1
|
Arévalo-Jaimes BV, Admella J, Torrents E. Who arrived first? Priority effects on Candida albicans and Pseudomonas aeruginosa dual biofilms. Commun Biol 2025; 8:160. [PMID: 39901054 DOI: 10.1038/s42003-025-07609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/27/2025] [Indexed: 02/05/2025] Open
Abstract
Historical processes in community assembly, such as species arrival order, influence interactions, causing priority effects. Candida albicans and Pseudomonas aeruginosa often co-occur in biofilm-based infections of the skin, lungs, and medical devices. Their predominantly antagonistic relationship involves complex physical and chemical interactions. However, the presence and implications of priority effects among these microorganisms remain largely unexplored. Here, we investigate the presence and impact of priority effect in dual-species biofilms using clinical isolates. By varying inoculation order, we observe significant changes in biofilm composition, structure, virulence, and antimicrobial susceptibility. The first colonizer has an advantage for surface colonization. Consecutive colonization increases biofilm virulence and negates C. albicans' protective effect on P. aeruginosa PAET1 against meropenem treatment. Finally, we propose N-acetylcysteine as an adjuvant for treating C. albicans and P. aeruginosa interkingdom infections, working independently of priority effects.
Collapse
Affiliation(s)
- Betsy V Arévalo-Jaimes
- Bacterial infections and antimicrobial therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joana Admella
- Bacterial infections and antimicrobial therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial infections and antimicrobial therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
2
|
Zhang K, Huang Y, Jiang Y, Liu T, Kong J, Cai S, Wen Z, Chen Y. Effect of Candida albicans' supernatant on biofilm formation and virulence factors of Pseudomonas aeruginosa through las/rhl System. BMC Microbiol 2025; 25:60. [PMID: 39893414 PMCID: PMC11786564 DOI: 10.1186/s12866-024-03604-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/24/2024] [Indexed: 02/04/2025] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) and Candida albicans (C. albicans) are opportunistic pathogens whose mixed infections can exacerbate microbial dissemination and drug resistance, contributing to high mortality and morbidity rates among infected individuals. Few studies have explored the impact of C. albicans supernatant on P. aeruginosa, and the underlying mechanisms of such mixed infections remain unclear. In this study, we investigated the effects of C. albicans supernatant on biofilm formation and virulence factor activity in wild-type P. aeruginosa PAO1 and its quorum sensing-deficient mutants, ΔlasIrhlI and ΔlasRrhlR. Our results demonstrated that the biofilm formation capability and virulence were significantly higher in the PAO1 group compared to the ΔlasIrhlI and ΔlasRrhlR groups. Furthermore, exposure to C. albicans supernatant significantly enhanced both the biofilm formation and virulence of PAO1, whereas no significant changes were observed in the ΔlasIrhlI and ΔlasRrhlR mutants relative to their respective controls. These findings suggest that C. albicans supernatant may modulate P. aeruginosa biofilm formation and virulence via the las/rhl quorum sensing system.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu District, Nanning City, Guangxi Zhuang Autonomous Region, 530021, China
| | - Yingying Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu District, Nanning City, Guangxi Zhuang Autonomous Region, 530021, China
| | - Yuting Jiang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu District, Nanning City, Guangxi Zhuang Autonomous Region, 530021, China
| | - Tangjuan Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu District, Nanning City, Guangxi Zhuang Autonomous Region, 530021, China
| | - Jinliang Kong
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu District, Nanning City, Guangxi Zhuang Autonomous Region, 530021, China
| | - Shuangqi Cai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu District, Nanning City, Guangxi Zhuang Autonomous Region, 530021, China
| | - Zhongwei Wen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu District, Nanning City, Guangxi Zhuang Autonomous Region, 530021, China
| | - Yiqiang Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Qingxiu District, Nanning City, Guangxi Zhuang Autonomous Region, 530021, China.
| |
Collapse
|
3
|
Horn A, Wagner AS, Hou Y, Zajac JC, Fister AM, Chen Z, Pashaj J, Junak M, Mercado Soto NM, Gibson A, Huttenlocher A. Isotonic medium treatment limits burn wound microbial colonisation and improves tissue repair. Wound Repair Regen 2025; 33:e13242. [PMID: 39654306 PMCID: PMC11628904 DOI: 10.1111/wrr.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
Burn injuries undergo a complex healing process in which progressive spreading of epithelial damage can lead to secondary complications such as wound infection, which is a major driver of mortality among burn patients. We recently reported that burning larval zebrafish triggers dysregulated keratinocyte dynamics compared to mechanical injury. Here, we investigate keratinocyte behaviour following burn injury and the subsequent potential for microbial colonisation of burn wounds over time. Real-time imaging, coupled with tracking of photoconverted cells, revealed that early keratinocyte motility contributes to the spread of epithelial damage beyond the initial site of burn injury and that increased epithelial damage was associated with wound colonisation by the fungal pathogen Candida albicans. Modulating osmotic balance by treating larval zebrafish with isotonic medium limited the spread of epithelial damage and reduced microbial colonisation of burn wounds. Using cultured human skin, we found that topical treatment with isotonic solution (saline) similarly prevented the spread of epithelial damage over time. These findings indicate that keratinocyte behaviour contributes to burn wound progression in larval zebrafish and links keratinocyte dynamics to microbial colonisation of burn wounded tissue.
Collapse
Affiliation(s)
- Adam Horn
- Department of Medical Microbiology and Immunology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Andrew S. Wagner
- Department of Medical Microbiology and Immunology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Yiran Hou
- Department of Medical Microbiology and Immunology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Jocelyn C. Zajac
- Department of Surgery, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Alexandra M. Fister
- Department of Medical Microbiology and Immunology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
- Cellular and Molecular Biology Graduate Program, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Zhili Chen
- Department of Medical Microbiology and Immunology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
- Cellular and Molecular Biology Graduate Program, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Joana Pashaj
- Department of Surgery, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Mary Junak
- Department of Surgery, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Nayanna M. Mercado Soto
- Microbiology Doctoral Training Program, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Angela Gibson
- Department of Surgery, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
- Department of Pediatrics, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| |
Collapse
|
4
|
Storer ISR, Sastré-Velásquez LE, Easter T, Mertens B, Dallemulle A, Bottery M, Tank R, Offterdinger M, Bromley MJ, van Rhijn N, Gsaller F. Shining a light on the impact of antifungals on Aspergillus fumigatus subcellular dynamics through fluorescence imaging. Antimicrob Agents Chemother 2024; 68:e0080324. [PMID: 39404344 PMCID: PMC11539212 DOI: 10.1128/aac.00803-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 11/07/2024] Open
Abstract
Fluorescent proteins (FPs) are indispensable tools used for molecular imaging, single-cell dynamics, imaging in infection models, and more. However, next-generation FPs have yet to be characterized in Aspergillus. Here, we characterize 18 FPs in the pathogenic filamentous fungus Aspergillus fumigatus spanning the visible light spectrum. We report on in vivo FP brightness in hyphal and spore morphotypes and show how a fluoropyrimidine-based selection system can be used to iteratively introduce four distinct FPs enabling the simultaneous visualization of the cell membrane, mitochondria, peroxisomes, and vacuoles. Using this strain, we describe and compare the dynamic responses of organelles to stresses induced by voriconazole, amphotericin B, and the novel antifungal drugs olorofim and manogepix. The expansion to the fluorescent genetic toolbox will overcome boundaries in research applications that involve fluorescence imaging in filamentous fungi.
Collapse
Affiliation(s)
- I. S. R. Storer
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - L. E. Sastré-Velásquez
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - T. Easter
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - B. Mertens
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - A. Dallemulle
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - M. Bottery
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - R. Tank
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - M. Offterdinger
- Institute of Neurobiochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - M. J. Bromley
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - N. van Rhijn
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
- Microbial Evolution Research Manchester, University of Manchester, Manchester, United Kingdom
| | - F. Gsaller
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Sachdeva C, Satyamoorthy K, Murali TS. Pseudomonas aeruginosa: metabolic allies and adversaries in the world of polymicrobial infections. Crit Rev Microbiol 2024:1-20. [PMID: 39225080 DOI: 10.1080/1040841x.2024.2397359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Pseudomonas aeruginosa (PA), an opportunistic human pathogen that is frequently linked with chronic infections in immunocompromised individuals, is also metabolically versatile, and thrives in diverse environments. Additionally, studies report that PA can interact with other microorganisms, such as bacteria, and fungi, producing unique metabolites that can modulate the host immune response, and contribute to disease pathogenesis. This review summarizes the current knowledge related to the metabolic interactions of PA with other microorganisms (Staphylococcus, Acinetobacter, Klebsiella, Enterococcus, and Candida) and human hosts, and the importance of these interactions in a polymicrobial context. Further, we highlight the potential applications of studying these metabolic interactions toward designing better diagnostic tools, and therapeutic strategies to prevent, and treat infections caused by this pathogen.
Collapse
Affiliation(s)
- Chandni Sachdeva
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Sattur, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
6
|
Pipes SE, Lovell CR, Kathrein KL. In vivo examination of pathogenicity and virulence in environmentally isolated Vibrio vulnificus. Microbiologyopen 2024; 13:e1427. [PMID: 39041461 PMCID: PMC11264103 DOI: 10.1002/mbo3.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Human exposure to Vibrio vulnificus, a gram-negative, halophilic environmental pathogen, is increasing. Despite this, the mechanisms of its pathogenicity and virulence remain largely unknown. Each year, hundreds of infections related to V. vulnificus occur, leading to hospitalization in 92% of cases and a mortality rate of 35%. The infection is severe, typically contracted through the consumption of contaminated food or exposure of an open wound to contaminated water. This can result in necrotizing fasciitis and the need for amputation of the infected tissue. Although several genes (rtxA1, vvpE, and vvhA) have been implicated in the pathogenicity of this organism, a defined mechanism has not been discovered. In this study, we examine environmentally isolated V. vulnificus strains using a zebrafish model (Danio rerio) to investigate their virulence capabilities. We found significant variation in virulence between individual strains. The commonly used marker gene of disease-causing strains, vcgC, did not accurately predict the more virulent strains. Notably, the least virulent strain in the study, V. vulnificus Sept WR1-BW6, which tested positive for vcgC, vvhA, and rtxA1, did not cause severe disease in the fish and was the only strain that did not result in any mortality. Our study demonstrates that virulence varies greatly among different environmental strains and cannot be accurately predicted based solely on genotype.
Collapse
Affiliation(s)
- Shannon E. Pipes
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Charles R. Lovell
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Katie L. Kathrein
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| |
Collapse
|
7
|
Kamath P, Paul S, Valdes J, Gil J, Solis M, Higa A, Davis SC. In vitro analysis of interactions between Pseudomonas aeruginosa and Candida albicans treated with silver sulfadiazine in wound infections. JAC Antimicrob Resist 2024; 6:dlae075. [PMID: 38741896 PMCID: PMC11089415 DOI: 10.1093/jacamr/dlae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Background Microorganisms tend to rely on close relationships with other species to survive. Consequently, biofilms formed by interactions of different species have been shown to delay the wound healing process. Studies suggest these mixed-population infections contribute to the development of drug resistance and inhibition of host immune response. Silver sulfadiazine (SSD) has been shown to effectively decrease the risk of infection in an open wound. Typically, these are bacterial wound infections; however, the role of fungal species needs further attention. Objectives The purpose of this in vitro study was to determine the effect of SSD on interactions between Pseudomonas aeruginosa 09-009 (PA1) or P. aeruginosa 09-010 (PA2) and Candida albicans ATTC 64550 (CA). Methods A mixture of 4 mL of tryptic soy broth (TSB) and 100 µL of CA and/or PA1 or PA2 (∼106 log cfu/mL) inoculums were deposited into either wells or vials. The wells or vials were then sonicated (50 W for 10 s) to separate microorganisms attached to the walls. After incubation, cell counts were performed at 24 and 48 h for each microorganism using specific media. Results Our results show that without SSD treatment, P. aeruginosa exhibits an inhibitory effect on C. albicans. Treatment with SSD demonstrated significant reduction of P. aeruginosa; however, C. albicans persisted. This experiment demonstrates that SSD was effective in reducing the bioburden of both P. aeruginosa strains after 24 and 48 h; however, it was not as effective in reducing C. albicans. Conclusions The data suggest that for polymicrobial mixed infections containing Pseudomonas spp. and C. albicans, treatment with SSD may be beneficial but does not provide adequate microorganism eradication. As such, added treatments that provide coverage for Candida infection are necessary. Additional in vivo studies are needed to obtain a better understanding of the complex interactions between these organisms.
Collapse
Affiliation(s)
- Preetha Kamath
- Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, RMSB Room 2089 1600 NW 10 Avenue, Miami, FL 33136, USA
| | - Suchismita Paul
- Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, RMSB Room 2089 1600 NW 10 Avenue, Miami, FL 33136, USA
| | - Jose Valdes
- Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, RMSB Room 2089 1600 NW 10 Avenue, Miami, FL 33136, USA
| | - Joel Gil
- Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, RMSB Room 2089 1600 NW 10 Avenue, Miami, FL 33136, USA
| | - Michael Solis
- Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, RMSB Room 2089 1600 NW 10 Avenue, Miami, FL 33136, USA
| | - Alex Higa
- Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, RMSB Room 2089 1600 NW 10 Avenue, Miami, FL 33136, USA
| | - Stephen C Davis
- Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, RMSB Room 2089 1600 NW 10 Avenue, Miami, FL 33136, USA
| |
Collapse
|
8
|
Wu CC, Ding DS, Lo YH, Pan CY, Wen ZH. Padina Minor Extract Confers Resistance against Candida Albicans Infection: Evaluation in a Zebrafish Model. BIOLOGY 2024; 13:384. [PMID: 38927264 PMCID: PMC11201049 DOI: 10.3390/biology13060384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Padina minor is a seaweed rich in polysaccharides often used in food, feed, fertilizers, and antibacterial drugs. This study is the first to evaluate the effect of feeding zebrafish with Padina minor extract on preventing and treating C. albicans infections. This study evaluated the growth, survival, and disease resistance effects of P. minor extract on zebrafish. The fish were divided into four groups: three groups treated with 1%, 5%, or 10% P. minor extract and one untreated group (c, control). Subsequently, we analyzed how the extract affected the immune function of zebrafish infected with C. albicans. Based on the lethal concentration (LC50) calculated in the first stage, 1% was used as the effective therapeutic concentration. The results showed that the growth rate of the 1% feed group was the best, and no significant difference in survival rates between the four groups was observed. Feeding with 1% P. minor extract downregulated the expression of key inflammatory genes like tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and IL-10, effectively preventing and treating C. albicans infections in zebrafish. This study is a preliminary evaluation of the therapeutic efficacy of P. minor extracts against C. albicans.
Collapse
Affiliation(s)
- Chang-Cheng Wu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynecology, Zuoying Armed Forces General Hospital, Kaohsiung 81342, Taiwan
| | - De-Sing Ding
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan;
| | - Yi-Hao Lo
- Department of Family Medicine, Zuoying Armed Forces General Hospital, Kaohsiung 81342, Taiwan;
- Department of Nursing, Shu-Zen Junior of Medicine and Management, Kaohsiung 82144, Taiwan
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan;
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
9
|
Andriana Y, Widodo ADW, Arfijanto MV. Synergistic Interactions between Pseudomonas aeruginosa and Candida albicans, Candida glabrata, Candida krusei, Candida parapsilosis as well as Candida tropicalis in the Formation of Polymicrobial Biofilms. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2024; 18:219-228. [DOI: 10.22207/jpam.18.1.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The interactions between pathogens during infection and the impact of these interactions on drug effectiveness are poorly understood, making polymicrobial infections challenging to treat. During an infection, cross-interactions between bacteria and fungi can strengthen virulence mechanisms and affect how the disease develops. The purpose of this study is to determine how Pseudomonas aeruginosa interacts with Candida glabrata, Candida albicans, Candida krusei, Candida parapsilosis, and Candida tropicalis in the development of polymicrobial biofilms. Pseudomonas aeruginosa, Candida albicans, Candida krusei, Candida parapsilosis, Candida glabrata, and Candida tropicalis isolates were used in this experimental investigation. After preparing a 0.5 Mc Farland suspension of each isolate, the gold standard for measuring biofilm was applied: the Tissue Plate Culture (TCP) method. After that, an ELISA reader with a wavelength of 595 nm was used to measure the optical density (OD) of the biofilm. SPSS 26.0 was then used for statistical analysis to compare the OD values between Pseudomonas aeruginosa that had not been exposed to Candida and those that had. Pseudomonas aeruginosa and Candida are found to interact synergistically if there is an increase in OD, and antagonistic interaction is discovered if there is a decrease in OD. In comparison to the group that was not exposed to Candida, Pseudomonas aeruginosa exposed to Candida albicans, Candida krusei, Candida parapsilosis, Candida glabrata, and Candida tropicalis showed an increase in the OD value of biofilm. Pseudomonas aeruginosa and Candida albicans, Candida glabrata, Candida krusei, Candida parapsilosis, and Candida tropicalis interact synergistically.
Collapse
|
10
|
Kahl LJ, Stremmel N, Esparza-Mora MA, Wheatley RM, MacLean RC, Ralser M. Interkingdom interactions between Pseudomonas aeruginosa and Candida albicans affect clinical outcomes and antimicrobial responses. Curr Opin Microbiol 2023; 75:102368. [PMID: 37677865 DOI: 10.1016/j.mib.2023.102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023]
Abstract
Infections that involve interkingdom microbial communities, such as those between bacteria and yeast pathogens, are difficult to treat, associated with worse patient outcomes, and may be a source of antimicrobial resistance. In this review, we address co-occurrence and co-infections of Candida albicans and Pseudomonas aeruginosa, two pathogens that occupy multiple infection niches in the human body, especially in immunocompromised patients. The interaction between the pathogen species influences microbe-host interactions, the effectiveness of antimicrobials and even infection outcomes, and may thus require adapted treatment strategies. However, the molecular details of bacteria-fungal interactions both inside and outside the infection sites, are insufficiently characterised. We argue that comprehensively understanding the P. aeruginosa-C. albicans interaction network through integrated systems biology approaches will capture the highly dynamic and complex nature of these polymicrobial infections and lead to a more comprehensive understanding of clinical observations such as reshaped immune defences and low antimicrobial treatment efficacy.
Collapse
Affiliation(s)
- Lisa J Kahl
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | - Nina Stremmel
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | | | - Rachel M Wheatley
- University of Oxford, Department of Biology, Oxford OX1 3SZ, United Kingdom
| | - R Craig MacLean
- University of Oxford, Department of Biology, Oxford OX1 3SZ, United Kingdom
| | - Markus Ralser
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany; University of Oxford, The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, Oxford OX3 7BN, United Kingdom; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
11
|
Alam F, Blackburn SA, Davis J, Massar K, Correia J, Tsai HJ, Blair JMA, Hall RA. Pseudomonas aeruginosa increases the susceptibility of Candida albicans to amphotericin B in dual-species biofilms. J Antimicrob Chemother 2023; 78:2228-2241. [PMID: 37522316 PMCID: PMC10477122 DOI: 10.1093/jac/dkad228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Biofilms are the leading cause of nosocomial infections and are hard to eradicate due to their inherent antimicrobial resistance. Candida albicans is the leading cause of nosocomial fungal infections and is frequently co-isolated with the bacterium Pseudomonas aeruginosa from biofilms in the cystic fibrosis lung and severe burn wounds. The presence of C. albicans in multispecies biofilms is associated with enhanced antibacterial resistance, which is largely mediated through fungal extracellular carbohydrates sequestering the antibiotics. However, significantly less is known regarding the impact of polymicrobial biofilms on antifungal resistance. RESULTS Here we show that, in dual-species biofilms, P. aeruginosa enhances the susceptibility of C. albicans to amphotericin B, an effect that was biofilm specific. Transcriptional analysis combined with gene ontology enrichment analysis identified several C. albicans processes associated with oxidative stress to be differentially regulated in dual-species biofilms, suggesting that P. aeruginosa exerts oxidative stress on C. albicans, likely through the secretion of phenazines. However, the mitochondrial superoxide dismutase SOD2 was significantly down-regulated in the presence of P. aeruginosa. Monospecies biofilms of the sod2Δ mutant were more susceptible to amphotericin B, and the susceptibility of these biofilms was further enhanced by exogenous phenazines. CONCLUSIONS We propose that in dual-species biofilms, P. aeruginosa simultaneously induces mitochondrial oxidative stress, while down-regulating key detoxification enzymes, which prevents C. albicans mounting an appropriate oxidative stress response to amphotericin B, leading to fungal cell death. This work highlights the importance of understanding the impact of polymicrobial interactions on antimicrobial susceptibility.
Collapse
Affiliation(s)
- Farhana Alam
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sarah A Blackburn
- Kent Fungal Group, Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Jack Davis
- Kent Fungal Group, Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Keely Massar
- Kent Fungal Group, Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Joao Correia
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Hung-Ji Tsai
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jessica M A Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rebecca A Hall
- Kent Fungal Group, Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| |
Collapse
|
12
|
Day AW, Kumamoto CA. Interplay between host and Candida albicans during commensal gut colonization. PLoS Pathog 2023; 19:e1011607. [PMID: 37708085 PMCID: PMC10501647 DOI: 10.1371/journal.ppat.1011607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Affiliation(s)
- Andrew W. Day
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Kulkarni R, Kasani SK, Tsai CY, Tung SY, Yeh KH, Yu CHA, Chang W. FAM21 is critical for TLR2/CLEC4E-mediated dendritic cell function against Candida albicans. Life Sci Alliance 2023; 6:e202201414. [PMID: 36717248 PMCID: PMC9888482 DOI: 10.26508/lsa.202201414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
FAM21 (family with sequence similarity 21) is a component of the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) protein complex that mediates actin polymerization at endosomal membranes to facilitate sorting of cargo-containing vesicles out of endosomes. To study the function of FAM21 in vivo, we generated conditional knockout (cKO) mice in the C57BL/6 background in which FAM21 was specifically knocked out of CD11c-positive dendritic cells. BMDCs from those mice displayed enlarged early endosomes, and altered cell migration and morphology relative to WT cells. FAM21-cKO cells were less competent in phagocytosis and protein antigen presentation in vitro, though peptide antigen presentation was not affected. More importantly, we identified the TLR2/CLEC4E signaling pathway as being down-regulated in FAM21-cKO BMDCs when challenged with its specific ligand Candida albicans Moreover, FAM21-cKO mice were more susceptible to C. albicans infection than WT mice. Reconstitution of WT BMDCs in FAM21-cKO mice rescued them from lethal C. albicans infection. Thus, our study highlights the importance of FAM21 in a host immune response against a significant pathogen.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Siti Khadijah Kasani
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Yen Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kun-Hai Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
14
|
Wakade RS, Ristow LC, Wellington M, Krysan DJ. Intravital imaging-based genetic screen reveals the transcriptional network governing Candida albicans filamentation during mammalian infection. eLife 2023; 12:e85114. [PMID: 36847358 PMCID: PMC9995110 DOI: 10.7554/elife.85114] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/26/2023] [Indexed: 03/01/2023] Open
Abstract
Candida albicans is one of the most common human fungal pathogens. C. albicans pathogenesis is tightly linked to its ability to under a morphogenetic transition from typically budding yeast to filamentous forms of hyphae and pseudohyphae. Filamentous morphogenesis is the most intensively studied C. albicans virulence traits; however, nearly all of these studies have been based on in vitro induction of filamentation. Using an intravital imaging assay of filamentation during mammalian (mouse) infection, we have screened a library of transcription factor mutants to identify those that modulate both the initiation and maintenance of filamentation in vivo. We coupled this initial screen with genetic interaction analysis and in vivo transcription profiling to characterize the transcription factor network governing filamentation in infected mammalian tissue. Three core positive (Efg1, Brg1, and Rob1) and two core negative regulators (Nrg1 and Tup1) of filament initiation were identified. No previous systematic analysis of genes affecting the elongation step has been reported and we found that large set of transcription factors affect filament elongation in vivo including four (Hms1, Lys14, War1, Dal81) with no effect on in vitro elongation. We also show that the gene targets of initiation and elongation regulators are distinct. Genetic interaction analysis of the core positive and negative regulators revealed that the master regulator Efg1 primarily functions to mediate relief of Nrg1 repression and is dispensable for expression of hypha-associated genes in vitro and in vivo. Thus, our analysis not only provide the first characterization of the transcriptional network governing C. albicans filamentation in vivo but also revealed a fundamentally new mode of function for Efg1, one of the most widely studied C. albicans transcription factors.
Collapse
Affiliation(s)
- Rohan S Wakade
- Department of Pediatrics, Carver College of Medicine, University of IowaIowa CityUnited States
| | - Laura C Ristow
- Department of Pediatrics, Carver College of Medicine, University of IowaIowa CityUnited States
| | - Melanie Wellington
- Department of Pediatrics, Carver College of Medicine, University of IowaIowa CityUnited States
| | - Damian J Krysan
- Department of Pediatrics, Carver College of Medicine, University of IowaIowa CityUnited States
- Departments of Microbiology and Immunology, Carver College of Medicine, University of IowaIowa CityUnited States
- Molecular Physiology and Biophysics, Carver College of Medicine, University of IowaIowa CityUnited States
| |
Collapse
|
15
|
Arbune M, Arbune AA, Nechifor A, Chiscop I, Sapira V. Diagnostic and Treatment Challenges of Emergent COVID-Associated-Mucormycosis: A Case Report and Review of the Literature. Antibiotics (Basel) 2022; 12:antibiotics12010031. [PMID: 36671232 PMCID: PMC9854657 DOI: 10.3390/antibiotics12010031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Mucormycosis is a rare fungal infection, with high mortality, commonly associated with diabetes, malignancies, immunosuppressive therapy, and other immunodeficiency conditions. The emergence of mucormycosis cases has been advanced by the COVID-19 pandemic. Clinical presentation is variable, from asymptomatic to persistent fever or localized infections. We present a case of a Romanian old man, without diabetes or other immunodepression, with COVID-19 who developed severe rhino-orbital mucormycosis and bacterial superinfections, with Pseudomonas aeruginosa and Klebsiella pneumoniae. The late diagnostic and antifungal treatment was related to extensive lesions, bone and tissue loss, and required complex reconstruction procedures. We review the relationships between mucormycosis, COVID-19, and bacterial associated infections. The suspicion index of mucormycosis should be increased in medical practice. The diagnostic and treatment of COVID-19-Associated-Mucormycosis is currently challenging, calling for multidisciplinary collaboration.
Collapse
Affiliation(s)
- Manuela Arbune
- Clinical Medical Department, “Dunarea de Jos” University from Galati, 800008 Galati, Romania
| | - Anca-Adriana Arbune
- Neurology Clinic, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Correspondence:
| | - Alexandru Nechifor
- Clinical Medical Department, “Dunarea de Jos” University from Galati, 800008 Galati, Romania
| | - Iulia Chiscop
- Clinical Surgical Department, “Dunarea de Jos” University from Galati, 800008 Galati, Romania
| | - Violeta Sapira
- Clinical Medical Department, “Dunarea de Jos” University from Galati, 800008 Galati, Romania
| |
Collapse
|
16
|
Pham LHP, Colon-Ascanio M, Ou J, Ly K, Hu P, Choy JS, Luo X. Probing mutual interactions between Pseudomonas aeruginosa and Candida albicans in a biofabricated membrane-based microfluidic platform. LAB ON A CHIP 2022; 22:4349-4358. [PMID: 36239125 PMCID: PMC9756269 DOI: 10.1039/d2lc00728b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbes are typically found in multi-species (polymicrobial) communities. Cooperative and competitive interactions between species, mediated by diffusible factors and physical contact, leads to highly dynamic communities that undergo changes in composition diversity and size. Infections can be more severe or more difficult to treat when caused by multiple species. Interactions between species can improve the ability of one or more species to tolerate anti-microbial treatments and host defenses. Pseudomonas aeruginosa (Pa), a ubiquitous bacterium, and the opportunistic pathogenic yeast, Candida albicans (Ca), are frequently found together in cystic fibrosis lung infections and wound infections. While significant progress has been made in determining interactions between Pa and Ca, there are still important questions that remain unanswered. Here, we probe the mutual interactions between Pa and Ca in a custom-made microfluidic device using biopolymer chitosan membranes that support cross-species communication. By assembling microbes in physically separated, chemically communicating populations or bringing into direct interactions in a mixed culture, in situ polymicrobial growth and biofilm morphology were qualitatively characterized and quantified. Our work reveals new dynamic details of their mutual interactions including cooperation, competition, invasion, and biofilm formation. The membrane-based microfluidic platform can be further developed to understand the polymicrobial interactions within a controlled interactive microenvironment to improve microbial infection prevention and treatment.
Collapse
Affiliation(s)
- Le Hoang Phu Pham
- Department of Mechanical Engineering, School of Engineering, The Catholic University of America, Washington, DC 20064, USA.
| | - Mariliz Colon-Ascanio
- Department of Biology, School of Arts and Sciences, The Catholic University of America, Washington, DC 20064, USA.
| | - Jin Ou
- Department of Biology, School of Arts and Sciences, The Catholic University of America, Washington, DC 20064, USA.
| | - Khanh Ly
- Department of Biomedical Engineering, School of Engineering, The Catholic University of America, Washington, DC 20064, USA
| | - Piao Hu
- Department of Mechanical Engineering, School of Engineering, The Catholic University of America, Washington, DC 20064, USA.
| | - John S Choy
- Department of Biology, School of Arts and Sciences, The Catholic University of America, Washington, DC 20064, USA.
| | - Xiaolong Luo
- Department of Mechanical Engineering, School of Engineering, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
17
|
de Castro RJA, Rêgo MTAM, Brandão FS, Pérez ALA, De Marco JL, Poças-Fonseca MJ, Nichols C, Alspaugh JA, Felipe MSS, Alanio A, Bocca AL, Fernandes L. Engineered Fluorescent Strains of Cryptococcus neoformans: a Versatile Toolbox for Studies of Host-Pathogen Interactions and Fungal Biology, Including the Viable but Nonculturable State. Microbiol Spectr 2022; 10:e0150422. [PMID: 36005449 PMCID: PMC9603711 DOI: 10.1128/spectrum.01504-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/05/2022] [Indexed: 12/31/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen known for its remarkable ability to infect and subvert phagocytes. This ability provides survival and persistence within the host and relies on phenotypic plasticity. The viable but nonculturable (VBNC) phenotype was recently described in C. neoformans, whose study is promising in understanding the pathophysiology of cryptococcosis. The use of fluorescent strains is improving host interaction research, but it is still underexploited. Here, we fused histone H3 or the poly(A) binding protein (Pab) to enhanced green fluorescent protein (eGFP) or mCherry, obtaining a set of C. neoformans transformants with different colors, patterns of fluorescence, and selective markers (hygromycin B resistance [Hygr] or neomycin resistance [Neor]). We validated their similarity to the parental strain in the stress response, the expression of virulence-related phenotypes, mating, virulence in Galleria mellonella, and survival within murine macrophages. PAB-GFP, the brightest transformant, was successfully applied for the analysis of phagocytosis by flow cytometry and fluorescence microscopy. Moreover, we demonstrated that an engineered fluorescent strain of C. neoformans was able to generate VBNC cells. GFP-tagged Pab1, a key regulator of the stress response, evidenced nuclear retention of Pab1 and the assembly of cytoplasmic stress granules, unveiling posttranscriptional mechanisms associated with dormant C. neoformans cells. Our results support that the PAB-GFP strain is a useful tool for research on C. neoformans. IMPORTANCE Cryptococcus neoformans is a human-pathogenic yeast that can undergo a dormant state and is responsible for over 180,000 deaths annually worldwide. We engineered a set of fluorescent transformants to aid in research on C. neoformans. A mutant with GFP-tagged Pab1 improved fluorescence-based techniques used in host interaction studies. Moreover, this mutant induced a viable but nonculturable phenotype and uncovered posttranscriptional mechanisms associated with dormant C. neoformans. The experimental use of fluorescent mutants may shed light on C. neoformans-host interactions and fungal biology, including dormant phenotypes.
Collapse
Affiliation(s)
- Raffael Júnio Araújo de Castro
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
- CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses et Antifongiques, Institut Pasteur, Paris, France
| | - Marco Túlio Aidar Mariano Rêgo
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Fabiana S. Brandão
- Faculty of Health Science, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Ana Laura Alfonso Pérez
- Department of Cell Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasilia, Federal District, Brazil
| | - Janice Lisboa De Marco
- Department of Cell Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasilia, Federal District, Brazil
| | - Marcio José Poças-Fonseca
- Department of Genetics and Morphology, Institute of Biological Sciences, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Connie Nichols
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, USA
| | - J. Andrew Alspaugh
- Duke University School of Medicine, Department of Medicine, Durham, North Carolina, USA
| | - Maria Sueli S. Felipe
- Catholic University of Brasilia, Campus Asa Norte, Asa Norte, Brasília, Federal District, Brazil
| | - Alexandre Alanio
- CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses et Antifongiques, Institut Pasteur, Paris, France
- Laboratoire de Mycologie et Parasitologie, AP-HP, Hôpital Saint Louis, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anamélia Lorenzetti Bocca
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
| | - Larissa Fernandes
- Laboratory of Applied Immunology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, Federal District, Brazil
- Faculty of Ceilândia, Campus UnB Ceilândia, University of Brasília, Ceilândia Sul, Brasília, Federal District, Brazil
| |
Collapse
|
18
|
Pokhrel S, Boonmee N, Tulyaprawat O, Pharkjaksu S, Thaipisutikul I, Chairatana P, Ngamskulrungroj P, Mitrpant C. Assessment of Biofilm Formation by Candida albicans Strains Isolated from Hemocultures and Their Role in Pathogenesis in the Zebrafish Model. J Fungi (Basel) 2022; 8:jof8101014. [PMID: 36294579 PMCID: PMC9605499 DOI: 10.3390/jof8101014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Candida albicans, an opportunistic pathogen, has the ability to form biofilms in the host or within medical devices in the body. Biofilms have been associated with disseminated/invasive disease with increased severity of infection by disrupting the host immune response and prolonging antifungal treatment. In this study, the in vivo virulence of three strains with different biofilm formation strengths, that is, non-, weak-, and strong biofilm formers, was evaluated using the zebrafish model. The survival assay and fungal tissue burden were measured. Biofilm-related gene expressions were also investigated. The survival of zebrafish, inoculated with strong biofilms forming C. albicans,, was significantly shorter than strains without biofilms forming C. albicans. However, there were no statistical differences in the burden of viable colonogenic cell number between the groups of the three strains tested. We observed that the stronger the biofilm formation, the higher up-regulation of biofilm-associated genes. The biofilm-forming strain (140 and 57), injected into zebrafish larvae, possessed a higher level of expression of genes associated with adhesion, attachment, filamentation, and cell proliferation, including eap1, als3, hwp1, bcr1, and mkc1 at 8 h. The results suggested that, despite the difference in genetic background, biofilm formation is an important virulence factor for the pathogenesis of C. albicans. However, the association between biofilm formation strength and in vivo virulence is controversial and needs to be further studied.
Collapse
Affiliation(s)
- Sabi Pokhrel
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nawarat Boonmee
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Orawan Tulyaprawat
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sujiraphong Pharkjaksu
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Iyarit Thaipisutikul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Phoom Chairatana
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Popchai Ngamskulrungroj
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chalermchai Mitrpant
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence:
| |
Collapse
|
19
|
Huang D, Li H, Lin Y, Lin J, Li C, Kuang Y, Zhou W, Huang B, Wang P. Antibiotic-induced depletion of Clostridium species increases the risk of secondary fungal infections in preterm infants. Front Cell Infect Microbiol 2022; 12:981823. [PMID: 36118040 PMCID: PMC9473543 DOI: 10.3389/fcimb.2022.981823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
Preterm infants or those with low birth weight are highly susceptible to invasive fungal disease (IFD) and other microbial or viral infection due to immaturity of their immune system. Antibiotics are routinely administered in these vulnerable infants in treatment of sepsis and other infectious diseases, which might cause perturbation of gut microbiome and hence development of IFD. In this study, we compared clinical characteristics of fungal infection after antibiotic treatment in preterm infants. As determined by 16S rRNA sequencing, compared with non-IFD patients with or without antibiotics treatment, Clostridium species in the intestinal tracts of patients with IFD were almost completely eliminated, and Enterococcus were increased. We established a rat model of IFD by intraperitoneal inoculation of C. albicans in rats pretreated with meropenem and vancomycin. After pretreatment with antibiotics, the intestinal microbiomes of rats infected with C. albicans were disordered, as characterized by an increase of proinflammatory conditional pathogens and a sharp decrease of Clostridium species and Bacteroides. Immunofluorescence analysis showed that C. albicans-infected rats pretreated with antibiotics were deficient in IgA and IL10, while the number of Pro-inflammatory CD11c+ macrophages was increased. In conclusion, excessive use of antibiotics promoted the imbalance of intestinal microbiome, especially sharp decreases of short-chain fatty acids (SCFA)-producing Clostridium species, which exacerbated the symptoms of IFD, potentially through decreased mucosal immunomodulatory molecules. Our results suggest that inappropriate use of broad-spectrum antibiotics may promote the colonization of invasive fungi. The results of this study provide new insights into the prevention of IFD in preterm infants.
Collapse
Affiliation(s)
- Dabin Huang
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huixian Li
- Department of Data Center, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Yuying Lin
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinting Lin
- Department of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Chengxi Li
- Department of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Yashu Kuang
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Zhou
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Wei Zhou, ; Bing Huang, ; Ping Wang,
| | - Bing Huang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Zhou, ; Bing Huang, ; Ping Wang,
| | - Ping Wang
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Wei Zhou, ; Bing Huang, ; Ping Wang,
| |
Collapse
|
20
|
Phuengmaung P, Mekjaroen J, Saisorn W, Chatsuwan T, Somparn P, Leelahavanichkul A. Rapid Synergistic Biofilm Production of Pseudomonas and Candida on the Pulmonary Cell Surface and in Mice, a Possible Cause of Chronic Mixed Organismal Lung Lesions. Int J Mol Sci 2022; 23:ijms23169202. [PMID: 36012475 PMCID: PMC9409386 DOI: 10.3390/ijms23169202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the possible co-presence of Pseudomonas aeruginosa and Candida albicans (the most common nosocomial pathogens) in lungs, rapid interkingdom biofilm production is possible. As such, PA+CA produced more dominant biofilms on the pulmonary epithelial surface (NCI-H292) (confocal fluorescent extracellular matrix staining) with dominant psl upregulation, as demonstrated by polymerase chain reaction (PCR), after 8 h of experiments than PA alone. With a proteomic analysis, rhamnosyltransferase RhlB protein (Psl-associated quorum-sensing protein) was found to be among the high-abundance proteins in PA+CA than in PA biofilms, supporting psl-mediated biofilms in PA+CA on the cell surface. Additionally, PA+CA increased supernatant cytokines (IL-8 and IL-13, but not TNF-α, IL-6, and IL-10) with a similar upregulation of TLR-4, TLR-5, and TLR-9 (by PCR) compared with PA-stimulated cells. The intratracheal administration of PA+CA induced a greater severity of sepsis (serum creatinine, alanine transaminase, serum cytokines, and histology score) and prominent biofilms (fluorescent staining) with psl upregulation (PCR). In comparison with PA+CA biofilms on glass slides, PA+CA biofilms on biotic surfaces were more prominent (fluorescent staining). In conclusion, PA+CA induced Psl-predominant biofilms on the pulmonary cell surface and in mice with acute pneumonia, and these biofilms were more prominent than those induced by PA alone, highlighting the impact of Candida on rapid interkingdom biofilm production.
Collapse
Affiliation(s)
- Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiradej Mekjaroen
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wilasinee Saisorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (P.S.); (A.L.); Tel.: +66-2-256-4251 (P.S. & A.L.); Fax: +66-2-252-6920 (P.S. & A.L.)
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (P.S.); (A.L.); Tel.: +66-2-256-4251 (P.S. & A.L.); Fax: +66-2-252-6920 (P.S. & A.L.)
| |
Collapse
|
21
|
Gitajn I, Werth P, O'Toole RV, Joshi M, Jevsevar D, Wise B, Rane A, Horton S, McClure EA, Ross B, Nadell C. Microbial Interspecies Associations in Fracture-Related Infection. J Orthop Trauma 2022; 36:309-316. [PMID: 35703847 DOI: 10.1097/bot.0000000000002314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Describe co-occurrence or clustering of microbial taxa in fracture-related infections to inform further exploration of infection-related interactions among them. DESIGN Retrospective review. SETTING Level 1 trauma center. PATIENTS/PARTICIPANTS Four hundred twenty-three patients requiring surgical intervention for deep surgical site infection between January 2006 and December 2015. INTERVENTION None. MAIN OUTCOME MEASUREMENT Connection between microbial taxa. RESULTS Methicillin-resistant Staphylococcus aureus, methicillin-sensitive Staphylococcus aureus, and coagulase-negative Staphylococcus represented the majority of monomicrobial observations (71%). Gram-negative rods, gram-positive rods, and anaerobes presented more frequently in polymicrobial infections. Enterobacter, vancomycin-sensitive Enterococcus, and Pseudomonas are present in polymicrobial infections with the highest frequencies and represent the top 3 most important nodes within the microorganism framework, with the highest network centrality scores. CONCLUSIONS The present study indicates that there are common microbial taxa (Enterobacter, Enterococcus, and Pseudomonas) that tend to co-occur with other microbes greater than 75% of the time. These commonly co-occurring microbes have demonstrated interactive relationships in other disease pathologies, suggesting that there may be similar important interactions in fracture-related infections. It is possible that these microbial communities play a role in the persistently high failure rate associated with management of infection after trauma. Future studies are needed to study the intermicrobial interactions that explain the frequency at which taxa co-occur. Understanding and potentially disrupting these intermicrobial relationships could inform improvements in the treatment of established infections and in the prevention of infection in high-risk patients. LEVEL OF EVIDENCE Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Ida Gitajn
- Department of Orthopaedics, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Paul Werth
- Department of Orthopaedics, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Robert V O'Toole
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD
| | - Mandarin Joshi
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD
| | - David Jevsevar
- Department of Orthopaedics, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Brent Wise
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD
| | - Ajinya Rane
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD
| | - Steven Horton
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD
| | - Emily A McClure
- Department of Microbiology and Immunology, Dartmouth, Geisel School of Medicine, Hanover, NH; and
| | - Benjamin Ross
- Department of Microbiology and Immunology, Dartmouth, Geisel School of Medicine, Hanover, NH; and
| | - Carey Nadell
- Department of Biological Sciences, Dartmouth, Hanover, NH
| |
Collapse
|
22
|
Hattab S, Dagher AM, Wheeler RT. Pseudomonas Synergizes with Fluconazole against Candida during Treatment of Polymicrobial Infection. Infect Immun 2022; 90:e0062621. [PMID: 35289633 PMCID: PMC9022521 DOI: 10.1128/iai.00626-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
Polymicrobial infections are challenging to treat because we don't fully understand how pathogens interact during infection and how these interactions affect drug efficacy. Candida albicans and Pseudomonas aeruginosa are opportunistic pathogens that can be found in similar sites of infection such as in burn wounds and most importantly in the lungs of CF and mechanically ventilated patients. C. albicans is particularly difficult to treat because of the paucity of antifungal agents, some of which lack fungicidal activity. In this study, we investigated the efficacy of anti-fungal treatment during C. albicans-P. aeruginosa coculture in vitro and co-infection in the mucosal zebrafish infection model analogous to the lung. We find that P. aeruginosa enhances the activity of fluconazole (FLC), an anti-fungal drug that is fungistatic in vitro, to promote both clearance of C. albicans during co-infection in vivo and fungal killing in vitro. This synergy between FLC treatment and bacterial antagonism is partly due to iron piracy, as it is reduced upon iron supplementation and knockout of bacterial siderophores. Our work demonstrates that FLC has enhanced activity in clinically relevant contexts and highlights the need to understand antimicrobial effectiveness in the complex environment of the host with its associated microbial communities.
Collapse
Affiliation(s)
- Siham Hattab
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Anna-Maria Dagher
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Robert T. Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| |
Collapse
|
23
|
Teleost swim bladder, an ancient air-filled organ that elicits mucosal immune responses. Cell Discov 2022; 8:31. [PMID: 35379790 PMCID: PMC8979957 DOI: 10.1038/s41421-022-00393-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/08/2022] [Indexed: 11/08/2022] Open
Abstract
The air-filled organs (AOs) of vertebrates (lungs and swim bladders) have evolved unique functions (air-breathing or buoyancy control in water) to adapt to different environments. Thus far, immune responses to microbes in AOs have been described exclusively in the lungs of tetrapods. Similar to lungs, swim bladders (SBs) represent a mucosal surface, a feature that leads us to hypothesize a role for SB in immunity. In this study, we demonstrate that secretory IgT (sIgT) is the key SB immunoglobulin (Ig) responding to the viral challenge, and the only Ig involved in viral neutralization in that organ. In support of these findings, we found that the viral load of the SB from fish devoid of sIgT was much higher than that of control fish. Interestingly, similar to the lungs in mammals, the SB represents the mucosal surface in fish with the lowest content of microbiota. Moreover, sIgT is the main Ig class found coating their surface, suggesting a key role of this Ig in the homeostasis of the SB microbiota. In addition to the well-established role of SB in buoyancy control, our findings reveal a previously unrecognized function of teleost SB in adaptive mucosal immune responses upon pathogenic challenge, as well as a previously unidentified role of sIgT in antiviral defense. Overall, our findings indicate that despite the phylogenetic distance and physiological roles of teleost SB and mammalian lungs, they both have evolved analogous mucosal immune responses against microbes which likely originated independently through a process of convergent evolution.
Collapse
|
24
|
Competition for Iron during Polymicrobial Infections May Increase Antifungal Drug Susceptibility-How Will It Impact Treatment Options? Infect Immun 2022; 90:e0005722. [PMID: 35289634 DOI: 10.1128/iai.00057-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Interaction between microbes may influence antimicrobial susceptibility of one or more of the microbes, with studies pointing to increased resistance in these scenarios. Hattab et al. provided a novel perspective by identifying synergism between fluconazole and bacterial antagonism in the context of Candida albicans-Pseudomonas aeruginosa co-infection. Further research is required to translate these findings to the clinical setting, especially in the era of increasing antifungal resistance.
Collapse
|
25
|
Pohl CH. Recent Advances and Opportunities in the Study of Candida albicans Polymicrobial Biofilms. Front Cell Infect Microbiol 2022; 12:836379. [PMID: 35252039 PMCID: PMC8894716 DOI: 10.3389/fcimb.2022.836379] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/26/2022] [Indexed: 01/11/2023] Open
Abstract
It is well known that the opportunistic pathogenic yeast, Candida albicans, can form polymicrobial biofilms with a variety of bacteria, both in vitro and in vivo, and that these polymicrobial biofilms can impact the course and management of disease. Although specific interactions are often described as either synergistic or antagonistic, this may be an oversimplification. Polymicrobial biofilms are complex two-way interacting communities, regulated by inter-domain (inter-kingdom) signaling and various molecular mechanisms. This review article will highlight advances over the last six years (2016-2021) regarding the unique biology of polymicrobial biofilms formed by C. albicans and bacteria, including regulation of their formation. In addition, some of the consequences of these interactions, such as the influence of co-existence on antimicrobial susceptibility and virulence, will be discussed. Since the aim of this knowledge is to inform possible alternative treatment options, recent studies on the discovery of novel anti-biofilm compounds will also be included. Throughout, an attempt will be made to identify ongoing challenges in this area.
Collapse
|
26
|
Azimi S, Lewin GR, Whiteley M. The biogeography of infection revisited. Nat Rev Microbiol 2022; 20:579-592. [PMID: 35136217 PMCID: PMC9357866 DOI: 10.1038/s41579-022-00683-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Many microbial communities, including those involved in chronic human infections, are patterned at the micron scale. In this Review, we summarize recent work that has defined the spatial arrangement of microorganisms in infection and begun to demonstrate how changes in spatial patterning correlate with disease. Advances in microscopy have refined our understanding of microbial micron-scale biogeography in samples from humans. These findings then serve as a benchmark for studying the role of spatial patterning in preclinical models, which provide experimental versatility to investigate the interplay between biogeography and pathogenesis. Experimentation using preclinical models has begun to show how spatial patterning influences the interactions between cells, their ability to coexist, their virulence and their recalcitrance to treatment. Future work to study the role of biogeography in infection and the functional biogeography of microorganisms will further refine our understanding of the interplay of spatial patterning, pathogen virulence and disease outcomes.
Collapse
Affiliation(s)
- Sheyda Azimi
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gina R Lewin
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
| | | |
Collapse
|
27
|
Hurley JC. Structural equation modelling the relationship between anti-fungal prophylaxis and Pseudomonas bacteremia in ICU patients. Intensive Care Med Exp 2022; 10:2. [PMID: 35059904 PMCID: PMC8776977 DOI: 10.1186/s40635-022-00429-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/30/2021] [Indexed: 01/20/2023] Open
Abstract
Purpose Animal models implicate candida colonization facilitating invasive bacterial infections. The clinical relevance of this microbial interaction remains undefined and difficult to study directly. Observations from studies of anti-septic, antibiotic, anti-fungal, and non-decontamination-based interventions to prevent ICU acquired infection collectively serve as a natural experiment. Methods Three candidate generalized structural equation models (GSEM), with Candida and Pseudomonas colonization as latent variables, were confronted with blood culture and respiratory tract isolate data derived from 464 groups from 279 studies including studies of combined antibiotic and antifungal exposures within selective digestive decontamination (SDD) interventions. Results Introducing an interaction term between Candida colonization and Pseudomonas colonization substantially improved GSEM model fit. Model derived coefficients for singular exposure to anti-septic agents (− 1.23; − 2.1 to − 0.32), amphotericin (− 1.78; − 2.79 to − 0.78) and topical antibiotic prophylaxis (TAP; + 1.02; + 0.11 to + 1.93) versus Candida colonization were similar in magnitude but contrary in direction. By contrast, the model-derived coefficients for singular exposure to TAP, as with anti-septic agents, versus Pseudomonas colonization were weaker or non-significant. Singular exposure to amphotericin would be predicted to more than halve candidemia and Pseudomonas bacteremia incidences versus literature benchmarks for absolute differences of approximately one percentage point or less. Conclusion GSEM modelling of published data supports the postulated interaction between Candida and Pseudomonas colonization towards promoting bacteremia among ICU patients. This would be difficult to detect without GSEM modelling. The model indicates that anti-fungal agents have greater impact in preventing Pseudomonas bacteremia than TAP, which has no impact. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-022-00429-8.
Collapse
|
28
|
Gnat S, Łagowski D, Nowakiewicz A, Dyląg M. A global view on fungal infections in humans and animals: opportunistic infections and microsporidioses. J Appl Microbiol 2021; 131:2095-2113. [PMID: 33556223 DOI: 10.1111/jam.15032] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
After cardiovascular diseases, infectious diseases are the second most common cause of death worldwide. Although these infections are caused mainly by viruses or bacteria, a systematically growing prevalence of human and animal opportunistic fungal infections is noticeable worldwide. More attention is being paid to this problem, especially due to the growing frequency of recalcitrant and recurrent mycoses. The latter are classically divided into superficial, which are the most common type, subcutaneous, and systemic. This work discusses opportunistic fungal pathogens without proven horizontal transmission between different animal species including humans and microsporidia as spore-forming unicellular parasites related to fungi; however, with a yet undetermined taxonomic position. The review also mentions aetiological agents, risk factors, epidemiology, geographical distribution, and finally symptoms characteristic for individual disease entities. This paper provides insight into fungal infections from a global perspective and simultaneously draws attention to emerging pathogens, whose prevalence is continuously increasing. Finally, this work also takes into consideration the correct nomenclature of fungal disease entities and the importance of secondary metabolites in the pathogenesis of fungal infections.
Collapse
Affiliation(s)
- S Gnat
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - D Łagowski
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - A Nowakiewicz
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - M Dyląg
- Department of Mycology and Genetics, Faculty of Biological Sciences, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
29
|
Pont S, Blanc-Potard AB. Zebrafish Embryo Infection Model to Investigate Pseudomonas aeruginosa Interaction With Innate Immunity and Validate New Therapeutics. Front Cell Infect Microbiol 2021; 11:745851. [PMID: 34660345 PMCID: PMC8515127 DOI: 10.3389/fcimb.2021.745851] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/08/2021] [Indexed: 12/26/2022] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is responsible for a variety of acute infections and is a major cause of mortality in chronically infected patients with cystic fibrosis (CF). Considering the intrinsic and acquired resistance of P. aeruginosa to currently used antibiotics, new therapeutic strategies against this pathogen are urgently needed. Whereas virulence factors of P. aeruginosa are well characterized, the interplay between P. aeruginosa and the innate immune response during infection remains unclear. Zebrafish embryo is now firmly established as a potent vertebrate model for the study of infectious human diseases, due to strong similarities of its innate immune system with that of humans and the unprecedented possibilities of non-invasive real-time imaging. This model has been successfully developed to investigate the contribution of bacterial and host factors involved in P. aeruginosa pathogenesis, as well as rapidly assess the efficacy of anti-Pseudomonas molecules. Importantly, zebrafish embryo appears as the state-of-the-art model to address in vivo the contribution of innate immunity in the outcome of P. aeruginosa infection. Of interest, is the finding that the zebrafish encodes a CFTR channel closely related to human CFTR, which allowed to develop a model to address P. aeruginosa pathogenesis, innate immune response, and treatment evaluation in a CF context.
Collapse
Affiliation(s)
- Stéphane Pont
- Laboratory of Pathogen-Host Interactions (LPHI), Université Montpellier, Montpellier, France.,CNRS, UMR5235, Montpellier, France
| | - Anne-Béatrice Blanc-Potard
- Laboratory of Pathogen-Host Interactions (LPHI), Université Montpellier, Montpellier, France.,CNRS, UMR5235, Montpellier, France
| |
Collapse
|
30
|
Investigating Candida glabrata Urinary Tract Infections (UTIs) in Mice Using Bioluminescence Imaging. J Fungi (Basel) 2021; 7:jof7100844. [PMID: 34682265 PMCID: PMC8538756 DOI: 10.3390/jof7100844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
Urinary tract infections (UTIs) are quite common and mainly caused by bacteria such as Escherichia coli. However, when patients have urinary catheters, fungal infections comprise up to 15% of these types of infections. Moreover, fungal UTIs have a high mortality, due to rapid spreading of the fungi to the kidneys. Most fungal UTIs are caused by Candida species, among which Candida albicans and Candida glabrata are the most common. C. glabrata is an opportunistic pathogenic yeast, phylogenetically quite close to Saccharomyces cerevisiae. Even though it is commonly isolated from the urinary tract and rapidly acquires resistance to antifungals, its pathogenesis has not been studied extensively in vivo. In vivo studies require high numbers of animals, which can be overcome by the use of non-invasive imaging tools. One such tool, bioluminescence imaging, has been used successfully to study different types of C. albicans infections. For C. glabrata, only biofilms on subcutaneously implanted catheters have been imaged using this tool. In this work, we investigated the progression of C. glabrata UTIs from the bladder to the kidneys and the spleen. Furthermore, we optimized expression of a red-shifted firefly luciferase in C. glabrata for in vivo use. We propose the first animal model using bioluminescence imaging to visualize C. glabrata in mouse tissues. Additionally, this UTI model can be used to monitor antifungal activity in vivo over time.
Collapse
|
31
|
Van Genechten W, Van Dijck P, Demuyser L. Fluorescent toys 'n' tools lighting the way in fungal research. FEMS Microbiol Rev 2021; 45:fuab013. [PMID: 33595628 PMCID: PMC8498796 DOI: 10.1093/femsre/fuab013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Although largely overlooked compared to bacterial infections, fungal infections pose a significant threat to the health of humans and other organisms. Many pathogenic fungi, especially Candida species, are extremely versatile and flexible in adapting to various host niches and stressful situations. This leads to high pathogenicity and increasing resistance to existing drugs. Due to the high level of conservation between fungi and mammalian cells, it is hard to find fungus-specific drug targets for novel therapy development. In this respect, it is vital to understand how these fungi function on a molecular, cellular as well as organismal level. Fluorescence imaging allows for detailed analysis of molecular mechanisms, cellular structures and interactions on different levels. In this manuscript, we provide researchers with an elaborate and contemporary overview of fluorescence techniques that can be used to study fungal pathogens. We focus on the available fluorescent labelling techniques and guide our readers through the different relevant applications of fluorescent imaging, from subcellular events to multispecies interactions and diagnostics. As well as cautioning researchers for potential challenges and obstacles, we offer hands-on tips and tricks for efficient experimentation and share our expert-view on future developments and possible improvements.
Collapse
Affiliation(s)
- Wouter Van Genechten
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200g, 3001 Leuven-Heverlee, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| | - Liesbeth Demuyser
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| |
Collapse
|
32
|
Pharkjaksu S, Boonmee N, Mitrpant C, Ngamskulrungroj P. Immunopathogenesis of Emerging Candida auris and Candida haemulonii Strains. J Fungi (Basel) 2021; 7:725. [PMID: 34575763 PMCID: PMC8469599 DOI: 10.3390/jof7090725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
The emergence of a multidrug-resistant Candida species, C. auris and C. haemulonii, has been reported worldwide. In Thailand, information on them is limited. We collected clinical isolates from Thai patients with invasive candidiasis. Both species were compared with a laboratory C. albicans strain. In vitro antifungal susceptibility and thermotolerance, and pathogenesis in the zebrafish model of infection were investigated. Both species demonstrated high minimal inhibitory concentrations to fluconazole and amphotericin B. Only C. auris tolerated high temperatures, like C. albicans. In a zebrafish swim-bladder-inoculation model, the C. auris-infected group had the highest mortality rate and infectivity, suggesting the highest virulence. The case fatality rates of C. auris, C. haemulonii, and C. albicans were 100%, 83.33%, and 51.52%, respectively. Further immunological studies revealed that both emerging Candida species stimulated genes involved in the proinflammatory cytokine group. Interestingly, the genes relating to leukocyte recruitment were downregulated only for C. auris infections. Almost all immune response genes to C. auris had a peak response at an early infection time, which contrasted with C. haemulonii. In conclusion, both emerging species were virulent in a zebrafish model of infection and could activate the inflammatory pathway. This study serves as a stepping stone for further pathogenesis studies of these important emerging species.
Collapse
Affiliation(s)
- Sujiraphong Pharkjaksu
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700 Bangkok, Thailand;
| | - Nawarat Boonmee
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700 Bangkok, Thailand; (N.B.); (C.M.)
| | - Chalermchai Mitrpant
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700 Bangkok, Thailand; (N.B.); (C.M.)
| | - Popchai Ngamskulrungroj
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700 Bangkok, Thailand;
| |
Collapse
|
33
|
Cheong JZA, Johnson CJ, Wan H, Liu A, Kernien JF, Gibson ALF, Nett JE, Kalan LR. Priority effects dictate community structure and alter virulence of fungal-bacterial biofilms. THE ISME JOURNAL 2021; 15:2012-2027. [PMID: 33558690 PMCID: PMC8245565 DOI: 10.1038/s41396-021-00901-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Polymicrobial biofilms are a hallmark of chronic wound infection. The forces governing assembly and maturation of these microbial ecosystems are largely unexplored but the consequences on host response and clinical outcome can be significant. In the context of wound healing, formation of a biofilm and a stable microbial community structure is associated with impaired tissue repair resulting in a non-healing chronic wound. These types of wounds can persist for years simmering below the threshold of classically defined clinical infection (which includes heat, pain, redness, and swelling) and cycling through phases of recurrent infection. In the most severe outcome, amputation of lower extremities may occur if spreading infection ensues. Here we take an ecological perspective to study priority effects and competitive exclusion on overall biofilm community structure in a three-membered community comprised of strains of Staphylococcus aureus, Citrobacter freundii, and Candida albicans derived from a chronic wound. We show that both priority effects and inter-bacterial competition for binding to C. albicans biofilms significantly shape community structure on both abiotic and biotic substrates, such as ex vivo human skin wounds. We further show attachment of C. freundii to C. albicans is mediated by mannose-binding lectins. Co-cultures of C. freundii and C. albicans trigger the yeast-to-hyphae transition, resulting in a significant increase in neutrophil death and inflammation compared to either species alone. Collectively, the results presented here facilitate our understanding of fungal-bacterial interactions and their effects on host-microbe interactions, pathogenesis, and ultimately, wound healing.
Collapse
Affiliation(s)
- J Z Alex Cheong
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Chad J Johnson
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Hanxiao Wan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Aiping Liu
- Department of Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - John F Kernien
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Angela L F Gibson
- Department of Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Jeniel E Nett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.
- Department of Medicine, Division of Infectious Disease, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
34
|
Wakade RS, Huang M, Mitchell AP, Wellington M, Krysan DJ. Intravital Imaging of Candida albicans Identifies Differential In Vitro and In Vivo Filamentation Phenotypes for Transcription Factor Deletion Mutants. mSphere 2021; 6:e0043621. [PMID: 34160243 PMCID: PMC8265662 DOI: 10.1128/msphere.00436-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/07/2021] [Indexed: 01/12/2023] Open
Abstract
Candida albicans is an important cause of human fungal infections. A widely studied virulence trait of C. albicans is its ability to undergo filamentation to hyphae and pseudohyphae. Although yeast, pseudohyphae, and hyphae are present in pathological samples of infected mammalian tissue, it has been challenging to characterize the role of regulatory networks and specific genes during in vivo filamentation. In addition, the phenotypic heterogeneity of C. albicans clinical isolates is becoming increasingly recognized, while correlating this heterogeneity with pathogenesis remains an important goal. Here, we describe the use of an intravital imaging approach to characterize C. albicans filamentation in a mammalian model of infection by taking advantage of the translucence of mouse pinna (ears). Using this model, we have found that the in vitro and in vivo filamentation phenotypes of different C. albicans isolates can vary significantly, particularly when in vivo filamentation is compared to solid agar-based assays. We also show that the well-characterized transcriptional regulators Efg1 and Brg1 appear to play important roles both in vivo and in vitro. In contrast, Ume6 is much more important in vitro than in vivo. Finally, strains that are dependent on Bcr1 for in vitro filamentation are able to form filaments in vivo in its absence. This intravital imaging approach provides a new approach to the systematic characterization of this important virulence trait during mammalian infection. Our initial studies provide support for the notion that the regulation and initiation of C. albicans filamentation in vivo is distinct from in vitro induction. IMPORTANCE Candida albicans is one of the most common causes of fungal infections in humans. C. albicans undergoes a transition from a round yeast form to a filamentous form during infection, which is critical for its ability to cause disease. Although this transition has been studied in the laboratory for years, methods to do so in an animal model of infection have been limited. We have developed a microscopy method to visualize fluorescently labeled C. albicans undergoing this transition in the subcutaneous tissue of mice. Our studies indicate that the regulation of C. albicans filamentation during infection is distinct from that observed in laboratory conditions.
Collapse
Affiliation(s)
- Rohan S. Wakade
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Manning Huang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Aaron P. Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Melanie Wellington
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
35
|
Both Pseudomonas aeruginosa and Candida albicans Accumulate Greater Biomass in Dual-Species Biofilms under Flow. mSphere 2021; 6:e0041621. [PMID: 34160236 PMCID: PMC8265656 DOI: 10.1128/msphere.00416-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microbe-microbe interactions can strongly influence growth and biofilm formation kinetics. For Pseudomonas aeruginosa and Candida albicans, which are found together in diverse clinical sites, including urinary and intravenous catheters and the lungs of individuals with cystic fibrosis (CF), we compared the kinetics of biofilm formation by each species in dual-species and single-species biofilms. We engineered fluorescent protein constructs for P. aeruginosa (producing mKO-κ) and C. albicans (producing mKate2) that did not alter growth and enabled single-cell resolution imaging by live-sample microscopy. Using these strains in an optically clear derivative of synthetic CF sputum medium, we found that both P. aeruginosa and C. albicans displayed increased biovolume accumulation—by three- and sixfold, respectively—in dual-species biofilms relative to single-species biofilms. This result was specific to the biofilm environment, as enhanced growth was not observed in planktonic cocultures. Stimulation of C. albicans biofilm formation occurred regardless of whether P. aeruginosa was added at the time of fungal inoculation or 24 h after the initiation of biofilm development. P. aeruginosa biofilm increases in cocultures did not require the Pel extracellular polysaccharide, phenazines, and siderophores known to influence C. albicans. P. aeruginosa mutants lacking Anr, LasR, and BapA were not significantly stimulated by C. albicans, but they still promoted a significant enhancement of biofilm development of the fungus, suggesting a fungal response to the presence of bacteria. Last, we showed that a set of P. aeruginosa clinical isolates also prompted an increase of biovolume by C. albicans in coculture. IMPORTANCE There is an abundance of work on both P. aeruginosa and C. albicans in isolation, and quite some work as well on the way these two microbes interact. These studies do not, however, consider biofilm environments under flow, and our results here show that the expected outcome of interaction between these two pathogens can actually be reversed under flow, from pure antagonism to an increase in biomass on the part of both. Our work also highlights the importance of cellular-scale spatial structure in biofilms for understanding multispecies population dynamics.
Collapse
|
36
|
Candida albicans triggers qualitative and temporal responses in gut bacteria. J Mycol Med 2021; 31:101164. [PMID: 34147760 DOI: 10.1016/j.mycmed.2021.101164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/11/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022]
Abstract
Interactions between commensal intestinal bacteria and fungi are collectively beneficial in maintaining the balance of the gut microflora and preventing gastrointestinal diseases. However, the contributions of specific bacterial species in response to fungal dysbiosis in the gut remain poorly defined. Here, to understand the dynamic changes, we established acute a challenge with Candida albicans in mice treated without antibiotics and analyzed the changes in the diversity of bacteria during the imbalance in intestinal C. albicans with high-throughput amplicon sequencing. Our results showed significant increases in species diversity after the first day of fungal challenge and the restoration of balance among the gut microflora on the third day of challenge. To explore the interactions between the intestinal bacteria and C. albicans, the antifungal activities of bacteria isolated from the mouse feces were also determined. Nineteen aerobic bacteria with antifungal activity were identified with whole 16S rRNA gene sequencing. These bacteria were isolated on the first day of challenge more than on the third day. These results suggested that the commensal intestinal bacteria may protect the host against fungal dysbiosis in the gut by altering their own species diversity. The interaction between bacteria and fungi in the gut may be the key to maintaining the dynamic balance of microorganisms in the context of environmental changes.
Collapse
|
37
|
Khan F, Bamunuarachchi NI, Pham DTN, Tabassum N, Khan MSA, Kim YM. Mixed biofilms of pathogenic Candida-bacteria: regulation mechanisms and treatment strategies. Crit Rev Microbiol 2021; 47:699-727. [PMID: 34003065 DOI: 10.1080/1040841x.2021.1921696] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mixed-species biofilm is one of the most frequently recorded clinical problems. Mixed biofilms develop as a result of interactions between microorganisms of a single or multiple species (e.g. bacteria and fungi). Candida spp., particularly Candida albicans, are known to associate with various bacterial species to form a multi-species biofilm. Mixed biofilms of Candida spp. have been previously detected in vivo and on the surfaces of many biomedical instruments. Treating infectious diseases caused by mixed biofilms of Candida and bacterial species has been challenging due to their increased resistance to antimicrobial drugs. Here, we review and discuss the clinical significance of mixed Candida-bacteria biofilms as well as the signalling mechanisms involved in Candida-bacteria interactions. We also describe possible approaches for combating infections associated with mixed biofilms, such as the use of natural or synthetic drugs and combination therapy. The review presented here is expected to contribute to the advances in the biomedical field on the understanding of underlying interaction mechanisms of pathogens in mixed biofilm, and alternative approaches to treating the related infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea.,Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle, Sri Lanka
| | - Dung Thuy Nguyen Pham
- Center of Excellence for Biochemistry and Natural Products, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.,NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, South Korea
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| |
Collapse
|
38
|
Van Genechten W, Demuyser L, Duwé S, Vandenberg W, Van Dijck P, Dedecker P. Photochromic Fluorophores Enable Imaging of Lowly Expressed Proteins in the Autofluorescent Fungus Candida albicans. mSphere 2021; 6:e00146-21. [PMID: 33731469 PMCID: PMC8546692 DOI: 10.1128/msphere.00146-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 11/20/2022] Open
Abstract
Fluorescence microscopy is a standard research tool in many fields, although collecting reliable images can be difficult in systems characterized by low expression levels and/or high background fluorescence. We present the combination of a photochromic fluorescent protein and stochastic optical fluctuation imaging (SOFI) to deliver suppression of the background fluorescence. This strategy makes it possible to resolve lowly or endogenously expressed proteins, as we demonstrate for Gcn5, a histone acetyltransferase required for complete virulence, and Erg11, the target of the azole antifungal agents in the fungal pathogen Candida albicans We expect that our method can be readily used for sensitive fluorescence measurements in systems characterized by high background fluorescence.IMPORTANCE Understanding the spatial and temporal organization of proteins of interest is key to unraveling cellular processes and identifying novel possible antifungal targets. Only a few therapeutic targets have been discovered in Candida albicans, and resistance mechanisms against these therapeutic agents are rapidly acquired. Fluorescence microscopy is a valuable tool to investigate molecular processes and assess the localization of possible antifungal targets. Unfortunately, fluorescence microscopy of C. albicans suffers from extensive autofluorescence. In this work, we present the use of a photochromic fluorescent protein and stochastic optical fluctuation imaging to enable the imaging of lowly expressed proteins in C. albicans through the suppression of autofluorescence. This method can be applied in C. albicans research or adapted for other fungal systems, allowing the visualization of intricate processes.
Collapse
Affiliation(s)
- Wouter Van Genechten
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, KU Leuven, Leuven, Belgium
- Advanced Optical Microscopy Centre, Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Liesbeth Demuyser
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, KU Leuven, Leuven, Belgium
| | - Sam Duwé
- Advanced Optical Microscopy Centre, Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Wim Vandenberg
- Lab for Nanobiology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, KU Leuven, Leuven, Belgium
| | - Peter Dedecker
- Lab for Nanobiology, Department of Chemistry, KU Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Koshy-Chenthittayil S, Archambault L, Senthilkumar D, Laubenbacher R, Mendes P, Dongari-Bagtzoglou A. Agent Based Models of Polymicrobial Biofilms and the Microbiome-A Review. Microorganisms 2021; 9:417. [PMID: 33671308 PMCID: PMC7922883 DOI: 10.3390/microorganisms9020417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
The human microbiome has been a focus of intense study in recent years. Most of the living organisms comprising the microbiome exist in the form of biofilms on mucosal surfaces lining our digestive, respiratory, and genito-urinary tracts. While health-associated microbiota contribute to digestion, provide essential nutrients, and protect us from pathogens, disturbances due to illness or medical interventions contribute to infections, some that can be fatal. Myriad biological processes influence the make-up of the microbiota, for example: growth, division, death, and production of extracellular polymers (EPS), and metabolites. Inter-species interactions include competition, inhibition, and symbiosis. Computational models are becoming widely used to better understand these interactions. Agent-based modeling is a particularly useful computational approach to implement the various complex interactions in microbial communities when appropriately combined with an experimental approach. In these models, each cell is represented as an autonomous agent with its own set of rules, with different rules for each species. In this review, we will discuss innovations in agent-based modeling of biofilms and the microbiota in the past five years from the biological and mathematical perspectives and discuss how agent-based models can be further utilized to enhance our comprehension of the complex world of polymicrobial biofilms and the microbiome.
Collapse
Affiliation(s)
- Sherli Koshy-Chenthittayil
- Center for Quantitative Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA; (S.K.-C.); (L.A.); (P.M.)
| | - Linda Archambault
- Center for Quantitative Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA; (S.K.-C.); (L.A.); (P.M.)
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | - Pedro Mendes
- Center for Quantitative Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA; (S.K.-C.); (L.A.); (P.M.)
- Center for Cell Analysis and Modeling, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
40
|
Van Dyck K, Pinto RM, Pully D, Van Dijck P. Microbial Interkingdom Biofilms and the Quest for Novel Therapeutic Strategies. Microorganisms 2021; 9:412. [PMID: 33671126 PMCID: PMC7921918 DOI: 10.3390/microorganisms9020412] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Fungal and bacterial species interact with each other within polymicrobial biofilm communities in various niches of the human body. Interactions between these species can greatly affect human health and disease. Diseases caused by polymicrobial biofilms pose a major challenge in clinical settings because of their enhanced virulence and increased drug tolerance. Therefore, different approaches are being explored to treat fungal-bacterial biofilm infections. This review focuses on the main mechanisms involved in polymicrobial drug tolerance and the implications of the polymicrobial nature for the therapeutic treatment by highlighting clinically relevant fungal-bacterial interactions. Furthermore, innovative treatment strategies which specifically target polymicrobial biofilms are discussed.
Collapse
Affiliation(s)
- Katrien Van Dyck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Rita M. Pinto
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, 4050-313 Porto, Portugal
| | - Durgasruthi Pully
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| |
Collapse
|
41
|
Seelbinder B, Wallstabe J, Marischen L, Weiss E, Wurster S, Page L, Löffler C, Bussemer L, Schmitt AL, Wolf T, Linde J, Cicin-Sain L, Becker J, Kalinke U, Vogel J, Panagiotou G, Einsele H, Westermann AJ, Schäuble S, Loeffler J. Triple RNA-Seq Reveals Synergy in a Human Virus-Fungus Co-infection Model. Cell Rep 2020; 33:108389. [PMID: 33207195 DOI: 10.1016/j.celrep.2020.108389] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/30/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
High-throughput RNA sequencing (RNA-seq) is routinely applied to study diverse biological processes; however, when performed separately on interacting organisms, systemic noise intrinsic to RNA extraction, library preparation, and sequencing hampers the identification of cross-species interaction nodes. Here, we develop triple RNA-seq to simultaneously detect transcriptomes of monocyte-derived dendritic cells (moDCs) infected with the frequently co-occurring pulmonary pathogens Aspergillus fumigatus and human cytomegalovirus (CMV). Comparing expression patterns after co-infection with those after single infections, our data reveal synergistic effects and mutual interferences between host responses to the two pathogens. For example, CMV attenuates the fungus-mediated activation of pro-inflammatory cytokines through NF-κB (nuclear factor κB) and NFAT (nuclear factor of activated T cells) cascades, while A. fumigatus impairs viral clearance by counteracting viral nucleic acid-induced activation of type I interferon signaling. Together, the analytical power of triple RNA-seq proposes molecular hubs in the differential moDC response to fungal/viral single infection or co-infection that contribute to our understanding of the etiology and, potentially, clearance of post-transplant infections.
Collapse
Affiliation(s)
- Bastian Seelbinder
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Julia Wallstabe
- University Hospital Würzburg, Medical Hospital II, WÜ4i, 97080 Würzburg, Germany
| | - Lothar Marischen
- University Hospital Würzburg, Medical Hospital II, WÜ4i, 97080 Würzburg, Germany
| | - Esther Weiss
- University Hospital Würzburg, Medical Hospital II, WÜ4i, 97080 Würzburg, Germany
| | - Sebastian Wurster
- University Hospital Würzburg, Medical Hospital II, WÜ4i, 97080 Würzburg, Germany; The University of Texas MD Anderson Cancer Center, Department of Infectious Diseases, Infection Control and Employee Health, Houston, TX 77030, USA
| | - Lukas Page
- University Hospital Würzburg, Medical Hospital II, WÜ4i, 97080 Würzburg, Germany
| | - Claudia Löffler
- University Hospital Würzburg, Medical Hospital II, WÜ4i, 97080 Würzburg, Germany
| | - Lydia Bussemer
- University Hospital Würzburg, Medical Hospital II, WÜ4i, 97080 Würzburg, Germany
| | - Anna-Lena Schmitt
- University Hospital Würzburg, Medical Hospital II, WÜ4i, 97080 Würzburg, Germany
| | - Thomas Wolf
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Jörg Linde
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, 07743 Jena, Germany
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Hannover-Braunschweig Site, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH) Braunschweig, 38124 Braunschweig, Germany
| | - Jennifer Becker
- Institute for Experimental Infection Research, TWINCORE-Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE-Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), 07745 Jena, Germany; Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong S.A.R., China
| | - Hermann Einsele
- University Hospital Würzburg, Medical Hospital II, WÜ4i, 97080 Würzburg, Germany
| | - Alexander J Westermann
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Sascha Schäuble
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Juergen Loeffler
- University Hospital Würzburg, Medical Hospital II, WÜ4i, 97080 Würzburg, Germany.
| |
Collapse
|
42
|
McIlroy R, Millar BC, Nelson DW, Murphy A, Rao JR, Downey DG, Moore JE. Pseudomonas aeruginosa - Candida interplay: effect on in vitro antibiotic susceptibility of Pseudomonas aeruginosa when grown in the presence of Candida culture. Br J Biomed Sci 2020; 78:95-97. [PMID: 32887537 DOI: 10.1080/09674845.2020.1819003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- R McIlroy
- Wellcome-Wolfson Institute For Experimental Medicine, Queen's University , Belfast, UK.,Northern Ireland Public Health Laboratory , Department of Bacteriology, Belfast, UK.,Plant Pathology, AgriFood & Biosciences Institute , Belfast, UK
| | - B C Millar
- Wellcome-Wolfson Institute For Experimental Medicine, Queen's University , Belfast, UK.,Northern Ireland Public Health Laboratory , Department of Bacteriology, Belfast, UK
| | - D W Nelson
- Plant Pathology, AgriFood & Biosciences Institute , Belfast, UK
| | - A Murphy
- Northern Ireland Public Health Laboratory , Department of Bacteriology, Belfast, UK
| | - J R Rao
- Plant Pathology, AgriFood & Biosciences Institute , Belfast, UK
| | - D G Downey
- Wellcome-Wolfson Institute For Experimental Medicine, Queen's University , Belfast, UK.,Northern Ireland Adult Cystic Fibrosis Centre, Level 8, Belfast City Hospital , Belfast, UK
| | - J E Moore
- Wellcome-Wolfson Institute For Experimental Medicine, Queen's University , Belfast, UK.,Northern Ireland Public Health Laboratory , Department of Bacteriology, Belfast, UK
| |
Collapse
|
43
|
Conditional antagonism in co-cultures of Pseudomonas aeruginosa and Candida albicans: An intersection of ethanol and phosphate signaling distilled from dual-seq transcriptomics. PLoS Genet 2020; 16:e1008783. [PMID: 32813693 PMCID: PMC7480860 DOI: 10.1371/journal.pgen.1008783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/09/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa and Candida albicans are opportunistic pathogens whose interactions involve the secreted products ethanol and phenazines. Here, we describe the role of ethanol in mixed-species co-cultures by dual-seq analyses. P. aeruginosa and C. albicans transcriptomes were assessed after growth in mono-culture or co-culture with either ethanol-producing C. albicans or a C. albicans mutant lacking the primary ethanol dehydrogenase, Adh1. Analysis of the RNA-Seq data using KEGG pathway enrichment and eADAGE methods revealed several P. aeruginosa responses to C. albicans-produced ethanol including the induction of a non-canonical low-phosphate response regulated by PhoB. C. albicans wild type, but not C. albicans adh1Δ/Δ, induces P. aeruginosa production of 5-methyl-phenazine-1-carboxylic acid (5-MPCA), which forms a red derivative within fungal cells and exhibits antifungal activity. Here, we show that C. albicans adh1Δ/Δ no longer activates P. aeruginosa PhoB and PhoB-regulated phosphatase activity, that exogenous ethanol complements this defect, and that ethanol is sufficient to activate PhoB in single-species P. aeruginosa cultures at permissive phosphate levels. The intersection of ethanol and phosphate in co-culture is inversely reflected in C. albicans; C. albicans adh1Δ/Δ had increased expression of genes regulated by Pho4, the C. albicans transcription factor that responds to low phosphate, and Pho4-dependent phosphatase activity. Together, these results show that C. albicans-produced ethanol stimulates P. aeruginosa PhoB activity and 5-MPCA-mediated antagonism, and that both responses are dependent on local phosphate concentrations. Further, our data suggest that phosphate scavenging by one species improves phosphate access for the other, thus highlighting the complex dynamics at play in microbial communities. Pseudomonas aeruginosa and Candida albicans are opportunistic pathogens that are frequently isolated from co-infections. Using a combination of dual-seq transcriptomics and genetics approaches, we found that ethanol produced by C. albicans stimulates the PhoB regulon in P. aeruginosa asynchronously with activation of the Pho4 regulon in C. albicans. We validated our result by showing that PhoB plays multiple roles in co-culture including orchestrating the competition for phosphate and the production of 5-methyl-phenazine-1-carboxylic acid; the P. aeruginosa phenazine response to C. albicans-produced ethanol depends on phosphate availability. The conditional stimulation of antifungal production in response to sub-inhibitory concentrations of ethanol only under phosphate limitation highlights the importance of considering nutrient concentrations in the analysis of co-culture interactions and suggests that the low-phosphate response in one species influences phosphate availability for the other.
Collapse
|
44
|
Interactions between invasive fungi and symbiotic bacteria. World J Microbiol Biotechnol 2020; 36:137. [PMID: 32794072 DOI: 10.1007/s11274-020-02913-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022]
Abstract
Infection rates and mortality associated with the invasive fungi Candida, Aspergillus, and Cryptococcus are increasing rapidly in prevalence. Meanwhile, screening pressure brought about by traditional antifungal drugs has induced an increase in drug resistance of invasive fungi, which creates a great challenge for the preservation of physical health. Development of new drugs and novel strategies are therefore important to meet these growing challenges. Recent studies have confirmed that the dynamic balance of microorganisms in the body is correlated with the occurrence of infectious diseases. This discovery of interactions between bacteria and fungi provides innovative insight for the treatment of invasive fungal infections. However, different invasive fungi and symbiotic bacteria interact with each other through various ways and targets, leading to different effects on their growth, morphology, and virulence. And the mechanism and implication of these interactions remains largely unknown. The present review aims to summarize the research progress into the interaction between invasive fungi and symbiotic bacteria with a focus on the anti-fungal mechanisms of symbiotic bacteria, providing a new strategy against drug-resistant fungal infections.
Collapse
|
45
|
Scherer AK, Blair BA, Park J, Seman BG, Kelley JB, Wheeler RT. Redundant Trojan horse and endothelial-circulatory mechanisms for host-mediated spread of Candida albicans yeast. PLoS Pathog 2020; 16:e1008414. [PMID: 32776983 PMCID: PMC7447064 DOI: 10.1371/journal.ppat.1008414] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/25/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022] Open
Abstract
The host innate immune system has developed elegant processes for the detection and clearance of invasive fungal pathogens. These strategies may also aid in the spread of pathogens in vivo, although technical limitations have previously hindered our ability to view the host innate immune and endothelial cells to probe their roles in spreading disease. Here, we have leveraged zebrafish larvae as a model to view the interactions of these host processes with the fungal pathogen Candida albicans in vivo. We examined three potential host-mediated mechanisms of fungal spread: movement inside phagocytes in a "Trojan Horse" mechanism, inflammation-assisted spread, and endothelial barrier passage. Utilizing both chemical and genetic tools, we systematically tested the loss of neutrophils and macrophages and the loss of blood flow on yeast cell spread. Both neutrophils and macrophages respond to yeast-locked and wild type C. albicans in our model and time-lapse imaging revealed that macrophages can support yeast spread in a "Trojan Horse" mechanism. Surprisingly, loss of immune cells or inflammation does not alter dissemination dynamics. On the other hand, when blood flow is blocked, yeast can cross into blood vessels but they are limited in how far they travel. Blockade of both phagocytes and circulation reduces rates of dissemination and significantly limits the distance of fungal spread from the infection site. Together, this data suggests a redundant two-step process whereby (1) yeast cross the endothelium inside phagocytes or via direct uptake, and then (2) they utilize blood flow or phagocytes to travel to distant sites.
Collapse
Affiliation(s)
- Allison K. Scherer
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Bailey A. Blair
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, United States of America
- Graduate School of Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Jieun Park
- Department of Cell Biology and Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
| | - Brittany G. Seman
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Joshua B. Kelley
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, United States of America
- Graduate School of Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| | - Robert T. Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, United States of America
- Graduate School of Biomedical Sciences, University of Maine, Orono, Maine, United States of America
| |
Collapse
|
46
|
Tornadic Shear Stress Induces a Transient, Calcineurin-Dependent Hypervirulent Phenotype in Mucorales Molds. mBio 2020; 11:mBio.01414-20. [PMID: 32605990 PMCID: PMC7327176 DOI: 10.1128/mbio.01414-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Trauma-related necrotizing myocutaneous mucormycosis (NMM) has a high morbidity and mortality in victims of combat-related injuries, geometeorological disasters, and severe burns. Inspired by the observation that several recent clusters of NMM have been associated with extreme mechanical forces (e.g., during tornados), we studied the impact of mechanical stress on Mucoralean biology and virulence in a Drosophila melanogaster infection model. In contrast to other experimental procedures to exert mechanical stress, tornadic shear challenge (TSC) by magnetic stirring induced a hypervirulent phenotype in several clinically relevant Mucorales species but not in Aspergillus or Fusarium Whereas fungal growth rates, morphogenesis, and susceptibility to noxious environments or phagocytes were not altered by TSC, soluble factors released in the supernatant of shear-challenged R. arrhizus spores rendered static spores hypervirulent. Consistent with a rapid decay of TSC-induced hypervirulence, minimal transcriptional changes were revealed by comparative RNA sequencing analysis of static and shear-challenged Rhizopus arrhizus However, inhibition of the calcineurin/heat shock protein 90 (hsp90) stress response circuitry by cyclosporine and tanespimycin abrogated the increased pathogenicity of R. arrhizus spores following TSC. Similarly, calcineurin loss-of-function mutants of Mucor circinelloides displayed no increased virulence capacity in flies after undergoing TSC. Collectively, these results establish that TSC induces hypervirulence specifically in Mucorales and point out the calcineurin/hsp90 pathway as a key orchestrator of this phenotype. Our findings invite future studies of topical calcineurin inhibitor treatment of wounds as an adjunct mitigation strategy for NMM following high-energy trauma.IMPORTANCE Given the limited efficacy of current medical treatments in trauma-related necrotizing mucormycosis, there is a dire need to better understand the Mucoralean pathophysiology in order to develop novel strategies to counteract fungal tissue invasion following severe trauma. Here, we describe that tornadic shear stress challenge transiently induces a hypervirulent phenotype in various pathogenic Mucorales species but not in other molds known to cause wound infections. Pharmacological and genetic inhibition of calcineurin signaling abrogated hypervirulence in shear stress-challenged Mucorales, encouraging further evaluation of (topical) calcineurin inhibitors to improve therapeutic outcomes of NMM after combat-related blast injuries or violent storms.
Collapse
|
47
|
Panpetch W, Hiengrach P, Nilgate S, Tumwasorn S, Somboonna N, Wilantho A, Chatthanathon P, Prueksapanich P, Leelahavanichkul A. Additional Candida albicans administration enhances the severity of dextran sulfate solution induced colitis mouse model through leaky gut-enhanced systemic inflammation and gut-dysbiosis but attenuated by Lactobacillus rhamnosus L34. Gut Microbes 2020; 11:465-480. [PMID: 31530137 PMCID: PMC7527076 DOI: 10.1080/19490976.2019.1662712] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
is abundant in the human gut mycobiota but this species does not colonize the mouse gastrointestinal tract. C. albicans administration in dextran-sulfate solution (DSS) induced-colitis mouse model (DSS+Candida) might resemble more to human condition, therefore, a DSS colitis model with Candida administration was studied; first, to test the influence of fungi in DSS model and second, to test the efficacy of Lactobacillus rhamnosus L34. We demonstrated serum (1→3)-β-D-glucan (BG) elevation in patients with IBD and endoscopic moderate colitis in clinical remission, supporting the possible influence of gut fungi toward IBD in human. Then, in mouse model, Candida gavage was found to worsen the DSS model indicated by higher mortality rate, more severe colon histology and enhanced gut-leakage (FITC-dextran assay, endotoxemia, serum BG and blood bacterial burdens) but did not affect weight loss and diarrhea. DSS+Candida induced higher pro-inflammatory cytokines both in blood and in intestinal tissue. Worsened systemic pro-inflammatory cytokine responses in DSS+Candida compared with DSS alone was possibly due to the more severe translocation of LPS, BG and bacteria (not fungemia) from gut into systemic circulation. Interestingly, bacteremia from Pseudomonas aeruginosa was more frequently isolated from DSS+Candida than DSS alone. In parallel, P. aeruginosa was also isolated from fecal culture in most of the mice in DSS+Candida group supported by prominent Gammaproteobacteria in fecal microbioata analysis. However, L. rhamnosus L34 attenuated both DSS+Candida and DSS model through the attenuation of gut local inflammation (cytokines and histology), gut-leakage severity, fecal dysbiosis (culture method and microbiome analysis) and systemic inflammation (serum cytokines). In conclusion, gut Candida in DSS model induced fecal bacterial dysbiosis and enhanced leaky-gut induced bacteremia. Probiotic treatment strategy aiming to reduce gut-fungi and fecal dysbiosis could attenuate disease severity. Investigation on gut fungi in patients with IBD is highly interesting.
Collapse
Affiliation(s)
- Wimonrat Panpetch
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pratsanee Hiengrach
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sumanee Nilgate
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somying Tumwasorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
| | - Alisa Wilantho
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
- Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Piraya Chatthanathon
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Piyapan Prueksapanich
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- CONTACT Asada Leelahavanichkul Immunology Unit, Department of Microbiology, Chulalongkorn University, Bangkok10330, Thailand
| |
Collapse
|
48
|
Kirchhoff L, Weisner AK, Schrepffer M, Hain A, Scharmann U, Buer J, Rath PM, Steinmann J. Phenotypical Characteristics of the Black Yeast Exophiala dermatitidis Are Affected by Pseudomonas aeruginosa in an Artificial Sputum Medium Mimicking Cystic Fibrosis-Like Conditions. Front Microbiol 2020; 11:471. [PMID: 32265891 PMCID: PMC7100538 DOI: 10.3389/fmicb.2020.00471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/04/2020] [Indexed: 12/18/2022] Open
Abstract
Research into the cooperative pathogenicity of microbes in cystic fibrosis (CF) lungs is crucial for an understanding of the pathophysiology of infections and the development of novel treatment strategies. This study investigated the impact of the common CF-associated bacterial pathogen Pseudomonas aeruginosa on the black yeast Exophiala dermatitidis. It evaluated the planktonic growth, biofilm formation, morphology, and virulence of the fungus in the presence or absence of P. aeruginosa. It also determined the role of P. aeruginosa quorum-sensing (QS) molecules within these interactions, e.g., by using sterile culture filtrate and QS-deficient mutants. P. aeruginosa is known to inhibit the planktonic growth of E. dermatitidis. We found that fungal biofilm formation increased in the presence of P. aeruginosa after 24 h but is decreased significantly after 48 h. This effect was reversed when, instead of QS wild-type strains, ΔlasR, and ΔrhlR mutants were added to E. dermatitidis biofilm formation. The number and length of hyphae were substantially reduced when E. dermatitidis was co-cultivated with P. aeruginosa, but not when it was co-cultivated with the mutants. Experiments testing the virulence of E. dermatitidis in the greater wax moth Galleria mellonella showed a synergetic effect on larval killing when E. dermatitidis was injected together with P. aeruginosa culture filtrate. Survival rates were decreased when biofilm culture filtrate was added but not when planktonic culture filtrate was added. In summary, P. aeruginosa affects the growth, morphology, biofilm formation, and virulence of E. dermatitidis. N-acyl-L-homoserine lactone (AHL) QS molecules regulated factors that have been shown to contribute to the inhibition of the ability of E. dermatitidis to form filaments and biofilm.
Collapse
Affiliation(s)
- Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ann-Kathrin Weisner
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mona Schrepffer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andrea Hain
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrike Scharmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter-Michael Rath
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
49
|
Rathje K, Mortzfeld B, Hoeppner MP, Taubenheim J, Bosch TCG, Klimovich A. Dynamic interactions within the host-associated microbiota cause tumor formation in the basal metazoan Hydra. PLoS Pathog 2020; 16:e1008375. [PMID: 32191776 PMCID: PMC7081986 DOI: 10.1371/journal.ppat.1008375] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/01/2020] [Indexed: 02/07/2023] Open
Abstract
The extent to which disturbances in the resident microbiota can compromise an animal’s health is poorly understood. Hydra is one of the evolutionary oldest animals with naturally occurring tumors. Here, we found a causal relationship between an environmental spirochete (Turneriella spec.) and tumorigenesis in Hydra. Unexpectedly, virulence of this pathogen requires the presence of Pseudomonas spec., a member of Hydra´s beneficial microbiome indicating that dynamic interactions between a resident bacterium and a pathogen cause tumor formation. The observation points to the crucial role of commensal bacteria in maintaining tissue homeostasis and adds support to the view that microbial community interactions are essential for disease. These findings in an organism that shares deep evolutionary connections with all animals have implications for our understanding of cancer. Here we follow up on our initial observation of tumor formation in the basal metazoan Hydra and demonstrate that tumor development in one of the evolutionary oldest animals is caused by a dynamic interplay between an environmental spirochete, the host-associated resident microbiota, and the tissue homeostasis within the animal. Unexpectedly, the pathogenicity of the environmental bacterium Turneriella is context-dependent: the virulence of this pathogen requires the presence of a member of Hydra’s beneficial microbiome—the Pseudomonas bacterium. Dynamic interactions between two microbiota members have profound effects onto the host tissue homeostasis and fitness. Our data provide direct evidence for the important role of the resident microbiome in maintaining tissue homeostasis and pathogen defense, a fundamental process that is likely to take place in every tissue of every animal species. In summary, our study uncovers an evolutionary conserved role of the resident microbiome in guarding host’s tissue homeostasis.
Collapse
Affiliation(s)
- Kai Rathje
- Zoological Institute, Kiel University, Kiel, Germany
| | - Benedikt Mortzfeld
- Zoological Institute, Kiel University, Kiel, Germany
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, United States of America
| | - Marc P. Hoeppner
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Jan Taubenheim
- Zoological Institute, Kiel University, Kiel, Germany
- Institute for Zoology and Organismic Interactions, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas C. G. Bosch
- Zoological Institute, Kiel University, Kiel, Germany
- * E-mail: (TCGB); (AK)
| | | |
Collapse
|
50
|
Van Dyck K, Rogiers O, Vande Velde G, Van Dijck P. Let's shine a light on fungal infections: A noninvasive imaging toolbox. PLoS Pathog 2020; 16:e1008257. [PMID: 32134998 PMCID: PMC7058284 DOI: 10.1371/journal.ppat.1008257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Katrien Van Dyck
- Laboratory of molecular cell biology, Institute of botany and microbiology, Department of biology, KU Leuven, Leuven, Belgium
- VIB center for microbiology, Leuven, Belgium
| | - Ona Rogiers
- Laboratory of molecular cell biology, Institute of botany and microbiology, Department of biology, KU Leuven, Leuven, Belgium
- VIB center for microbiology, Leuven, Belgium
- Center for Inflammation Research, VIB, Technologiepark, Zwijnaarde, Belgium
- Department of Internal Medicine, Ghent University, Technologiepark, Zwijnaarde, Belgium
| | - Greetje Vande Velde
- Biomedical MRI/ MoSAIC, Dept. Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of molecular cell biology, Institute of botany and microbiology, Department of biology, KU Leuven, Leuven, Belgium
- VIB center for microbiology, Leuven, Belgium
- * E-mail:
| |
Collapse
|