albicans, and C. lusitaniae with low susceptibility and resistance to fluconazole and amphotericin B. (3) Results: Intra- and interspecies variability were observed. C. haemulonii showed high hydrophobicity and the ability to adhere to and form biofilm. C. lusitaniae was less hydrophobic, was biofilm-formation-strain-dependent, and did not show lipase activity. Larvae inoculated with C. albicans isolates displayed significantly higher mortality rates than those infected with C. haemulonii and C. lusitaniae. (4) Conclusions: The ability to adhere to and form biofilms associated with their hydrophobic capacity, to adapt to stress, and to infect within an in vivo model, observed in these non-wild-type Candida and Clavispora isolates, shows their marked virulence features. Since factors that define virulence are related to the development of the resistance of these fungi to the few antifungals available for clinical use, differences in the physiology of these cells must be considered to develop new antifungal therapies.
Collapse
Affiliation(s)
- Letizia Angiolella
- Department of Public Health and Infectious Diseases “Sapienza”, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.G.); (N.B.)
| | - Florencia Rojas
- Departamento de Micología, Instituto de Medicina Regional, Universidad Nacional del Nordeste, CONICET, Resistencia 3500, Argentina; (F.R.); (G.G.)
| | - Andrea Giammarino
- Department of Public Health and Infectious Diseases “Sapienza”, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.G.); (N.B.)
| | - Nicolò Bellucci
- Department of Public Health and Infectious Diseases “Sapienza”, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.G.); (N.B.)
| | - Gustavo Giusiano
- Departamento de Micología, Instituto de Medicina Regional, Universidad Nacional del Nordeste, CONICET, Resistencia 3500, Argentina; (F.R.); (G.G.)
| |
Collapse
|
6
|
Du M, Li F, Hu Y. A Uniform Design Method Can Optimize the Combinatorial Parameters of Antimicrobial Photodynamic Therapy, Including the Concentrations of Methylene Blue and Potassium Iodide, Light Dose, and Methylene Blue's Incubation Time, to Improve Fungicidal Effects on Candida Species. Microorganisms 2023; 11:2557. [PMID: 37894215 PMCID: PMC10609332 DOI: 10.3390/microorganisms11102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The optimal combinatorial parameters of antimicrobial photodynamic therapy (aPDT) mediated by methylene blue (MB) with the addition of potassium iodide (KI) against Candida species have never been defined. This study aimed to optimize the combinatorial parameters of aPDT, including the concentrations of MB (X1, 0.1-1.0 mM) and KI (X2, 100-400 mM), light dose (X3, 10-70 J/cm2), and MB's incubation time (X4, 5-35 min) for three Candida species. The best MB + KI-aPDT fungicidal effects (Y) against Candida albicans ATCC 90028 (YCa), Candida parapsilosis ATCC 22019 (YCp), and Candida glabrata ATCC 2950 (YCg) were investigated using a uniform design method. The regression models deduced using this method were YCa = 7.126 + 1.199X1X3 - 1.742X12 + 0.206X22 - 0.361X32; YCp = 10.724 - 0.867X1 - 1.497X2 + 0.560X3 + 1.298X22; and YCg = 0.892 - 0.956X1 + 2.296X3 + 1.299X42 - 3.316X3X4. The optimal combinatorial parameters inferred from the regression equations were MB 0.1 mM, KI 400 mM, a light dose of 20 J/cm2, and a 5-minute incubation time of MB for Candida albicans; MB 0.1 mM, KI 400 mM, a light dose of 70 J/cm2, and a 5-minute incubation time of MB for Candida parapsilosis; MB 0.1 mM, KI 100 mM, a light dose of 10 J/cm2, and a 35-minute incubation time of MB for Candida glabrata. The uniform design method can optimize the combinatorial parameters of aPDT mediated by MB plus KI to obtain the best aPDT fungicidal effects on Candida species, providing a new method to optimize the combinatorial parameters of aPDT for different pathogens in the future.
Collapse
Affiliation(s)
- Meixia Du
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China;
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Yanwei Hu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China;
| |
Collapse
|
7
|
Duggan S, Usher J. Candida glabrata: A powerhouse of resistance. PLoS Pathog 2023; 19:e1011651. [PMID: 37796755 PMCID: PMC10553330 DOI: 10.1371/journal.ppat.1011651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Affiliation(s)
- Seána Duggan
- Medical Research Council Centre for Medical Mycology at The University of Exeter, Exeter, United Kingdom
| | - Jane Usher
- Medical Research Council Centre for Medical Mycology at The University of Exeter, Exeter, United Kingdom
| |
Collapse
|
8
|
Romo JA, Tomihiro M, Kumamoto CA. Pre-colonization with the fungus Candida glabrata exacerbates infection by the bacterial pathogen Clostridioides difficile in a murine model. mSphere 2023; 8:e0012223. [PMID: 37358292 PMCID: PMC10449511 DOI: 10.1128/msphere.00122-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/18/2023] [Indexed: 06/27/2023] Open
Abstract
The contributions of commensal fungi to human health and disease are not well understood. Candida species such as C. albicans and C. glabrata are opportunistic pathogenic fungi and common colonizers of the human intestinal tract. They have been shown to affect the host immune system and interact with the gut microbiome and pathogenic microorganisms. Therefore, Candida species could be expected to play important ecological roles in the host gastrointestinal tract. Previously, our group demonstrated that pre-colonization of mice with C. albicans protected them against lethal C. difficile infection (CDI). Here, we show that mice pre-colonized with C. glabrata succumbed to CDI more rapidly than mice that were not pre-colonized suggesting an enhancement in C. difficile pathogenesis. Further, when C. difficile was added to pre-formed C. glabrata biofilms, an increase in matrix and overall biomass was observed. These effects were also shown with C. glabrata clinical isolates. Interestingly, the presence of C. difficile increased C. glabrata biofilm susceptibility to caspofungin, indicating potential effects on the fungal cell wall. Defining this intricate and intimate relationship will lead to an understanding of the role of Candida species in the context of CDI and novel aspects of Candida biology. IMPORTANCE Most microbiome studies have only considered the bacterial populations while ignoring other members of the microbiome such as fungi, other eukaryotic microorganisms, and viruses. Therefore, the role of fungi in human health and disease has been significantly understudied compared to their bacterial counterparts. This has generated a significant gap in knowledge that has negatively impacted disease diagnosis, understanding, and the development of therapeutics. With the development of novel technologies, we now have an understanding of mycobiome composition, but we do not understand the roles of fungi in the host. Here, we present findings showing that Candida glabrata, an opportunistic pathogenic yeast that colonizes the mammalian gastrointestinal tract, can impact the severity and outcome of a Clostridioides difficile infection (CDI) in a murine model. These findings bring attention to fungal colonizers during CDI, a bacterial infection of the gastrointestinal tract.
Collapse
Affiliation(s)
- Jesús A. Romo
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Makenzie Tomihiro
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Ormsby MJ, Akinbobola A, Quilliam RS. Plastic pollution and fungal, protozoan, and helminth pathogens - A neglected environmental and public health issue? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163093. [PMID: 36996975 DOI: 10.1016/j.scitotenv.2023.163093] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 06/01/2023]
Abstract
Plastic waste is ubiquitous in the environment and can become colonised by distinct microbial biofilm communities, known collectively as the 'plastisphere.' The plastisphere can facilitate the increased survival and dissemination of human pathogenic prokaryotes (e.g., bacteria); however, our understanding of the potential for plastics to harbour and disseminate eukaryotic pathogens is lacking. Eukaryotic microorganisms are abundant in natural environments and represent some of the most important disease-causing agents, collectively responsible for tens of millions of infections, and millions of deaths worldwide. While prokaryotic plastisphere communities in terrestrial, freshwater, and marine environments are relatively well characterised, such biofilms will also contain eukaryotic species. Here, we critically review the potential for fungal, protozoan, and helminth pathogens to associate with the plastisphere, and consider the regulation and mechanisms of this interaction. As the volume of plastics in the environment continues to rise there is an urgent need to understand the role of the plastisphere for the survival, virulence, dissemination, and transfer of eukaryotic pathogens, and the effect this can have on environmental and human health.
Collapse
Affiliation(s)
- Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| | - Ayorinde Akinbobola
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
10
|
Alvarado M, Gómez-Navajas JA, Blázquez-Muñoz MT, Gómez-Molero E, Berbegal C, Eraso E, Kramer G, De Groot PWJ. Integrated post-genomic cell wall analysis reveals floating biofilm formation associated with high expression of flocculins in the pathogen Pichia kudriavzevii. PLoS Pathog 2023; 19:e1011158. [PMID: 37196016 DOI: 10.1371/journal.ppat.1011158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/30/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
The pathogenic yeast Pichia kudriavzevii, previously known as Candida krusei, is more distantly related to Candida albicans than clinically relevant CTG-clade Candida species. Its cell wall, a dynamic organelle that is the first point of interaction between pathogen and host, is relatively understudied, and its wall proteome remains unidentified to date. Here, we present an integrated study of the cell wall in P. kudriavzevii. Our comparative genomic studies and experimental data indicate that the general structure of the cell wall in P. kudriavzevii is similar to Saccharomyces cerevisiae and C. albicans and is comprised of β-1,3-glucan, β-1,6-glucan, chitin, and mannoproteins. However, some pronounced differences with C. albicans walls were observed, for instance, higher mannan and protein levels and altered protein mannosylation patterns. Further, despite absence of proteins with high sequence similarity to Candida adhesins, protein structure modeling identified eleven proteins related to flocculins/adhesins in S. cerevisiae or C. albicans. To obtain a proteomic comparison of biofilm and planktonic cells, P. kudriavzevii cells were grown to exponential phase and in static 24-h cultures. Interestingly, the 24-h static cultures of P. kudriavzevii yielded formation of floating biofilm (flor) rather than adherence to polystyrene at the bottom. The proteomic analysis of both conditions identified a total of 33 cell wall proteins. In line with a possible role in flor formation, increased abundance of flocculins, in particular Flo110, was observed in the floating biofilm compared to exponential cells. This study is the first to provide a detailed description of the cell wall in P. kudriavzevii including its cell wall proteome, and paves the way for further investigations on the importance of flor formation and flocculins in the pathogenesis of P. kudriavzevii.
Collapse
Affiliation(s)
- María Alvarado
- Regional Center for Biomedical Research, Castilla-La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - Jesús Alberto Gómez-Navajas
- Regional Center for Biomedical Research, Castilla-La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - María Teresa Blázquez-Muñoz
- Regional Center for Biomedical Research, Castilla-La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - Emilia Gómez-Molero
- Regional Center for Biomedical Research, Castilla-La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - Carmen Berbegal
- ENOLAB, Estructura de Recerca Interdisciplinar (ERI) BioTecMed and Departament de Microbiologia i Ecología, Universitat de València, Burjassot, Spain
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Gertjan Kramer
- Mass Spectrometry of Biomolecules, University of Amsterdam, Swammerdam Institute for Life Sciences Amsterdam, Amsterdam, The Netherlands
| | - Piet W J De Groot
- Regional Center for Biomedical Research, Castilla-La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
11
|
Alavi M, Ashengroph M. Mycosynthesis of AgNPs: mechanisms of nanoparticle formation and antimicrobial activities. Expert Rev Anti Infect Ther 2023; 21:355-363. [PMID: 36786717 DOI: 10.1080/14787210.2023.2179988] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
INTRODUCTION The inactivation and eradication of multidrug-resistant bacteria, fungi, and viruses by conventional antibiotics and drugs have not been effective. The hindering of these pathogens in hospital-acquired infections caused by Gram-positive bacteria, particularly strains of S. aureus including community-acquired methicillin-resistant (CA-MRSA) and hospital-acquired MRSA (HA-MRSA), is more complicated, specifically in patients having immunodeficiency syndrome. RESEARCH AREA Bare and functionalized metal and metal oxide nanoparticles (NPs) specifically silver (Ag) NPs have shown significant antibacterial, antifungal, and antiviral activities. Biosynthesis of AgNPs by fungal species in media of cell-free filtrate and culture supernatant can provide new therapeutic properties compared to physical and chemical methods. EXPERT OPINION Various primary and secondary metabolites of fungi such as phytochelatin, trichodin, primin, altersolanol A, periconicin A, brefeldin A, graphislactone A, phomol, polysaccharides (chitin, glucans, and galactomannans), and enzymes can contribute to reducing Ag+ ions and stabilizing NPs in one-pot method. These natural compounds can augment antimicrobial activity by bypassing multidrug-resistance barriers in viruses, bacteria, and fungi. Controlling physicochemical properties and effective therapeutic concentration of fungal AgNPs can be the determinative parameters for the antimicrobial strength of AgNPs. Therefore, in this review, we have tried to address the antimicrobial mechanisms and physicochemical properties of fungal synthesized AgNPs.
Collapse
Affiliation(s)
- Mehran Alavi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran.,Nanobiotechnology Laboratory, Department of Biology, Razi University, Kermanshah, Iran
| | - Morahem Ashengroph
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
12
|
Characterization of Virulence Factors in Candida Species Causing Candidemia in a Tertiary Care Hospital in Bangkok, Thailand. J Fungi (Basel) 2023; 9:jof9030353. [PMID: 36983521 PMCID: PMC10059995 DOI: 10.3390/jof9030353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Candidemia is often associated with high mortality, and Candida albicans, Candida tropicalis, Candida glabrata, and Candida parapsilosis are common causes of this disease. The pathogenicity characteristics of specific Candida spp. that cause candidemia in Thailand are poorly understood. This study aimed to characterize the virulence factors of Candida spp. Thirty-eight isolates of different Candida species from blood cultures were evaluated for their virulence properties, including exoenzyme and biofilm production, cell surface hydrophobicity, tissue invasion, epithelial cell damage, morphogenesis, and phagocytosis resistance; the identity and frequency of mutations in ERG11 contributing to azole-resistance were also determined. C. albicans had the highest epithelial cell invasion rate and phospholipase activity, with true hyphae formation, whereas C. tropicalis produced the most biofilm, hydrophobicity, protease activity, and host cell damage and true hyphae formation. ERG11 mutations Y132F and S154F were observed in all azole-resistant C. tropicalis. C. glabrata had the most hemolytic activity while cell invasion was low with no morphologic transition. C. glabrata was more easily phagocytosed than other species. C. parapsilosis generated pseudohyphae but not hyphae and did not exhibit any trends in exoenzyme production. This knowledge will be crucial for understanding the pathogenicity of Candida spp. and will help to explore antivirulence-based treatment.
Collapse
|
13
|
Lin CJ, Yang SY, Hsu LH, Yu SJ, Chen YL. The Gcn5-Ada2-Ada3 histone acetyltransferase module has divergent roles in pathogenesis of Candida glabrata. Med Mycol 2023; 61:myad004. [PMID: 36715154 DOI: 10.1093/mmy/myad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/04/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Candida glabrata is an opportunistic fungal pathogen and the second most prevalent species isolated from candidiasis patients. C. glabrata has intrinsic tolerance to antifungal drugs and oxidative stresses and the ability to adhere to mucocutaneous surfaces. However, knowledge about the regulation of its virulence traits is limited. The Spt-Ada-Gcn5 acetyltransferase (SAGA) complex modulates gene transcription by histone acetylation through the histone acetyltransferase (HAT) module comprised of Gcn5-Ada2-Ada3. Previously, we showed that the ada2 mutant was hypervirulent but displayed decreased tolerance to antifungal drugs and cell wall perturbing agents. In this study, we further characterized the functions of Ada3 and Gcn5 in C. glabrata. We found that single, double, or triple deletions of the HAT module, as expected, resulted in a decreased level of acetylation on histone H3 lysine 9 (H3K9) and defective growth. These mutants were more susceptible to antifungal drugs, oxidative stresses, and cell wall perturbing agents compared with the wild-type. In addition, HAT module mutants exhibited enhanced agar invasion and upregulation of adhesin and proteases encoding genes, whereas the biofilm formation of those mutants was impaired. Interestingly, HAT module mutants exhibited enhanced induction of catalases (CTA1) expression upon treatment with H2O2 compared with the wild-type. Lastly, although ada3 and gcn5 exhibited marginal hypervirulence, the HAT double and triple mutants were hypervirulent in a murine model of candidiasis. In conclusion, the HAT module of the SAGA complex plays unique roles in H3K9 acetylation, drug tolerance, oxidative stress response, adherence, and virulence in C. glabrata.
Collapse
Affiliation(s)
- Chi-Jan Lin
- Institute of Molecular Biology, National Chung Hsing University, 40227 Taichung, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Sheng-Yung Yang
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Li-Hang Hsu
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Shang-Jie Yu
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Ying-Lien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| |
Collapse
|
14
|
"In vivo" and "in vitro" antimicrobial activity of Origanum vulgare essential oil and its two phenolic compounds on clinical isolates of Candida spp. Arch Microbiol 2022; 205:15. [PMID: 36477374 DOI: 10.1007/s00203-022-03355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
A limited therapeutic arsenal is currently available against Candida infections that show high resistance to antifungal agents. For this reason, there is a great need to prioritize testing therapeutic agents for the treatment of candidiasis. The use of essential oils and their phytoconstituents has been emphasized as a new therapeutic approach. The cell surface hydrophobicity (CSH), polysaccharide content, antimicrobial activity of essential oil from Origanum vulgare L. (OVEO), and its two phenolic compounds carvacrol and thymol were evaluated in four different Candida spp. (Candida albicans and emerging non-albicans Candida (NAC) species, such as C. glabrata, C. tropicalis, and C. krusei). The results showed the differences between Candida species; for example, C. tropicalis revealed higher resistance than other strains to different natural molecule treatments. The ultrastructural variabilities in the biomembranes and cell walls of these Candida spp. might explain the different biological effects observed after OVEO, carvacrol and thymol treatments. Therefore, to study the biological effects of these natural compounds on Candida strains, the samples were observed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Moreover, the release of cellular materials and their "in vivo" antimicrobial activity on infected G. mellonella larvae were evaluated. The novelty of this study is the demonstration that exists a close correlation between both structural architecture of cell walls and biomembranes' organization with cell fungal responses to essential oils treatments. Overall, these results suggest practical limits to the predictability.
Collapse
|
15
|
Raj K, Rishi P, Shukla G, Rudramurhty SM, Mongad DS, Kaur A. Possible Contribution of Alternative Transcript Isoforms in Mature Biofilm Growth Phase of Candida glabrata. Indian J Microbiol 2022; 62:583-601. [PMID: 36458226 PMCID: PMC9705674 DOI: 10.1007/s12088-022-01036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022] Open
Abstract
Expression of genome-wide alternative transcript isoforms and differential transcript isoform usage in different biological conditions (isoform switching) are responsible for the varied proteomic functional diversity in higher eukaryotic organisms. However, these mechanisms have not been studied in Candida glabrata, which is a potent eukaryotic opportunistic pathogen. Biofilm formation is an important virulence factor of C. glabrata that withstands antifungal drug stress and overcomes the host-immune response. Here, we present the genome-wide differential transcript isoform expression (DTE) and differential transcript isoform usage (DTU) in a mature biofilm growth phase of C. glabrata (clinical isolate; NCCPF 100,037) using the RNA sequencing approach. The DTE analysis generated 7837 transcript isoforms from the C. glabrata genome (5293 genes in total), and revealed that transcript isoforms generated from 292 genes showed significant DTU in the mature biofilm cells. Gene ontology, pathway analysis and protein-protein interactions of significant transcript isoforms, further substantiated that their specific expression and differential usage is required for transitioning the planktonic cells to biofilm in C. glabrata. The present study reported the possible role of expression of alternative transcript isoforms and differential transcript isoform usage in the mature biofilms of C. glabrata. The observation derived from the study may prove to be beneficial for making future antifungal therapeutic strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-022-01036-7.
Collapse
Affiliation(s)
- Khem Raj
- Department of Microbiology, Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Praveen Rishi
- Department of Microbiology, Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Geeta Shukla
- Department of Microbiology, Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Shivaprakash M. Rudramurhty
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Dattatray S. Mongad
- National Centre for Microbial Resource, National Centre for Cell Sciences (NCCS), Pune, India
| | - Amrita Kaur
- Department of Microbiology, Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014 India
| |
Collapse
|
16
|
Pais P, Galocha M, Takahashi-Nakaguchi A, Chibana H, Teixeira MC. Multiple genome analysis of Candida glabrata clinical isolates renders new insights into genetic diversity and drug resistance determinants. MICROBIAL CELL (GRAZ, AUSTRIA) 2022; 9:174-189. [PMID: 36448018 PMCID: PMC9662024 DOI: 10.15698/mic2022.11.786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2023]
Abstract
The emergence of drug resistance significantly hampers the treatment of human infections, including those caused by fungal pathogens such as Candida species. Candida glabrata ranks as the second most common cause of candidiasis worldwide, supported by rapid acquisition of resistance to azole and echinocandin antifungals frequently prompted by single nucleotide polymorphisms (SNPs) in resistance associated genes, such as PDR1 (azole resistance) or FKS1/2 (echinocandin resistance). To determine the frequency of polymorphisms and genome rearrangements as the possible genetic basis of C. glabrata drug resistance, we assessed genomic variation across 94 globally distributed isolates with distinct resistance phenotypes, whose sequence is deposited in GenBank. The genomes of three additional clinical isolates were sequenced, in this study, including two azole resistant strains that did not display Gain-Of-Function (GOF) mutations in the transcription factor encoding gene PDR1. Genomic variations in susceptible isolates were used to screen out variants arising from genome diversity and to identify variants exclusive to resistant isolates. More than half of the azole or echinocandin resistant isolates do not possess exclusive polymorphisms in PDR1 or FKS1/2, respectively, providing evidence of alternative genetic basis of antifungal resistance. We also identified copy number variations consistently affecting a subset of chromosomes. Overall, our analysis of the genomic and phenotypic variation across isolates allowed to pinpoint, in a genome-wide scale, genetic changes enriched specifically in antifungal resistant strains, which provides a first step to identify additional determinants of antifungal resistance. Specifically, regarding the newly sequenced strains, a set of mutations/genes are proposed to underlie the observed unconventional azole resistance phenotype.
Collapse
Affiliation(s)
- Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Mónica Galocha
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | | | - Hiroji Chibana
- Medical Mycology Research Center (MMRC), Chiba University, Chiba, Japan
| | - Miguel C. Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Portugal
| |
Collapse
|
17
|
Characterization of the Secretome of Pathogenic Candida glabrata and Their Effectiveness against Systemic Candidiasis in BALB/c Mice for Vaccine Development. Pharmaceutics 2022; 14:pharmaceutics14101989. [PMID: 36297425 PMCID: PMC9612021 DOI: 10.3390/pharmaceutics14101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
Infections by non-albicans Candida species have increased drastically in the past few decades. Candida glabrata is one of the most common opportunistic fungal pathogens in immunocompromised individuals, owing to its capability to attach to various human cell types and medical devices and being intrinsically weakly susceptible to azoles. Immunotherapy, including the development of antifungal vaccines, has been recognized as an alternative approach for preventing and treating fungal infections. Secretory proteins play a crucial role in establishing host–pathogen interactions and are also responsible for eliciting an immune response in the host during candidiasis. Therefore, fungal secretomes can provide promising protein candidates for antifungal vaccine development. This study attempts to uncover the presence of immunodominant antigenic proteins in the C. glabrata secretome and delineate their role in various biological processes and their potency in the development of antifungal vaccines. LC–MS/MS results uncovered that C. glabrata secretome consisted of 583 proteins, among which 33 were identified as antigenic proteins. The protection ability of secretory proteins against hematogenously disseminated infection caused by C. glabrata was evaluated in BALB/c mice. After immunization and booster doses, all the animals were challenged with a lethal dose of C. glabrata. All the mice showing signs of distress were sacrificed post-infection, and target organs were collected, followed by histopathology and C. glabrata (CFU/mg) estimation. Our results showed a lower fungal burden in target organs and increased survival in immunized mice compared to the infection control group, thus revealing the immunogenic property of secreted proteins. Thus, identified secretome proteins of C. glabrata have the potential to act as antigenic proteins, which can serve as potential candidates for the development of antifungal vaccines. This study also emphasizes the importance of a mass-spectrometry approach to identifying the antigenic proteins in C. glabrata secretome.
Collapse
|
18
|
Ribeiro RA, Bourbon-Melo N, Sá-Correia I. The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts. Front Microbiol 2022; 13:953479. [PMID: 35966694 PMCID: PMC9366716 DOI: 10.3389/fmicb.2022.953479] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
In industrial settings and processes, yeasts may face multiple adverse environmental conditions. These include exposure to non-optimal temperatures or pH, osmotic stress, and deleterious concentrations of diverse inhibitory compounds. These toxic chemicals may result from the desired accumulation of added-value bio-products, yeast metabolism, or be present or derive from the pre-treatment of feedstocks, as in lignocellulosic biomass hydrolysates. Adaptation and tolerance to industrially relevant stress factors involve highly complex and coordinated molecular mechanisms occurring in the yeast cell with repercussions on the performance and economy of bioprocesses, or on the microbiological stability and conservation of foods, beverages, and other goods. To sense, survive, and adapt to different stresses, yeasts rely on a network of signaling pathways to modulate the global transcriptional response and elicit coordinated changes in the cell. These pathways cooperate and tightly regulate the composition, organization and biophysical properties of the cell wall. The intricacy of the underlying regulatory networks reflects the major role of the cell wall as the first line of defense against a wide range of environmental stresses. However, the involvement of cell wall in the adaptation and tolerance of yeasts to multiple stresses of biotechnological relevance has not received the deserved attention. This article provides an overview of the molecular mechanisms involved in fine-tuning cell wall physicochemical properties during the stress response of Saccharomyces cerevisiae and their implication in stress tolerance. The available information for non-conventional yeast species is also included. These non-Saccharomyces species have recently been on the focus of very active research to better explore or control their biotechnological potential envisaging the transition to a sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Ricardo A. Ribeiro
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno Bourbon-Melo
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
19
|
Shantal CJN, Juan CC, Lizbeth BUS, Carlos HGJ, Estela GPB. Candida glabrata is a successful pathogen: an artist manipulating the immune response. Microbiol Res 2022; 260:127038. [DOI: 10.1016/j.micres.2022.127038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
|
20
|
Li X, He L, Krom BP, Cheng L, de Soet JJ, Deng DM. Niacin Limitation Promotes Candida glabrata Adhesion to Abiotic Surfaces. Pathogens 2022; 11:pathogens11040387. [PMID: 35456062 PMCID: PMC9028596 DOI: 10.3390/pathogens11040387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
Candida glabrata is a prevalent fungal pathogen in humans, which is able to adhere to host cells and abiotic surfaces. Nicotinic acid (NA) limitation has been shown to promote the adherence of C. glabrata to human epithelial cells. Clinically, the elderly and hospitalized patients who are prone to C. glabrata–related denture stomatitis often suffer from vitamin deficiency. This study aimed to investigate C. glabrata adhesion to abiotic surfaces, including acrylic resin (a denture material) surfaces, cell surface hydrophobicity and adhesion gene expression. C. glabrata CBS138 was grown in media containing decreasing NA concentrations (40, 0.4, 0.04 and 0.004 µM). Adherence of C. glabrata to glass coverslips and acrylic resin was analyzed. C. glabrata adhesion to both surfaces generally increased with decreasing NA concentrations. The highest adhesion was found for the cells grown with 0.004 µM NA. The cell surface hydrophobicity test indicated that NA limitation enhanced hydrophobicity of C. glabrata cells. Quantitative PCR showed that of all adhesion genes tested, EPA1, EPA3 and EPA7 were significantly up-regulated in both 0.004 µM NA and 0.04 µM NA groups compared to those in the 40 µM NA group. No significant up- or down-regulation under NA limitation was observed for the other tested adhesion genes, namely AWP3, AWP4, AWP6 and EPA6. NA limitation resulted in increased expression of some adhesion genes, higher surface hydrophobicity of C. glabrata and enhanced adhesion to abiotic surfaces. NA deficiency is likely a risk factor for C. glabrata–related denture stomatitis in the elderly.
Collapse
Affiliation(s)
- Xiaolan Li
- Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Sun Yat-sen University, Guangzhou 510055, China
- Academic Centre for Dentistry Amsterdam (ACTA), Department of Preventive Dentistry, Universiteit van Amsterdam and Vrije Universiteit, 1081 LA Amsterdam, The Netherlands; (B.P.K.); (J.J.d.S.); (D.M.D.)
- Correspondence:
| | - Libang He
- West China School of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, Sichuan University, Chengdu 610041, China; (L.H.); (L.C.)
| | - Bastiaan P. Krom
- Academic Centre for Dentistry Amsterdam (ACTA), Department of Preventive Dentistry, Universiteit van Amsterdam and Vrije Universiteit, 1081 LA Amsterdam, The Netherlands; (B.P.K.); (J.J.d.S.); (D.M.D.)
| | - Lei Cheng
- West China School of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, Sichuan University, Chengdu 610041, China; (L.H.); (L.C.)
| | - Johannes J. de Soet
- Academic Centre for Dentistry Amsterdam (ACTA), Department of Preventive Dentistry, Universiteit van Amsterdam and Vrije Universiteit, 1081 LA Amsterdam, The Netherlands; (B.P.K.); (J.J.d.S.); (D.M.D.)
| | - Dong M. Deng
- Academic Centre for Dentistry Amsterdam (ACTA), Department of Preventive Dentistry, Universiteit van Amsterdam and Vrije Universiteit, 1081 LA Amsterdam, The Netherlands; (B.P.K.); (J.J.d.S.); (D.M.D.)
| |
Collapse
|
21
|
CRISPR-Cas9 approach confirms Calcineurin-responsive zinc finger 1 (Crz1) transcription factor as a promising therapeutic target in echinocandin-resistant Candida glabrata. PLoS One 2022; 17:e0265777. [PMID: 35303047 PMCID: PMC8932611 DOI: 10.1371/journal.pone.0265777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Invasive fungal infections, which kill more than 1.6 million patients each year worldwide, are difficult to treat due to the limited number of antifungal drugs (azoles, echinocandins, and polyenes) and the emergence of antifungal resistance. The transcription factor Crz1, a key regulator of cellular stress responses and virulence, is an attractive therapeutic target because this protein is absent in human cells. Here, we used a CRISPR-Cas9 approach to generate isogenic crz1Δ strains in two clinical isolates of caspofungin-resistant C. glabrata to analyze the role of this transcription factor in susceptibility to echinocandins, stress tolerance, biofilm formation, and pathogenicity in both non-vertebrate (Galleria mellonella) and vertebrate (mice) models of candidiasis. In these clinical isolates, CRZ1 disruption restores the susceptibility to echinocandins in both in vitro and in vivo models, and affects their oxidative stress response, biofilm formation, cell size, and pathogenicity. These results strongly suggest that Crz1 inhibitors may play an important role in the development of novel therapeutic agents against fungal infections considering the emergence of antifungal resistance and the low number of available antifungal drugs.
Collapse
|
22
|
Lim EJ, Leng EGT, Tram NDT, Periayah MH, Ee PLR, Barkham TMS, Poh ZS, Verma NK, Lakshminarayanan R. Rationalisation of Antifungal Properties of α-Helical Pore-Forming Peptide, Mastoparan B. Molecules 2022; 27:molecules27041438. [PMID: 35209228 PMCID: PMC8879275 DOI: 10.3390/molecules27041438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
The high mortality associated with invasive fungal infections, narrow spectrum of available antifungals, and increasing evolution of antifungal resistance necessitate the development of alternative therapies. Host defense peptides are regarded as the first line of defense against microbial invasion in both vertebrates and invertebrates. In this work, we investigated the effectiveness of four naturally occurring pore-forming antimicrobial peptides (melittin, magainin 2, cecropin A, and mastoparan B) against a panel of clinically relevant pathogens, including Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. We present data on the antifungal activities of the four pore-forming peptides, assessed with descriptive statistics, and their cytocompatibility with cultured human cells. Among the four peptides, mastoparan B (MB) displayed potent antifungal activity, whereas cecropin A was the least potent. We show that MB susceptibility of phylogenetically distant non-candida albicans can vary and be described by different intrinsic physicochemical parameters of pore-forming α-helical peptides. These findings have potential therapeutic implications for the design and development of safe antifungal peptide-based drugs.
Collapse
Affiliation(s)
- Edward Jianyang Lim
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore; (E.J.L.); (E.G.T.L.); (M.H.P.)
| | - Eunice Goh Tze Leng
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore; (E.J.L.); (E.G.T.L.); (M.H.P.)
| | - Nhan Dai Thien Tram
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore; (N.D.T.T.); (P.L.R.E.)
| | - Mercy Halleluyah Periayah
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore; (E.J.L.); (E.G.T.L.); (M.H.P.)
| | - Pui Lai Rachel Ee
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore; (N.D.T.T.); (P.L.R.E.)
| | | | - Zhi Sheng Poh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore;
| | - Navin Kumar Verma
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore; (E.J.L.); (E.G.T.L.); (M.H.P.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore;
- National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore
- Correspondence: (N.K.V.); (R.L.)
| | - Rajamani Lakshminarayanan
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore; (E.J.L.); (E.G.T.L.); (M.H.P.)
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore; (N.D.T.T.); (P.L.R.E.)
- Academic Clinical Program in Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence: (N.K.V.); (R.L.)
| |
Collapse
|
23
|
Fungi—A Component of the Oral Microbiome Involved in Periodontal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:113-138. [DOI: 10.1007/978-3-030-96881-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
The association of air pollutants (CO 2, MTBE) on Candida albicans and Candida glabrata drug resistance. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
Therapeutic methods are very important in the prevalence of opportunistic fungal infections, which are an important cause of human diseases. In this study, air pollution agents that are in direct contact with microorganisms, and the effects of carbon sources using CO2 and MTBE on growth of fungi, and particularly the evaluation of changes in the expression of interfering genes in susceptibility and drug resistance in these fungi, were investigated.
Materials and Methods
Collecting samples and isolating Candida glabrata and Candida albicans with phenotypic methods were accomplished. We then evaluated the minimum inhibitory concentration (MIC) with the M27A4 protocol of CLSI. We adjusted 20 strains of C. albicans and 10 strains of C. glabrata whose sensitivity was evaluated in the MIC test with 5% CO2 and 5mg/ml methyl tert-butyl ether (MTBE) considered as air pollutants, and followed by re-evaluating MIC testing to separate azole-resistant strains. Interfering agents were also considered.
Results
Upregulation of some genes on the two mentioned yeasts had led to drug resistance in them; they were previously sensitive to both drugs. Correspondingly, 41% of C. glabrata samples in sputum showed sensitivity to these drugs. Upregulation of ERG11 (71%) and EPA1 (90%) were observed in resistant strains. Upregulation of genes associated with aspartate proteins and downregulation of SAP3 genes were recognized in C. glabrata in sputum and a 15% downregulation of bronchoalveolar lavage (BAL) isolate and 50% upregulation of SAP1 gene in C. albicans sensitive samples were observed and compared to fluconazole and itraconazole with the oral and joint sources. Remarkably, decreased SAP2 expression in oral sources and a 60% increase in resistant strains in C. albicans were observed. The downregulation of SAP3 expression showed in the joint samples. An increase in HWP1 expression (30%) was noted in isolated and drug-sensitive samples at the sputum and BAL source. CDR1 expression was increased in MTBE-affected species; however, it decreased in the vicinity of CT.
Conclusions
Air pollutants such as CO2 and MTBE eventually caused drug resistance in Candida, which can be one of the causes of drug resistance in candidiasis infections.
Collapse
|
25
|
Vázquez-Franco N, Gutiérrez-Escobedo G, Juárez-Reyes A, Orta-Zavalza E, Castaño I, De Las Peñas A. Candida glabrata Hst1-Rfm1-Sum1 complex evolved to control virulence-related genes. Fungal Genet Biol 2021; 159:103656. [PMID: 34974188 DOI: 10.1016/j.fgb.2021.103656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/15/2022]
Abstract
C. glabrata is an opportunistic fungal pathogen and the second most common cause of opportunistic fungal infections in humans, that has evolved virulence factors to become a successful pathogen: strong resistance to oxidative stress, capable to adhere and form biofilms in human epithelial cells as well as to abiotic surfaces and high resistance to xenobiotics. Hst1 (a NAD+-dependent histone deacetylase), Sum1 (putative DNA binding protein) and Rfm1 (connector protein) form a complex (HRS-C) and control the resistance to oxidative stress, to xenobiotics (the antifungal fluconazole), and adherence to epithelial cells. Hst1 is functionally conserved within the Saccharomycetaceae family, Rfm1 shows a close phylogenetic relation within the Saccharomycetaceae family while Sum1 displays a distant phylogenetic relation with members of the family and is not conserved functionally. CDR1 encodes for an ABC transporter (resistance to fluconazole) negatively controlled by HRS-C, for which its binding site is located within 223 bp upstream from the ATG of CDR1. The absence of Hst1 and Sum1 renders the cells hyper-adherent, possibly due to the overexpression of AED1, EPA1, EPA22 and EPA6, all encoding for adhesins. Finally, in a neutrophil survival assay, HST1 and SUM1, are not required for survival. We propose that Sum1 in the HRS-C diverged functionally to control a set of genes implicated in virulence: adherence, resistance to xenobiotics and oxidative stress.
Collapse
Affiliation(s)
- Norma Vázquez-Franco
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Guadalupe Gutiérrez-Escobedo
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Alejandro Juárez-Reyes
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Emmanuel Orta-Zavalza
- Departamento de Ciencias Químico-Biológicas, Universidad Autónoma de Ciudad Juárez, Chihuahua, Mexico
| | - Irene Castaño
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí, San Luis Potosí 78216, Mexico
| | - Alejandro De Las Peñas
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí, San Luis Potosí 78216, Mexico.
| |
Collapse
|
26
|
A novel class of Candida glabrata cell wall proteins with β-helix fold mediates adhesion in clinical isolates. PLoS Pathog 2021; 17:e1009980. [PMID: 34962966 PMCID: PMC8746771 DOI: 10.1371/journal.ppat.1009980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/10/2022] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
Candida glabrata is an opportunistic pathogenic yeast frequently causing infections in humans. Though it lacks typical virulence factors such as hyphal development, C. glabrata contains a remarkably large and diverse set of putative wall adhesins that is crucial for its success as pathogen. Here, we present an analysis of putative adhesins from the homology clusters V and VI. First, sequence similarity network analysis revealed relationships between cluster V and VI adhesins and S. cerevisiae haze protective factors (Hpf). Crystal structures of A-regions from cluster VI adhesins Awp1 and Awp3b reveal a parallel right-handed β-helix domain that is linked to a C-terminal β-sandwich. Structure solution of the A-region of Awp3b via single wavelength anomalous diffraction phasing revealed the largest known lanthanide cluster with 21 Gd3+ ions. Awp1-A and Awp3b-A show structural similarity to pectate lyases but binding to neither carbohydrates nor Ca2+ was observed. Phenotypic analysis of awp1Δ, awp3Δ, and awp1,3Δ double mutants did also not confirm their role as adhesins. In contrast, deletion mutants of the cluster V adhesin Awp2 in the hyperadhesive clinical isolate PEU382 demonstrated its importance for adhesion to polystyrene or glass, biofilm formation, cell aggregation and other cell surface-related phenotypes. Together with cluster III and VII adhesins our study shows that C. glabrata CBS138 can rely on a set of 42 Awp1-related adhesins with β-helix/α-crystallin domain architecture for modifying the surface characteristics of its cell wall. Adhesion to host cells and abiotic, often hydrophobic surfaces, e.g. that of medical equipment like catheters, is an indispensable virulence factor for many pathogenic fungi. Among the latter, the yeast Candida glabrata excels by encoding in its genome large sets of surface-exposed cell wall proteins. Here, we show that in the clinical isolate PEU382 of C. glabrata, hyper-adhesiveness to plastics and the tendency to biofilm formation is conferred by a single adhesin, Awp2. An integrative bioinformatic and structural analysis of this and the related Awp1 and Awp3 adhesins unifies four, so far separately assigned Awp clusters—III, V, VI and VII–into one consisting of 42 Awp1-related adhesins. These adhesins commonly present an N-terminal module consisting of a right-handed β-helix and an α-crystallin domain on the yeast surface and use a calcium-independent mode for adhesion. Their sheer number contrasts to the 20 members of the well characterized Epa and 7 members of the Pwp family of surface proteins. Given these findings we suggest that C. glabrata utilizes just two structurally distinct motifs for colonizing different host niches by adhesion: the β-helix/α-crystallin module of Awp1-related adhesins and the C-type lectin PA14-domain for Epa and Pwp proteins.
Collapse
|
27
|
Kumari A, Tripathi AH, Gautam P, Gahtori R, Pande A, Singh Y, Madan T, Upadhyay SK. Adhesins in the virulence of opportunistic fungal pathogens of human. Mycology 2021; 12:296-324. [PMID: 34900383 PMCID: PMC8654403 DOI: 10.1080/21501203.2021.1934176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Aspergillosis, candidiasis, and cryptococcosis are the most common cause of mycoses-related disease and death among immune-compromised patients. Adhesins are cell-surface exposed proteins or glycoproteins of pathogens that bind to the extracellular matrix (ECM) constituents or mucosal epithelial surfaces of the host cells. The forces of interaction between fungal adhesins and host tissues are accompanied by ligand binding, hydrophobic interactions and protein-protein aggregation. Adherence is the primary and critical step involved in the pathogenesis; however, there is limited information on fungal adhesins compared to that on the bacterial adhesins. Except a few studies based on screening of proteome for adhesin identification, majority are based on characterization of individual adhesins. Recently, based on their characteristic signatures, many putative novel fungal adhesins have been predicted using bioinformatics algorithms. Some of these novel adhesin candidates have been validated by in-vitro studies; though, most of them are yet to be characterised experimentally. Morphotype specific adhesin expression as well as tissue tropism are the crucial determinants for a successful adhesion process. This review presents a comprehensive overview of various studies on fungal adhesins and discusses the targetability of the adhesins and adherence phenomenon, for combating the fungal infection in a preventive or therapeutic mode.
Collapse
Affiliation(s)
- Amrita Kumari
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Ankita H Tripathi
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Poonam Gautam
- ICMR-National Institute of Pathology, New Delhi, India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Amit Pande
- Directorate of Coldwater Fisheries Research (DCFR), Nainital, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, New Delhi, India
| | - Taruna Madan
- ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Santosh K Upadhyay
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| |
Collapse
|
28
|
Ceballos-Garzon A, Monteoliva L, Gil C, Alvarez-Moreno C, Vega-Vela NE, Engelthaler DM, Bowers J, Le Pape P, Parra-Giraldo CM. Genotypic, proteomic, and phenotypic approaches to decipher the response to caspofungin and calcineurin inhibitors in clinical isolates of echinocandin-resistant Candida glabrata. J Antimicrob Chemother 2021; 77:585-597. [PMID: 34893830 PMCID: PMC8865013 DOI: 10.1093/jac/dkab454] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/09/2021] [Indexed: 01/20/2023] Open
Abstract
Background Echinocandin resistance represents a great concern, as these drugs are recommended as first-line therapy for invasive candidiasis. Echinocandin resistance is conferred by mutations in FKS genes. Nevertheless, pathways are crucial for enabling tolerance, evolution, and maintenance of resistance. Therefore, understanding the biological processes and proteins involved in the response to caspofungin may provide clues indicating new therapeutic targets. Objectives We determined the resistance mechanism and assessed the proteome response to caspofungin exposure. We then evaluated the phenotypic impact of calcineurin inhibition by FK506 and cephalosporine A (CsA) on caspofungin-resistant Candida glabrata isolates. Methods Twenty-five genes associated with caspofungin resistance were analysed by NGS, followed by studies of the quantitative proteomic response to caspofungin exposure. Then, susceptibility testing of caspofungin in presence of FK506 and CsA was performed. The effects of calcineurin inhibitor/caspofungin combinations on heat stress (40°C), oxidative stress (0.2 and 0.4 mM menadione) and on biofilm formation (polyurethane catheter) were analysed. Finally, a Galleria mellonella model using blastospores (1 × 109 cfu/mL) was developed to evaluate the impact of the combinations on larval survival. Results F659-del was found in the FKS2 gene of resistant strains. Proteomics data showed some up-regulated proteins are involved in cell-wall biosynthesis, response to stress and pathogenesis, some of them being members of calmodulin–calcineurin pathway. Therefore, the impact of calmodulin inhibition was explored. Calmodulin inhibition restored caspofungin susceptibility, decreased capacity to respond to stress conditions, and reduced biofilm formation and in vivo pathogenicity. Conclusions Our findings confirm that calmodulin-calcineurin-Crz1 could provide a relevant target in life-threatening invasive candidiasis.
Collapse
Affiliation(s)
- Andres Ceballos-Garzon
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
- Department of Parasitology and Medical Mycology, Faculty of Pharmacy, University of Nantes, Nantes Atlantique Universities, Nantes, France
| | - Lucia Monteoliva
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Concha Gil
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
- Unidad de Proteómica, Universidad Complutense de Madrid, Madrid, Spain
| | - Carlos Alvarez-Moreno
- Department of Internal Medicine, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Clínica Universitaria Colombia, Clinica Colsanitas, Bogotá, Colombia
| | - Nelson E Vega-Vela
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | | | - Jolene Bowers
- Translational Genomics Research Institute, Flagstaff, AZ, USA
| | - Patrice Le Pape
- Department of Parasitology and Medical Mycology, Faculty of Pharmacy, University of Nantes, Nantes Atlantique Universities, Nantes, France
| | - Claudia M Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
- Corresponding author. E-mail:
| |
Collapse
|
29
|
Fernández-Pereira J, Alvarado M, Gómez-Molero E, Dekker HL, Blázquez-Muñoz MT, Eraso E, Bader O, de Groot PWJ. Characterization of Awp14, A Novel Cluster III Adhesin Identified in a High Biofilm-Forming Candida glabrata Isolate. Front Cell Infect Microbiol 2021; 11:790465. [PMID: 34869084 PMCID: PMC8634165 DOI: 10.3389/fcimb.2021.790465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022] Open
Abstract
Candida glabrata is among the most prevalent causes of candidiasis. Unlike Candida albicans, it is not capable of changing morphology between yeast and hyphal forms but instead has developed other virulence factors. An important feature is its unprecedented large repertoire of predicted cell wall adhesins, which are thought to enable adherence to a variety of surfaces under different conditions. Here, we analyzed the wall proteome of PEU1221, a high biofilm-forming clinical strain isolated from an infected central venous catheter, under biofilm-forming conditions. This isolate shows increased incorporation of putative adhesins, including eight proteins that were not detected in walls of reference strain ATCC 2001, and of which Epa22, Awp14, and Awp2e were identified for the first time. The proteomics data suggest that cluster III adhesin Awp14 is relatively abundant in PEU1221. Phenotypic studies with awp14Δ deletion mutants showed that Awp14 is not responsible for the high biofilm formation of PEU1221 onto polystyrene. However, awp14Δ mutant cells in PEU1221 background showed a slightly diminished binding to chitin and seemed to sediment slightly slower than the parental strain suggesting implication in fungal cell-cell interactions. By structural modeling, we further demonstrate similarity between the ligand-binding domains of cluster III adhesin Awp14 and those of cluster V and VI adhesins. In conclusion, our work confirms the increased incorporation of putative adhesins, such as Awp14, in high biofilm-forming isolates, and contributes to decipher the precise role of these proteins in the establishment of C. glabrata infections.
Collapse
Affiliation(s)
- Jordan Fernández-Pereira
- Albacete Regional Center for Biomedical Research, Castilla - La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - María Alvarado
- Albacete Regional Center for Biomedical Research, Castilla - La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - Emilia Gómez-Molero
- Albacete Regional Center for Biomedical Research, Castilla - La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Henk L. Dekker
- Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences Amsterdam, University of Amsterdam, Amsterdam, Netherlands
| | - María Teresa Blázquez-Muñoz
- Albacete Regional Center for Biomedical Research, Castilla - La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - Elena Eraso
- Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences Amsterdam, University of Amsterdam, Amsterdam, Netherlands
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Piet W. J. de Groot
- Albacete Regional Center for Biomedical Research, Castilla - La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
30
|
Willaert RG, Kayacan Y, Devreese B. The Flo Adhesin Family. Pathogens 2021; 10:pathogens10111397. [PMID: 34832553 PMCID: PMC8621652 DOI: 10.3390/pathogens10111397] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
The first step in the infection of fungal pathogens in humans is the adhesion of the pathogen to host tissue cells or abiotic surfaces such as catheters and implants. One of the main players involved in this are the expressed cell wall adhesins. Here, we review the Flo adhesin family and their involvement in the adhesion of these yeasts during human infections. Firstly, we redefined the Flo adhesin family based on the domain architectures that are present in the Flo adhesins and their functions, and set up a new classification of Flo adhesins. Next, the structure, function, and adhesion mechanisms of the Flo adhesins whose structure has been solved are discussed in detail. Finally, we identified from Pfam database datamining yeasts that could express Flo adhesins and are encountered in human infections and their adhesin architectures. These yeasts are discussed in relation to their adhesion characteristics and involvement in infections.
Collapse
Affiliation(s)
- Ronnie G. Willaert
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-2629-1846
| | - Yeseren Kayacan
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bart Devreese
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Laboratory for Microbiology, Gent University (UGent), 9000 Gent, Belgium
| |
Collapse
|
31
|
Frías-De-León MG, Hernández-Castro R, Conde-Cuevas E, García-Coronel IH, Vázquez-Aceituno VA, Soriano-Ursúa MA, Farfán-García ED, Ocharán-Hernández E, Rodríguez-Cerdeira C, Arenas R, Robledo-Cayetano M, Ramírez-Lozada T, Meza-Meneses P, Pinto-Almazán R, Martínez-Herrera E. Candida glabrata Antifungal Resistance and Virulence Factors, a Perfect Pathogenic Combination. Pharmaceutics 2021; 13:pharmaceutics13101529. [PMID: 34683822 PMCID: PMC8538829 DOI: 10.3390/pharmaceutics13101529] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, a progressive increase in the incidence of invasive fungal infections (IFIs) caused by Candida glabrata has been observed. The objective of this literature review was to study the epidemiology, drug resistance, and virulence factors associated with the C. glabrata complex. For this purpose, a systematic review (January 2001-February 2021) was conducted on the PubMed, Scielo, and Cochrane search engines with the following terms: "C. glabrata complex (C. glabrata sensu stricto, C. nivariensis, C. bracarensis)" associated with "pathogenicity" or "epidemiology" or "antibiotics resistance" or "virulence factors" with language restrictions of English and Spanish. One hundred and ninety-nine articles were found during the search. Various mechanisms of drug resistance to azoles, polyenes, and echinocandins were found for the C. glabrata complex, depending on the geographical region. Among the mechanisms found are the overexpression of drug transporters, gene mutations that alter thermotolerance, the generation of hypervirulence due to increased adhesion factors, and modifications in vital enzymes that produce cell wall proteins that prevent the activity of drugs designed for its inhibition. In addition, it was observed that the C. glabrata complex has virulence factors such as the production of proteases, phospholipases, and hemolysins, and the formation of biofilms that allows the complex to evade the host immune response and generate fungal resistance. Because of this, the C. glabrata complex possesses a perfect pathogenetic combination for the invasion of the immunocompromised host.
Collapse
Affiliation(s)
- María Guadalupe Frías-De-León
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Esther Conde-Cuevas
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Itzel H. García-Coronel
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Víctor Alfonso Vázquez-Aceituno
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Marvin A. Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Eunice D. Farfán-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Esther Ocharán-Hernández
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Carmen Rodríguez-Cerdeira
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Dermatology Department, Hospital Vithas Ntra. Sra. de Fátima and University of Vigo, 36206 Vigo, Spain
- Campus Universitario, University of Vigo, 36310 Vigo, Spain
| | - Roberto Arenas
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Sección de Micología, Hospital General “Dr. Manuel Gea González”, Tlalpan, Ciudad de México 14080, Mexico
| | - Maura Robledo-Cayetano
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Tito Ramírez-Lozada
- Servicio de Ginecología y Obstetricia, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico;
| | - Patricia Meza-Meneses
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
- Servicio de Infectología, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
- Correspondence: (R.P.-A.); (E.M.-H.); Tel.: +52-555-972-9800 (R.P.-A. or E.M.-H.)
| | - Erick Martínez-Herrera
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Correspondence: (R.P.-A.); (E.M.-H.); Tel.: +52-555-972-9800 (R.P.-A. or E.M.-H.)
| |
Collapse
|
32
|
Fatahi Dehpahni M, Chehri K, Azadbakht M. Effect of Silver Nanoparticles and L-Carnitine Supplement on Mixed Vaginitis Caused by Candida albicans/ Staphylococcus aureus in Mouse Models: An Experimental Study. Curr Microbiol 2021; 78:3945-3956. [PMID: 34542662 DOI: 10.1007/s00284-021-02652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
The evolution of antimicrobial-resistant pathogens is a global health and development threat. Nanomedicine is rapidly becoming the main driving force behind ongoing changes in antimicrobial studies. Among nanoparticles, silver (AgNPs) have attracted attention due to their versatile properties. The study aimed to investigate the effects of AgNPs and L-carnitine (LC) on mixed Candida albicans and Staphylococcus aureus in the mice vaginitis model. Study of antimicrobial activity of AgNPs evaluated by Minimum Inhibitory Concentration (MIC) and Minimum Biocidal Concentration (MBC) assays. AgNPs inhibited biofilm formation of microbial strains, which was tested by using crystal violet staining. In the current study, we evaluated the effects of AgNPs and LC in NMRI mice infected intravaginally with C. albicans/ S. aureus for two weeks. The proportion of mice in each stage of the estrous cycle (proestrus, estrus, metestrus, and diestrus) was examined. Histological properties were assessed by hematoxylin/ eosin (H&E) staining of formalin-fixed, paraffin-embedded vaginal tissue sections. Based on the results, MICs of AgNPs against S. aureus, C. albicans, and their combination were 252.3, 124.8, and 501.8 ppm, and their minimum biofilm inhibitory concentration (MBIC) was 500, 250, and 1000 ppm, respectively. The estrous cycle in the treated group was similar to the control. Vaginal histology and cytology showed that LC can improve tissue damages caused by vaginitis and AgNPs. This study demonstrates the promising use of AgNPs as antimicrobial agents and the combination of AgNPs/ LC could be a great future alternative in the control of vaginitis.
Collapse
Affiliation(s)
| | - Khosrow Chehri
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
| | - Mehri Azadbakht
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
33
|
Quinteros MA, Galera ILD, Tolosa J, García-Martínez JC, Páez PL, Paraje MG. Novel antifungal activity of oligostyrylbenzenes compounds on Candida tropicalis biofilms. Med Mycol 2021; 59:244-252. [PMID: 32539092 DOI: 10.1093/mmy/myaa046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
As sessile cells of fungal biofilms are at least 500-fold more resistant to antifungal drugs than their planktonic counterparts, there is a requirement for new antifungal agents. Olygostyrylbenzenes (OSBs) are the first generation of poly(phenylene)vinylene dendrimers with a gram-positive antibacterial activity. Thus, this study aimed to investigate the antifungal activity of four OSBs (1, 2, 3, and 4) on planktonic cells and biofilms of Candida tropicalis. The minimum inhibitory concentration (MIC) for the planktonic population and the sessile minimum inhibitory concentrations (SMIC) were determined. Biofilm eradication was studied by crystal violet stain and light microscopy (LM), and confocal laser scanning microscopy (CLSM) was also utilized in conjunction with the image analysis software COMSTAT. Although all the OSBs studied had antifungal activity, the cationic OSBs were more effective than the anionic ones. A significant reduction of biofilms was observed at MIC and supraMIC50 (50 times higher than MIC) for compound 2, and at supraMIC50 with compound 3. Alterations in surface topography and the three-dimensional architecture of the biofilms were evident with LM and CLSM. The LM analysis revealed that the C. tropicalis strain produced a striking biofilm with oval blastospores, pseudohyphae, and true hyphae. CLSM images showed that a decrease occurred in the thickness of the mature biofilms treated with the OSBs at the most effective concentration for each one. The results obtained by microscopy were supported by those of the COMSTAT program. Our results revealed an antibiofilm activity, with compound 2 being a potential candidate for the treatment of C. tropicalis infections. LAY SUMMARY This study aimed to investigate the antifungal activity of four OSBs (1, 2, 3, and 4) on planktonic cells and biofilms of Candida tropicalis. Our results revealed an antibiofilm activity, with compound 2 being a potential candidate for the treatment of C. tropicalis infections.
Collapse
Affiliation(s)
- Melisa A Quinteros
- IMBIV - CONICET, Córdoba, Argentina.,Departamento de Cs. Farmacéuticas, Fac. de Cs. Químicas, Univ. Nacional de Córdoba, Argentina.,Cátedra de Microbiología, Fac. de Cs. Exactas Físicas y Naturales, Univ. Nacional de Córdoba, Argentina
| | - Ivana L D Galera
- IMBIV - CONICET, Córdoba, Argentina.,Cátedra de Microbiología, Fac. de Cs. Exactas Físicas y Naturales, Univ. Nacional de Córdoba, Argentina
| | - Juan Tolosa
- Fac. de Farmacia de Albacete, Centro Regional de Inv. Biomédicas, Univ. de Castilla-La Mancha, España
| | - Joaquín C García-Martínez
- Fac. de Farmacia de Albacete, Centro Regional de Inv. Biomédicas, Univ. de Castilla-La Mancha, España
| | - Paulina L Páez
- Departamento de Cs. Farmacéuticas, Fac. de Cs. Químicas, Univ. Nacional de Córdoba, Argentina.,Cátedra de Microbiología, Fac. de Cs. Exactas Físicas y Naturales, Univ. Nacional de Córdoba, Argentina.,UNITEFA - CONICET, Córdoba, Argentina
| | - María G Paraje
- IMBIV - CONICET, Córdoba, Argentina.,Cátedra de Microbiología, Fac. de Cs. Exactas Físicas y Naturales, Univ. Nacional de Córdoba, Argentina
| |
Collapse
|
34
|
Hassan Y, Chew SY, Than LTL. Candida glabrata: Pathogenicity and Resistance Mechanisms for Adaptation and Survival. J Fungi (Basel) 2021; 7:jof7080667. [PMID: 34436206 PMCID: PMC8398317 DOI: 10.3390/jof7080667] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Candida glabrata is a yeast of increasing medical relevance, particularly in critically ill patients. It is the second most isolated Candida species associated with invasive candidiasis (IC) behind C. albicans. The attributed higher incidence is primarily due to an increase in the acquired immunodeficiency syndrome (AIDS) population, cancer, and diabetic patients. The elderly population and the frequent use of indwelling medical devices are also predisposing factors. This work aimed to review various virulence factors that facilitate the survival of pathogenic C. glabrata in IC. The available published research articles related to the pathogenicity of C. glabrata were retrieved and reviewed from four credible databases, mainly Google Scholar, ScienceDirect, PubMed, and Scopus. The articles highlighted many virulence factors associated with pathogenicity in C. glabrata, including adherence to susceptible host surfaces, evading host defences, replicative ageing, and producing hydrolytic enzymes (e.g., phospholipases, proteases, and haemolysins). The factors facilitate infection initiation. Other virulent factors include iron regulation and genetic mutations. Accordingly, biofilm production, tolerance to high-stress environments, resistance to neutrophil killings, and development of resistance to antifungal drugs, notably to fluconazole and other azole derivatives, were reported. The review provided evident pathogenic mechanisms and antifungal resistance associated with C. glabrata in ensuring its sustenance and survival.
Collapse
Affiliation(s)
- Yahaya Hassan
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, Kano 700241, Nigeria;
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Shu Yih Chew
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +60-39769-2373
| |
Collapse
|
35
|
Host Age and Denture Wearing Jointly Contribute to Oral Colonization with Intrinsically Azole-Resistant Yeasts in the Elderly. Microorganisms 2021; 9:microorganisms9081627. [PMID: 34442706 PMCID: PMC8400291 DOI: 10.3390/microorganisms9081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/03/2022] Open
Abstract
In elderly patients, several morbidities or medical treatments predisposing for fungal infections occur at a higher frequency, leading to high mortality and morbidity in this vulnerable patient group. Often, this is linked to an innately azole-resistant yeast species such as Candida glabrata or C. krusei. Additionally, host age per se and the wearing of dentures have been determined to influence the mix of colonizing species and, consequently, the species distribution of invasive fungal infections. Since both old age and the wearing of dentures are two tightly connected parameters, it is still unclear which of them is the main contributor. Here, we performed a cross-sectional study on a cohort (N = 274) derived from three groups of healthy elderly, diseased elderly, and healthy young controls. With increasing host age, the frequency of oral colonization by a non-albicans Candida species, mainly by C. glabrata, also increased, and the wearing of dentures predisposed for colonization by C. glabrata irrespectively of host age. Physically diseased hosts, on the other hand, were more frequently orally colonized by C. albicans than by other yeasts. For both C. albicans and C. glabrata, isolates from the oral cavity did not generally display an elevated biofilm formation capacity. In conclusion, intrinsically azole-drug-resistant, non-albicans Candida yeasts are more frequent in the oral cavities of the elderly, and fungal cells not contained in biofilms may predispose for subsequent systemic infection with these organisms. This warrants further exploration of diagnostic procedures, e.g., before undergoing elective abdominal surgery or when using indwelling devices on this patient group.
Collapse
|
36
|
Essen LO, Vogt MS, Mösch HU. Diversity of GPI-anchored fungal adhesins. Biol Chem 2021; 401:1389-1405. [PMID: 33035180 DOI: 10.1515/hsz-2020-0199] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
Abstract
Selective adhesion of fungal cells to one another and to foreign surfaces is fundamental for the development of multicellular growth forms and the successful colonization of substrates and host organisms. Accordingly, fungi possess diverse cell wall-associated adhesins, mostly large glycoproteins, which present N-terminal adhesion domains at the cell surface for ligand recognition and binding. In order to function as robust adhesins, these glycoproteins must be covalently linkedto the cell wall via C-terminal glycosylphosphatidylinositol (GPI) anchors by transglycosylation. In this review, we summarize the current knowledge on the structural and functional diversity of so far characterized protein families of adhesion domains and set it into a broad context by an in-depth bioinformatics analysis using sequence similarity networks. In addition, we discuss possible mechanisms for the membrane-to-cell wall transfer of fungal adhesins by membrane-anchored Dfg5 transglycosidases.
Collapse
Affiliation(s)
- Lars-Oliver Essen
- Department of Biochemistry, Faculty of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35043Marburg, Germany.,Center for Synthetic Microbiology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 6, D-35043Marburg, Germany
| | - Marian Samuel Vogt
- Department of Biochemistry, Faculty of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35043Marburg, Germany
| | - Hans-Ulrich Mösch
- Department of Genetics, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, D-35043Marburg, Germany.,Center for Synthetic Microbiology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 6, D-35043Marburg, Germany
| |
Collapse
|
37
|
Vaginal Isolates of Candida glabrata Are Uniquely Susceptible to Ionophoric Killer Toxins Produced by Saccharomyces cerevisiae. Antimicrob Agents Chemother 2021; 65:e0245020. [PMID: 33972245 PMCID: PMC8218651 DOI: 10.1128/aac.02450-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Compared to other species of Candida yeasts, the growth of Candida glabrata is inhibited by many different strains of Saccharomyces killer yeasts. The ionophoric K1 and K2 killer toxins are broadly inhibitory to all clinical isolates of C. glabrata from patients with recurrent vulvovaginal candidiasis, despite high levels of resistance to clinically relevant antifungal therapeutics.
Collapse
|
38
|
Angiolella L, Rojas F, Mussin J, Greco R, Sosa MDLA, Zalazar L, Giusiano G. Biofilm formation, adherence, and hydrophobicity of M. sympodialis, M. globosa, and M. slooffiae from clinical isolates and normal skinVirulence factors of M. sympodialis, M. globosa and M. slooffiae. Med Mycol 2021; 58:1162-1168. [PMID: 32242627 DOI: 10.1093/mmy/myaa017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022] Open
Abstract
The genus Malassezia comprises a heterogeneous group of species that cause similar pathologies. Malassezia yeasts were considered as the most abundant skin eukaryotes of the total skin mycobiome. The ability of this fungus to colonize or infect is determined by complex interactions between the fungal cell and its virulence factors. This study aims to evaluate in vitro the hydrophobicity levels, the adherence capacity on a polystyrene surface and the ability to form biofilm of 19 isolates, including M. sympodialis, M. globosa, and M. slooffiae, from healthy subjects and from dermatological disorders. Cellular surface hydrophobicity levels were determined by two-phase system. The biofilm formation was determined by tetrazolium salt (XTT) reduction assay and by Scanning Electron Microscopy (SEM). Strain dependence was observed in all virulence factors studied. All isolates of M. sympodialis, M. globosa, and M. slooffiae demonstrated their ability to form biofilm at variable capacities. SEM observations confirmed a variable extracellular matrix after 48 hours of biofilm formation. All isolates of M. globosa were highly adherent and/or hydrophobic as well as biofilm producers. In contrast, M. slooffiae was the least biofilm producer. No significant differences between virulence factors were demonstrated for M. sympodialis, either as clinical isolate or as inhabitant of human microbiota. Results of this work together with the previous M. furfur research confirm that the most frequently Malassezia species isolated from normal subject's skin and patients with dermatosis, form biofilm with different capacities. The study of these virulence factors is important to highlight differences between Malassezia species and to determine their involvement in pathological processes.
Collapse
Affiliation(s)
- Letizia Angiolella
- Department of Public Health and Infectious Diseases. University of Rome "Sapienza", Italy. Piazzale Aldo Moro 5, 00100 Roma, Italy
| | - Florencia Rojas
- Departamento Micologia, Instituto de Medicina Regional, Facultad de Medicina, Universidad Nacional del Nordeste, CONICET, Resistencia, Argentina
| | - Javier Mussin
- Departamento Micologia, Instituto de Medicina Regional, Facultad de Medicina, Universidad Nacional del Nordeste, CONICET, Resistencia, Argentina
| | - Rosa Greco
- Department of Public Health and Infectious Diseases. University of Rome "Sapienza", Italy. Piazzale Aldo Moro 5, 00100 Roma, Italy
| | - María de Los Angeles Sosa
- Departamento Micologia, Instituto de Medicina Regional, Facultad de Medicina, Universidad Nacional del Nordeste, CONICET, Resistencia, Argentina
| | - Laura Zalazar
- Facultad de Ciencias Económicas, Universidad Nacional del Nordeste, Resistencia, Argentina
| | - Gustavo Giusiano
- Departamento Micologia, Instituto de Medicina Regional, Facultad de Medicina, Universidad Nacional del Nordeste, CONICET, Resistencia, Argentina
| |
Collapse
|
39
|
Epitope-Based Peptide Vaccine Design against Fructose Bisphosphate Aldolase of Candida glabrata: An Immunoinformatics Approach. J Immunol Res 2021; 2021:8280925. [PMID: 34036109 PMCID: PMC8116159 DOI: 10.1155/2021/8280925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Background Candida glabrata is a human opportunistic pathogen that can cause life-threatening systemic infections. Although there are multiple effective vaccines against fungal infections and some of these vaccines are engaged in different stages of clinical trials, none of them have yet been approved by the FDA. Aim Using immunoinformatics approach to predict the most conserved and immunogenic B- and T-cell epitopes from the fructose bisphosphate aldolase (Fba1) protein of C. glabrata. Material and Method. 13 C. glabrata fructose bisphosphate aldolase protein sequences (361 amino acids) were retrieved from NCBI and presented in several tools on the IEDB server for prediction of the most promising epitopes. Homology modeling and molecular docking were performed. Result The promising B-cell epitopes were AYFKEH, VDKESLYTK, and HVDKESLYTK, while the promising peptides which have high affinity to MHC I binding were AVHEALAPI, KYFKRMAAM, QTSNGGAAY, RMAAMNQWL, and YFKEHGEPL. Two peptides, LFSSHMLDL and YIRSIAPAY, were noted to have the highest affinity to MHC class II that interact with 9 alleles. The molecular docking revealed that the epitopes QTSNGGAAY and LFSSHMLDL have the lowest binding energy to MHC molecules. Conclusion The epitope-based vaccines predicted by using immunoinformatics tools have remarkable advantages over the conventional vaccines in that they are more specific, less time consuming, safe, less allergic, and more antigenic. Further in vivo and in vitro experiments are needed to prove the effectiveness of the best candidate's epitopes (QTSNGGAAY and LFSSHMLDL). To the best of our knowledge, this is the first study that has predicted B- and T-cell epitopes from the Fba1 protein by using in silico tools in order to design an effective epitope-based vaccine against C. glabrata.
Collapse
|
40
|
Moreno-Martínez AE, Gómez-Molero E, Sánchez-Virosta P, Dekker HL, de Boer A, Eraso E, Bader O, de Groot PWJ. High Biofilm Formation of Non-Smooth Candida parapsilosis Correlates with Increased Incorporation of GPI-Modified Wall Adhesins. Pathogens 2021; 10:pathogens10040493. [PMID: 33921809 PMCID: PMC8073168 DOI: 10.3390/pathogens10040493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Candida parapsilosis is among the most frequent causes of candidiasis. Clinical isolates of this species show large variations in colony morphotype, ranging from round and smooth to a variety of non-smooth irregular colony shapes. A non-smooth appearance is related to increased formation of pseudohyphae, higher capacity to form biofilms on abiotic surfaces, and invading agar. Here, we present a comprehensive study of the cell wall proteome of C. parapsilosis reference strain CDC317 and seven clinical isolates under planktonic and sessile conditions. This analysis resulted in the identification of 40 wall proteins, most of them homologs of known Candida albicans cell wall proteins, such as Gas, Crh, Bgl2, Cht2, Ecm33, Sap, Sod, Plb, Pir, Pga30, Pga59, and adhesin family members. Comparative analysis of exponentially growing and stationary phase planktonic cultures of CDC317 at 30 °C and 37 °C revealed only minor variations. However, comparison of smooth isolates to non-smooth isolates with high biofilm formation capacity showed an increase in abundance and diversity of putative wall adhesins from Als, Iff/Hyr, and Hwp families in the latter. This difference depended more strongly on strain phenotype than on the growth conditions, as it was observed in planktonic as well as biofilm cells. Thus, in the set of isolates analyzed, the high biofilm formation capacity of non-smooth C. parapsilosis isolates with elongated cellular phenotypes correlates with the increased surface expression of putative wall adhesins in accordance with their proposed cellular function.
Collapse
Affiliation(s)
- Ana Esther Moreno-Martínez
- Albacete Regional Center for Biomedical Research, Castilla—La Mancha Science & Technology Park, University of Castilla-La Mancha, 02008 Albacete, Spain; (A.E.M.-M.); (E.G.-M.); (P.S.-V.); (A.d.B.)
| | - Emilia Gómez-Molero
- Albacete Regional Center for Biomedical Research, Castilla—La Mancha Science & Technology Park, University of Castilla-La Mancha, 02008 Albacete, Spain; (A.E.M.-M.); (E.G.-M.); (P.S.-V.); (A.d.B.)
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Pablo Sánchez-Virosta
- Albacete Regional Center for Biomedical Research, Castilla—La Mancha Science & Technology Park, University of Castilla-La Mancha, 02008 Albacete, Spain; (A.E.M.-M.); (E.G.-M.); (P.S.-V.); (A.d.B.)
| | - Henk L. Dekker
- Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Albert de Boer
- Albacete Regional Center for Biomedical Research, Castilla—La Mancha Science & Technology Park, University of Castilla-La Mancha, 02008 Albacete, Spain; (A.E.M.-M.); (E.G.-M.); (P.S.-V.); (A.d.B.)
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain;
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
- Correspondence: (O.B.); (P.W.J.d.G.)
| | - Piet W. J. de Groot
- Albacete Regional Center for Biomedical Research, Castilla—La Mancha Science & Technology Park, University of Castilla-La Mancha, 02008 Albacete, Spain; (A.E.M.-M.); (E.G.-M.); (P.S.-V.); (A.d.B.)
- Correspondence: (O.B.); (P.W.J.d.G.)
| |
Collapse
|
41
|
Xu Z, Green B, Benoit N, Sobel JD, Schatz MC, Wheelan S, Cormack BP. Cell wall protein variation, break-induced replication, and subtelomere dynamics in Candida glabrata. Mol Microbiol 2021; 116:260-276. [PMID: 33713372 DOI: 10.1111/mmi.14707] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 01/08/2023]
Abstract
Candida glabrata is an opportunistic pathogen of humans, responsible for up to 30% of disseminated candidiasis. Adherence of C. glabrata to host cells is mediated by adhesin-like proteins (ALPs), about half of which are encoded in the subtelomeres. We performed a de novo assembly of two C. glabrata strains, BG2 and BG3993, using long single-molecule real-time (SMRT) reads, and constructed high-quality telomere-to-telomere assemblies of all 13 chromosomes to assess differences between C. glabrata strains. We documented variation between strains, and in agreement with earlier studies, found high (~0.5%-1%) frequencies of SNVs across the genome, including within subtelomeric regions. We documented changes in ALP gene structure and complement: there are large length differences in ALP genes in different strains, resulting from copy number variation in tandem repeats. We compared strains to characterize chromosome rearrangement events including within the poorly characterized subtelomeric regions. We show that rearrangements within the subtelomere regions all affect ALP-encoding genes, and 14/16 involve just the most terminal ALP gene. We present evidence that these rearrangements are mediated by break-induced replication. This study highlights the constrained nature of subtelomeric changes impacting ALP gene complement and subtelomere structure.
Collapse
Affiliation(s)
- Zhuwei Xu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,AgriMetis, Lutherville, MD, USA
| | - Nicole Benoit
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jack D Sobel
- Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Wheelan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brendan P Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Chen X, Iwatani S, Kitamoto T, Chibana H, Kajiwara S. The Lack of SNARE Protein Homolog Syn8 Influences Biofilm Formation of Candida glabrata. Front Cell Dev Biol 2021; 9:607188. [PMID: 33644045 PMCID: PMC7907433 DOI: 10.3389/fcell.2021.607188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Biofilm formation of Candida species is considered to be a pathogenic factor of host infection. Since biofilm formation of Candida glabrata has not been as well studied as that of Candida albicans, we performed genetic screening of C. glabrata, and three candidate genes associated with biofilm formation were identified. Candida glabrata SYN8 (CAGL0H06325g) was selected as the most induced gene in biofilm cells for further research. Our results indicated that the syn8Δ mutant was defective not only in biofilm metabolic activity but also in biofilm morphological structure and biomass. Deletion of SYN8 seemed to have no effect on extracellular matrix production, but it led to a notable decrease in adhesion ability during biofilm formation, which may be linked to the repression of two adhesin genes, EPA10 and EPA22. Furthermore, hypersensitivity to hygromycin B and various ions in addition to the abnormal vacuolar morphology in the syn8Δ mutant suggested that active vacuolar function is required for biofilm formation of C. glabrata. These findings enhance our understanding of biofilm formation in this fungus and provide information for the development of future clinical treatments.
Collapse
Affiliation(s)
- Xinyue Chen
- School of Life Sciences and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shun Iwatani
- School of Life Sciences and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshitaka Kitamoto
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Susumu Kajiwara
- School of Life Sciences and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
43
|
Plaza V, Silva-Moreno E, Castillo L. Breakpoint: Cell Wall and Glycoproteins and their Crucial Role in the Phytopathogenic Fungi Infection. Curr Protein Pept Sci 2021; 21:227-244. [PMID: 31490745 DOI: 10.2174/1389203720666190906165111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/02/2019] [Accepted: 08/17/2019] [Indexed: 01/09/2023]
Abstract
The cell wall that surrounds fungal cells is essential for their survival, provides protection against physical and chemical stresses, and plays relevant roles during infection. In general, the fungal cell wall is composed of an outer layer of glycoprotein and an inner skeletal layer of β-glucans or α- glucans and chitin. Chitin synthase genes have been shown to be important for septum formation, cell division and virulence. In the same way, chitin can act as a potent elicitor to activate defense response in several plant species; however, the fungi can convert chitin to chitosan during plant infection to evade plant defense mechanisms. Moreover, α-1,3-Glucan, a non-degradable polysaccharide in plants, represents a key feature in fungal cell walls formed in plants and plays a protective role for this fungus against plant lytic enzymes. A similar case is with β-1,3- and β-1,6-glucan which are essential for infection, structure rigidity and pathogenicity during fungal infection. Cell wall glycoproteins are also vital to fungi. They have been associated with conidial separation, the increase of chitin in conidial cell walls, germination, appressorium formation, as well as osmotic and cell wall stress and virulence; however, the specific roles of glycoproteins in filamentous fungi remain unknown. Fungi that can respond to environmental stimuli distinguish these signals and relay them through intracellular signaling pathways to change the cell wall composition. They play a crucial role in appressorium formation and penetration, and release cell wall degrading enzymes, which determine the outcome of the interaction with the host. In this review, we highlight the interaction of phypatophogen cell wall and signaling pathways with its host and their contribution to fungal pathogenesis.
Collapse
Affiliation(s)
- Verónica Plaza
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | - Evelyn Silva-Moreno
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Temuco, Chile
| | - Luis Castillo
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, La Serena, Chile
| |
Collapse
|
44
|
Isolation, characterization and regulation of moonlighting proteases from Candida glabrata cell wall. Microb Pathog 2020; 149:104547. [DOI: 10.1016/j.micpath.2020.104547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
|
45
|
Jaber QZ, Bibi M, Ksiezopolska E, Gabaldon T, Berman J, Fridman M. Elevated Vacuolar Uptake of Fluorescently Labeled Antifungal Drug Caspofungin Predicts Echinocandin Resistance in Pathogenic Yeast. ACS CENTRAL SCIENCE 2020; 6:1698-1712. [PMID: 33145409 PMCID: PMC7596861 DOI: 10.1021/acscentsci.0c00813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Echinocandins are the newest class of antifungal drugs in clinical use. These agents inhibit β-glucan synthase, which catalyzes the synthesis of β-glucan, an essential component of the fungal cell wall, and have a high clinical efficacy and low toxicity. Echinocandin resistance is largely due to mutations in the gene encoding β-glucan synthase, but the mode of action is not fully understood. We developed fluorescent probes based on caspofungin, the first clinically approved echinocandin, and studied their cellular biology in Candida species, the most common cause of human fungal infections worldwide. Fluorescently labeled caspofungin probes, like the unlabeled drug, were most effective against metabolically active cells. The probes rapidly accumulated in Candida vacuoles, as shown by colocalization with vacuolar proteins and vacuole-specific stains. The uptake of fluorescent caspofungin is facilitated by endocytosis: The labeled drug formed vesicles similar to fluorescently labeled endocytic vesicles, the vacuolar accumulation of fluorescent caspofungin was energy-dependent, and inhibitors of endocytosis reduced its uptake. In a panel comprised of isogenic Candida strains carrying different β-glucan synthase mutations as well as clinical isolates, resistance correlated with increased fluorescent drug uptake into vacuoles. Fluorescent drug uptake also associated with elevated levels of chitin, a sugar polymer that increases cell-wall rigidity. Monitoring the intracellular uptake of fluorescent caspofungin provides a rapid and simple assay that can enable the prediction of echinocandin resistance, which is useful for research applications as well as for selecting the appropriate drugs for treatments of invasive fungal infections.
Collapse
Affiliation(s)
- Qais Z. Jaber
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maayan Bibi
- School
of Molecular Cell Biology and Biotechnology, George Wise Faculty of
Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ewa Ksiezopolska
- Barcelona
Supercomputing Centre (BSC−CNS) Jordi Girona, 29, Barcelona 08034, Spain
- Institute
for Research in Biomedicine, The Barcelona
Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Toni Gabaldon
- Barcelona
Supercomputing Centre (BSC−CNS) Jordi Girona, 29, Barcelona 08034, Spain
- Institute
for Research in Biomedicine, The Barcelona
Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
- Catalan
Institution for Research and Advanced Studies, Passeig de Lluís Companys, 23, Barcelona 08010, Spain
| | - Judith Berman
- School
of Molecular Cell Biology and Biotechnology, George Wise Faculty of
Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
46
|
Loh BS, Ang WH. "Illuminating" Echinocandins' Mechanism of Action. ACS CENTRAL SCIENCE 2020; 6:1651-1653. [PMID: 33145405 PMCID: PMC7596855 DOI: 10.1021/acscentsci.0c01222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Boon Shing Loh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
- NUS
Graduate School of Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456
| |
Collapse
|
47
|
Survival Strategies of Pathogenic Candida Species in Human Blood Show Independent and Specific Adaptations. mBio 2020; 11:mBio.02435-20. [PMID: 33024045 PMCID: PMC7542370 DOI: 10.1128/mbio.02435-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To ensure their survival, pathogens have to adapt immediately to new environments in their hosts, for example, during the transition from the gut to the bloodstream. Here, we investigated the basis of this adaptation in a group of fungal species which are among the most common causes of hospital-acquired infections, the Candida species. On the basis of a human whole-blood infection model, we studied which genes and processes are active over the course of an infection in both the host and four different Candida pathogens. Remarkably, we found that, while the human host response during the early phase of infection is predominantly uniform, the pathogens pursue largely individual strategies and each one regulates genes involved in largely disparate processes in the blood. Our results reveal that C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis all have developed individual strategies for survival in the host. This indicates that their pathogenicity in humans has evolved several times independently and that genes which are central for survival in the host for one species may be irrelevant in another. Only four species, Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis, together account for about 90% of all Candida bloodstream infections and are among the most common causes of invasive fungal infections of humans. However, virulence potential varies among these species, and the phylogenetic tree reveals that their pathogenicity may have emerged several times independently during evolution. We therefore tested these four species in a human whole-blood infection model to determine, via comprehensive dual-species RNA-sequencing analyses, which fungal infection strategies are conserved and which are recent evolutionary developments. The ex vivo infection progressed from initial immune cell interactions to nearly complete killing of all fungal cells. During the course of infection, we characterized important parameters of pathogen-host interactions, such as fungal survival, types of interacting immune cells, and cytokine release. On the transcriptional level, we obtained a predominantly uniform and species-independent human response governed by a strong upregulation of proinflammatory processes, which was downregulated at later time points after most of the fungal cells were killed. In stark contrast, we observed that the different fungal species pursued predominantly individual strategies and showed significantly different global transcriptome patterns. Among other findings, our functional analyses revealed that the fungal species relied on different metabolic pathways and virulence factors to survive the host-imposed stress. These data show that adaptation of Candida species as a response to the host is not a phylogenetic trait, but rather has likely evolved independently as a prerequisite to cause human infections.
Collapse
|
48
|
Andrade G, Orlando HCS, Scorzoni L, Pedroso RS, Abrão F, Carvalho MTM, Veneziani RCS, Ambrósio SR, Bastos JK, Mendes-Giannini MJS, Martins CHG, Pires RH. Brazilian Copaifera Species: Antifungal Activity against Clinically Relevant Candida Species, Cellular Target, and In Vivo Toxicity. J Fungi (Basel) 2020; 6:jof6030153. [PMID: 32872100 PMCID: PMC7560146 DOI: 10.3390/jof6030153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Plants belonging to the genus Copaifera are widely used in Brazil due to their antimicrobial properties, among others. The re-emergence of classic fungal diseases as a consequence of antifungal resistance to available drugs has stimulated the search for plant-based compounds with antifungal activity, especially against Candida. The Candida-infected Caenorhabditis elegans model was used to evaluate the in vitro antifungal potential of Copaifera leaf extracts and trunk oleoresins against Candida species. The Copaifera leaf extracts exhibited good antifungal activity against all Candida species, with MIC values ranging from 5.86 to 93.75 µg/mL. Both the Copaifera paupera and Copaifera reticulata leaf extracts at 46.87 µg/mL inhibited Candida glabrata biofilm formation and showed no toxicity to C. elegans. The survival of C. glabrata-infected nematodes increased at all the tested extract concentrations. Exposure to Copaifera leaf extracts markedly increased C. glabrata cell vacuolization and cell membrane damage. Therefore, Copaifera leaf extracts are potential candidates for the development of new and safe antifungal agents.
Collapse
Affiliation(s)
- Géssica Andrade
- University of Franca, Franca 14404-600, Brazil; (G.A.); (H.C.S.O.); (R.S.P.); (F.A.); (M.T.M.C.); (R.C.S.V.); (S.R.A.)
| | - Haniel Chadwick Silva Orlando
- University of Franca, Franca 14404-600, Brazil; (G.A.); (H.C.S.O.); (R.S.P.); (F.A.); (M.T.M.C.); (R.C.S.V.); (S.R.A.)
| | - Liliana Scorzoni
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14801-902, Brazil; (L.S.); (M.J.S.M.-G.)
- Science and Technology Institute of São José dos Campos (ICT), São Paulo State University (UNESP), São José dos Campos 12245-000, Brazil
| | - Reginaldo Santos Pedroso
- University of Franca, Franca 14404-600, Brazil; (G.A.); (H.C.S.O.); (R.S.P.); (F.A.); (M.T.M.C.); (R.C.S.V.); (S.R.A.)
- Health Technical School (ESTES), Federal University of Uberlandia, Uberlandia 38400-732, Brazil
| | - Fariza Abrão
- University of Franca, Franca 14404-600, Brazil; (G.A.); (H.C.S.O.); (R.S.P.); (F.A.); (M.T.M.C.); (R.C.S.V.); (S.R.A.)
| | - Marco Túlio Menezes Carvalho
- University of Franca, Franca 14404-600, Brazil; (G.A.); (H.C.S.O.); (R.S.P.); (F.A.); (M.T.M.C.); (R.C.S.V.); (S.R.A.)
| | - Rodrigo Cassio Sola Veneziani
- University of Franca, Franca 14404-600, Brazil; (G.A.); (H.C.S.O.); (R.S.P.); (F.A.); (M.T.M.C.); (R.C.S.V.); (S.R.A.)
| | - Sérgio Ricardo Ambrósio
- University of Franca, Franca 14404-600, Brazil; (G.A.); (H.C.S.O.); (R.S.P.); (F.A.); (M.T.M.C.); (R.C.S.V.); (S.R.A.)
| | - Jairo Kenupp Bastos
- Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto 14040-903, Brazil;
| | | | - Carlos Henrique Gomes Martins
- Institute of Biomedical Sciences (ICBIM), Federal University of Uberlandia, Uberlandia 38400-902, Brazil
- Correspondence: (C.H.G.M.); (R.H.P.); Tel.: +55-(34)-3225-8670 (C.H.G.M.); +55-(16)-3711-8945 (R.H.P.)
| | - Regina Helena Pires
- University of Franca, Franca 14404-600, Brazil; (G.A.); (H.C.S.O.); (R.S.P.); (F.A.); (M.T.M.C.); (R.C.S.V.); (S.R.A.)
- Correspondence: (C.H.G.M.); (R.H.P.); Tel.: +55-(34)-3225-8670 (C.H.G.M.); +55-(16)-3711-8945 (R.H.P.)
| |
Collapse
|
49
|
Mishra P, Gupta P, Pruthi V. Cinnamaldehyde incorporated gellan/PVA electrospun nanofibers for eradicating Candida biofilm. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111450. [PMID: 33321588 DOI: 10.1016/j.msec.2020.111450] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Immunocompromised patients encounter fungal infections more frequently than healthy individuals. Conventional drugs associated health risk and resistance, portrayed fungal infections as a global health problem. This issue needs to be answered immediately by designing a novel anti-fungal therapeutic agent. Phytoactive molecules based therapeutics are most suitable candidate due to their low cytotoxicity and minimal side effects to the host. In this study, cinnamaldehyde (CA), an FDA approved phytoactive molecule present in cinnamon essential oil was incorporated into gellan (GA)/poly vinyl alcohol (PVA) based electrospun nanofibers to resolve the issues like low water solubility, high volatility and irritant effect associated with CA and also to enhance its therapeutic applications. The drug encapsulation, morphology and physical properties of the synthesized CA nanofibers were evaluated by FESEM, AFM, TGA, FTIR and static water contact angle analysis. The average diameters of CA encapsulated GA/PVA nanofibers and GA/PVA nanofibers were recorded to be 278.5 ± 57.8 nm and 204.03 ± 39.14 nm, respectively. These nanofibers were evaluated for their anti-biofilm activity against Candida using XTT (2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium salt) reduction assay. Data demonstrated that CA encapsulated GA/PVA nanofibers can effectively eradicate 89.29% and 50.45% of Candida glabrata and Candida albicans biofilm respectively. CA encapsulated nanofibers exhibited brilliant antimicrobial property against Staphylococcus aureus and Pseudomonas aeruginosa. The cytotoxicity assay demonstrated that nanofibers loaded with CA have anticancer properties as it reduces cell viability of breast cancer cells (MCF-7) by 27.7%. These CA loaded GA/PVA (CA-GA/PVA) nanofibers could be used as novel wound dressing material and coatings on biomedical implants to eradicate biofilm.
Collapse
Affiliation(s)
- Purusottam Mishra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Payal Gupta
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
50
|
Moonlighting Proteins at the Candidal Cell Surface. Microorganisms 2020; 8:microorganisms8071046. [PMID: 32674422 PMCID: PMC7409194 DOI: 10.3390/microorganisms8071046] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/31/2022] Open
Abstract
The cell wall in Candida albicans is not only a tight protective envelope but also a point of contact with the human host that provides a dynamic response to the constantly changing environment in infection niches. Particularly important roles are attributed to proteins exposed at the fungal cell surface. These include proteins that are stably and covalently bound to the cell wall or cell membrane and those that are more loosely attached. Interestingly in this regard, numerous loosely attached proteins belong to the class of “moonlighting proteins” that are originally intracellular and that perform essentially different functions in addition to their primary housekeeping roles. These proteins also demonstrate unpredicted interactions with non-canonical partners at an a priori unexpected extracellular location, achieved via non-classical secretion routes. Acting both individually and collectively, the moonlighting proteins contribute to candidal virulence and pathogenicity through their involvement in mechanisms critical for successful host colonization and infection, such as the adhesion to host cells, interactions with plasma homeostatic proteolytic cascades, responses to stress conditions and molecular mimicry. The documented knowledge of the roles of these proteins in C. albicans pathogenicity has utility for assisting the design of new therapeutic, diagnostic and preventive strategies against candidiasis.
Collapse
|