1
|
Kawasaki T, Takeda Y, Kumanogoh A. Proteomics of blood extracellular vesicles in inflammatory respiratory diseases for biomarker discovery and new insights into pathophysiology. Inflamm Regen 2024; 44:38. [PMID: 39294831 PMCID: PMC11409490 DOI: 10.1186/s41232-024-00351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Inflammatory respiratory diseases, such as interstitial lung disease (ILD), bronchial asthma (BA), chronic obstructive pulmonary disease (COPD), and respiratory infections, remain significant global health concerns owing to their chronic and severe nature. Emerging as a valuable resource, blood extracellular vesicles (EVs) offer insights into disease pathophysiology and biomarker discovery in these conditions. MAIN BODY This review explores the advancements in blood EV proteomics for inflammatory respiratory diseases, highlighting their potential as non-invasive diagnostic and prognostic tools. Blood EVs offer advantages over traditional serum or plasma samples. Proteomic analyses of blood EVs have revealed numerous biomarkers that can be used to stratify patients, predict disease progression, and identify candidate therapeutic targets. Blood EV proteomics has identified proteins associated with progressive fibrosis in ILD, offering new avenues of treatment. In BA, eosinophil-derived EVs harbor biomarkers crucial for managing eosinophilic inflammation. Research on COPD has also identified proteins that correlate with lung function. Moreover, EVs play a critical role in respiratory infections such as COVID-19, and disease-associated proteins are encapsulated. Thus, proteomic studies have identified key molecules involved in disease severity and immune responses, underscoring their role in monitoring and guiding therapy. CONCLUSION This review highlights the potential of blood EV proteomics as a non-invasive diagnostic and prognostic tool for inflammatory respiratory diseases, providing a promising avenue for improved patient management and therapeutic development.
Collapse
Affiliation(s)
- Takahiro Kawasaki
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Han Y, Ye S, Liu B. Roles of extracellular vesicles derived from healthy and obese adipose tissue in inter-organ crosstalk and potential clinical implication. Front Endocrinol (Lausanne) 2024; 15:1409000. [PMID: 39268243 PMCID: PMC11390393 DOI: 10.3389/fendo.2024.1409000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles containing bioactive molecules including proteins, nucleic acids and lipids that mediate intercellular and inter-organ communications, holding promise as potential therapeutics for multiple diseases. Adipose tissue (AT) serves as a dynamically distributed energy storage organ throughout the body, whose accumulation leads to obesity, a condition characterized by infiltration with abundant immune cells. Emerging evidence has illustrated that EVs secreted by AT are the novel class of adipokines that regulate the homeostasis between AT and peripheral organs. However, most of the studies focused on the investigations of EVs derived from adipocytes or adipose-derived stem cells (ADSCs), the summarization of functions in cellular and inter-organ crosstalk of EVs directly derived from adipose tissue (AT-EVs) are still limited. Here, we provide a systemic summary on the key components and functions of EVs derived from healthy adipose tissue, showing their significance on the tissue recovery and metabolic homeostasis regulation. Also, we discuss the harmful influences of EVs derived from obese adipose tissue on the distal organs. Furthermore, we elucidate the potential applications and constraints of EVs from healthy patients lipoaspirates as therapeutic agents, highlighting the potential of AT-EVs as a valuable biological material with broad prospects for future clinical use.
Collapse
Affiliation(s)
- Yue Han
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Sheng Ye
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Bowen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Life Sciences, Westlake University, Hangzhou, China
| |
Collapse
|
3
|
Mukhtar F, Guarnieri A, Brancazio N, Falcone M, Di Naro M, Azeem M, Zubair M, Nicolosi D, Di Marco R, Petronio Petronio G. The role of Mycobacterium tuberculosis exosomal miRNAs in host pathogen cross-talk as diagnostic and therapeutic biomarkers. Front Microbiol 2024; 15:1441781. [PMID: 39176271 PMCID: PMC11340542 DOI: 10.3389/fmicb.2024.1441781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Tuberculosis (TB) is a global threat, affecting one-quarter of the world's population. The World Health Organization (WHO) reports that 6 million people die annually due to chronic illnesses, a statistic that includes TB-related deaths. This high mortality is attributed to factors such as the emergence of drug-resistant strains and the exceptional survival mechanisms of Mycobacterium tuberculosis (MTB). Recently, microRNAs (miRNAs) have garnered attention for their crucial role in TB pathogenesis, surpassing typical small RNAs (sRNA) in their ability to alter the host's immune response. For instance, miR-155, miR-125b, and miR-29a have been identified as key players in the immune response to MTB, particularly in modulating macrophages, T cells, and cytokine production. While sRNAs are restricted to within cells, exo-miRNAs are secreted from MTB-infected macrophages. These exo-miRNAs modify the function of surrounding cells to favor the bacterium, perpetuating the infection cycle. Another significant aspect is that the expression of these miRNAs affects specific genes and pathways involved in immune functions, suggesting their potential use in diagnosing TB and as therapeutic targets. This review compiles existing information on the immunomodulatory function of exosomal miRNAs from MTB, particularly focusing on disease progression and the scientific potential of this approach compared to existing diagnostic techniques. Thus, the aim of the study is to understand the role of exosomal miRNAs in TB and to explore their potential for developing novel diagnostic and therapeutic methods.
Collapse
Affiliation(s)
- Farwa Mukhtar
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Antonio Guarnieri
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Natasha Brancazio
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Marilina Falcone
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Maria Di Naro
- Department of Drug and Health Sciences, Università degli Studi di Catania, Catania, Italy
| | - Muhammad Azeem
- Department of Precision Medicine in the Medical, Surgical and Critical Care Area (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Daria Nicolosi
- Department of Drug and Health Sciences, Università degli Studi di Catania, Catania, Italy
| | - Roberto Di Marco
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Giulio Petronio Petronio
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| |
Collapse
|
4
|
Sun X, Li W, Zhao L, Fan K, Qin F, Shi L, Gao F, Zheng C. Current landscape of exosomes in tuberculosis development, diagnosis, and treatment applications. Front Immunol 2024; 15:1401867. [PMID: 38846947 PMCID: PMC11153741 DOI: 10.3389/fimmu.2024.1401867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024] Open
Abstract
Tuberculosis (TB), caused by the bacterial pathogen Mycobacterium tuberculosis (MTB), remains one of the most prevalent and deadly infectious diseases worldwide. Currently, there are complex interactions between host cells and pathogens in TB. The onset, progression, and regression of TB are correlated not only with the virulence of MTB but also with the immunity of TB patients. Exosomes are cell-secreted membrane-bound nanovesicles with lipid bilayers that contain a variety of biomolecules, such as metabolites, lipids, proteins, and nucleic acids. Exosome-mediated cell-cell communication and interactions with the microenvironment represent crucial mechanisms through which exosomes exert their functional effects. Exosomes harbor a wide range of regulatory roles in physiological and pathological conditions, including MTB infection. Exosomes can regulate the immune response, metabolism, and cellular death to remodel the progression of MTB infection. During MTB infection, exosomes display distinctive profiles and quantities that may act as diagnostic biomarkers, suggesting that exosomes provide a revealing glimpse into the evolving landscape of MTB infections. Furthermore, exosomes derived from MTB and mesenchymal stem cells can be harnessed as vaccine platforms and drug delivery vehicles for the precise targeting and treatment of TB. In this review, we highlight the functions and mechanisms through which exosomes influence the progression of TB. Additionally, we unravel the critical significance of exosomal constituents in the diagnosis and therapeutic applications of TB, aiming to offer novel perspectives and strategies for combating TB.
Collapse
Affiliation(s)
- Xuezhi Sun
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Wei Li
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Li Zhao
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Ke Fan
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Fenfen Qin
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Liwen Shi
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlan Zheng
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| |
Collapse
|
5
|
Duda HC, von Toerne C, Korbonits L, Didier A, Scholz AM, Märtlbauer E, Hauck SM, Deeg CA. Cathepsin S Is More Abundant in Serum of Mycobacterium avium subsp. paratuberculosis-Infected Dairy Cows. Metabolites 2024; 14:215. [PMID: 38668343 PMCID: PMC11051907 DOI: 10.3390/metabo14040215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of bovine paratuberculosis, a chronic granulomatous enteritis leading to economic losses and posing a risk to human health due to its zoonotic potential. The pathogen cannot reliably be detected by standard methods, and immunological procedures during the infection are not well understood. Therefore, the aim of our study was to explore host-pathogen interactions in MAP-infected dairy cows and to improve diagnostic tests. Serum proteomics analysis using quantitative label-free LC-MS/MS revealed 60 differentially abundant proteins in MAP-infected dairy cows compared to healthy controls from the same infected herd and 90 differentially abundant proteins in comparison to another control group from an uninfected herd. Pathway enrichment analysis provided new insights into the immune response to MAP and susceptibility to the infection. Furthermore, we found a higher abundance of Cathepsin S (CTSS) in the serum of MAP-infected dairy cows, which is involved in multiple enriched pathways associated with the immune system. Confirmed with Western blotting, we identified CTSS as a potential biomarker for bovine paratuberculosis. This study enabled a better understanding of procedures in the host-pathogen response to MAP and improved detection of paratuberculosis-diseased cattle.
Collapse
Affiliation(s)
- Heidi C. Duda
- Chair of Physiology, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-82152 Martinsried, Germany
| | - Christine von Toerne
- Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health, D-85763 Neuherberg, Germany (S.M.H.)
| | - Lucia Korbonits
- Chair of Physiology, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-82152 Martinsried, Germany
| | - Andrea Didier
- Chair of Hygiene and Technology of Milk, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-85764 Oberschleißheim, Germany; (A.D.)
| | - Armin M. Scholz
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, D-85764 Oberschleißheim, Germany;
| | - Erwin Märtlbauer
- Chair of Hygiene and Technology of Milk, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-85764 Oberschleißheim, Germany; (A.D.)
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health, D-85763 Neuherberg, Germany (S.M.H.)
| | - Cornelia A. Deeg
- Chair of Physiology, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-82152 Martinsried, Germany
| |
Collapse
|
6
|
Wang X, Li Y, Pu X, Liu G, Qin H, Wan W, Wang Y, Zhu Y, Yang J. Macrophage-related therapeutic strategies: Regulation of phenotypic switching and construction of drug delivery systems. Pharmacol Res 2024; 199:107022. [PMID: 38043691 DOI: 10.1016/j.phrs.2023.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Macrophages, as highly phenotypic plastic immune cells, play diverse roles in different pathological conditions. Changing and controlling the phenotypes of macrophages is considered a novel potential therapeutic intervention. Meanwhile, specific transmembrane proteins anchoring on the surface of the macrophage membrane are relatively conserved, supporting its functional properties, such as inflammatory chemotaxis and tumor targeting. Thus, a series of drug delivery systems related to specific macrophage membrane proteins are commonly used to treat chronic inflammatory diseases. This review summarizes macrophages-based strategies for chronic diseases, discusses the regulation of macrophage phenotypes and their polarization processes, and presents how to design and apply the site-specific targeted drug delivery systems in vivo based on the macrophages and their derived membrane receptors. It aims to provide a better understanding of macrophages in immunoregulation and proposes macrophages-based targeted therapeutic approaches for chronic diseases.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yixuan Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xueyu Pu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Guiquan Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Honglin Qin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Weimin Wan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yuying Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yan Zhu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jian Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
7
|
Huang W, Paul D, Calin GA, Bayraktar R. miR-142: A Master Regulator in Hematological Malignancies and Therapeutic Opportunities. Cells 2023; 13:84. [PMID: 38201290 PMCID: PMC10778542 DOI: 10.3390/cells13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
MicroRNAs (miRNAs) are a type of non-coding RNA whose dysregulation is frequently associated with the onset and progression of human cancers. miR-142, an ultra-conserved miRNA with both active -3p and -5p mature strands and wide-ranging physiological targets, has been the subject of countless studies over the years. Due to its preferential expression in hematopoietic cells, miR-142 has been found to be associated with numerous types of lymphomas and leukemias. This review elucidates the multifaceted role of miR-142 in human physiology, its influence on hematopoiesis and hematopoietic cells, and its intriguing involvement in exosome-mediated miR-142 transport. Moreover, we offer a comprehensive exploration of the genetic and molecular landscape of the miR-142 genomic locus, highlighting its mutations and dysregulation within hematological malignancies. Finally, we discuss potential avenues for harnessing the therapeutic potential of miR-142 in the context of hematological malignancies.
Collapse
Affiliation(s)
- Wilson Huang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
| | - Doru Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
Hambo S, Harb H. Extracellular Vesicles and Their Role in Lung Infections. Int J Mol Sci 2023; 24:16139. [PMID: 38003329 PMCID: PMC10671184 DOI: 10.3390/ijms242216139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Lung infections are one of the most common causes of death and morbidity worldwide. Both bacterial and viral lung infections cause a vast number of infections with varying severities. Extracellular vesicles (EVs) produced by different cells due to infection in the lung have the ability to modify the immune system, leading to either better immune response or worsening of the disease. It has been shown that both bacteria and viruses have the ability to produce their EVs and stimulate the immune system for that. In this review, we investigate topics from EV biogenesis and types of EVs to lung bacterial and viral infections caused by various bacterial species. Mycobacterium tuberculosis, Staphylococcus aureus, and Streptococcus pneumoniae infections are covered intensively in this review. Moreover, various viral lung infections, including SARS-CoV-2 infections, have been depicted extensively. In this review, we focus on eukaryotic-cell-derived EVs as an important component of disease pathogenesis. Finally, this review holds high novelty in its findings and literature review. It represents the first time to cover all different information on immune-cell-derived EVs in both bacterial and viral lung infections.
Collapse
Affiliation(s)
| | - Hani Harb
- Institute for Medical Microbiology and Virology, University Hospital Dresden, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany;
| |
Collapse
|
9
|
Wang N, Yao Y, Qian Y, Qiu D, Cao H, Xiang H, Wang J. Cargoes of exosomes function as potential biomarkers for Mycobacterium tuberculosis infection. Front Immunol 2023; 14:1254347. [PMID: 37928531 PMCID: PMC10622749 DOI: 10.3389/fimmu.2023.1254347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Exosomes as double-membrane vesicles contain various contents of lipids, proteins, mRNAs and non-coding RNAs, and involve in multiple physiological processes, for instance intercellular communication and immunomodulation. Currently, numerous studies found that the components of exosomal proteins, nucleic acids or lipids released from host cells are altered following infection with Mycobacterium tuberculosis. Exosomal contents provide excellent biomarkers for the auxiliary diagnosis, efficacy evaluation, and prognosis of tuberculosis. This study aimed to review the current literatures detailing the functions of exosomes in the procedure of M. tuberculosis infection, and determine the potential values of exosomes as biomarkers to assist in the diagnosis and monitoring of tuberculosis.
Collapse
Affiliation(s)
- Nan Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| | - Yingfen Qian
- Department of Clinical Laboratory, Kunshan Fourth People’s Hospital, Suzhou, Jiangsu, China
| | - Dewen Qiu
- Department of Clinical Laboratory, Jiangxi Maternal and Child Health Hospital Maternal and Child Heath Hospital of Nanchang College, Nanchang, China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Huayuan Xiang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| | - Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| |
Collapse
|
10
|
Ono K, Sato J, Suzuki H, Sawada M. Distribution of Signal Peptides in Microvesicles from Activated Macrophage Cells. Int J Mol Sci 2023; 24:12131. [PMID: 37569508 PMCID: PMC10418841 DOI: 10.3390/ijms241512131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Extracellular vesicles, such as microvesicles (LEV) and exosomes (SEV), play an important role in intercellular signaling by encapsulating functional molecules and delivering them to specific cells. Recent studies showed that signal peptides (SPs), which are derived from sequences at the N-terminal of newly synthesized proteins, exhibited biological activity in the extracellular fluid. We previously reported that SPs were secreted into the extracellular fluid via SEV; however, it remains unclear whether the release of SPs occurs via LEV. In the present study, we demonstrated that SP fragments from human placental secreted alkaline phosphatase (SEAP) were present in LEV as well as SEV released from RAW-Blue cells, which stably express an NF-κB-inducible SEAP reporter. When RAW-Blue cells were treated with LPS at 0-10,000 ng/mL, SEAP SP fragments per particle were more abundant in LEV than in SEV, with fragments in LEV and SEV reaching a maximum at 1000 and 100 ng/mL, respectively. The content of SEAP SP fragments in LEV from IFNγ-stimulated RAW-Blue cells was higher than those from TNFα-stimulated cells, whereas that in SEV from TNFα-stimulated RAW-Blue cells was higher than those from IFNγ-stimulated cells. Moreover, the content of SEAP SP fragments in LEV and SEV decreased in the presence of W13, a calmodulin inhibitor. Collectively, these results indicate that the transportation of SP fragments to extracellular vesicles was changed by cellular activation, and calmodulin was involved in their transportation to LEV and SEV.
Collapse
Affiliation(s)
- Kenji Ono
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan (H.S.); (M.S.)
- Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Aichi, Japan
| | - Junpei Sato
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan (H.S.); (M.S.)
- Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Aichi, Japan
| | - Hiromi Suzuki
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan (H.S.); (M.S.)
- Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Aichi, Japan
| | - Makoto Sawada
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan (H.S.); (M.S.)
- Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Aichi, Japan
| |
Collapse
|
11
|
Golia MT, Gabrielli M, Verderio C. P2X 7 Receptor and Extracellular Vesicle Release. Int J Mol Sci 2023; 24:9805. [PMID: 37372953 DOI: 10.3390/ijms24129805] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Extensive evidence indicates that the activation of the P2X7 receptor (P2X7R), an ATP-gated ion channel highly expressed in immune and brain cells, is strictly associated with the release of extracellular vesicles. Through this process, P2X7R-expressing cells regulate non-classical protein secretion and transfer bioactive components to other cells, including misfolded proteins, participating in inflammatory and neurodegenerative diseases. In this review, we summarize and discuss the studies addressing the impact of P2X7R activation on extracellular vesicle release and their activities.
Collapse
Affiliation(s)
- Maria Teresa Golia
- National Research Council of Italy, Institute of Neuroscience, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy
| | - Martina Gabrielli
- National Research Council of Italy, Institute of Neuroscience, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy
| | - Claudia Verderio
- National Research Council of Italy, Institute of Neuroscience, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy
| |
Collapse
|
12
|
Greening DW, Xu R, Ale A, Hagemeyer CE, Chen W. Extracellular vesicles as next generation immunotherapeutics. Semin Cancer Biol 2023; 90:73-100. [PMID: 36773820 DOI: 10.1016/j.semcancer.2023.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Extracellular vesicles (EVs) function as a mode of intercellular communication and molecular transfer to elicit diverse biological/functional response. Accumulating evidence has highlighted that EVs from immune, tumour, stromal cells and even bacteria and parasites mediate the communication of various immune cell types to dynamically regulate host immune response. EVs have an innate capacity to evade recognition, transport and transfer functional components to target cells, with subsequent removal by the immune system, where the immunological activities of EVs impact immunoregulation including modulation of antigen presentation and cross-dressing, immune activation, immune suppression, and immune surveillance, impacting the tumour immune microenvironment. In this review, we outline the recent progress of EVs in immunorecognition and therapeutic intervention in cancer, including vaccine and targeted drug delivery and summarise their utility towards clinical translation. We highlight the strategies where EVs (natural and engineered) are being employed as a therapeutic approach for immunogenicity, tumoricidal function, and vaccine development, termed immuno-EVs. With seminal studies providing significant progress in the sequential development of engineered EVs as therapeutic anti-tumour platforms, we now require direct assessment to tune and improve the efficacy of resulting immune responses - essential in their translation into the clinic. We believe such a review could strengthen our understanding of the progress in EV immunobiology and facilitate advances in engineering EVs for the development of novel EV-based immunotherapeutics as a platform for cancer treatment.
Collapse
Affiliation(s)
- David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, Australia; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia; Central Clinical School, Monash University, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.
| | - Rong Xu
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anukreity Ale
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Christoph E Hagemeyer
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Weisan Chen
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia
| |
Collapse
|
13
|
Rodriguez NR, Fortune T, Vuong T, Swartz TH. The role of extracellular ATP and P2X receptors in the pathogenesis of HIV-1. Curr Opin Pharmacol 2023; 69:102358. [PMID: 36848824 PMCID: PMC10023410 DOI: 10.1016/j.coph.2023.102358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 03/01/2023]
Abstract
Human Immunodeficiency Virus Type 1 (HIV-1) causes a chronic, incurable infection associated with chronic inflammation despite virologic suppression on antiretroviral therapy (ART). This chronic inflammation underlies significant comorbidities, including cardiovascular disease, neurocognition decline, and malignancies. The mechanisms of chronic inflammation have been attributed, in part, to the role of extracellular ATP and P2X-type purinergic receptors that sense damaged or dying cells and undergo signaling responses to activate inflammation and immunomodulation. This review describes the current literature on the role of extracellular ATP and P2X receptors in HIV-1 pathogenesis, describing the known intersection with the HIV-1 life cycle in mediating immunopathogenesis and neuronal disease. The literature supports key roles for this signaling mechanism in cell-to-cell communication and in activating transcriptional changes that impact the inflammatory state leading to disease progression. Future studies must characterize the numerous functions of ATP and P2X receptors in HIV-1 pathogenesis to inform future therapeutic targeting.
Collapse
Affiliation(s)
- Natalia R Rodriguez
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Trinisia Fortune
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thien Vuong
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Yang Y, Huang H, Li Y. Roles of exosomes and exosome-derived miRNAs in pulmonary fibrosis. Front Pharmacol 2022; 13:928933. [PMID: 36034858 PMCID: PMC9403513 DOI: 10.3389/fphar.2022.928933] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis is a chronic, progressive fibrosing interstitial lung disease of unknown etiology that leads rapidly to death. It is characterized by the replacement of healthy tissue through an altered extracellular matrix and damage to the alveolar structure. New pharmacological treatments and biomarkers are needed for pulmonary fibrosis to ensure better outcomes and earlier diagnosis of patients. Exosomes are nanoscale vesicles released by nearly all cell types that play a central role as mediators of cell-to-cell communication. Moreover, exosomes are emerging as a crucial factor in antigen presentation, immune response, immunomodulation, inflammation, and cellular phenotypic transformation and have also shown promising therapeutic potential in pulmonary fibrosis. This review summarizes current knowledge of exosomes that may promote pulmonary fibrosis and be utilized for diagnostics and prognostics. In addition, the utilization of exosomes and their cargo miRNAs as novel therapeutics and their potential mechanisms are also discussed. This review aims to elucidate the role of exosomes in the pathogenesis of pulmonary fibrosis and paves the way for developing novel therapeutics for pulmonary fibrosis. Further in-depth research and clinical trials on this topic are encouraged in the future.
Collapse
Affiliation(s)
- Yongfeng Yang
- Precision Medicine Key Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Huang
- Precision Medicine Key Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Transplantation Engineering and Immunology, Institute of Clinical Pathology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Precision Medicine Key Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yi Li,
| |
Collapse
|
15
|
Liu C, Xiao K, Xie L. Advances in the use of exosomes for the treatment of ALI/ARDS. Front Immunol 2022; 13:971189. [PMID: 36016948 PMCID: PMC9396740 DOI: 10.3389/fimmu.2022.971189] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a critical clinical syndrome with high morbidity and mortality. Currently, the primary treatment for ALI/ARDS is mainly symptomatic therapy such as mechanical ventilation and fluid management. Due to the lack of effective treatment strategies, most ALI/ARDS patients face a poor prognosis. The discovery of exosomes has created a promising prospect for the treatment of ALI/ARDS. Exosomes can exert anti-inflammatory effects, inhibit apoptosis, and promote cell regeneration. The microRNA contained in exosomes can participate in intercellular communication and play an immunomodulatory role in ALI/ARDS disease models. This review discusses the possible mechanisms of exosomes in ALI/ARDS to facilitate the development of innovative treatments for ALI/ARDS.
Collapse
Affiliation(s)
- Chang Liu
- School of Medicine, Nankai University, Tianjin, China
- Center of Pulmonary & Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Kun Xiao
- Center of Pulmonary & Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Lixin Xie
- School of Medicine, Nankai University, Tianjin, China
- Center of Pulmonary & Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- *Correspondence: Lixin Xie,
| |
Collapse
|
16
|
Mehaffy C, Ryan JM, Kruh-Garcia NA, Dobos KM. Extracellular Vesicles in Mycobacteria and Tuberculosis. Front Cell Infect Microbiol 2022; 12:912831. [PMID: 35719351 PMCID: PMC9204639 DOI: 10.3389/fcimb.2022.912831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) remains a public health issue causing millions of infections every year. Of these, about 15% ultimately result in death. Efforts to control TB include development of new and more effective vaccines, novel and more effective drug treatments, and new diagnostics that test for both latent TB Infection and TB disease. All of these areas of research benefit from a good understanding of the physiology of Mycobacterium tuberculosis (Mtb), the primary causative agent of TB. Mtb secreted protein antigens have been the focus of vaccine and diagnosis research for the past century. Recently, the discovery of extracellular vesicles (EVs) as an important source of secreted antigens in Mtb has gained attention. Similarly, the discovery that host EVs can carry Mtb products during in vitro and in vivo infection has spiked interest because of its potential use in blood-based diagnostics. Despite advances in understanding the content of Mtb and Mtb-infected host extracellular vesicles, our understanding on the biogenesis and role of Mtb and host extracellular vesicles during Mtb infection is still nascent. Here, we explore the current literature on extracellular vesicles regarding Mtb, discuss the host and Mtb extracellular vesicles as distinct entities, and discuss current gaps in the field.
Collapse
|
17
|
Zou C, Zhang Y, Liu H, Wu Y, Zhou X. Extracellular Vesicles: Recent Insights Into the Interaction Between Host and Pathogenic Bacteria. Front Immunol 2022; 13:840550. [PMID: 35693784 PMCID: PMC9174424 DOI: 10.3389/fimmu.2022.840550] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Extracellular vesicles (EVs) are nanosized lipid particles released by virtually every living cell. EVs carry bioactive molecules, shuttle from cells to cells and transduce signals, regulating cell growth and metabolism. Pathogenic bacteria can cause serious infections via a wide range of strategies, and host immune systems also develop extremely complex adaptations to counteract bacterial infections. As notable carriers, EVs take part in the interaction between the host and bacteria in several approaches. For host cells, several strategies have been developed to resist bacteria via EVs, including expelling damaged membranes and bacteria, neutralizing toxins, triggering innate immune responses and provoking adaptive immune responses in nearly the whole body. For bacteria, EVs function as vehicles to deliver toxins and contribute to immune escape. Due to their crucial functions, EVs have great application potential in vaccines, diagnosis and treatments. In the present review, we highlight the most recent advances, application potential and remaining challenges in understanding EVs in the interaction between the host and bacteria.
Collapse
Affiliation(s)
- Chaoyu Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
- Department of Hematology and Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Yige Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yu Wu
- Department of Hematology and Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
18
|
Ngai HW, Kim DH, Hammad M, Gutova M, Aboody K, Cox CD. Stem Cell-based therapies for COVID-19-related acute respiratory distress syndrome. J Cell Mol Med 2022; 26:2483-2504. [PMID: 35426198 PMCID: PMC9077311 DOI: 10.1111/jcmm.17265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
As the number of confirmed cases and resulting death toll of the COVID-19 pandemic continue to increase around the globe - especially with the emergence of new mutations of the SARS-CoV-2 virus in addition to the known alpha, beta, gamma, delta and omicron variants - tremendous efforts continue to be dedicated to the development of interventive therapeutics to mitigate infective symptoms or post-viral sequelae in individuals for which vaccines are not accessible, viable or effective in the prevention of illness. Many of these investigations aim to target the associated acute respiratory distress syndrome, or ARDS, which induces damage to lung epithelia and other physiologic systems and is associated with progression in severe cases. Recently, stem cell-based therapies have demonstrated preliminary efficacy against ARDS based on a number of preclinical and preliminary human safety studies, and based on promising outcomes are now being evaluated in phase II clinical trials for ARDS. A number of candidate stem cell therapies have been found to exhibit low immunogenicity, coupled with inherent tropism to injury sites. In recent studies, these have demonstrated the ability to modulate suppression of pro-inflammatory cytokine signals such as those characterizing COVID-19-associated ARDS. Present translational studies are aiming to optimize the safety, efficacy and delivery to fully validate stem cell-based strategies targeting COVID-19 associated ARDS for viable clinical application.
Collapse
Affiliation(s)
- Hoi Wa Ngai
- Department of Stem Cell Biology and Regenerative MedicineCity of Hope Beckman Research InstituteDuarteCaliforniaUSA
| | - Dae Hong Kim
- Department of Stem Cell Biology and Regenerative MedicineCity of Hope Beckman Research InstituteDuarteCaliforniaUSA
| | - Mohamed Hammad
- Department of Stem Cell Biology and Regenerative MedicineCity of Hope Beckman Research InstituteDuarteCaliforniaUSA
| | - Margarita Gutova
- Department of Stem Cell Biology and Regenerative MedicineCity of Hope Beckman Research InstituteDuarteCaliforniaUSA
| | - Karen Aboody
- Department of Stem Cell Biology and Regenerative MedicineCity of Hope Beckman Research InstituteDuarteCaliforniaUSA
| | | |
Collapse
|
19
|
Carpenter SM, Lu LL. Leveraging Antibody, B Cell and Fc Receptor Interactions to Understand Heterogeneous Immune Responses in Tuberculosis. Front Immunol 2022; 13:830482. [PMID: 35371092 PMCID: PMC8968866 DOI: 10.3389/fimmu.2022.830482] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Despite over a century of research, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), continues to kill 1.5 million people annually. Though less than 10% of infected individuals develop active disease, the specific host immune responses that lead to Mtb transmission and death, as well as those that are protective, are not yet fully defined. Recent immune correlative studies demonstrate that the spectrum of infection and disease is more heterogenous than has been classically defined. Moreover, emerging translational and animal model data attribute a diverse immune repertoire to TB outcomes. Thus, protective and detrimental immune responses to Mtb likely encompass a framework that is broader than T helper type 1 (Th1) immunity. Antibodies, Fc receptor interactions and B cells are underexplored host responses to Mtb. Poised at the interface of initial bacterial host interactions and in granulomatous lesions, antibodies and Fc receptors expressed on macrophages, neutrophils, dendritic cells, natural killer cells, T and B cells have the potential to influence local and systemic adaptive immune responses. Broadening the paradigm of protective immunity will offer new paths to improve diagnostics and vaccines to reduce the morbidity and mortality of TB.
Collapse
Affiliation(s)
- Stephen M. Carpenter
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Medical Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Lenette L. Lu
- Division of Geographic Medicine and Infectious Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| |
Collapse
|
20
|
Seo N, Nakamura J, Kaneda T, Tateno H, Shimoda A, Ichiki T, Furukawa K, Hirabayashi J, Akiyoshi K, Shiku H. Distinguishing functional exosomes and other extracellular vesicles as a nucleic acid cargo by the anion-exchange method. J Extracell Vesicles 2022; 11:e12205. [PMID: 35289089 PMCID: PMC8920962 DOI: 10.1002/jev2.12205] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/15/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022] Open
Abstract
The development of a new large‐scale purification protocol is required for research on the reliable bioactivity and drug discovery of extracellular vesicles (EVs). To address this issue, herein, we propose an effective method for preparing high‐performance exosomes (EXOs) by using an anion‐exchange method. Cytotoxic T‐lymphocyte (CTL) EVs from 4 L of culture supernatant through a 220 nm cut‐off filter are divided into two populations at a deproteinization rate of over 99.97%, which are eluted at low (0.15 M–0.3 M) and high (0.3 M–0.5 M) NaCl concentrations (approximately 2 × 1012 and 1.5 × 1012 particles, respectively) through the anion‐exchange column chromatography. The former are abundant in EXO proteins, including late endosome‐associated proteins and rab‐family and integrin‐family proteins, and functional micro (mi) RNAs, and have bioactivity for preventing tumour metastasis by depleting mesenchymal cell populations in the primary tumour lesions. By contrast, the latter is microvesicle (MV)‐like particles including DNA, core histone and ribosomal proteins, and GC‐rich miRNAs with unknown function, and are easily phagocytosed by mannose receptor+ Kupffer cells. Thus, the anion‐exchange method is suitable for the large‐scale separation of bioactive EXOs and MV‐like EVs as a cargo for dangerous nucleic acids at high‐purity.
Collapse
Affiliation(s)
- Naohiro Seo
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Mie, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Junko Nakamura
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Mie, Japan
| | - Tsuguhiro Kaneda
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiroaki Tateno
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan.,Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Asako Shimoda
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan.,Department of Polymer Chemistry, Graduate School of Engineering, Katsura Int'tech Center, Kyoto University, Kyoto, Japan
| | - Takanori Ichiki
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Koichi Furukawa
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan.,Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Aichi, Japan
| | - Jun Hirabayashi
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
| | - Kazunari Akiyoshi
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan.,Department of Polymer Chemistry, Graduate School of Engineering, Katsura Int'tech Center, Kyoto University, Kyoto, Japan
| | - Hiroshi Shiku
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
21
|
Cheng L, Hill AF. Therapeutically harnessing extracellular vesicles. Nat Rev Drug Discov 2022; 21:379-399. [PMID: 35236964 DOI: 10.1038/s41573-022-00410-w] [Citation(s) in RCA: 310] [Impact Index Per Article: 155.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
The field of extracellular vesicle (EV) research has developed rapidly over the last decade from the study of fundamental biology to a subject of significant clinical relevance. The potential of harnessing EVs in the diagnosis and treatment of diseases - including cancer and neurological and cardiovascular disorders - is now being recognized. Accordingly, the applications of EVs as therapeutic targets, biomarkers, novel drug delivery agents and standalone therapeutics are being actively explored. This Review provides a brief overview of the characteristics and physiological functions of the various classes of EV, focusing on their association with disease and emerging strategies for their therapeutic exploitation.
Collapse
Affiliation(s)
- Lesley Cheng
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Andrew F Hill
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia. .,Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.
| |
Collapse
|
22
|
Zheng C, Xie L, Qin H, Liu X, Chen X, Lv F, Wang L, Zhu X, Xu J. The Role of Extracellular Vesicles in Systemic Lupus Erythematosus. Front Cell Dev Biol 2022; 10:835566. [PMID: 35309937 PMCID: PMC8924487 DOI: 10.3389/fcell.2022.835566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 12/19/2022] Open
Abstract
Extracellular Vesicles (EVs) are small vesicles that can be actively secreted by most cell types into the extracellular environment. Evidence indicates that EVs can carry microRNAs (miRNAs), long non-coding RNAs (lncRNAs), tRNA-derived small RNAs (tsRNAs), proteins, and lipids to target cells or tissue organizations. Latest studies show that EVs play a vital role in the immune modulation and may contribute to the pathogenesis of autoimmune diseases. Systemic lupus erythematosus (SLE) is a common autoimmune disease characterized by abnormal T cell activation and sustained production of autoantibodies against self-antigens, resulting in inflammation and damage to multiple systems. Pathogenic mechanisms of SLE, however, are still not well understood. In this review, we summarize the latest research advances on the functions and mechanisms of EVs, and its role in the pathogenesis, diagnosis, and treatment of SLE.
Collapse
Affiliation(s)
| | - Lin Xie
- *Correspondence: Lin Xie, ; Xiaohua Zhu, ; Jinhua Xu,
| | | | | | | | | | | | - Xiaohua Zhu
- *Correspondence: Lin Xie, ; Xiaohua Zhu, ; Jinhua Xu,
| | - Jinhua Xu
- *Correspondence: Lin Xie, ; Xiaohua Zhu, ; Jinhua Xu,
| |
Collapse
|
23
|
Barrera-Avalos C, Briceño P, Valdés D, Imarai M, Leiva-Salcedo E, Rojo LE, Milla LA, Huidobro-Toro JP, Robles-Planells C, Escobar A, Di Virgilio F, Morón G, Sauma D, Acuña-Castillo C. P2X7 receptor is essential for cross-dressing of bone marrow-derived dendritic cells. iScience 2021; 24:103520. [PMID: 34950860 PMCID: PMC8671947 DOI: 10.1016/j.isci.2021.103520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
T cell activation requires the processing and presentation of antigenic peptides in the context of a major histocompatibility complex (MHC complex). Cross-dressing is a non-conventional antigen presentation mechanism, involving the transfer of preformed peptide/MHC complexes from whole cells, such as apoptotic cells (ACs) to the cell membrane of professional antigen-presenting cells (APCs), such as dendritic cells (DCs). This is an essential mechanism for the induction of immune response against viral antigens, tumors, and graft rejection, which until now has not been clarified. Here we show for first time that the P2X7 receptor (P2X7R) is crucial to induce cross-dressing between ACs and Bone-Marrow DCs (BMDCs). In controlled ex vivo assays, we found that the P2X7R in both ACs and BMDCs is required to induce membrane and fully functional peptide/MHC complex transfer to BMDCs. These findings show that acquisition of ACs-derived preformed antigen/MHC-I complexes by BMDCs requires P2X7R expression. Cross-dressing of antigens to Dendritic Cells (DCs) is dependent of P2X7 receptor The P2X7 receptor must be present in both Dendritic Cells and antigen source The transfer of antigen/MHC-I complexes to DCs is functional and activates T CD8 cells The P2X7 receptor allows Cross-Dressing possibly through a membrane fusion process
Collapse
Affiliation(s)
- Carlos Barrera-Avalos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, USACH, Alameda 3363 Santiago, Chile
| | - Pedro Briceño
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Daniel Valdés
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
| | - Mónica Imarai
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, USACH, Alameda 3363 Santiago, Chile
| | - Elías Leiva-Salcedo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
| | - Leonel E. Rojo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, USACH, Alameda 3363 Santiago, Chile
| | - Luis A. Milla
- Centro de Investigaciones Biomédicas y Aplicadas, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Chile
| | - Juan Pablo Huidobro-Toro
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
| | - Claudia Robles-Planells
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, USACH, Alameda 3363 Santiago, Chile
| | - Alejandro Escobar
- Laboratorio Biología Celular y Molecular, Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | | | - Gabriel Morón
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología, Córdoba, Argentina
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Corresponding author
| | - Claudio Acuña-Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, USACH, Alameda 3363 Santiago, Chile
- Corresponding author
| |
Collapse
|
24
|
Yan Z, Wang H, Mu L, Hu ZD, Zheng WQ. Regulatory roles of extracellular vesicles in immune responses against Mycobacterium tuberculosis infection. World J Clin Cases 2021; 9:7311-7318. [PMID: 34616797 PMCID: PMC8464473 DOI: 10.12998/wjcc.v9.i25.7311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/19/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are cystic vesicles naturally released by most mammalian cells and bacteria. EV contents include proteins, lipids, and nucleic acids. EVs can act as messengers to transmit a variety of molecules to recipient cells and thus play important regulatory roles in intercellular signal transduction. EVs, released by either a host cell or a pathogen, can carry pathogen-associated antigens and thus act as modulators of immune responses. EVs derived from Mycobacterium tuberculosis (Mtb)-infected cells can regulate the innate immune response through various pathways, such as regulating the release of inflammatory cytokines. In addition, EVs can mediate antigen presentation and regulate the adaptive immune response by transmitting immunoregulatory molecules to T helper cells. In this review, we summarize the regulatory roles of EVs in the immune response against Mtb.
Collapse
Affiliation(s)
- Zhi Yan
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
- Department of Parasitology, the College of Basic Medical Sciences of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Hua Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
- Department of Parasitology, the College of Basic Medical Sciences of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Lan Mu
- Department of Parasitology, the College of Basic Medical Sciences of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
- Department of Parasitology, the College of Basic Medical Sciences of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| |
Collapse
|
25
|
Rasi V, Wood DC, Eickhoff CS, Xia M, Pozzi N, Edwards RL, Walch M, Bovenschen N, Hoft DF. Granzyme A Produced by γ 9δ 2 T Cells Activates ER Stress Responses and ATP Production, and Protects Against Intracellular Mycobacterial Replication Independent of Enzymatic Activity. Front Immunol 2021; 12:712678. [PMID: 34413857 PMCID: PMC8368726 DOI: 10.3389/fimmu.2021.712678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the pathological agent that causes tuberculosis (TB) is the number one infectious killer worldwide with one fourth of the world's population currently infected. Data indicate that γ9δ2 T cells secrete Granzyme A (GzmA) in the extracellular space triggering the infected monocyte to inhibit growth of intracellular mycobacteria. Accordingly, deletion of GZMA from γ9δ2 T cells reverses their inhibitory capacity. Through mechanistic studies, GzmA's action was investigated in monocytes from human PBMCs. The use of recombinant human GzmA expressed in a mammalian system induced inhibition of intracellular mycobacteria to the same degree as previous human native protein findings. Our data indicate that: 1) GzmA is internalized within mycobacteria-infected cells, suggesting that GzmA uptake could prevent infection and 2) that the active site is not required to inhibit intracellular replication. Global proteomic analysis demonstrated that the ER stress response and ATP producing proteins were upregulated after GzmA treatment, and these proteins abundancies were confirmed by examining their expression in an independent set of patient samples. Our data suggest that immunotherapeutic host interventions of these pathways may contribute to better control of the current TB epidemic.
Collapse
Affiliation(s)
- Valerio Rasi
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - David C. Wood
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Christopher S. Eickhoff
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Mei Xia
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Rachel L. Edwards
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Michael Walch
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daniel F. Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States,*Correspondence: Daniel F. Hoft,
| |
Collapse
|
26
|
Schorey JS, Cheng Y, McManus WR. Bacteria- and host-derived extracellular vesicles - two sides of the same coin? J Cell Sci 2021; 134:268991. [PMID: 34081134 DOI: 10.1242/jcs.256628] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Intracellular bacterial pathogens spend portions of their life cycle both inside and outside host cells. While in these two distinct environments, they release or shed bacterial components, including virulence factors that promote their survival and replication. Some of these components are released through extracellular vesicles, which are either derived from the bacteria themselves or from the host cells. Bacteria- and host-derived vesicles have been studied almost exclusively in isolation from each other, with little discussion of the other type of secreted vesicles, despite the fact that both are generated during an in vivo infection and both are likely play a role in bacterial pathogenesis and host immunity. In this Review, we aim to bridge this gap and discuss what we know of bacterial membrane vesicles in their generation and composition. We will compare and contrast this with the composition of host-derived vesicles with regard to bacterial components. We will also compare host cell responses to the different vesicles, with a focus on how these vesicles modulate the immune response, using Mycobacterium, Listeria and Salmonella as specific examples for these comparisons.
Collapse
Affiliation(s)
- Jeffrey S Schorey
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yong Cheng
- Department of Biochemistry and Molecular Biology, Noble Research Center, Oklahoma State University, Stillwater, OK 74078, USA
| | - William R McManus
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
27
|
Machhi J, Shahjin F, Das S, Patel M, Abdelmoaty MM, Cohen JD, Singh PA, Baldi A, Bajwa N, Kumar R, Vora LK, Patel TA, Oleynikov MD, Soni D, Yeapuri P, Mukadam I, Chakraborty R, Saksena CG, Herskovitz J, Hasan M, Oupicky D, Das S, Donnelly RF, Hettie KS, Chang L, Gendelman HE, Kevadiya BD. A Role for Extracellular Vesicles in SARS-CoV-2 Therapeutics and Prevention. J Neuroimmune Pharmacol 2021; 16:270-288. [PMID: 33544324 PMCID: PMC7862527 DOI: 10.1007/s11481-020-09981-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are the common designation for ectosomes, microparticles and microvesicles serving dominant roles in intercellular communication. Both viable and dying cells release EVs to the extracellular environment for transfer of cell, immune and infectious materials. Defined morphologically as lipid bi-layered structures EVs show molecular, biochemical, distribution, and entry mechanisms similar to viruses within cells and tissues. In recent years their functional capacities have been harnessed to deliver biomolecules and drugs and immunological agents to specific cells and organs of interest or disease. Interest in EVs as putative vaccines or drug delivery vehicles are substantial. The vesicles have properties of receptors nanoassembly on their surface. EVs can interact with specific immunocytes that include antigen presenting cells (dendritic cells and other mononuclear phagocytes) to elicit immune responses or affect tissue and cellular homeostasis or disease. Due to potential advantages like biocompatibility, biodegradation and efficient immune activation, EVs have gained attraction for the development of treatment or a vaccine system against the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infection. In this review efforts to use EVs to contain SARS CoV-2 and affect the current viral pandemic are discussed. An emphasis is made on mesenchymal stem cell derived EVs' as a vaccine candidate delivery system.
Collapse
Affiliation(s)
- Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Farah Shahjin
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Srijanee Das
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Mai Mohamed Abdelmoaty
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, Egypt
| | - Jacob D Cohen
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Preet Amol Singh
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India
| | - Ashish Baldi
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India
| | - Neha Bajwa
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India
| | - Raj Kumar
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lalit K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Tapan A Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India
| | - Maxim D Oleynikov
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Dhruvkumar Soni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Pravin Yeapuri
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rajashree Chakraborty
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Caroline G Saksena
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Jonathan Herskovitz
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David Oupicky
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Suvarthi Das
- Department of Medicine, Stanford Medical School, Stanford University, 94304, Palo Alto, CA, USA
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Department of Otolaryngology - Head & Neck Surgery, Stanford University, 94304, Palo Alto, CA, USA
| | - Linda Chang
- Departments of Diagnostic Radiology & Nuclear Medicine, and Neurology, School of Medicine, University of Maryland, 21201, Baltimore, MD, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India.
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| |
Collapse
|
28
|
Palacios A, Gupta S, Rodriguez GM, Prados-Rosales R. Extracellular vesicles in the context of Mycobacterium tuberculosis infection. Mol Immunol 2021; 133:175-181. [PMID: 33743266 PMCID: PMC9909588 DOI: 10.1016/j.molimm.2021.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/20/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
The production of extracellular vesicles (EVs) has emerged as an important process in bacterial biology and host-pathogen interactions. Like many other bacteria, mycobacteria, including Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis (TB), produces EVs in vitro and in vivo. These membrane-enclosed nanoparticles enable Mtb to secrete hydrophobic molecules, proteins, lipids and glycolipids in a concentrated and protected manner and engage in remote interactions with the host. The nature of the material secreted in mycobacterial EVs, the functional attributes of these vesicles and their potential as protective antigens have stimulated great interest in the mycobacterial field. Although the field of EVs in mycobacterial infections is developing, it has already uncovered a whole new dimension for Mtb-host interactions potentially relevant to TB pathogenesis. In this mini-review, we discuss the current evidence supporting an important role of mycobacterial EVs in modulating cellular immune response, the challenges and recent advances in understanding the mechanisms of vesicle biogenesis and the implications for development of new preventive and therapeutic tools against TB.
Collapse
Affiliation(s)
- Ainhoa Palacios
- Inflammation and Macrophage Plasticity Lab, CIC bioGUNE, Derio, 48160, Bizkaia, Spain.
| | - Shamba Gupta
- Public Health Research Institute at New Jersey Medical School, Rutgers State University of New Jersey, Newark, 07103 NJ, USA
| | - G. Marcela Rodriguez
- Public Health Research Institute at New Jersey Medical School, Rutgers State University of New Jersey, Newark, 07103 NJ, USA
| | - Rafael Prados-Rosales
- Department of Preventive Medicine and Public Health and Microbiology, Autonoma University of Madrid, 28029, Madrid, Spain.
| |
Collapse
|
29
|
TLRs in Mycobacterial Pathogenesis: Black and White or Shades of Gray. Curr Microbiol 2021; 78:2183-2193. [PMID: 33844035 DOI: 10.1007/s00284-021-02488-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Toll-like receptors (TLRs) play critical role in the innate recognition of pathogens besides orchestrating innate and adaptive immune responses. These receptors exhibit exquisite specificity for different pathogens or their products and, through a complex network of signalling, generate appropriate immune responses. TLRs induce both pro- and anti-inflammatory signals depending on interactions with the adapter molecules thereby impacting the outcome of infection. Hence, TLR signalling ought to be stringently regulated to avoid harmful effects on the host. Mycobacteria express antigens which are sensed by TLRs leading to activation of various signalling molecules important for initiating the death of infected cells and containment of pathogens. Conversely, it also utilizes TLRs for immune evasion and persistence. Due to the enormous diversity in the repertoire of virulence traits expressed by mycobacteria, genetic variations in TLRs often impair the host's ability to respond to mycobacterial-stress, affecting health and disease manifestations. Thus, understanding TLR signalling is of great importance for insights into host-mycobacterial interactions and designing effective measures for controlling the spread and persistence of the bacterium.
Collapse
|
30
|
Behrens F, Funk-Hilsdorf TC, Kuebler WM, Simmons S. Bacterial Membrane Vesicles in Pneumonia: From Mediators of Virulence to Innovative Vaccine Candidates. Int J Mol Sci 2021; 22:3858. [PMID: 33917862 PMCID: PMC8068278 DOI: 10.3390/ijms22083858] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Pneumonia due to respiratory infection with most prominently bacteria, but also viruses, fungi, or parasites is the leading cause of death worldwide among all infectious disease in both adults and infants. The introduction of modern antibiotic treatment regimens and vaccine strategies has helped to lower the burden of bacterial pneumonia, yet due to the unavailability or refusal of vaccines and antimicrobials in parts of the global population, the rise of multidrug resistant pathogens, and high fatality rates even in patients treated with appropriate antibiotics pneumonia remains a global threat. As such, a better understanding of pathogen virulence on the one, and the development of innovative vaccine strategies on the other hand are once again in dire need in the perennial fight of men against microbes. Recent data show that the secretome of bacteria consists not only of soluble mediators of virulence but also to a significant proportion of extracellular vesicles-lipid bilayer-delimited particles that form integral mediators of intercellular communication. Extracellular vesicles are released from cells of all kinds of organisms, including both Gram-negative and Gram-positive bacteria in which case they are commonly termed outer membrane vesicles (OMVs) and membrane vesicles (MVs), respectively. (O)MVs can trigger inflammatory responses to specific pathogens including S. pneumonia, P. aeruginosa, and L. pneumophila and as such, mediate bacterial virulence in pneumonia by challenging the host respiratory epithelium and cellular and humoral immunity. In parallel, however, (O)MVs have recently emerged as auspicious vaccine candidates due to their natural antigenicity and favorable biochemical properties. First studies highlight the efficacy of such vaccines in animal models exposed to (O)MVs from B. pertussis, S. pneumoniae, A. baumannii, and K. pneumoniae. An advanced and balanced recognition of both the detrimental effects of (O)MVs and their immunogenic potential could pave the way to novel treatment strategies in pneumonia and effective preventive approaches.
Collapse
Affiliation(s)
- Felix Behrens
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Teresa C. Funk-Hilsdorf
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10117 Berlin, Germany
- The Keenan Research Centre for Biomedical Science at St. Michael’s, Toronto, ON M5B 1X1, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Szandor Simmons
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10117 Berlin, Germany
| |
Collapse
|
31
|
Sun YF, Pi J, Xu JF. Emerging Role of Exosomes in Tuberculosis: From Immunity Regulations to Vaccine and Immunotherapy. Front Immunol 2021; 12:628973. [PMID: 33868247 PMCID: PMC8047325 DOI: 10.3389/fimmu.2021.628973] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Exosomes are cell-derived nanovesicles carrying protein, lipid, and nucleic acid for secreting cells, and act as significant signal transport vectors for cell-cell communication and immune modulation. Immune-cell-derived exosomes have been found to contain molecules involved in immunological pathways, such as MHCII, cytokines, and pathogenic antigens. Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains one of the most fatal infectious diseases. The pathogen for tuberculosis escapes the immune defense and continues to replicate despite rigorous and complicate host cell mechanisms. The infected-cell-derived exosomes under this circumstance are found to trigger different immune responses, such as inflammation, antigen presentation, and activate subsequent pathways, highlighting the critical role of exosomes in anti-MTB immune response. Additionally, as a novel kind of delivery system, exosomes show potential in developing new vaccination and treatment of tuberculosis. We here summarize recent research progress regarding exosomes in the immune environment during MTB infection, and further discuss the potential of exosomes as delivery system for novel anti-MTB vaccines and therapies.
Collapse
Affiliation(s)
- Yin-Fu Sun
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| |
Collapse
|
32
|
Mirzaei R, Babakhani S, Ajorloo P, Ahmadi RH, Hosseini-Fard SR, Keyvani H, Ahmadyousefi Y, Teimoori A, Zamani F, Karampoor S, Yousefimashouf R. The emerging role of exosomal miRNAs as a diagnostic and therapeutic biomarker in Mycobacterium tuberculosis infection. Mol Med 2021; 27:34. [PMID: 33794771 PMCID: PMC8017856 DOI: 10.1186/s10020-021-00296-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), has been the world's driving fatal bacterial contagious disease globally. It continues a public health emergency, and around one-third of the global community has been affected by latent TB infection (LTBI). This is mostly due to the difficulty in diagnosing and treating patients with TB and LTBI. Exosomes are nanovesicles (40-100 nm) released from different cell types, containing proteins, lipids, mRNA, and miRNA, and they allow the transfer of one's cargo to other cells. The functional and diagnostic potential of exosomal miRNAs has been demonstrated in bacterial infections, including TB. Besides, it has been recognized that cells infected by intracellular pathogens such as Mtb can be secreting an exosome, which is implicated in the infection's fate. Exosomes, therefore, open a unique viewpoint on the investigative process of TB pathogenicity. This study explores the possible function of exosomal miRNAs as a diagnostic biomarker. Moreover, we include the latest data on the pathogenic and therapeutic role of exosomal miRNAs in TB.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parisa Ajorloo
- Department of Biology, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Razieh Heidari Ahmadi
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
33
|
Yi J, Wang Y, Zhang H, Deng X, Xi J, Li H, Yang N, Ma Z, Wang Y, Chen C. Interferon-Inducible Transmembrane Protein 3-Containing Exosome as a New Carrier for the Cell-to-Cell Transmission of Anti- Brucella Activity. Front Vet Sci 2021; 8:642968. [PMID: 33816587 PMCID: PMC8010673 DOI: 10.3389/fvets.2021.642968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/11/2021] [Indexed: 01/18/2023] Open
Abstract
Exosomes are small extracellular vesicles that are released from cells and that function in intercellular communication. Recently, interferon-inducible transmembrane protein 3 (IFITM3) has been identified as a highly effective anti-intracellular pathogen protein that can inhibit the invasion of a wide range of pathogenic microorganisms. However, whether Brucella infection induces secretion of exosomes and whether these exosomes contain IFITM3 protein remain unknown. Here, we focused on the immune function of extracellular IFITM3 protein in the process of Brucella infection. This study is the first to show that Brucella melitensis strain M5 (Brucella M5) can stimulate macrophages to secrete large amounts of exosomes. Most importantly, we identified exosomes from Brucella M5-infected cells that were rich in molecules of IFITM3, and these exosomes could transmit the IFITM3 from one cell to another, thereby effectively inhibiting the intracellular survival of Brucella. Moreover, immunization with exosomes carrying IFITM3 decreased mouse spleen tissue damage and spleen colony forming unit (CFU), leading to the establishment of an anti-Brucella state in mice. In conclusion, our findings provide new insights into the anti-Brucella mechanism of IFITM3-containg exosomes, thus providing a theoretical foundation for systematic elaboration of the mechanisms of Brucella infection and host immunity. The results provide new ideas for the development of candidate vaccines for Brucella.
Collapse
Affiliation(s)
- Jihai Yi
- College of Animal Science and Technology, Shihezi University, Shihezi, China.,Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, Shihezi, China
| | - Yueli Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Huan Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xiaoyu Deng
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jing Xi
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Honghuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Ningning Yang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhongchen Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yong Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
34
|
She Z, Xie M, Hun M, Abdirahman AS, Li C, Wu F, Luo S, Wan W, Wen C, Tian J. Immunoregulatory Effects of Mitochondria Transferred by Extracellular Vesicles. Front Immunol 2021; 11:628576. [PMID: 33633746 PMCID: PMC7900141 DOI: 10.3389/fimmu.2020.628576] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria participate in immune regulation through various mechanisms, such as changes in the mitochondrial dynamics, as metabolic mediators of the tricarboxylic acid cycle, by the production of reactive oxygen species, and mitochondrial DNA damage, among others. In recent years, studies have shown that extracellular vesicles are widely involved in intercellular communication and exert important effects on immune regulation. Recently, the immunoregulatory effects of mitochondria from extracellular vesicles have gained increasing attention. In this article, we review the mechanisms by which mitochondria participate in immune regulation and exert immunoregulatory effects upon delivery by extracellular vesicles. We also focus on the influence of the immunoregulatory effects of mitochondria from extracellular vesicles to further shed light on the underlying mechanisms.
Collapse
Affiliation(s)
- Zhou She
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Xie
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Marady Hun
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Amin Sheikh Abdirahman
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cuifang Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wuqing Wan
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jidong Tian
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Hendricks MR, Lane S, Melvin JA, Ouyang Y, Stolz DB, Williams JV, Sadovsky Y, Bomberger JM. Extracellular vesicles promote transkingdom nutrient transfer during viral-bacterial co-infection. Cell Rep 2021; 34:108672. [PMID: 33503419 PMCID: PMC7918795 DOI: 10.1016/j.celrep.2020.108672] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/10/2020] [Accepted: 12/30/2020] [Indexed: 01/28/2023] Open
Abstract
Extracellular vesicles (EVs) are increasingly appreciated as a mechanism of communication among cells that contribute to many physiological processes. Although EVs can promote either antiviral or proviral effects during viral infections, the role of EVs in virus-associated polymicrobial infections remains poorly defined. We report that EVs secreted from airway epithelial cells during respiratory viral infection promote secondary bacterial growth, including biofilm biogenesis, by Pseudomonas aeruginosa. Respiratory syncytial virus (RSV) increases the release of the host iron-binding protein transferrin on the extravesicular face of EVs, which interact with P. aeruginosa biofilms to transfer the nutrient iron and promote bacterial biofilm growth. Vesicular delivery of iron by transferrin more efficiently promotes P. aeruginosa biofilm growth than soluble holo-transferrin delivered alone. Our findings indicate that EVs are a nutrient source for secondary bacterial infections in the airways during viral infection and offer evidence of transkingdom communication in the setting of polymicrobial infections.
Collapse
Affiliation(s)
- Matthew R Hendricks
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Sidney Lane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Jeffrey A Melvin
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yingshi Ouyang
- Magee-Womens Research Institute, Department of OBGYN and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Yoel Sadovsky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Magee-Womens Research Institute, Department of OBGYN and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer M Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
36
|
Biadglegne F, König B, Rodloff AC, Dorhoi A, Sack U. Composition and Clinical Significance of Exosomes in Tuberculosis: A Systematic Literature Review. J Clin Med 2021; 10:E145. [PMID: 33406750 PMCID: PMC7795701 DOI: 10.3390/jcm10010145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB) remains a major health issue worldwide. In order to contain TB infections, improved vaccines as well as accurate and reliable diagnostic tools are desirable. Exosomes are employed for the diagnosis of various diseases. At present, research on exosomes in TB is still at the preliminary stage. Recent studies have described isolation and characterization of Mycobacterium tuberculosis (Mtb) derived exosomes in vivo and in vitro. Mtb-derived exosomes (Mtbexo) may be critical for TB pathogenesis by delivering mycobacterial-derived components to the recipient cells. Proteomic and transcriptomic analysis of Mtbexo have revealed a variety of proteins and miRNA, which are utilized by the TB bacteria for pathogenesis. Exosomes has been isolated in body fluids, are amenable for fast detection, and could contribute as diagnostic or prognostic biomarker to disease control. Extraction of exosomes from biological fluids is essential for the exosome research and requires careful standardization for TB. In this review, we summarized the different studies on Mtbexo molecules, including protein and miRNA and the method used to detect exosomes in biological fluids and cell culture supernatants. Thus, the detection of Mtbexo molecules in biological fluids may have a potential to expedite the diagnosis of TB infection. Moreover, the analysis of Mtbexo may generate new aspects in vaccine development.
Collapse
Affiliation(s)
- Fantahun Biadglegne
- College of Medicine and Health Sciences, Bahir Dar University, 79 Bahir Dar, Ethiopia
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany;
| | - Brigitte König
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
| | - Arne C. Rodloff
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
| | - Anca Dorhoi
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
37
|
Yong T, Li X, Wei Z, Gan L, Yang X. Extracellular vesicles-based drug delivery systems for cancer immunotherapy. J Control Release 2020; 328:562-574. [DOI: 10.1016/j.jconrel.2020.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
|
38
|
Mohammadzadeh R, Ghazvini K, Farsiani H, Soleimanpour S. Mycobacterium tuberculosis extracellular vesicles: exploitation for vaccine technology and diagnostic methods. Crit Rev Microbiol 2020; 47:13-33. [PMID: 33044878 DOI: 10.1080/1040841x.2020.1830749] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tuberculosis (TB) is a fatal epidemic disease usually caused by Mycobacterium tuberculosis (Mtb). Pervasive latent infection, multidrug- and extensively drug-resistant tuberculosis (MDR- and XDR-TB), and TB/HIV co-infection make TB a global health problem, which emphasises the design and development of efficient vaccines and diagnostic biomarkers. Extracellular vesicles (EVs) secretion is a conserved phenomenon in all the domains of life. Various cargos such as nucleic acids, toxins, lipoproteins, and enzymes have been recognised in these nano-sized vesicles that may be involved in bacterial physiology and pathogenesis. The intrinsic adjuvant effect, native immunogenic cargo, sensing by host immune cells, circulation in all body fluids, and comprehensive distribution of antigens introduce EVs as a promising tool for designing novel vaccines, diagnostic biomarkers, and drug delivery systems. Genetic engineering of the EV-producing bacteria and the subsequent production of proper EVs could facilitate the development of the EV-based therapeutic applications. Recently, it was demonstrated that thick-walled mycobacteria release EVs, which contain immunodominant cargos such as lipoglycans and lipoproteins. The present article is a comprehensive review on the recent findings of Mtb EVs biology and the exploitation of EVs for the vaccine technology and diagnostic methods.
Collapse
Affiliation(s)
- Roghayeh Mohammadzadeh
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Reference Tuberculosis Laboratory, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Lindenbergh MFS, Wubbolts R, Borg EGF, van ’T Veld EM, Boes M, Stoorvogel W. Dendritic cells release exosomes together with phagocytosed pathogen; potential implications for the role of exosomes in antigen presentation. J Extracell Vesicles 2020; 9:1798606. [PMID: 32944186 PMCID: PMC7480536 DOI: 10.1080/20013078.2020.1798606] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/12/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DC) have the unique capacity to activate naïve T cells by presenting T cell receptor specific peptides from exogenously acquired antigens bound to Major Histocompatibility Complex (MHC) molecules. MHC molecules are displayed on the DC plasma membrane as well as on extracellular vesicles (EV) that are released by DC, and both have antigen-presenting capacities. However, the physiological role of antigen presentation by EV is still unclear. We here demonstrate that the release of small EV by activated DC is strongly stimulated by phagocytic events. We show that, concomitant with the enhanced release of EV, a significant proportion of phagocytosed bacteria was expulsed back into the medium. High-resolution fluorescence microscopic images revealed that bacteria in phagosomes were surrounded by EV marker-proteins. Moreover, expulsed bacteria were often found associated with clustered HLA II and CD63. Together, these observations suggest that exosomes may be formed by the inward budding into phagosomes, whereupon they are secreted together with the phagosomal content. These findings may have important implications for selective loading of peptides derived from phagocytosed pathogens onto exosome associated HLA molecules, and have important implications for vaccine design.
Collapse
Affiliation(s)
- Marthe F. S. Lindenbergh
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Pediatrics and Laboratory of Translational Immunology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Richard Wubbolts
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ellen G. F. Borg
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Esther M. van ’T Veld
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marianne Boes
- Department of Pediatrics and Laboratory of Translational Immunology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - W. Stoorvogel
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
40
|
Layre E. Trafficking of Mycobacterium tuberculosis Envelope Components and Release Within Extracellular Vesicles: Host-Pathogen Interactions Beyond the Wall. Front Immunol 2020; 11:1230. [PMID: 32765485 PMCID: PMC7378356 DOI: 10.3389/fimmu.2020.01230] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
Components of Mycobacterium tuberculosis (Mtb) envelope such as lipoproteins, lypoglycans, lipids, and glycolipids act as Pathogen Associated Molecular Patterns and/or antigens, hence contributing in different ways to the bacillus recognition, phagocytosis, and to immune responses modulation. However, Mtb envelope components are not only encountered at the bacillus-host direct contact but can act remotely from the bacillus envelope. Indeed, they are also released from the bacillus envelope and are detected in different compartments such as the infected cells endosomal compartments or in extracellular vesicles produced by the bacillus itself or by infected cells. Characterizing their trafficking is of main importance for our understanding of their role in host-pathogen interactions and consequently for their potential use as vaccine components. This review aims at providing an overview of the current knowledge of the nature of Mtb envelope components shuttled within extracellular vesicles, the interaction of these vesicles with host immune cells and the remaining black holes.
Collapse
Affiliation(s)
- Emilie Layre
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
41
|
Larabi A, Barnich N, Nguyen HTT. Emerging Role of Exosomes in Diagnosis and Treatment of Infectious and Inflammatory Bowel Diseases. Cells 2020; 9:cells9051111. [PMID: 32365813 PMCID: PMC7290936 DOI: 10.3390/cells9051111] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
To communicate with each other, cells release exosomes that transfer their composition, including lipids, proteins and nucleic acids, to neighboring cells, thus playing a role in various pathophysiological processes. During an infection with pathogenic bacteria, such as adherent-invasive E. coli (AIEC) associated with Crohn disease, exosomes secreted by infected cells can have an impact on the innate immune responses of surrounding cells to infection. Furthermore, inflammation can be amplified via the exosomal shuttle during infection with pathogenic bacteria, which could contribute to the development of the associated disease. Since these vesicles can be released in various biological fluids, changes in exosomal content may provide a means for the identification of non-invasive biomarkers for infectious and inflammatory bowel diseases. Moreover, evidence suggests that exosomes could be used as vaccines to prime the immune system to recognize and kill invading pathogens, and as therapeutic components relieving intestinal inflammation. Here, we summarize the current knowledge on the role of exosomes in bacterial infections and highlight their potential use as biomarkers, vaccines and conveyers of therapeutic molecules in inflammatory bowel diseases.
Collapse
|
42
|
Microparticles in the pathogenesis of TB: Novel perspectives for diagnostic and therapy management of Mycobacterium tuberculosis infection. Microb Pathog 2020; 144:104176. [PMID: 32244042 DOI: 10.1016/j.micpath.2020.104176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 01/05/2023]
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis, usually chronic and has a progressive clinical course. Despite the availability of effective chemotherapy, TB is a leading killer of young adults worldwide and the global multi-drug resistant TB is reaching epidemic proportions. Interrupt transmission through early detection and treatment of the patients is a main element of the drug-resistant TB control strategy. However, many drugable targets in pathogens are already inhibited by current antibiotics and there is not a biomarker that indicate normal or pathogenic biological processes, or pharmacological responses to therapeutic intervention. Studies directed at evaluate key elements of host response to infection may identify biomarkers with measurable characteristics that indicate pathogenic biological processes. Cell-derived microparticles (MPs) are membrane-coated vesicles that represent subcellular elements and have been identified increasingly in a broad range of diseases and emerging as potential novel biomarker to pathological processes. In addition, MPs carry contents from their cells of origin as bioactive molecules as cytokines, enzymes, surface receptors, antigens and genetic information and may provide a means of communication between cells. Molecules-loaded MPs may interplay with the immune system and therefore can acts on inflammation, cell activation and migration. Therefore, MPs may be an important factor to immune process during Mtb infection, especially in pulmonary granulomas and influence the outcome of infection. Their characterization may facilitate an appropriate diagnosis, optimize pharmacological strategies and might be further explored as potential targets for future clinical interventions.
Collapse
|
43
|
Abstract
Exosomes are membrane-bound cargo measuring 30–140 nm comprised of a lipid bilayer containing various proteins, RNAs, DNAs, and bioactive lipids that can be transferred between cells. They have been shown to be produced and released by many different types of healthy and diseased cells. Exosomes are secreted by all types of cells in culture, and are also found in various body fluids including blood, saliva, urine, and breast milk. Exosomes are essential for healthy physiological as well as pathological processes. In addition to their normal function, exosomes are involved in the development and progression of various diseases, potentiating cellular stress and damage. Pathogens take advantage of exosome release from infected host cells by manipulating host-derived exosomes to evade the immune system responses. Exosomes are involved in other pathological conditions such as neurodegenerative diseases, liver diseases, heart failure, cancer, diabetes, kidney diseases, osteoporosis and atherosclerotic cardiovascular disease. Hence, we can exploit exosomes as biomarkers and vaccines and modify them rationally for therapeutic interventions including tissue engineering. Further studies on exosomes will explore their potential and provide new methodology for effective clinical diagnostics and therapeutic strategies: such uses can be called exosome theragnostics. This chapter reviews the potential theragnostic (diagnostic and therapeutic) application of exosomes in major organ systems in clinical fields.
Collapse
|
44
|
Yuan Q, Chen H, Yang Y, Fu Y, Yi Z. miR-18a promotes Mycobacterial survival in macrophages via inhibiting autophagy by down-regulation of ATM. J Cell Mol Med 2019; 24:2004-2012. [PMID: 31845528 PMCID: PMC6991191 DOI: 10.1111/jcmm.14899] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/24/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of leading causes of global deaths. This study aimed to explore the role of miR-18a in RAW264.7 cells response to Mtb infection. Exosomes derived from Mtb-infected cells were isolated and further validated by size, transmission electron microscopy and Western blot. RT-PCR was utilized to measure miR-18a expression. Cell viability and ultrastructure were examined by CFU counting, CCK-8 and electron microscope, respectively. Potential target genes of miR-18a were predicted with bioinformatics and further confirmed using RT-PCR, Western blot and laser confocal microscope analysis, respectively. LC3, AMPK and mTOR were measured using Western blot. We found that miR-18a was induced both in Mtb-infected RAW264.7 cells and its derived exosomes compared with the controls. In addition, up-regulation of miR-18a promoted intracellular Mtb survival, attenuated cell viability and reduced LC3-II level, while its down-regulation had the opposite effect. miR-18a overexpression suppressed level of ATM, one possible target of miR-18a, while its underexpression enhanced ATM. We also found that inhibition of ATM induced LC3-II decrease in Mtb-infected cells and could reverse the increase of LC3-II caused by inhibition of miR-18a. Moreover, down-regulation of miR-18a increased p-AMPK level while reduction of ATM could reverse the change. Taken together, our results suggest that miR-18a is up-regulated in macrophages response to Mtb infection, and it promotes intracellular Mtb survival through repressing autophagic process by down-regulation of ATM pathway. This provides new thought for TB pathogenesis, diagnosis and treatment.
Collapse
Affiliation(s)
- Qiulu Yuan
- Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Department of Laboratory Medicine, Weifang Medical University, Weifang, China
| | - Haotian Chen
- Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Department of Laboratory Medicine, Weifang Medical University, Weifang, China
| | - Yuxin Yang
- Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Department of Laboratory Medicine, Weifang Medical University, Weifang, China
| | - Yurong Fu
- Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Department of Medical Microbiology, Clinical Medicine College, Weifang Medical University, Weifang, China
| | - Zhengjun Yi
- Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Department of Laboratory Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
45
|
Patil M, Henderson J, Luong H, Annamalai D, Sreejit G, Krishnamurthy P. The Art of Intercellular Wireless Communications: Exosomes in Heart Disease and Therapy. Front Cell Dev Biol 2019; 7:315. [PMID: 31850349 PMCID: PMC6902075 DOI: 10.3389/fcell.2019.00315] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanoscale membrane-bound extracellular vesicles secreted by most eukaryotic cells in the body that facilitates intercellular communication. Exosomes carry several signaling biomolecules, including miRNA, proteins, enzymes, cell surface receptors, growth factors, cytokines and lipids that can modulate target cell biology and function. Due to these capabilities, exosomes have emerged as novel intercellular signaling mediators in both homeostasis and pathophysiological conditions. Recent studies document that exosomes (both circulating or released from heart tissue) have been actively involved in cardiac remodeling in response to stressors. Also, exosomes released from progenitor/stem cells have protective effects in heart diseases and shown to have regenerative potential in the heart. In this review we discuss- the critical role played by circulating exosomes released from various tissues and from cells within the heart in cardiac health; the gap in knowledge that needs to be addressed to promote future research; and exploitation of recent advances in exosome engineering to develop novel therapy.
Collapse
Affiliation(s)
- Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John Henderson
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hien Luong
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Divya Annamalai
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gopalkrishna Sreejit
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
46
|
Sheller-Miller S, Choi K, Choi C, Menon R. Cyclic-recombinase-reporter mouse model to determine exosome communication and function during pregnancy. Am J Obstet Gynecol 2019; 221:502.e1-502.e12. [PMID: 31207235 DOI: 10.1016/j.ajog.2019.06.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND During pregnancy, feto-maternal communication can be mediated through extracellular vesicles, specifically exosomes, 30- to 150-nm particles released from each cell. Exosomes carry cellular signals, and traffic between fetal and maternal tissues to produce functional changes in recipient cells. Exosomes may function as a biomarker indicative of the physiologic status of their tissue of origin. These properties of exosomes during pregnancy are not well studied. OBJECTIVE To test exosome trafficking and function, we used a transgenic mouse model containing membrane-targeted, red fluorescent protein tdTomato and enhanced green fluorescent protein cyclic recombinase-reporter construct expressed only in fetal tissues. This model allows fetal tissues and their exosomes to express tdTomato under normal conditions or green fluorescent protein if fetal tissues are exposed to cyclic recombinase that will excise tdTomato. As maternal tissue remains negative for this construct, tdTomato/green fluorescent protein expression and their switching can be used to determine fetal-specific cell and exosome trafficking. MATERIALS AND METHODS tdTomato/green fluorescent protein-homozygous male mice were mated with wild-type females to have all fetal tissues express the tdTomato/green fluorescent protein allele. Red fluorescence due to tdTomato expression of the tdTomato/green fluorescent protein allele in fetal tissues (placenta, fetal membranes) was confirmed by confocal microscopy on embryonic day 16. Localization of fetal exosomes in maternal uterine tissues were performed by immunostaining for exosome marker CD81 and tdTomato expression followed by confocal microscopy. Fetal exosomes (tdTomato-positive) in maternal plasma were immunoprecipitated using anti-red fluorescent protein tdTomato, followed by confirmation with flow cytometry. To further illustrate the fidelity of fetal exosomes in maternal samples, exosomes bioengineered to contain cyclic recombinase (1.0 × 1010 exosomes) were injected intraperitoneally on embryonic day 13. On embryonic day 16, fetal (placenta and fetal membranes) tissues were imaged to show tdTomato-to-green fluorescent protein transition. The green fluorescent protein-expressing exomes were localized in maternal tissues (confocal microscopy) and plasma (flow cytometry). RESULTS Mating between a male with the tdTomato/green fluorescent protein construct and a null female resulted in fetal tissues and their exosomes expressing tdTomato positivity. Total fetal exosomes in maternal plasma was about 35%. tdTomato-positive exosomes were isolated from maternal plasma and immunostaining localized tdTomato-positive exosomes in maternal uterine tissues. Maternal intraperitoneal injection of cyclic recombinase-enriched exosomes crossed placenta, excised tdTomato from the tdTomato/green fluorescent protein construct in the fetal tissues, and caused green fluorescent protein expression in fetal cells. Furthermore, green fluorescent protein-positive exosomes released from fetal cells were isolated from maternal blood. CONCLUSION In this pilot study, we report feto-maternal and maternal-fetal trafficking of exosomes indicative of paracrine signaling during pregnancy. Exosomes from the maternal side can produce functional changes in fetal tissues. Trafficking of exosomes suggests their potential role in pregnancy as biomarkers of fetal functions and usefulness as a carrier of drugs and other cargo to the fetal side during pregnancy. Isolation and characterization of fetal exosomes can advance fetal research without performing invasive procedures.
Collapse
Affiliation(s)
- Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX
| | | | - Chulhee Choi
- ILIAS Biologics, Inc., Daejeon, Republic of Korea; Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
47
|
García-Martínez M, Vázquez-Flores L, Álvarez-Jiménez VD, Castañeda-Casimiro J, Ibáñez-Hernández M, Sánchez-Torres LE, Barrios-Payán J, Mata-Espinosa D, Estrada-Parra S, Chacón-Salinas R, Serafín-López J, Wong-Baeza I, Hernández-Pando R, Estrada-García I. Extracellular vesicles released by J774A.1 macrophages reduce the bacterial load in macrophages and in an experimental mouse model of tuberculosis. Int J Nanomedicine 2019; 14:6707-6719. [PMID: 31692512 PMCID: PMC6708438 DOI: 10.2147/ijn.s203507] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
Background Tuberculosis is the leading cause of death by an infectious microorganism worldwide. Conventional treatment lasts at least six months and has adverse effects; therefore, it is important to find therapeutic alternatives that reduce the bacterial load and may reduce the treatment duration. The immune response against tuberculosis can be modulated by several mechanisms, including extracellular vesicles (EVs), which are nano-sized membrane-bound structures that constitute an efficient communication mechanism among immune cells. Methods The EVs released by the J774A.1 mouse macrophage cell line, both spontaneously (S-EV) and after infection with Mycobacterium tuberculosis H37Rv (Mtb-EV), were purified by ultra-centrifugation and size-exclusion chromatography. The size distribution and chemical composition of these EVs were evaluated, and their effect on the bacterial load and the production of cytokines was determined in both in vitro and in vivo models of M. tuberculosis infection. Results Mtb-EV are larger than S-EV, they contain M. tuberculosis-specific antigens (not detected in EVs released from M. fortuitum-infected J774A.1 cells) and are rich in phosphatidylserine, present in their outer membrane layer. S-EV, but not Mtb-EV, reduced the bacterial load and the production of MCP-1 and TNF-α in M. tuberculosis-infected macrophages, and these effects were reversed when phosphatidylserine was blocked with annexin V. Both S-EV and Mtb-EV significantly reduced the lung bacterial load in mice infected with M. tuberculosis after 60 days of treatment, but they had no effect on survival or on the lung pneumonic area of these mice. Conclusion J774A.1 macrophages infected with M. tuberculosis H37Rv released EVs that differed in size and phosphatidylserine content from spontaneously released EVs, and these EVs also had different biological effects: S-EV reduced the mycobacterial load and the cytokine production in vitro (through a phosphatidylserine-dependent mechanism), while both EVs reduced the lung bacterial load in vivo. These results are the basis for further experiments to evaluate whether EVs improve the efficiency of the conventional treatment for tuberculosis.
Collapse
Affiliation(s)
- Mariano García-Martínez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico.,Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Luis Vázquez-Flores
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico.,Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Violeta D Álvarez-Jiménez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico.,Laboratorio de Biología Molecular y Bioseguridad Nivel 3, Centro Médico Naval (CEMENAV), Secretaría de Marina Armada de México (Semar), Mexico City, Mexico
| | - Jessica Castañeda-Casimiro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Miguel Ibáñez-Hernández
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Luvia Enid Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Jorge Barrios-Payán
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Jeanet Serafín-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Isabel Wong-Baeza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Iris Estrada-García
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| |
Collapse
|
48
|
Wang J, Wang Y, Tang L, Garcia RC. Extracellular Vesicles in Mycobacterial Infections: Their Potential as Molecule Transfer Vectors. Front Immunol 2019; 10:1929. [PMID: 31474995 PMCID: PMC6703136 DOI: 10.3389/fimmu.2019.01929] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles are membrane-bound structures released by living cells and present in body fluids. Their composition includes proteins, lipids, carbohydrates, and nucleic acids and are involved in transfers between cells. Extracellular vesicles can deliver molecules to cells and tissues even if distant. As a consequence, they have a role in information transmission and in the modulation of the biological function of recipient cells. Among other things, they are involved in antigen presentation and the induction of secretion events by immune cells. Thus, extracellular vesicles participate in the regulation of immune responses during infections. We will discuss their potential as effectors and disease biomarkers concerning only mycobacterial infections.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yang Wang
- Department of Biochemistry and Molecular Biology, School of Life Science, Central South University, Changsha, China
| | - Lijun Tang
- Department of Biochemistry and Molecular Biology, School of Life Science, Central South University, Changsha, China
| | | |
Collapse
|
49
|
Dynamics of Mycobacterium tuberculosis Ag85B Revealed by a Sensitive Enzyme-Linked Immunosorbent Assay. mBio 2019; 10:mBio.00611-19. [PMID: 31015327 PMCID: PMC6479003 DOI: 10.1128/mbio.00611-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacterial protein secretion contributes to host-pathogen interactions, yet the process and consequences of bacterial protein secretion during infection are poorly understood. We developed a sensitive ELISA to quantitate a protein (termed Ag85B) secreted by M. tuberculosis and used it to find that Ag85B secretion occurs with slower kinetics than for proteins secreted by Gram-positive and Gram-negative bacteria and that accumulation of Ag85B in the lungs is markedly regulated as a function of the bacterial population density. Our results demonstrate that quantitation of bacterial proteins during infection can reveal novel insights into host-pathogen interactions. Secretion of specific proteins contributes to pathogenesis and immune responses in tuberculosis and other bacterial infections, yet the kinetics of protein secretion and fate of secreted proteins in vivo are poorly understood. We generated new monoclonal antibodies that recognize the Mycobacterium tuberculosis secreted protein Ag85B and used them to establish and characterize a sensitive enzyme-linked immunosorbent assay (ELISA) to quantitate Ag85B in samples generated in vitro and in vivo. We found that nutritional or culture conditions had little impact on the secretion of Ag85B and that there is considerable variation in Ag85B secretion by distinct strains in the M. tuberculosis complex: compared with the commonly used H37Rv strain (lineage 4), Mycobacterium africanum (lineage 6) secretes less Ag85B, and two strains from lineage 2 secrete more Ag85B. We also used the ELISA to determine that the rate of secretion of Ag85B is 10- to 100-fold lower than that of proteins secreted by Gram-negative and Gram-positive bacteria, respectively. ELISA quantitation of Ag85B in lung homogenates of M. tuberculosis H37Rv-infected mice revealed that although Ag85B accumulates in the lungs as the bacterial population expands, the amount of Ag85B per bacterium decreases nearly 10,000-fold at later stages of infection, coincident with the development of T cell responses and arrest of bacterial population growth. These results indicate that bacterial protein secretion in vivo is dynamic and regulated, and quantitation of secreted bacterial proteins can contribute to the understanding of pathogenesis and immunity in tuberculosis and other infections.
Collapse
|
50
|
Sierro F, Grau GER. The Ins and Outs of Cerebral Malaria Pathogenesis: Immunopathology, Extracellular Vesicles, Immunometabolism, and Trained Immunity. Front Immunol 2019; 10:830. [PMID: 31057552 PMCID: PMC6478768 DOI: 10.3389/fimmu.2019.00830] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/28/2019] [Indexed: 12/16/2022] Open
Abstract
Complications from malaria parasite infections still cost the lives of close to half a million people every year. The most severe is cerebral malaria (CM). Employing murine models of CM, autopsy results, in vitro experiments, neuroimaging and microscopic techniques, decades of research activity have investigated the development of CM immunopathology in the hope of identifying steps that could be therapeutically targeted. Yet important questions remain. This review summarizes recent findings, primarily mechanistic insights on the essential cellular and molecular players involved gained within the murine experimental cerebral malaria model. It also highlights recent developments in (a) cell-cell communication events mediated through extracellular vesicles (EVs), (b) mounting evidence for innate immune memory, leading to “trained“ increased or tolerised responses, and (c) modulation of immune cell function through metabolism, that could shed light on why some patients develop this life-threatening condition whilst many do not.
Collapse
Affiliation(s)
- Frederic Sierro
- Vascular Immunology Unit, Department of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Human Health, Nuclear Science, Technology, and Landmark Infrastructure, Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Georges E R Grau
- Vascular Immunology Unit, Department of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|