1
|
Favacho JDFR, Leite KK, Jacomasso T, Farias AB, Franco Filho LC, Gomes STM, dos Reis HS, Mota GD, Schluga PHDC, Tassi WS, Rampazzo RDCP, West SK, Gaydos CA, da Cunha AJLA, Costa ADT. Validation of a New Duplex Real-Time Polymerase Chain Reaction for Chlamydia trachomatis DNA Detection in Ocular Swab Samples. Diagnostics (Basel) 2024; 14:892. [PMID: 38732307 PMCID: PMC11083659 DOI: 10.3390/diagnostics14090892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 05/13/2024] Open
Abstract
Trachoma is the world-leading infectious cause of preventable blindness and is caused by the bacteria Chlamydia trachomatis. In developing countries, diagnosis is usually based on clinical evaluation. Serological-based tests are cheaper than molecular-based ones, but the latter are more sensitive and specific. The present study developed a new duplex qPCR which concomitantly detects the C. trachomatis cryptic plasmid and the human 18S rRNA gene, with an LOD95% for C. trachomatis DNA of 13.04 genome equivalents per reaction. The new qPCR was tested using 50 samples from an endemic area and 12 from a non-endemic area that were previously characterized using direct immunofluorescence assay (DFA) and clinical evaluation. Among the 50 endemic samples, 3 were found to be positive by clinical evaluation (6%), 18 were found to be positive by DFA (36%), and 48 were found to be positive by qPCR (96%). Next, the new duplex qPCR was validated using 50 samples previously characterized by qPCR. Validation was carried out on a benchtop instrument (ABI7500) or on a portable point-of-care instrument (Q3-Plus), showing 95% specificity and 100% sensitivity. The ubiquitous presence of C. trachomatis DNA in samples from the endemic region confirms that constant monitoring is of paramount importance for the effective measurement of the elimination of trachoma. The newly developed duplex qPCR presented in this study, along with its validation in a portable qPCR system, constitutes important tools toward achieving this goal.
Collapse
Affiliation(s)
- Joana da Felicidade Ribeiro Favacho
- Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health (IEC/SVSA/MS), Ananindeua 67030-000, PA, Brazil; (L.C.F.F.); (H.S.d.R.)
| | - Keren Kariene Leite
- Institute of Molecular Biology of Paraná (IBMP), Curitiba 81350-010, PR, Brazil (T.J.)
| | - Thiago Jacomasso
- Institute of Molecular Biology of Paraná (IBMP), Curitiba 81350-010, PR, Brazil (T.J.)
| | - Aline Burda Farias
- Institute of Molecular Biology of Paraná (IBMP), Curitiba 81350-010, PR, Brazil (T.J.)
| | - Luciano Chaves Franco Filho
- Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health (IEC/SVSA/MS), Ananindeua 67030-000, PA, Brazil; (L.C.F.F.); (H.S.d.R.)
| | - Samara Tatielle Monteiro Gomes
- Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health (IEC/SVSA/MS), Ananindeua 67030-000, PA, Brazil; (L.C.F.F.); (H.S.d.R.)
| | - Herald Souza dos Reis
- Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health (IEC/SVSA/MS), Ananindeua 67030-000, PA, Brazil; (L.C.F.F.); (H.S.d.R.)
| | - Gardene Dourado Mota
- Evandro Chagas Institute, Secretariat of Health and Environment Surveillance, Ministry of Health (IEC/SVSA/MS), Ananindeua 67030-000, PA, Brazil; (L.C.F.F.); (H.S.d.R.)
| | | | - Walleyd Sami Tassi
- Institute of Molecular Biology of Paraná (IBMP), Curitiba 81350-010, PR, Brazil (T.J.)
| | | | - Sheila Kay West
- Dana Center for Preventative Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Charlotte Ann Gaydos
- International Sexually Transmitted Disease Research Laboratory, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
2
|
Turman BJ, Darville T, O'Connell CM. Plasmid-mediated virulence in Chlamydia. Front Cell Infect Microbiol 2023; 13:1251135. [PMID: 37662000 PMCID: PMC10469868 DOI: 10.3389/fcimb.2023.1251135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Chlamydia trachomatis infection of ocular conjunctiva can lead to blindness, while infection of the female genital tract can lead to chronic pelvic pain, ectopic pregnancy, and/or infertility. Conjunctival and fallopian tube inflammation and the resulting disease sequelae are attributed to immune responses induced by chlamydial infection at these mucosal sites. The conserved chlamydial plasmid has been implicated in enhancing infection, via improved host cell entry and exit, and accelerating innate inflammatory responses that lead to tissue damage. The chlamydial plasmid encodes eight open reading frames, three of which have been associated with virulence: a secreted protein, Pgp3, and putative transcriptional regulators, Pgp4 and Pgp5. Although Pgp3 is an important plasmid-encoded virulence factor, recent studies suggest that chlamydial plasmid-mediated virulence extends beyond the expression of Pgp3. In this review, we discuss studies of genital, ocular, and gastrointestinal infection with C. trachomatis or C. muridarum that shed light on the role of the plasmid in disease development, and the potential for tissue and species-specific differences in plasmid-mediated pathogenesis. We also review evidence that plasmid-associated inflammation can be independent of bacterial burden. The functions of each of the plasmid-encoded proteins and potential molecular mechanisms for their role(s) in chlamydial virulence are discussed. Although the understanding of plasmid-associated virulence has expanded within the last decade, many questions related to how and to what extent the plasmid influences chlamydial infectivity and inflammation remain unknown, particularly with respect to human infections. Elucidating the answers to these questions could improve our understanding of how chlamydia augment infection and inflammation to cause disease.
Collapse
Affiliation(s)
- Breanna J. Turman
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Toni Darville
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | | |
Collapse
|
3
|
Cheong HC, Cheok YY, Chan YT, Tang TF, Sulaiman S, Looi CY, Gupta R, Arulanandam B, Chang LY, Wong WF. Chlamydia trachomatis plasmid-encoding Pgp3 protein induces secretion of distinct inflammatory signatures from HeLa cervical epithelial cells. BMC Microbiol 2023; 23:58. [PMID: 36870960 PMCID: PMC9985209 DOI: 10.1186/s12866-023-02802-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Genital Chlamydia trachomatis infection is the most common bacterial sexual transmitted disease that causes severe complications including pelvic inflammatory disease, ectopic pregnancy, and infertility in females. The Pgp3 protein encoded by C. trachomatis plasmid has been speculated to be an important player in chlamydial pathogenesis. However, the precise function of this protein is unknown and thus remains to be thoroughly investigated. METHODS In this study, we synthesized Pgp3 protein for in vitro stimulation in the Hela cervical carcinoma cells. RESULTS AND CONCLUSION We showed that Pgp3 induced prominent expression of host inflammatory cytokine genes including interleukin-6 (IL-6), IL-8, tumor necrosis factor alpha-induced protein 3 (TNFAIP3), and chemokine C-X-C motif ligand 1 (CXCL1), implying a possible role of Pgp3 in modulating the inflammatory reaction in the host.
Collapse
Affiliation(s)
- Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Rishein Gupta
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Bernard Arulanandam
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA.,Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Virulence Protein Pgp3 Is Insufficient To Mediate Plasmid-Dependent Infectivity of Chlamydia trachomatis. Infect Immun 2023; 91:e0039222. [PMID: 36722979 PMCID: PMC9933628 DOI: 10.1128/iai.00392-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Chlamydia trachomatis is the most common cause of infectious blindness and sexually transmitted bacterial infection globally. C. trachomatis contains a conserved chlamydial plasmid with eight coding sequences. Plasmid-cured Chlamydia strains are attenuated and display reduced infectivity in cell culture and in vivo genital infection of female mice. Mutants that do not express the plasmid-encoded proteins Pgp3, a secreted protein with unknown function, or Pgp4, a putative regulator of pgp3 and other chromosomal loci, display an infectivity defect similar to plasmid-deficient strains. Our objective was to determine the combined and individual contributions of Pgp3 and Pgp4 to this phenotype. Deletion of pgp3 and pgp4 resulted in an infectivity defect detected by competition assay in cell culture and in mice. The pgp3 locus was placed under the control of an anhydrotetracycline-inducible promoter to examine the individual contributions of Pgp3 and Pgp4 to infectivity. Expression of pgp3 was induced 100- to 1,000-fold after anhydrotetracycline administration, regardless of the presence or absence of pgp4. However, secreted Pgp3 was not detected when pgp4 was deleted, confirming a role for Pgp4 in Pgp3 secretion. We discovered that expression of pgp3 or pgp4 alone was insufficient to restore normal infectivity, which required expression of both Pgp3 and Pgp4. These results suggest Pgp3 and Pgp4 are both required for infectivity during C. trachomatis infection. Future studies are required to determine the mechanism by which Pgp3 and Pgp4 influence chlamydial infectivity as well as the potential roles of Pgp4-regulated loci.
Collapse
|
5
|
Walsh SC, Reitano JR, Dickinson MS, Kutsch M, Hernandez D, Barnes AB, Schott BH, Wang L, Ko DC, Kim SY, Valdivia RH, Bastidas RJ, Coers J. The bacterial effector GarD shields Chlamydia trachomatis inclusions from RNF213-mediated ubiquitylation and destruction. Cell Host Microbe 2022; 30:1671-1684.e9. [PMID: 36084633 PMCID: PMC9772000 DOI: 10.1016/j.chom.2022.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/13/2022] [Accepted: 08/12/2022] [Indexed: 01/26/2023]
Abstract
Chlamydia trachomatis is the leading cause of sexually transmitted bacterial infections and a major threat to women's reproductive health in particular. This obligate intracellular pathogen resides and replicates within a cellular compartment termed an inclusion, where it is sheltered by unknown mechanisms from gamma-interferon (IFNγ)-induced cell-autonomous host immunity. Through a genetic screen, we uncovered the Chlamydia inclusion membrane protein gamma resistance determinant (GarD) as a bacterial factor protecting inclusions from cell-autonomous immunity. In IFNγ-primed human cells, inclusions formed by garD loss-of-function mutants become decorated with linear ubiquitin and are eliminated. Leveraging cellular genome-wide association data, we identified the ubiquitin E3 ligase RNF213 as a candidate anti-Chlamydia protein. We demonstrate that IFNγ-inducible RNF213 facilitates the ubiquitylation and destruction of GarD-deficient inclusions. Furthermore, we show that GarD operates as a cis-acting stealth factor barring RNF213 from targeting inclusions, thus functionally defining GarD as an RNF213 antagonist essential for chlamydial growth during IFNγ-stimulated immunity.
Collapse
Affiliation(s)
- Stephen C Walsh
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Jeffrey R Reitano
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Mary S Dickinson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Miriam Kutsch
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Dulcemaria Hernandez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Alyson B Barnes
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Benjamin H Schott
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Robert J Bastidas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Department of Immunology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
6
|
N'Gadjaga MD, Perrinet S, Connor MG, Bertolin G, Millot GA, Subtil A. Chlamydia trachomatis development requires both host glycolysis and oxidative phosphorylation but has only minor effects on these pathways. J Biol Chem 2022; 298:102338. [PMID: 35931114 PMCID: PMC9449673 DOI: 10.1016/j.jbc.2022.102338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
The obligate intracellular bacteria Chlamydia trachomatis obtain all nutrients from the cytoplasm of their epithelial host cells and stimulate glucose uptake by these cells. They even hijack host ATP, exerting a strong metabolic pressure on their host at the peak of the proliferative stage of their developmental cycle. However, it is largely unknown whether infection modulates the metabolism of the host cell. Also, the reliance of the bacteria on host metabolism might change during their progression through their biphasic developmental cycle. Herein, using primary epithelial cells and 2 cell lines of nontumoral origin, we showed that between the 2 main ATP-producing pathways of the host, oxidative phosphorylation (OxPhos) remained stable and glycolysis was slightly increased. Inhibition of either pathway strongly reduced bacterial proliferation, implicating that optimal bacterial growth required both pathways to function at full capacity. While we found C. trachomatis displayed some degree of energetic autonomy in the synthesis of proteins expressed at the onset of infection, functional host glycolysis was necessary for the establishment of early inclusions, whereas OxPhos contributed less. These observations correlated with the relative contributions of the pathways in maintaining ATP levels in epithelial cells, with glycolysis contributing the most. Altogether, this work highlights the dependence of C. trachomatis on both host glycolysis and OxPhos for efficient bacterial replication. However, ATP consumption appears at equilibrium with the normal production capacity of the host and the bacteria, so that no major shift between these pathways is required to meet bacterial needs.
Collapse
Affiliation(s)
- Maimouna D N'Gadjaga
- Institut Pasteur, CNRS UMR3691, Cellular Biology of Microbial Infection, Université Paris Cité, Paris, France; Sorbonne Université, Collège Doctoral, Paris, France
| | - Stéphanie Perrinet
- Institut Pasteur, CNRS UMR3691, Cellular Biology of Microbial Infection, Université Paris Cité, Paris, France
| | - Michael G Connor
- Institut Pasteur, Chromatin and Infection, Université Paris Cité, Paris, France
| | - Giulia Bertolin
- CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Univ Rennes, Rennes, France
| | - Gaël A Millot
- Institut Pasteur, Hub Bioinformatique et Biostatistique-DBC, Université Paris Cité, Paris, France
| | - Agathe Subtil
- Institut Pasteur, CNRS UMR3691, Cellular Biology of Microbial Infection, Université Paris Cité, Paris, France.
| |
Collapse
|
7
|
Köstlbacher S, Collingro A, Halter T, Domman D, Horn M. Coevolving Plasmids Drive Gene Flow and Genome Plasticity in Host-Associated Intracellular Bacteria. Curr Biol 2021; 31:346-357.e3. [PMID: 33157023 PMCID: PMC7846284 DOI: 10.1016/j.cub.2020.10.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022]
Abstract
Plasmids are important in microbial evolution and adaptation to new environments. Yet, carrying a plasmid can be costly, and long-term association of plasmids with their hosts is poorly understood. Here, we provide evidence that the Chlamydiae, a phylum of strictly host-associated intracellular bacteria, have coevolved with their plasmids since their last common ancestor. Current chlamydial plasmids are amalgamations of at least one ancestral plasmid and a bacteriophage. We show that the majority of plasmid genes are also found on chromosomes of extant chlamydiae. The most conserved plasmid gene families are predominantly vertically inherited, while accessory plasmid gene families show significantly increased mobility. We reconstructed the evolutionary history of plasmid gene content of an entire bacterial phylum over a period of around one billion years. Frequent horizontal gene transfer and chromosomal integration events illustrate the pronounced impact of coevolution with these extrachromosomal elements on bacterial genome dynamics in host-dependent microbes.
Collapse
Affiliation(s)
- Stephan Köstlbacher
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Astrid Collingro
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Tamara Halter
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Daryl Domman
- Wellcome Sanger Institute, Parasites and Microbes Programme, Hinxton, Cambridge CB10 1SA, UK; Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Matthias Horn
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria.
| |
Collapse
|
8
|
Poston TB, O'Connell CM, Girardi J, Sullivan JE, Nagarajan UM, Marinov A, Scurlock AM, Darville T. T Cell-Independent Gamma Interferon and B Cells Cooperate To Prevent Mortality Associated with Disseminated Chlamydia muridarum Genital Tract Infection. Infect Immun 2018; 86:e00143-18. [PMID: 29661927 PMCID: PMC6013674 DOI: 10.1128/iai.00143-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
CD4 T cells and antibody are required for optimal acquired immunity to Chlamydia muridarum genital tract infection, and T cell-mediated gamma interferon (IFN-γ) production is necessary to clear infection in the absence of humoral immunity. However, the role of T cell-independent immune responses during primary infection remains unclear. We investigated this question by inoculating wild-type and immune-deficient mice with C. muridarum CM001, a clonal isolate capable of enhanced extragenital replication. Genital inoculation of wild-type mice resulted in transient dissemination to the lungs and spleen that then was rapidly cleared from these organs. However, CM001 genital infection proved lethal for STAT1-/- and IFNG-/- mice, in which IFN-γ signaling was absent, and for Rag1-/- mice, which lacked T and B cells and in which innate IFN-γ signaling was retained. In contrast, B cell-deficient muMT mice, which can generate a Th1 response, and T cell-deficient mice with intact B cell and innate IFN-γ signaling survived. These data collectively indicate that IFN-γ prevents lethal CM001 dissemination in the absence of T cells and suggests a B cell corequirement. Adoptive transfer of convalescent-phase immune serum but not naive IgM to Rag1-/- mice infected with CM001 significantly increased the survival time, while transfer of naive B cells completely rescued Rag1-/- mice from CM001 lethality. Protection was associated with a significant reduction in the lung chlamydial burden of genitally infected mice. These data reveal an important cooperation between T cell-independent B cell responses and innate IFN-γ in chlamydial host defense and suggest that interactions between T cell-independent antibody and IFN-γ are essential for limiting extragenital dissemination.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Catherine M O'Connell
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jenna Girardi
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jeanne E Sullivan
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Uma M Nagarajan
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Anthony Marinov
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy M Scurlock
- Department of Pediatrics, Arkansas Children's Hospital, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Skilton RJ, Wang Y, O'Neill C, Filardo S, Marsh P, Bénard A, Thomson NR, Ramsey KH, Clarke IN. The Chlamydia muridarum plasmid revisited : new insights into growth kinetics. Wellcome Open Res 2018; 3:25. [PMID: 29657985 PMCID: PMC5871946 DOI: 10.12688/wellcomeopenres.13905.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 11/23/2022] Open
Abstract
Background: Research in chlamydial genetics is challenging because of its obligate intracellular developmental cycle.
In vivo systems exist that allow studies of different aspects of basic biology of chlamydiae, the murine
Chlamydia muridarum model is one of great importance and thus an essential research tool.
C. muridarum carries a plasmid that has a role in virulence. Our aim was to compare and contrast the
C. muridarum plasmid-free phenotype with that of a chromosomally isogenic plasmid-bearing strain, through the inclusion phase of the developmental cycle. Methods: We measured infectivity for plasmid bearing and plasmid-cured
C. muridarum by inclusion forming assays in McCoy cells and in parallel bacterial chromosome replication by quantitative PCR, throughout the developmental cycle. In addition to these studies, we have carefully monitored chlamydial inclusion formation by confocal microscopy and transmission electron microscopy. A new
E.coli/chlamydial shuttle vector (pNigg::GFP) was constructed using standard cloning technology and used to transform
C. muridarum for further phenotypic studies. Results: We have advanced the definition of the chlamydial phenotype away from the simple static observation of mature inclusions and redefined the
C. muridarum plasmid-based phenotype on growth profile and inclusion morphology. Our observations on the growth properties of plasmid-cured
C. muridarum challenge the established interpretations, especially with regard to inclusion growth kinetics. Introduction of the shuttle plasmid pNigg::GFP into plasmid-cured
C. muridarum restored the wild-type plasmid-bearing phenotype and confirmed that loss of the plasmid was the sole cause for the changes in growth and chromosomal replication. Conclusions: Accurate growth curves and sampling at multiple time points throughout the developmental cycle is necessary to define plasmid phenotypes. There are subtle but important (previously unnoticed) differences in the overall growth profile of plasmid-bearing and plasmid-free
C. muridarum. We have proven that the differences described are solely due to the plasmid pNigg.
Collapse
Affiliation(s)
- Rachel J Skilton
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Yibing Wang
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Colette O'Neill
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University, Rome, Italy
| | - Peter Marsh
- Public Health England, Public Health Laboratory Southampton, Southampton General Hospital, Southampton, UK
| | - Angèle Bénard
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Nicholas R Thomson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.,London School of Hygiene and Tropical Medicine, London, UK
| | - Kyle H Ramsey
- Department of Microbiology & Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Ian N Clarke
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
10
|
Versteeg B, Bruisten SM, Pannekoek Y, Jolley KA, Maiden MCJ, van der Ende A, Harrison OB. Genomic analyses of the Chlamydia trachomatis core genome show an association between chromosomal genome, plasmid type and disease. BMC Genomics 2018; 19:130. [PMID: 29426279 PMCID: PMC5810182 DOI: 10.1186/s12864-018-4522-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/31/2018] [Indexed: 12/02/2022] Open
Abstract
Background Chlamydia trachomatis (Ct) plasmid has been shown to encode genes essential for infection. We evaluated the population structure of Ct using whole-genome sequence data (WGS). In particular, the relationship between the Ct genome, plasmid and disease was investigated. Results WGS data from 157 Ct isolates deposited in the Chlamydiales pubMLST database (http://pubMLST.org/chlamydiales/) were annotated with 902 genes including the core and accessory genome. Plasmid associated genes were annotated and a plasmid MLST scheme was defined allowing plasmid sequence types to be determined. Plasmid allelic variation was investigated. Phylogenetic relationships were examined using the Genome Comparator tool available in pubMLST. Phylogenetic analyses identified four distinct Ct core genome clusters and six plasmid clusters, with a strong association between the chromosomal genotype and plasmid. This in turn was linked to ompA genovars and disease phenotype. Horizontal genetic transfer of plasmids was observed for three urogenital-associated isolates, which possessed plasmids more commonly found in isolates resulting from ocular infections. The pgp3 gene was identified as the most polymorphic plasmid gene and pgp4 was the most conserved. Conclusion A strong association between chromosomal genome, plasmid type and disease was observed, consistent with previous studies. This suggests co-evolution of the Ct chromosome and their plasmids, but we confirmed that plasmid transfer can occur between isolates. These data provide a better understanding of the genetic diversity occurring across the Ct genome in association with the plasmid content. Electronic supplementary material The online version of this article (10.1186/s12864-018-4522-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bart Versteeg
- Public Health Laboratory, Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, the Netherlands.
| | - Sylvia M Bruisten
- Public Health Laboratory, Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, the Netherlands.,Amsterdam Infection & Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Yvonne Pannekoek
- Amsterdam Infection & Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Medical Microbiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Keith A Jolley
- Peter Medawar building, Department of Zoology, University of Oxford, Oxford, UK
| | - Martin C J Maiden
- Peter Medawar building, Department of Zoology, University of Oxford, Oxford, UK
| | - Arie van der Ende
- Amsterdam Infection & Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Medical Microbiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Odile B Harrison
- Peter Medawar building, Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Zhong G. Chlamydia Spreading from the Genital Tract to the Gastrointestinal Tract - A Two-Hit Hypothesis. Trends Microbiol 2017; 26:611-623. [PMID: 29289422 DOI: 10.1016/j.tim.2017.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 12/18/2022]
Abstract
Chlamydia trachomatis, a leading bacterial cause of sexually transmitted infection-induced infertility, is frequently detected in the gastrointestinal tract. Chlamydia muridarum, a model pathogen for investigating C. trachomatis pathogenesis, readily spreads from the mouse genital tract to the gastrointestinal tract, establishing long-lasting colonization. C. muridarum mutants, despite their ability to activate acute oviduct inflammation, are attenuated in inducing tubal fibrosis and are no longer able to colonize the gastrointestinal tract, suggesting that the spread of C. muridarum to the gastrointestinal tract may contribute to its pathogenicity in the upper genital tract. However, gastrointestinal C. muridarum cannot directly autoinoculate the genital tract. Both antigen-specific CD8+ T cells and profibrotic cytokines, such as TNFα and IL-13, are essential for C. muridarum to induce tubal fibrosis; this may be induced by the gastrointestinal C. muridarum, as a second hit, to transmucosally convert tubal repairing - initiated by C. muridarum infection of tubal epithelial cells (serving as the first hit) - into pathogenic fibrosis. Testing the two-hit mouse model should both add new knowledge to the growing list of mechanisms by which gastrointestinal microbes contribute to pathologies in extragastrointestinal tissues and provide information for investigating the potential role of gastrointestinal C. trachomatis in human chlamydial pathogenesis.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health, Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
12
|
Hafner LM, Timms P. Development of a Chlamydia trachomatis vaccine for urogenital infections: novel tools and new strategies point to bright future prospects. Expert Rev Vaccines 2017; 17:57-69. [PMID: 29264970 DOI: 10.1080/14760584.2018.1417044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The "cloaked" bacterial pathogen that is Chlamydia trachomatis continues to cause sexually transmitted infections (STIs) that adversely affect the health and well-being of children, adolescents and adults globally. The reproductive disease sequelae follow unresolved or untreated chronic or recurrent asymptomatic C.trachomatis infections of the lower female genital tract (FGT) and can include pelvic pain, pelvic inflammatory disease (PID) and ectopic pregnancy. Tubal Factor Infertility (TFI) can also occur since protective and long-term natural immunity to chlamydial infection is incomplete, allowing for ascension of the organism to the upper FGT. Developing countries including the WHO African (8.3 million cases) and South-East Asian regions (7.2 million cases) bear the highest burden of chlamydial STIs. AREAS COVERED Genetic advances for Chlamydia have provided tools for transformation (including dendrimer-enabled transformation), lateral gene transfer and chemical mutagenesis. Recent progress in these areas is reviewed with a focus on vaccine development for Chlamydia infections of the female genital tract. EXPERT COMMENTARY A vaccine that can elicit immuno-protective responses whilst avoiding adverse immuno-pathologic host responses is required. The current technological advances in chlamydial genetics and proteomics, as well as novel and improved adjuvants and delivery systems, provide new hope that the elusive chlamydial vaccine is an imminent and realistic goal.
Collapse
Affiliation(s)
- Louise M Hafner
- a School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Faculty of Health , Queensland University of Technology , Brisbane , Australia
| | - Peter Timms
- b Faculty of Science, Health, Education and Engineering , University of the Sunshine Coast , Maroochydore DC , Australia
| |
Collapse
|
13
|
Abstract
Species of Chlamydia are the etiologic agent of endemic blinding trachoma, the leading cause of bacterial sexually transmitted diseases, significant respiratory pathogens, and a zoonotic threat. Their dependence on an intracellular growth niche and their peculiar developmental cycle are major challenges to elucidating their biology and virulence traits. The last decade has seen tremendous advances in our ability to perform a molecular genetic analysis of Chlamydia species. Major achievements include the generation of large collections of mutant strains, now available for forward- and reverse-genetic applications, and the introduction of a system for plasmid-based transformation enabling complementation of mutations; expression of foreign, modified, or reporter genes; and even targeted gene disruptions. This review summarizes the current status of the molecular genetic toolbox for Chlamydia species and highlights new insights into their biology and new challenges in the nascent field of Chlamydia genetics.
Collapse
Affiliation(s)
- Barbara S Sixt
- Department for Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710; .,Centre de Recherche des Cordeliers, INSERM U1138, Paris 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France.,Université Pierre et Marie Curie, Paris 75005, France
| | - Raphael H Valdivia
- Department for Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710;
| |
Collapse
|
14
|
Advances and Obstacles in the Genetic Dissection of Chlamydial Virulence. Curr Top Microbiol Immunol 2017; 412:133-158. [PMID: 29090367 DOI: 10.1007/82_2017_76] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Obligate intracellular pathogens in the family Chlamydiaceae infect taxonomically diverse eukaryotes ranging from amoebae to mammals. However, many fundamental aspects of chlamydial cell biology and pathogenesis remain poorly understood. Genetic dissection of chlamydial biology has historically been hampered by a lack of genetic tools. Exploitation of the ability of chlamydia to recombine genomic material by lateral gene transfer (LGT) ushered in a new era in chlamydia research. With methods to map mutations in place, genetic screens were able to assign functions and phenotypes to specific chlamydial genes. Development of an approach for stable transformation of chlamydia also provided a mechanism for gene delivery and platforms for disrupting chromosomal genes. Here, we explore how these and other tools have been used to test hypotheses concerning the functions of known chlamydial virulence factors and discover the functions of completely uncharacterized genes. Refinement and extension of the existing genetic tools to additional Chlamydia spp. will substantially advance understanding of the biology and pathogenesis of this important group of pathogens.
Collapse
|
15
|
Zhong G. Chlamydial Plasmid-Dependent Pathogenicity. Trends Microbiol 2016; 25:141-152. [PMID: 27712952 DOI: 10.1016/j.tim.2016.09.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/11/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022]
Abstract
Most Chlamydia species carry a 7.5kb plasmid encoding eight open reading frames conventionally called plasmid glycoproteins 1-8 or pGP1-8. Although the plasmid is not critical for chlamydial growth in vitro, its role in chlamydial pathogenesis is clearly demonstrated in the genital tracts of mice infected with Chlamydia muridarum, a model for investigating the human pathogen Chlamydia trachomatis. Plasmid-free C. trachomatis is also attenuated in both the mouse genital tract and nonhuman primate ocular tissue. Deficiency in pGP3 alone, which is regulated by pGP4, largely reproduced the in vivo but not in vitro phenotypes of the plasmid-free organisms, suggesting that pGP3 is a key in vivo virulence factor. The positive and negative regulations of some chromosomal genes by pGP4 and pGP5, respectively, may allow the plasmid to promote chlamydial adaptation to varied animal tissue environments. The focus of this review is to summarize the progress on the pathogenic functions of the plasmid-encoded open reading frames, which may motivate further investigation of the molecular mechanisms of chlamydial pathogenicity and development of medical utility of the chlamydial plasmid system.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
16
|
Abstract
Etiology, transmission and protection: Chlamydia
trachomatis is the leading cause of bacterial sexually transmitted
infection (STI) globally. However, C. trachomatis also causes
trachoma in endemic areas, mostly Africa and the Middle East, and is a leading
cause of preventable blindness worldwide. Epidemiology, incidence and
prevalence: The World Health Organization estimates 131 million
new cases of C. trachomatis genital infection occur annually.
Globally, infection is most prevalent in young women and men (14-25 years),
likely driven by asymptomatic infection, inadequate partner treatment and
delayed development of protective immunity.
Pathology/Symptomatology: C.
trachomatis infects susceptible squamocolumnar or transitional
epithelial cells, leading to cervicitis in women and urethritis in men. Symptoms
are often mild or absent but ascending infection in some women may lead to
Pelvic Inflammatory Disease (PID), resulting in reproductive sequelae such as
ectopic pregnancy, infertility and chronic pelvic pain. Complications of
infection in men include epididymitis and reactive arthritis.
Molecular mechanisms of infection: Chlamydiae
manipulate an array of host processes to support their obligate intracellular
developmental cycle. This leads to activation of signaling pathways resulting in
disproportionate influx of innate cells and the release of tissue damaging
proteins and pro-inflammatory cytokines. Treatment and
curability: Uncomplicated urogenital infection is treated with
azithromycin (1 g, single dose) or doxycycline (100 mg twice daily x 7 days).
However, antimicrobial treatment does not ameliorate established disease. Drug
resistance is rare but treatment failures have been described. Development of an
effective vaccine that protects against upper tract disease or that limits
transmission remains an important goal.
Collapse
Affiliation(s)
- Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Morgan E Ferone
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
17
|
Gehre L, Gorgette O, Perrinet S, Prevost MC, Ducatez M, Giebel AM, Nelson DE, Ball SG, Subtil A. Sequestration of host metabolism by an intracellular pathogen. eLife 2016; 5:e12552. [PMID: 26981769 PMCID: PMC4829429 DOI: 10.7554/elife.12552] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/15/2016] [Indexed: 01/22/2023] Open
Abstract
For intracellular pathogens, residence in a vacuole provides a shelter against cytosolic host defense to the cost of limited access to nutrients. The human pathogen Chlamydia trachomatis grows in a glycogen-rich vacuole. How this large polymer accumulates there is unknown. We reveal that host glycogen stores shift to the vacuole through two pathways: bulk uptake from the cytoplasmic pool, and de novo synthesis. We provide evidence that bacterial glycogen metabolism enzymes are secreted into the vacuole lumen through type 3 secretion. Our data bring strong support to the following scenario: bacteria co-opt the host transporter SLC35D2 to import UDP-glucose into the vacuole, where it serves as substrate for de novo glycogen synthesis, through a remarkable adaptation of the bacterial glycogen synthase. Based on these findings we propose that parasitophorous vacuoles not only offer protection but also provide a microorganism-controlled metabolically active compartment essential for redirecting host resources to the pathogens.
Collapse
Affiliation(s)
- Lena Gehre
- Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France.,CNRS UMR3691, Paris, France
| | - Olivier Gorgette
- Plate-forme de Microscopie Ultrastructurale, Imagopole, Institut Pasteur, Paris, France
| | - Stéphanie Perrinet
- Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France.,CNRS UMR3691, Paris, France
| | | | - Mathieu Ducatez
- Unité de Glycobiologie Structurale et Fonctionnelle - CNRS UMR8576, Université de Lille, Lille, France
| | - Amanda M Giebel
- Department of Biology, Indiana University Bloomington, Bloomington, United States
| | - David E Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, United States
| | - Steven G Ball
- Unité de Glycobiologie Structurale et Fonctionnelle - CNRS UMR8576, Université de Lille, Lille, France
| | - Agathe Subtil
- Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France.,CNRS UMR3691, Paris, France
| |
Collapse
|
18
|
Jelocnik M, Bachmann NL, Seth-Smith H, Thomson NR, Timms P, Polkinghorne AM. Molecular characterisation of the Chlamydia pecorum plasmid from porcine, ovine, bovine, and koala strains indicates plasmid-strain co-evolution. PeerJ 2016; 4:e1661. [PMID: 26870613 PMCID: PMC4748734 DOI: 10.7717/peerj.1661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/14/2016] [Indexed: 01/07/2023] Open
Abstract
Background. Highly stable, evolutionarily conserved, small, non-integrative plasmids are commonly found in members of the Chlamydiaceae and, in some species, these plasmids have been strongly linked to virulence. To date, evidence for such a plasmid in Chlamydia pecorum has been ambiguous. In a recent comparative genomic study of porcine, ovine, bovine, and koala C. pecorum isolates, we identified plasmids (pCpec) in a pig and three koala strains, respectively. Screening of further porcine, ovine, bovine, and koala C. pecorum isolates for pCpec showed that pCpec is common, but not ubiquitous in C. pecorum from all of the infected hosts. Methods. We used a combination of (i) bioinformatic mining of previously sequenced C. pecorum genome data sets and (ii) pCpec PCR-amplicon sequencing to characterise a further 17 novel pCpecs in C. pecorum isolates obtained from livestock, including pigs, sheep, and cattle, as well as those from koala. Results and Discussion. This analysis revealed that pCpec is conserved with all eight coding domain sequences (CDSs) present in isolates from each of the hosts studied. Sequence alignments revealed that the 21 pCpecs show 99% nucleotide sequence identity, with 83 single nucleotide polymorphisms (SNPs) shown to differentiate all of the plasmids analysed in this study. SNPs were found to be mostly synonymous and were distributed evenly across all eight pCpec CDSs as well as in the intergenic regions. Although conserved, analyses of the 21 pCpec sequences resolved plasmids into 12 distinct genotypes, with five shared between pCpecs from different isolates, and the remaining seven genotypes being unique to a single pCpec. Phylogenetic analysis revealed congruency and co-evolution of pCpecs with their cognate chromosome, further supporting polyphyletic origin of the koala C. pecorum. This study provides further understanding of the complex epidemiology of this pathogen in livestock and koala hosts and paves the way for studies to evaluate the function of this putative C. pecorum virulence factor.
Collapse
Affiliation(s)
- Martina Jelocnik
- Centre for Animal Health Innovation, University of the Sunshine Coast , Sippy Downs, Queensland , Australia
| | - Nathan L Bachmann
- Centre for Animal Health Innovation, University of the Sunshine Coast , Sippy Downs, Queensland , Australia
| | - Helena Seth-Smith
- Functional Genomics Center Zurich, University of Zurich , Zurich , Switzerland
| | - Nicholas R Thomson
- Infection Genomics, The Wellcome Trust Sanger Institute , Cambridge , United Kingdom
| | - Peter Timms
- Centre for Animal Health Innovation, University of the Sunshine Coast , Sippy Downs, Queensland , Australia
| | - Adam M Polkinghorne
- Centre for Animal Health Innovation, University of the Sunshine Coast , Sippy Downs, Queensland , Australia
| |
Collapse
|
19
|
The Chromosome-Encoded Hypothetical Protein TC0668 Is an Upper Genital Tract Pathogenicity Factor of Chlamydia muridarum. Infect Immun 2015; 84:467-79. [PMID: 26597987 DOI: 10.1128/iai.01171-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/17/2015] [Indexed: 12/25/2022] Open
Abstract
We previously associated a missense mutation of the tc0668 gene of serial in vitro-passaged Chlamydia muridarum, a murine model of human urogenital C. trachomatis, with severely attenuated disease development in the upper genital tract of female mice. Since these mutants also contained a TC0237 Q117E missense mutation that enhances their in vitro infectivity, an effort was made here to isolate and characterize a tc0668 single mutant to determine its individual contribution to urogenital pathogenicity. Detailed genetic analysis of C. muridarum passages revealed a truncated variant with a G216* nonsense mutation of the 408-amino-acid TC0668 protein that does not produce a detectable product. Intracellular growth and infectivity of C. muridarum in vitro remain unaffected in the absence of TC0668. Intravaginal inoculation of the TC0668 null mutant into C3H/HeJ mice results in a typical course of lower genital tract infection but, unlike a pathogenic isogenic control, is unable to elicit significant chronic inflammation of the oviduct and fails to induce hydrosalpinx. Thus, TC0668 is demonstrated as an important chromosome-encoded urogenital pathogenicity factor of C. muridarum and the first with these characteristics to be discovered for a Chlamydia pathogen.
Collapse
|
20
|
Derrick T, Roberts CH, Last AR, Burr SE, Holland MJ. Trachoma and Ocular Chlamydial Infection in the Era of Genomics. Mediators Inflamm 2015; 2015:791847. [PMID: 26424969 PMCID: PMC4573990 DOI: 10.1155/2015/791847] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022] Open
Abstract
Trachoma is a blinding disease usually caused by infection with Chlamydia trachomatis (Ct) serovars A, B, and C in the upper tarsal conjunctiva. Individuals in endemic regions are repeatedly infected with Ct throughout childhood. A proportion of individuals experience prolonged or severe inflammatory episodes that are known to be significant risk factors for ocular scarring in later life. Continued scarring often leads to trichiasis and in-turning of the eyelashes, which causes pain and can eventually cause blindness. The mechanisms driving the chronic immunopathology in the conjunctiva, which largely progresses in the absence of detectable Ct infection in adults, are likely to be multifactorial. Socioeconomic status, education, and behavior have been identified as contributing to the risk of scarring and inflammation. We focus on the contribution of host and pathogen genetic variation, bacterial ecology of the conjunctiva, and host epigenetic imprinting including small RNA regulation by both host and pathogen in the development of ocular pathology. Each of these factors or processes contributes to pathogenic outcomes in other inflammatory diseases and we outline their potential role in trachoma.
Collapse
Affiliation(s)
- Tamsyn Derrick
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Chrissy h. Roberts
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Anna R. Last
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Sarah E. Burr
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Martin J. Holland
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
21
|
Comparable Genital Tract Infection, Pathology, and Immunity in Rhesus Macaques Inoculated with Wild-Type or Plasmid-Deficient Chlamydia trachomatis Serovar D. Infect Immun 2015. [PMID: 26216426 DOI: 10.1128/iai.00841-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rhesus macaques were studied to directly address the potential for plasmid-deficient Chlamydia trachomatis to serve as a live attenuated vaccine in the genital tract. Five repeated cervical inoculations of rhesus macaques with wild-type serovar D strain D/UW-3/Cx or a plasmid-deficient derivative of this strain, CTD153, resulted in infections with similar kinetics and induced comparable levels of protective immunity. After all animals received five challenges with D/UW-3/Cx, levels of inflammation observed grossly and histologically were similar between the groups. Animals in both groups developed evidence of oviduct dilatation; however, reduced oviduct dilatation was observed for "controllers," i.e., animals without detectable chlamydial DNA in the fimbriae at weeks 5 and 12. Grouping animals into "ascenders" and "controllers" revealed that elevated early T cell responses were associated with protection, whereas higher antibody responses were associated with ascension. Protected animals shared common major histocompatibility complex (MHC) alleles. Overall, genetic differences of individual animals, rather than the presence or absence of the chlamydial plasmid in the primary infecting strain, appeared to play a role in determining the outcome of infection.
Collapse
|
22
|
Chlamydia trachomatis In Vivo to In Vitro Transition Reveals Mechanisms of Phase Variation and Down-Regulation of Virulence Factors. PLoS One 2015. [PMID: 26207372 PMCID: PMC4514472 DOI: 10.1371/journal.pone.0133420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Research on the obligate intracellular bacterium Chlamydia trachomatis demands culture in cell-lines, but the adaptive process behind the in vivo to in vitro transition is not understood. We assessed the genomic and transcriptomic dynamics underlying C. trachomatis in vitro adaptation of strains representing the three disease groups (ocular, epithelial-genital and lymphogranuloma venereum) propagated in epithelial cells over multiple passages. We found genetic features potentially underlying phase variation mechanisms mediating the regulation of a lipid A biosynthesis enzyme (CT533/LpxC), and the functionality of the cytotoxin (CT166) through an ON/OFF mechanism. We detected inactivating mutations in CT713/porB, a scenario suggesting metabolic adaptation to the available carbon source. CT135 was inactivated in a tropism-specific manner, with CT135-negative clones emerging for all epithelial-genital populations (but not for LGV and ocular populations) and rapidly increasing in frequency (~23% mutants per 10 passages). RNA-sequencing analyses revealed that a deletion event involving CT135 impacted the expression of multiple virulence factors, namely effectors known to play a role in the C. trachomatis host-cell invasion or subversion (e.g., CT456/Tarp, CT694, CT875/TepP and CT868/ChlaDub1). This reflects a scenario of attenuation of C. trachomatis virulence in vitro, which may take place independently or in a cumulative fashion with the also observed down-regulation of plasmid-related virulence factors. This issue may be relevant on behalf of the recent advances in Chlamydia mutagenesis and transformation where culture propagation for selecting mutants/transformants is mandatory. Finally, there was an increase in the growth rate for all strains, reflecting gradual fitness enhancement over time. In general, these data shed light on the adaptive process underlying the C. trachomatis in vivo to in vitro transition, and indicates that it would be prudent to restrict culture propagation to minimal passages and check the status of the CT135 genotype in order to avoid the selection of CT135-negative mutants, likely originating less virulent strains.
Collapse
|
23
|
Intrauterine infection with plasmid-free Chlamydia muridarum reveals a critical role of the plasmid in chlamydial ascension and establishes a model for evaluating plasmid-independent pathogenicity. Infect Immun 2015; 83:2583-92. [PMID: 25870225 DOI: 10.1128/iai.00353-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/06/2015] [Indexed: 12/18/2022] Open
Abstract
Intravaginal infection with plasmid-competent but not plasmid-free Chlamydia muridarum induces hydrosalpinx in mouse upper genital tract, indicating a critical role of the plasmid in chlamydial pathogenicity. To evaluate the contribution of the plasmid to chlamydial ascension and activation of tubal inflammation, we delivered plasmid-free C. muridarum directly into the endometrium by intrauterine inoculation. We found that three of the six mouse strains tested, including CBA/J, C3H/HeJ, and C57BL/6J, developed significant hydrosalpinges when 1 × 10(7) inclusion-forming units (IFU) of plasmid-free C. muridarum were intrauterinally inoculated. Even when the inoculum was reduced to 1 × 10(4) IFU, the CBA/J mice still developed robust hydrosalpinx. The hydrosalpinx development in CBA/J mice correlated with increased organism ascension to the oviduct following the intrauterine inoculation. The CBA/J mice intravaginally infected with the same plasmid-free C. muridarum strain displayed reduced ascending infection and failed to develop hydrosalpinx. These observations have demonstrated a critical role of the plasmid in chlamydial ascending infection. The intrauterine inoculation of the CBA/J mice with plasmid-free C. muridarum not only resulted in more infection in the oviduct but also stimulated more inflammatory infiltration and cytokine production in the oviduct than the intravaginal inoculation, suggesting that the oviduct inflammation can be induced by plasmid-independent factors, which makes the hydrosalpinx induction in CBA/J mice by intrauterine infection with plasmid-free C. muridarum a suitable model for investigating plasmid-independent pathogenic mechanisms.
Collapse
|
24
|
In vitro passage selects for Chlamydia muridarum with enhanced infectivity in cultured cells but attenuated pathogenicity in mouse upper genital tract. Infect Immun 2015; 83:1881-92. [PMID: 25712926 DOI: 10.1128/iai.03158-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/13/2015] [Indexed: 12/30/2022] Open
Abstract
Although modern Chlamydia muridarum has been passaged for decades, there are no reports on the consequences of serial passage with strong selection pressure on its fitness. In order to explore the potential for Pasteurian selection to induce genomic and phenotypic perturbations to C. muridarum, a starter population was passaged in cultured cells for 28 generations without standard infection assistance. The resultant population, designated CMG28, displays markedly reduced in vitro dependence on centrifugation for infection and low incidence and severity of upper genital tract pathology following intravaginal inoculation into mice compared to the parental C. muridarum population, CMG0. Deep sequencing of CMG0 and CMG28 revealed novel protein variants in the hypothetical genes TC0237 (Q117E) and TC0668 (G322R). In vitro attachment assays of isogenic plaque clone pairs with mutations in either TC0237 and TC0668 or only TC0237 reveal that TC0237(Q117E) is solely responsible for enhanced adherence to host cells. Paradoxically, double mutants, but not TC0237(Q117E) single mutants, display severely attenuated in vivo pathogenicity. These findings implicate TC0237 and TC0668 as novel genetic factors involved in chlamydial attachment and pathogenicity, respectively, and show that serial passage under selection pressure remains an effective tool for studying Chlamydia pathogenicity.
Collapse
|
25
|
Russell MW, Whittum-Hudson J, Fidel PL, Hook EW, Mestecky J. Immunity to Sexually Transmitted Infections. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00112-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Transcriptional profiling of human epithelial cells infected with plasmid-bearing and plasmid-deficient Chlamydia trachomatis. Infect Immun 2014; 83:534-43. [PMID: 25404022 DOI: 10.1128/iai.02764-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular epitheliotropic bacterial pathogen of humans. Infection of the eye can result in trachoma, the leading cause of preventable blindness in the world. The pathophysiology of blinding trachoma is driven by multiple episodes of reinfection of conjunctival epithelial cells, producing an intense chronic inflammatory response resulting in submucosal tissue remodeling and scarring. Recent reports have shown that infection with trachoma organisms lacking the cryptic chlamydial plasmid is highly attenuated in macaque eyes, a relevant experimental model of human trachoma infection. To better understand the molecular basis of plasmid-mediated infection attenuation and the potential modulation of host immunity, we conducted transcriptional profiling of human epithelial cells infected with C. trachomatis plasmid-bearing (A2497) and plasmid-deficient (A2497P(-)) organisms. Infection of human epithelial cells with either strain increased the expression of host genes coding for proinflammatory (granulocyte-macrophage colony-stimulating factor [GM-CSF], macrophage colony-stimulating factor [MCSF], interleukin-6 [IL-6], IL-8, IL-1α, CXCL1, CXCL2, CXCL3, intercellular adhesion molecule 1 [ICAM1]), chemoattraction (CCL20, CCL5, CXCL10), immune suppression (PD-L1, NFKB1B, TNFAIP3, CGB), apoptosis (CASP9, FAS, IL-24), and cell growth and fibrosis (EGR1 and IL-20) proteins. Statistically significant increases in the levels of expression of many of these genes were found in A2497-infected cells compared to the levels of expression in A2497P(-)-infected cells. Our findings suggest that the chlamydial plasmid plays a focal role in the host cell inflammatory response to infection and immune avoidance. These results provide new insights into the role of the chlamydial plasmid as a chlamydial virulence factor and its contributions to trachoma pathogenesis.
Collapse
|
27
|
Bao X, Gylfe A, Sturdevant GL, Gong Z, Xu S, Caldwell HD, Elofsson M, Fan H. Benzylidene acylhydrazides inhibit chlamydial growth in a type III secretion- and iron chelation-independent manner. J Bacteriol 2014; 196:2989-3001. [PMID: 24914180 PMCID: PMC4135636 DOI: 10.1128/jb.01677-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/04/2014] [Indexed: 11/20/2022] Open
Abstract
Chlamydiae are widespread Gram-negative pathogens of humans and animals. Salicylidene acylhydrazides, developed as inhibitors of type III secretion system (T3SS) in Yersinia spp., have an inhibitory effect on chlamydial infection. However, these inhibitors also have the capacity to chelate iron, and it is possible that their antichlamydial effects are caused by iron starvation. Therefore, we have explored the modification of salicylidene acylhydrazides with the goal to uncouple the antichlamydial effect from iron starvation. We discovered that benzylidene acylhydrazides, which cannot chelate iron, inhibit chlamydial growth. Biochemical and genetic analyses suggest that the derivative compounds inhibit chlamydiae through a T3SS-independent mechanism. Four single nucleotide polymorphisms were identified in a Chlamydia muridarum variant resistant to benzylidene acylhydrazides, but it may be necessary to segregate the mutations to differentiate their roles in the resistance phenotype. Benzylidene acylhydrazides are well tolerated by host cells and probiotic vaginal Lactobacillus species and are therefore of potential therapeutic value.
Collapse
Affiliation(s)
- Xiaofeng Bao
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey, USA Department of Pharmacology, Nantong University School of Pharmacy, Nantong, People's Republic of China
| | - Asa Gylfe
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Gail L Sturdevant
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Zheng Gong
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Shuang Xu
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Harlan D Caldwell
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | | | - Huizhou Fan
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
28
|
Wang Y, Cutcliffe LT, Skilton RJ, Ramsey KH, Thomson NR, Clarke IN. The genetic basis of plasmid tropism between Chlamydia trachomatis and Chlamydia muridarum. Pathog Dis 2014; 72:19-23. [PMID: 24700815 PMCID: PMC4314687 DOI: 10.1111/2049-632x.12175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/26/2014] [Accepted: 03/26/2014] [Indexed: 11/30/2022] Open
Abstract
The development of genetic transformation technology for Chlamydia trachomatis using its endogenous plasmid has recently been described. Chlamydia muridarum cannot be transformed by the C. trachomatis plasmid, indicating a barrier between chlamydial species. To determine which regions of the plasmid conferred the species specificity, we used the novel approach of transforming wild-type C. muridarum carrying the endogenous plasmid pNigg and forced recombination with the C. trachomatis vector pGFP::SW2 which carries the complete C. trachomatis plasmid (pSW2). Penicillin and chloramphenicol-resistant transformants expressing the green fluorescent protein were selected. Recovery of plasmids from these transformants showed they were recombinants. The differences between the pSW2 and pNigg allowed identification of the recombination breakpoints and showed that pGFP::SW2 had exchanged a ∼ 1 kbp region with pNigg covering CDS 2. The recombinant plasmid (pSW2NiggCDS2) is maintained under antibiotic selection when transformed into plasmid-cured C. muridarum. The ability to select for recombinants in C. muridarum shows that the barrier is not at transformation, but at the level of plasmid replication or maintenance. Our studies show that CDS 2, together with adjoining sequences, is the main determinant of plasmid tropism.
Collapse
Affiliation(s)
- Yibing Wang
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | | | | | | | | | | |
Collapse
|
29
|
Reduced live organism recovery and lack of hydrosalpinx in mice infected with plasmid-free Chlamydia muridarum. Infect Immun 2013; 82:983-92. [PMID: 24343644 DOI: 10.1128/iai.01543-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Plasmid-free Chlamydia trachomatis and Chlamydia muridarum fail to induce severe pathology. To evaluate whether the attenuated pathogenicity is due to insufficient infection or inability of the plasmidless chlamydial organisms to trigger pathological responses, we compared plasmid-competent and plasmid-free C. muridarum infections in 5 different strains of mice. All 5 strains developed hydrosalpinx following intravaginal inoculation with plasmid-competent, but not inoculation with plasmid-free, C. muridarum. The lack of hydrosalpinx induction by plasmid-free C. muridarum correlated with significantly reduced live organism recovery from the lower genital tract and shortened infection in the upper genital tract. The plasmid-free C. muridarum organisms failed to induce hydrosalpinx even when the organisms were directly inoculated into the oviduct via an intrabursal injection, which was accompanied by significantly reduced survival of the plasmidless organisms in the genital tracts. Furthermore, plasmid-competent C. muridarum organisms after UV inactivation were no longer able to induce hydrosalpinx even when directly delivered into the oviduct at a high dose. Together, these observations suggest that decreased survival of and shortened infection with plasmid-free C. muridarum may contribute significantly to its attenuated pathogenicity. We conclude that adequate live chlamydial infection in the oviduct may be necessary to induce hydrosalpinx.
Collapse
|
30
|
Plasmid copy number and disease severity in naturally occurring ocular Chlamydia trachomatis infection. J Clin Microbiol 2013; 52:324-7. [PMID: 24197878 PMCID: PMC3911420 DOI: 10.1128/jcm.02618-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Chlamydia trachomatis plasmid is a virulence factor. Plasmid copy number, C. trachomatis load and disease severity were assessed in a treatment-naive population where trachoma is hyperendemic. By using droplet digital PCR, plasmid copy number was found to be stable (median, 5.34 [range, 1 to 18]) and there were no associations with C. trachomatis load or disease severity.
Collapse
|
31
|
Kannan RM, Gérard HC, Mishra MK, Mao G, Wang S, Hali M, Whittum-Hudson JA, Hudson AP. Dendrimer-enabled transformation of Chlamydia trachomatis. Microb Pathog 2013; 65:29-35. [PMID: 24075820 DOI: 10.1016/j.micpath.2013.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 08/23/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
Lack of a system for genetic manipulation of Chlamydia trachomatis has been a key challenge to advancing understanding the molecular genetic basis of virulence for this bacterial pathogen. We developed a non-viral, dendrimer-enabled system for transformation of this organism and used it to characterize the effects of inserting the common 7.5 kbp chlamydial plasmid into strain L2(25667R), a C. trachomatis isolate lacking it. The plasmid was cloned in pUC19 and the clone complexed to polyamidoamine dendrimers, producing ∼83 nm spherical particles. Nearly confluent McCoy cell cultures were infected with L2(25667R) and reference strain L2(434). At 16 h post-infection, medium was replaced with dendrimer-plasmid complexes in medium lacking additives (L2(25667R)) or with additive-free medium alone (L2(434)). Three h later complexes/buffer were removed, and medium was replaced; cultures were harvested at various times post-transformation for analyses. Real time PCR and RT-PCR of nucleic acids from transformed cultures demonstrated plasmid replication and gene expression. A previous report indicated that one or more plasmid-encoded product govern(s) transcription of the glycogen synthase gene (glgA) in standard strains. In L2(25667R) the gene is not expressed, but transformants of that strain given the cloned chlamydial plasmid increase glgA expression, as does L2(434). The cloned plasmid is retained, replicated, and expressed in transformants over at least 5 passages, and GFP is expressed when transformed into growing L2(25667R). This transformation system will allow study of chlamydial gene function in pathogenesis.
Collapse
Affiliation(s)
- Rangaramanujam M Kannan
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21235, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Sigar IM, Schripsema JH, Wang Y, Clarke IN, Cutcliffe LT, Seth-Smith HMB, Thomson NR, Bjartling C, Unemo M, Persson K, Ramsey KH. Plasmid deficiency in urogenital isolates of Chlamydia trachomatis reduces infectivity and virulence in a mouse model. Pathog Dis 2013; 70:61-9. [PMID: 24022847 PMCID: PMC4300952 DOI: 10.1111/2049-632x.12086] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 11/28/2022] Open
Abstract
We hypothesized that the plasmid of urogenital isolates of Chlamydia trachomatis would modulate infectivity and virulence in a mouse model. To test this hypothesis, we infected female mice in the respiratory or urogenital tract with graded doses of a human urogenital isolate of C. trachomatis, serovar F, possessing the cognate plasmid. For comparison, we inoculated mice with a plasmid‐free serovar F isolate. Following urogenital inoculation, the plasmid‐free isolate displayed significantly reduced infectivity compared with the wild‐type strain with the latter yielding a 17‐fold lower infectious dose to yield 50% infection. When inoculated via the respiratory tract, the plasmid‐free isolate exhibited reduced infectivity and virulence (as measured by weight change) when compared to the wild‐type isolate. Further, differences in infectivity, but not in virulence were observed in a C. trachomatis, serovar E isolate with a deletion within the plasmid coding sequence 1 when compared to a serovar E isolate with no mutations in the plasmid. We conclude that plasmid loss reduces virulence and infectivity in this mouse model. These findings further support a role for the chlamydial plasmid in infectivity and virulence in vivo.
Collapse
Affiliation(s)
- Ira M Sigar
- Microbiology and Immunology Department, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Richards TS, Knowlton AE, Grieshaber SS. Chlamydia trachomatis homotypic inclusion fusion is promoted by host microtubule trafficking. BMC Microbiol 2013; 13:185. [PMID: 23919807 PMCID: PMC3750546 DOI: 10.1186/1471-2180-13-185] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/01/2013] [Indexed: 02/04/2023] Open
Abstract
Background The developmental cycle of the obligate intracellular pathogen Chlamydia is dependant on the formation of a unique intracellular niche termed the chlamydial inclusion. The inclusion is a membrane bound vacuole derived from host cytoplasmic membrane and is modified significantly by the insertion of chlamydial proteins. A unique property of the inclusion is its propensity for homotypic fusion. The vast majority of cells infected with multiple chlamydial elementary bodies (EBs) contain only a single mature inclusion. The chlamydial protein IncA is required for fusion, however the host process involved are uncharacterized. Results Here, through live imaging studies, we determined that the nascent inclusions clustered tightly at the cell microtubule organizing center (MTOC) where they eventually fused to form a single inclusion. We established that factors involved in trafficking were required for efficient fusion as both disruption of the microtubule network and inhibition of microtubule trafficking reduced the efficiency of fusion. Additionally, fusion occurred at multiple sites in the cell and was delayed when the microtubule minus ends were either no longer anchored at a single MTOC or when a cell possessed multiple MTOCs. Conclusions The data presented demonstrates that efficient homotypic fusion requires the inclusions to be in close proximity and that this proximity is dependent on chlamydial microtubule trafficking to the minus ends of microtubules.
Collapse
Affiliation(s)
- Theresa S Richards
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
34
|
Ferreira R, Borges V, Nunes A, Borrego MJ, Gomes JP. Assessment of the load and transcriptional dynamics of Chlamydia trachomatis plasmid according to strains' tissue tropism. Microbiol Res 2013; 168:333-339. [PMID: 23590987 DOI: 10.1016/j.micres.2013.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/28/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
Abstract
Chlamydia trachomatis maintain a conserved plasmid, which is a primary regulator of chromosomal genes, but there is no experimental evidences associating it with the strains' differential tissue tropism (ocular and genital mucosae, and lymph nodes). We investigated if the number of plasmids per strain correlate with expression profiles of plasmid ORFs and small anti-sense RNAs (sRNAs), and also if these molecular features underlie tropism dissimilarities. We performed absolute and relative qPCR to determine both the plasmid load and expression throughout C. trachomatis development. Our findings suggest that plasmid load (never exceeding 8 copies) is not a function of expression needs and does not reflect tissue tropism. However, for most ORFs, ocular strains presented lower expression than genital or lymphogranuloma venereum (LGV) strains, and ORF6/pgp4 (transcriptional regulator of virulence associated genes) presented the highest mean expression among strains, followed by the virulence factor ORF5/pgp3 (also regulated by ORF6/pgp4). More, the mean expression levels of the sRNA-2 (anti-sense to ORF2/pgp8) were up to 100-fold higher than those of the ORFs, and up to 12-fold higher than that of sRNA-7 (anti-sense to ORF7/pgp5) for the LGV strains. Overall, besides the known regulatory role of C. trachomatis plasmid, its transcriptional dynamics sustains tropism differences.
Collapse
Affiliation(s)
- Rita Ferreira
- Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Vítor Borges
- Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Alexandra Nunes
- Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Maria José Borrego
- Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - João Paulo Gomes
- Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal.
| |
Collapse
|
35
|
Zhou H, Huang Q, Li Z, Wu Y, Xie X, Ma K, Cao W, Zhou Z, Lu C, Zhong G. PORF5 plasmid protein of Chlamydia trachomatis induces MAPK-mediated pro-inflammatory cytokines via TLR2 activation in THP-1 cells. SCIENCE CHINA-LIFE SCIENCES 2013; 56:460-6. [PMID: 23546865 DOI: 10.1007/s11427-013-4470-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/13/2013] [Indexed: 11/28/2022]
Abstract
Infection with Chlamydia trachomatis induces inflammatory pathologies in the urogenital tract that can lead to infertility and ectopic pregnancy. Pathogenesis of infection has been mostly attributed to excessive cytokine production. However, precise mechanisms on how C. trachomatis triggers this production, and which protein(s) stimulate inflammatory cytokines remains unknown. In the present study, the C. trachomatis pORF5 protein induced tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-8 (IL-8) in dose- and time-dependent manners in the THP-1 human monocyte cell line. We found that intracellular p38/mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK)/MAPK signaling pathways were required for the induction of TNF-α, IL-1β and IL-8. Blockade of toll-like receptor 2 (TLR2) signaling reduced induction levels of TNF-α, IL-8 and IL-1β. We concluded that the C. trachomatis pORF5 protein might contribute to the inflammatory processes associated with chlamydial infections.
Collapse
Affiliation(s)
- Hui Zhou
- Pathogenic Biology Institute, University of South China, Hengyang 421001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Borges V, Ferreira R, Nunes A, Sousa-Uva M, Abreu M, Borrego MJ, Gomes JP. Effect of long-term laboratory propagation on Chlamydia trachomatis genome dynamics. INFECTION GENETICS AND EVOLUTION 2013; 17:23-32. [PMID: 23542454 DOI: 10.1016/j.meegid.2013.03.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 02/26/2013] [Accepted: 03/20/2013] [Indexed: 11/17/2022]
Abstract
It is assumed that bacterial strains maintained in the laboratory for long time shape their genome in a different fashion from the nature-circulating strains. Here, we analyzed the impact of long-term in vitro propagation on the genome of the obligate intracellular pathogen Chlamydia trachomatis. We fully-sequenced the genome of a historical prototype strain (L2/434/Bu) and a clinical isolate (E/CS88), before and after one-year of serial in vitro passaging (up to 3500 bacterial generations). We observed a slow adaptation of C. trachomatis to the in vitro environment, which was essentially governed by four mutations for L2/434/Bu and solely one mutation for E/CS88, corresponding to estimated mutation rates from 3.84 × 10(-10) to 1.10 × 10(-9) mutations per base pair per generation. In a speculative basis, the mutations likely conferred selective advantage as: (i) mathematical modeling showed that selective advantage is mandatory for frequency increase of a mutated clone; (ii) transversions and non-synonymous mutations were overrepresented; (iii) two non-synonymous mutations affected the genes CTL0084 and CTL0610, encoding a putative transferase and a protein likely implicated in transcription regulation respectively, which are families known to be highly prone to undergone laboratory-derived advantageous mutations in other bacteria; and (iv) the mutation for E/CS88 is located likely in the regulatory region of a virulence gene (CT115/incD) believed to play a role in subverting the host cell machinery. Nevertheless, we found no significant differences in the growth rate, plasmid load, and attachment/entry rate, between strains before and after their long-term laboratory propagation. Of note, from the mixture of clones in E/CS88 initial population, an inactivating mutation in the virulence gene CT135 evolved to 100% prevalence, unequivocally indicating that this gene is superfluous for C. trachomatis survival in vitro. Globally, C. trachomatis revealed a slow in vitro adaptation that only modestly modifies the in vivo-derived genomic evolutionary landscape.
Collapse
Affiliation(s)
- Vítor Borges
- Department of Infectious Diseases, National Institute of Health, Av Padre Cruz, 1649-016 Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
37
|
Nunes A, Borrego MJ, Gomes JP. Genomic features beyond Chlamydia trachomatis phenotypes: what do we think we know? INFECTION GENETICS AND EVOLUTION 2013; 16:392-400. [PMID: 23523596 DOI: 10.1016/j.meegid.2013.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/25/2013] [Accepted: 03/13/2013] [Indexed: 10/27/2022]
Abstract
The obligate intracellular pathogen Chlamydia trachomatis is the causative agent of the blinding trachoma and the world's leading cause of bacterial sexually transmitted infections. Despite aggressive antibacterial control measures, C. trachomatis infections have been increasing, constituting a serious public health concern due to its morbidity and socioeconomic burden. Still, very little is known about the molecular basis underlying the phenotypic disparities observed among C. trachomatis serovars in terms of tissue tropism (ocular conjunctiva, epithelial-genitalia and lymph nodes), virulence (disease outcomes) and ecological success. This is in part due to the inexistence of straightforward tools to genetically manipulate Chlamydiae and host cell-free growth systems, hampering the elucidation of the biological role of loci. The recent release of tenths of full-genome C. trachomatis sequences depict a strains clustering scenario reflecting the organ/cell-type that they preferentially infect. However, the high degree of genomic conservation implies that few genetic features are involved in phenotypic dissimilarities. The purpose of this review is to gather the most relevant data dispersed throughout the literature concerning the genotypic evidences that support niche-specific phenotypes. This review focus on chromosomal dynamics phenomena like recombination and point-mutations, essentially involving outer and inclusion membrane proteins, type III secretion effectors, and hypothetical proteins with unknown function. The scrutiny of C. trachomatis loci involved in tissue tropism, pathogenesis and ecological success is crucial for the development of disease-specific prophylaxis.
Collapse
Affiliation(s)
- Alexandra Nunes
- Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal.
| | | | | |
Collapse
|
38
|
Current world literature. Curr Opin Ophthalmol 2012; 23:330-5. [PMID: 22673820 DOI: 10.1097/icu.0b013e32835584e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Frazer LC, Darville T, Chandra-Kuntal K, Andrews CW, Zurenski M, Mintus M, AbdelRahman YM, Belland RJ, Ingalls RR, O'Connell CM. Plasmid-cured Chlamydia caviae activates TLR2-dependent signaling and retains virulence in the guinea pig model of genital tract infection. PLoS One 2012; 7:e30747. [PMID: 22292031 PMCID: PMC3265510 DOI: 10.1371/journal.pone.0030747] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/28/2011] [Indexed: 11/18/2022] Open
Abstract
Loss of the conserved “cryptic” plasmid from C. trachomatis and C. muridarum is pleiotropic, resulting in reduced innate inflammatory activation via TLR2, glycogen accumulation and infectivity. The more genetically distant C. caviae GPIC is a natural pathogen of guinea pigs and induces upper genital tract pathology when inoculated intravaginally, modeling human disease. To examine the contribution of pCpGP1 to C. caviae pathogenesis, a cured derivative of GPIC, strain CC13, was derived and evaluated in vitro and in vivo. Transcriptional profiling of CC13 revealed only partial conservation of previously identified plasmid-responsive chromosomal loci (PRCL) in C. caviae. However, 2-deoxyglucose (2DG) treatment of GPIC and CC13 resulted in reduced transcription of all identified PRCL, including glgA, indicating the presence of a plasmid-independent glucose response in this species. In contrast to plasmid-cured C. muridarum and C. trachomatis, plasmid-cured C. caviae strain CC13 signaled via TLR2 in vitro and elicited cytokine production in vivo similar to wild-type C. caviae. Furthermore, inflammatory pathology induced by infection of guinea pigs with CC13 was similar to that induced by GPIC, although we observed more rapid resolution of CC13 infection in estrogen-treated guinea pigs. These data indicate that either the plasmid is not involved in expression or regulation of virulence in C. caviae or that redundant effectors prevent these phenotypic changes from being observed in C. caviae plasmid-cured strains.
Collapse
Affiliation(s)
- Lauren C. Frazer
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Toni Darville
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Kumar Chandra-Kuntal
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | | | - Matthew Zurenski
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Margaret Mintus
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Yasser M. AbdelRahman
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Robert J. Belland
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Robin R. Ingalls
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Catherine M. O'Connell
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
40
|
Rockey DD. Unraveling the basic biology and clinical significance of the chlamydial plasmid. ACTA ACUST UNITED AC 2012; 208:2159-62. [PMID: 22025500 PMCID: PMC3201210 DOI: 10.1084/jem.20112088] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Chlamydial plasmids are small, highly conserved, nonconjugative, and nonintegrative DNA molecules that are nearly ubiquitous in many chlamydial species, including Chlamydia trachomatis. There has been significant recent progress in understanding chlamydial plasmid participation in host-microbe interactions, disease, and immune responses. Work in mouse model systems and, very recently, in nonhuman primates demonstrates that plasmid-deficient chlamydial strains function as live attenuated vaccines against genital and ocular infections. Collectively, these studies open new avenues of research into developing vaccines against trachoma and sexually transmitted chlamydial infections.
Collapse
Affiliation(s)
- Daniel D Rockey
- Department of Biomedical Sciences, Oregon State University College of Veterinary Medicine, Corvallis, OR 97331, USA.
| |
Collapse
|
41
|
He X, Nair A, Mekasha S, Alroy J, O'Connell CM, Ingalls RR. Enhanced virulence of Chlamydia muridarum respiratory infections in the absence of TLR2 activation. PLoS One 2011; 6:e20846. [PMID: 21695078 PMCID: PMC3114860 DOI: 10.1371/journal.pone.0020846] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/11/2011] [Indexed: 12/21/2022] Open
Abstract
Chlamydia trachomatis is a common sexually transmitted pathogen and is associated with infant pneumonia. Data from the female mouse model of genital tract chlamydia infection suggests a requirement for TLR2-dependent signaling in the induction of inflammation and oviduct pathology. We hypothesized that the role of TLR2 in moderating mucosal inflammation is site specific. In order to investigate this, we infected mice via the intranasal route with C. muridarum and observed that in the absence of TLR2 activation, mice had more severe disease, higher lung cytokine levels, and an exaggerated influx of neutrophils and T-cells into the lungs. This could not be explained by impaired bacterial clearance as TLR2-deficient mice cleared the infection similar to controls. These data suggest that TLR2 has an anti-inflammatory function in the lung during Chlamydia infection, and that the role of TLR2 in mucosal inflammation varies at different mucosal surfaces.
Collapse
Affiliation(s)
- Xianbao He
- Section of Infectious Diseases, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Anjali Nair
- Section of Infectious Diseases, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Samrawit Mekasha
- Section of Infectious Diseases, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Joseph Alroy
- Department of Pathology, Tufts University School of Medicine, Cummings School of Veterinary Medicine, and Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Catherine M. O'Connell
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Robin R. Ingalls
- Section of Infectious Diseases, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
42
|
Chlamydial infection increases gonococcal colonization in a novel murine coinfection model. Infect Immun 2011; 79:1566-77. [PMID: 21245268 DOI: 10.1128/iai.01155-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Genital tract infections caused by Neisseria gonorrhoeae and Chlamydia trachomatis serovars D to K occur at high incidence in many areas of the world. Despite high rates of coinfection with these pathogens, investigations of host-parasite interactions have focused on each pathogen individually. We describe here a coinfection model in which female BALB/c mice were first infected with the mouse Chlamydia species C. muridarum and then inoculated with N. gonorrhoeae following treatment with water-soluble 17β-estradiol to promote long-term gonococcal infection. Viable gonococci and chlamydiae were recovered for an average of 8 to 10 days, and diplococci and chlamydial inclusions were observed in lower genital tract tissue by immunohistochemical staining. Estradiol treatment reduced proinflammatory cytokine and chemokine levels in chlamydia-infected mice; however, coinfected mice had a higher percentage of vaginal neutrophils compared to mice infected with either pathogen alone. We detected no difference in pathogen-specific antibody levels due to coinfection. Interestingly, significantly more gonococci were recovered from coinfected mice compared to mice infected with N. gonorrhoeae alone. We found no evidence that C. muridarum increases gonococcal adherence to, or invasion of, immortalized murine epithelial cells. However, increased vaginal concentrations of inflammatory mediators macrophage inflammatory protein 2 and tumor necrosis factor alpha were detected in C. muridarum-infected mice prior to inoculation with N. gonorrhoeae concurrently with the downregulation of cathelicidin-related antimicrobial peptide and secretory leukocyte peptidase inhibitor genes. We conclude that female mice can be successfully infected with both C. muridarum and N. gonorrhoeae and that chlamydia-induced alterations in host innate responses may enhance gonococcal infection.
Collapse
|
43
|
Toll-like receptor 2 activation by Chlamydia trachomatis is plasmid dependent, and plasmid-responsive chromosomal loci are coordinately regulated in response to glucose limitation by C. trachomatis but not by C. muridarum. Infect Immun 2011; 79:1044-56. [PMID: 21199910 DOI: 10.1128/iai.01118-10] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that plasmid-deficient Chlamydia muridarum retains the ability to infect the murine genital tract but does not elicit oviduct pathology because it fails to activate Toll-like receptor 2 (TLR2). We derived a plasmid-cured derivative of the human genital isolate Chlamydia trachomatis D/UW-3/Cx, strain CTD153, which also fails to activate TLR2, indicating this virulence phenotype is associated with plasmid loss in both C. trachomatis and C. muridarum. As observed with plasmid-deficient C. muridarum, CTD153 displayed impaired accumulation of glycogen within inclusions. Transcriptional profiling of the plasmid-deficient strains by using custom microarrays identified a conserved group of chromosomal loci, the expression of which was similarly controlled in plasmid-deficient C. muridarum strains CM972 and CM3.1 and plasmid-deficient C. trachomatis CTD153. However, although expression of glycogen synthase, encoded by glgA, was greatly reduced in CTD153, it was unaltered in plasmid-deficient C. muridarum strains. Thus, additional plasmid-associated factors are required for glycogen accumulation by this chlamydial species. Furthermore, in C. trachomatis, glgA and other plasmid-responsive chromosomal loci (PRCLs) were transcriptionally responsive to glucose limitation, indicating that additional regulatory elements may be involved in the coordinated expression of these candidate virulence effectors. Glucose-limited C. trachomatis displayed reduced TLR2 stimulation in an in vitro assay. During human chlamydial infection, glucose limitation may decrease chlamydial virulence through its effects on plasmid-responsive chromosomal genes.
Collapse
|