1
|
Huang M, Liu J, Yuan Z, Xu Y, Guo Y, Yang S, Fei H. DC-SIGN of Largemouth Bass ( Micropterus salmoides) Mediates Immune Functions against Aeromonas hydrophila through Collaboration with the TLR Signaling Pathway. Int J Mol Sci 2024; 25:5013. [PMID: 38732232 PMCID: PMC11084180 DOI: 10.3390/ijms25095013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
C-type lectins in organisms play an important role in the process of innate immunity. In this study, a C-type lectin belonging to the DC-SIGN class of Micropterus salmoides was identified. MsDC-SIGN is classified as a type II transmembrane protein. The extracellular segment of MsDC-SIGN possesses a coiled-coil region and a carbohydrate recognition domain (CRD). The key amino acid motifs of the extracellular CRD of MsDC-SIGN in Ca2+-binding site 2 were EPN (Glu-Pro-Asn) and WYD (Trp-Tyr-Asp). MsDC-SIGN-CRD can bind to four pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), glucan, peptidoglycan (PGN), and mannan. Moreover, it can also bind to Gram-positive, Gram-negative bacteria, and fungi. Its CRD can agglutinate microbes and displays D-mannose and D-galactose binding specificity. MsDC-SIGN was distributed in seven tissues of the largemouth bass, among which the highest expression was observed in the liver, followed by the spleen and intestine. Additionally, MsDC-SIGN was present on the membrane of M. salmoides leukocytes, thereby augmenting the phagocytic activity against bacteria. In a subsequent investigation, the expression patterns of the MsDC-SIGN gene and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) exhibited an up-regulated expression response to the stimulation of Aeromonas hydrophila. Furthermore, through RNA interference of MsDC-SIGN, the expression level of the DC-SIGN signaling pathway-related gene (RAF1) and key genes associated with the TLR signaling pathway (TLR4, NF-κB, and IL10) was decreased. Therefore, MsDC-SIGN plays a pivotal role in the immune defense against A. hydrophila by modulating the TLR signaling pathway.
Collapse
Affiliation(s)
- Mengmeng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jingwen Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
| | - Zhenzhen Yuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
| | - Youxing Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
| | - Yang Guo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
| | - Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.H.)
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
2
|
Nieto-Fabregat F, Marseglia A, Thépaut M, Kleman JP, Abbas M, Le Roy A, Ebel C, Maalej M, Simorre JP, Laguri C, Molinaro A, Silipo A, Fieschi F, Marchetti R. Molecular recognition of Escherichia coli R1-type core lipooligosaccharide by DC-SIGN. iScience 2024; 27:108792. [PMID: 38299112 PMCID: PMC10828809 DOI: 10.1016/j.isci.2024.108792] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Due to their ability to recognize carbohydrate structures, lectins emerged as potential receptors for bacterial lipopolysaccharides (LPS). Despite growing interest in investigating the association between host receptor lectins and exogenous glycan ligands, the molecular mechanisms underlying bacterial recognition by human lectins are still not fully understood. We contributed to fill this gap by unveiling the molecular basis of the interaction between the lipooligosaccharide of Escherichia coli and the dendritic cell-specific intracellular adhesion molecules (ICAM)-3 grabbing non-integrin (DC-SIGN). Specifically, a combination of different techniques, including fluorescence microscopy, surface plasmon resonance, NMR spectroscopy, and computational studies, demonstrated that DC-SIGN binds to the purified deacylated R1 lipooligosaccharide mainly through the recognition of its outer core pentasaccharide, which acts as a crosslinker between two different tetrameric units of DC-SIGN. Our results contribute to a better understanding of DC-SIGN-LPS interaction and may support the development of pharmacological and immunostimulatory strategies for bacterial infections, prevention, and therapy.
Collapse
Affiliation(s)
- Ferran Nieto-Fabregat
- Department of Chemical Science, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Angela Marseglia
- Department of Chemical Science, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Michel Thépaut
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 41 Avenue des Martyrs, 38000 Grenoble, France
| | - Jean-Philippe Kleman
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 41 Avenue des Martyrs, 38000 Grenoble, France
| | - Massilia Abbas
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 41 Avenue des Martyrs, 38000 Grenoble, France
| | - Aline Le Roy
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 41 Avenue des Martyrs, 38000 Grenoble, France
| | - Christine Ebel
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 41 Avenue des Martyrs, 38000 Grenoble, France
| | - Meriem Maalej
- Department of Chemical Science, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 41 Avenue des Martyrs, 38000 Grenoble, France
| | - Jean-Pierre Simorre
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 41 Avenue des Martyrs, 38000 Grenoble, France
| | - Cedric Laguri
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 41 Avenue des Martyrs, 38000 Grenoble, France
| | - Antonio Molinaro
- Department of Chemical Science, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Alba Silipo
- Department of Chemical Science, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Franck Fieschi
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 41 Avenue des Martyrs, 38000 Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| | - Roberta Marchetti
- Department of Chemical Science, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| |
Collapse
|
3
|
Yang YY, Zheng SY, Fang H, Wu XM, Zhang J, Chang MX. Immunoprotective Effects of Two Histone H2A Variants in the Grass Carp Against Flavobacterium columnare Infection. Front Immunol 2022; 13:939464. [PMID: 35898515 PMCID: PMC9310644 DOI: 10.3389/fimmu.2022.939464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
In teleost fish, the nucleotide polymorphisms of histone H2A significantly affect the resistance or susceptibility of zebrafish to Edwardsiella piscicida infection. Whether histone H2A variants can enhance the resistance of grass carp to Flavobacterium columnare infection remains unclear. Here, the effects of 7 previously obtained variants (gcH2A-1~gcH2A-7) and 5 novel histone H2A variants (gcH2A-11, gcH2A-13~gcH2A-16) in response to F. columnare infection were investigated. It was found that these histone H2A variants could be divided into type I and II. Among them, 5 histone H2A variants had no any effects on the F. columnare infection, however 7 histone H2A variants had antibacterial activity against F. columnare infection. The gcH2A-4 and gcH2A-11, whose antibacterial activity was the strongest in type I and II histone H2A variants respectively, were picked out for yeast expression. Transcriptome data for the samples from the intestines of grass carp immunized with the engineered Saccharomyces cerevisiae expressing PYD1, gcH2A-4 or gcH2A-11 revealed that 5 and 12 immune-related signaling pathways were significantly enriched by gcH2A-4 or gcH2A-11, respectively. For the engineered S. cerevisiae expressing gcH2A-4, NOD-like receptor and Toll-like receptor signaling pathways were enriched for up-regulated DEGs. Besides NOD-like receptor and Toll-like receptor signaling pathways, the engineered S. cerevisiae expressing gcH2A-11 also activated Cytosolic DNA-sensing pathway, RIG-I-like receptor signaling pathway and C-type lectin receptor signaling pathway. Furthermore, grass carp were immunized with the engineered S. cerevisiae expressing PYD1, gcH2A-4 or gcH2A-11 for 1 month and challenged with F. columnare. These grass carp immunized with gcH2A-4 or gcH2A-11 showed lower mortality and fewer numbers of F. columnare than did the control group. All these results suggest that gcH2A-4 and gcH2A-11 play important roles in evoking the innate immune responses and enhancing disease resistance of grass carp against F. columnare infection.
Collapse
Affiliation(s)
- Yuan Yuan Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Si Yao Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Ming Xian Chang,
| |
Collapse
|
4
|
Mechanisms for the Invasion and Dissemination of Salmonella. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:2655801. [PMID: 35722038 PMCID: PMC9203224 DOI: 10.1155/2022/2655801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/15/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Salmonella enterica is a gastroenteric Gram-negative bacterium that can infect both humans and animals and causes millions of illnesses per year around the world. Salmonella infections usually occur after the consumption of contaminated food or water. Infections with Salmonella species can cause diseases ranging from enterocolitis to typhoid fever. Salmonella has developed multiple strategies to invade and establish a systemic infection in the host. Different cell types, including epithelial cells, macrophages, dendritic cells, and M cells, are important in the infection process of Salmonella. Dissemination throughout the body and colonization of remote organs are hallmarks of Salmonella infection. There are several routes for the dissemination of Salmonella typhimurium. This review summarizes the current understanding of the infection mechanisms of Salmonella. Additionally, different routes of Salmonella infection will be discussed. In this review, the strategies used by Salmonella enterica to establish persistent infection will be discussed. Understanding both the bacterial and host factors leading to the successful colonization of Salmonella enterica may enable the rational design of effective therapeutic strategies.
Collapse
|
5
|
Li Q, Ye C, Zhao F, Li W, Zhu S, Lv Y, Park CG, Zhang Y, Jiang LY, Yang K, He Y, Cai H, Zhang S, Ding HH, Njiri OA, Tembo JM, Alkraiem AA, Li AY, Sun ZY, Li W, Yan MY, Kan B, Huo X, Klena JD, Skurnik M, Anisimov AP, Gao X, Han Y, Yang RF, Xiamu X, Wang Y, Chen H, Chai B, Sun Y, Yuan J, Chen T. PgtE Enzyme of Salmonella enterica Shares the Similar Biological Roles to Plasminogen Activator (Pla) in Interacting With DEC-205 (CD205), and Enhancing Host Dissemination and Infectivity by Yersinia pestis. Front Immunol 2022; 13:791799. [PMID: 35401532 PMCID: PMC8986990 DOI: 10.3389/fimmu.2022.791799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/22/2022] [Indexed: 11/23/2022] Open
Abstract
Yersinia pestis, the cause of plague, is a newly evolved Gram-negative bacterium. Through the acquisition of the plasminogen activator (Pla), Y. pestis gained the means to rapidly disseminate throughout its mammalian hosts. It was suggested that Y. pestis utilizes Pla to interact with the DEC-205 (CD205) receptor on antigen-presenting cells (APCs) to initiate host dissemination and infection. However, the evolutionary origin of Pla has not been fully elucidated. The PgtE enzyme of Salmonella enterica, involved in host dissemination, shows sequence similarity with the Y. pestis Pla. In this study, we demonstrated that both Escherichia coli K-12 and Y. pestis bacteria expressing the PgtE-protein were able to interact with primary alveolar macrophages and DEC-205-transfected CHO cells. The interaction between PgtE-expressing bacteria and DEC-205-expressing transfectants could be inhibited by the application of an anti-DEC-205 antibody. Moreover, PgtE-expressing Y. pestis partially re-gained the ability to promote host dissemination and infection. In conclusion, the DEC-205-PgtE interaction plays a role in promoting the dissemination and infection of Y. pestis, suggesting that Pla and the PgtE of S. enterica might share a common evolutionary origin.
Collapse
Affiliation(s)
- Qiao Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Chenglin Ye
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fei Zhao
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Wenjin Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Sizhe Zhu
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yin Lv
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Chae Gyu Park
- Therapeutic Antibody Research Center, Genuv Inc., Seoul, South Korea
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, South Korea
| | - Yingmiao Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ling-Yu Jiang
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Kun Yang
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yingxia He
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Huahua Cai
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Song Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Hong-Hui Ding
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Olivia Adhiambo Njiri
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - John Mambwe Tembo
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ayman Ahmad Alkraiem
- Tongji Hospital, Tongji Medical College, Huazhong University, Wuhan, China
- Department of Biology, College of Science, Taibah University, Medina, Saudi Arabia
| | - An-Yi Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Zi-Yong Sun
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Wei Li
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mei-Ying Yan
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Biao Kan
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xixiang Huo
- Center for Infectious Diseases, Hubei Provincial Centers for Disease Control and Prevention (CDC), Wuhan, China
| | - John D. Klena
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Andrey P. Anisimov
- Laboratory for Plague Microbiology, State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Xiaofang Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Rui-Fu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiding Xiamu
- Division of Disease Control and Prevention for Endemic Diseases , Wenquan Center for Disease Control and Prevention, Wenquan, China
| | - Yuanzhi Wang
- Department of Pathogen Biology and Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Hongxiang Chen
- Union Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Bao Chai
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yicheng Sun
- Ministry of Health (MOH) Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Tie Chen,, ; Jingping Yuan,; Yicheng Sun,
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Tie Chen,, ; Jingping Yuan,; Yicheng Sun,
| | - Tie Chen
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
- *Correspondence: Tie Chen,, ; Jingping Yuan,; Yicheng Sun,
| |
Collapse
|
6
|
Fischer S, Stegmann F, Gnanapragassam VS, Lepenies B. From structure to function – Ligand recognition by myeloid C-type lectin receptors. Comput Struct Biotechnol J 2022; 20:5790-5812. [DOI: 10.1016/j.csbj.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
|
7
|
Lipopolysaccharide of the Yersinia pseudotuberculosis Complex. Biomolecules 2021; 11:biom11101410. [PMID: 34680043 PMCID: PMC8533242 DOI: 10.3390/biom11101410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/27/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Lipopolysaccharide (LPS), localized in the outer leaflet of the outer membrane, serves as the major surface component of the Gram-negative bacterial cell envelope responsible for the activation of the host's innate immune system. Variations of the LPS structure utilized by Gram-negative bacteria promote survival by providing resistance to components of the innate immune system and preventing recognition by TLR4. This review summarizes studies of the biosynthesis of Yersinia pseudotuberculosis complex LPSs, and the roles of their structural components in molecular mechanisms of yersiniae pathogenesis and immunogenesis.
Collapse
|
8
|
Wu BC, Olivia NA, Tembo JM, He YX, Zhang YM, Xue Y, Ye CL, Lv Y, Li WJ, Jiang LY, Huo XX, Sun ZY, Chen ZJ, Qin JC, Li AY, Park CG, Klena JD, Ding HH, Chen T. Loss of the virulence plasmid by Shigella sonnei promotes its interactions with CD207 and CD209 receptors. J Med Microbiol 2021; 70:001297. [PMID: 33591245 PMCID: PMC8346720 DOI: 10.1099/jmm.0.001297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/29/2020] [Indexed: 01/24/2023] Open
Abstract
Introduction. Shigella sonnei, the cause of bacillary dysentery, belongs to Gram-negative enteropathogenic bacteria. S. sonnei contains a 210 kb virulence plasmid that encodes an O-antigen gene cluster of LPSs. However, this virulence plasmid is frequently lost during replication. It is well-documented that after losing the O-antigen and becoming rough strains, the Gram-negative bacteria may express an LPS core on its surface. Previous studies have suggested that by using the LPS core, Gram-negative bacteria can interact with several C-type lectin receptors that are expressed on antigen-presenting cells (APCs).Hypothesis/Gap Statement. S. sonnei by losing the virulence plasmid may hijack APCs via the interactions of LPS-CD209/CD207.Aim. This study aimed to investigate if the S. sonnei rough strain, by losing the virulence plasmid, interacted with APCs that express C-type lectins of human CD207, human CD209a and mouse CD209b.Methodology. SDS-PAGE silver staining was used to examine the O-antigen expression of S. sonnei WT and its rough strain. Invasion assays and inhibition assays were used to examine the ability of S. sonnei WT and its rough strain to invade APCs and investigate whether CD209 and CD207 are receptors for phagocytosis of rough S. sonnei. Animal assays were used to observe the dissemination of S. sonnei.Results. S. sonnei did not express O-antigens after losing the virulence plasmid. The S. sonnei rough strain invades with APCs, including human dendritic cells (DCs) and mouse macrophages. CD209 and CD207 are receptors for phagocytosis of rough S. sonnei. Expression of the O-antigen reduces the ability of the S. sonnei rough strain to be disseminated to mesenteric lymph nodes and spleens.Conclusion. This work demonstrated that S. sonnei rough strains - by losing the virulence plasmid - invaded APCs through interactions with CD209 and CD207 receptors.
Collapse
Affiliation(s)
- Bi-cong Wu
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, Henan, PR China
| | - Njiri A. Olivia
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
- Department of Biological Sciences, Faculty of Science, Engineering and Technology, Chuka University, 109-60400, Kenya
| | - John Mambwe Tembo
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
- Department of Paediatrics & Child Health, the University of Zambia – University College London Medical School at Zambia, Lusaka, Zambia
| | - Ying-xia He
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
- Clinical Research Center, Wuhan Pulmonary Hospital, Wuhan, Hubei, PR China
| | - Ying-miao Zhang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
- Department of Clinical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying Xue
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| | - Cheng-lin Ye
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| | - Yin Lv
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| | - Wen-jin Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| | - Ling-Yu Jiang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| | - Xi-xiang Huo
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, PR China
| | - Zi-yong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| | - Zhong-ju Chen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| | - Ji-chao Qin
- Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| | - An-yi Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| | - Chae Gyu Park
- Laboratory of Immunology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - John D. Klena
- Centers for Disease Control and Prevention, Atlanta, GE, USA
| | - Hong-hui Ding
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
9
|
Xue Y, Li Q, Park CG, Klena JD, Anisimov AP, Sun Z, Wei X, Chen T. Proteus mirabilis Targets Atherosclerosis Plaques in Human Coronary Arteries via DC-SIGN (CD209). Front Immunol 2021; 11:579010. [PMID: 33488579 PMCID: PMC7820866 DOI: 10.3389/fimmu.2020.579010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Bacterial DNAs are constantly detected in atherosclerotic plaques (APs), suggesting that a combination of chronic infection and inflammation may have roles in AP formation. A series of studies suggested that certain Gram-negative bacteria were able to interact with dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin [DC-SIGN; cluster of differentiation (CD) 209] or langerin (CD207), thereby resulting in deposition of CD209s at infection sites. We wondered if Proteus mirabilis (a member of Proteobacteria family) could interact with APs through CD209/CD207. In this study, we first demonstrated that CD209/CD207 were also receptors for P. mirabilis that mediated adherence and phagocytosis by macrophages. P. mirabilis interacted with fresh and CD209s/CD207-expressing APs cut from human coronary arteries, rather than in healthy and smooth arteries. These interactions were inhibited by addition of a ligand-mimic oligosaccharide and the coverage of the ligand, as well as by anti-CD209 antibody. Finally, the hearts from an atherosclerotic mouse model contained higher numbers of P. mirabilis than that of control mice during infection-challenging. We therefore concluded that the P. mirabilis interacts with APs in human coronary arteries via CD209s/CD207. It may be possible to slow down the progress of atherosclerosis by blocking the interactions between CD209s/CD207 and certain atherosclerosis-involved bacteria with ligand-mimic oligosaccharides.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/metabolism
- Bacterial Adhesion/drug effects
- CHO Cells
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/metabolism
- Coronary Artery Disease/drug therapy
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/microbiology
- Coronary Artery Disease/pathology
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/microbiology
- Coronary Vessels/pathology
- Cricetulus
- Disease Models, Animal
- Female
- Host-Pathogen Interactions
- Humans
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/metabolism
- Ligands
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/microbiology
- Male
- Mannose-Binding Lectins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Middle Aged
- Oligosaccharides/pharmacology
- Plaque, Atherosclerotic
- Proteus mirabilis/growth & development
- Proteus mirabilis/metabolism
- RAW 264.7 Cells
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/metabolism
Collapse
Affiliation(s)
- Ying Xue
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiao Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chae Gyu Park
- Laboratory of Immunology, Brain Korea 21 FOUR Project for Medical Science, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - John D. Klena
- Division of Global Health Protection, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Andrey P. Anisimov
- Laboratory for Plague Microbiology, State Research Center for Applied Microbiology and Biotechnology, Especially Dangerous Infections Department, Obolensk, Russia
| | - Ziyong Sun
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Rahimi N. C-type Lectin CD209L/L-SIGN and CD209/DC-SIGN: Cell Adhesion Molecules Turned to Pathogen Recognition Receptors. BIOLOGY 2020; 10:1. [PMID: 33375175 PMCID: PMC7822156 DOI: 10.3390/biology10010001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
C-type lectin CD209/DC-SIGN and CD209L/L-SIGN proteins are distinct cell adhesion and pathogen recognition receptors that mediate cellular interactions and recognize a wide range of pathogens, including viruses such as SARS, SARS-CoV-2, bacteria, fungi and parasites. Pathogens exploit CD209 family proteins to promote infection and evade the immune recognition system. CD209L and CD209 are widely expressed in SARS-CoV-2 target organs and can contribute to infection and pathogenesis. CD209 family receptors are highly susceptible to alternative splicing and genomic polymorphism, which may influence virus tropism and transmission in vivo. The carbohydrate recognition domain (CRD) and the neck/repeat region represent the key features of CD209 family proteins that are also central to facilitating cellular ligand interactions and pathogen recognition. While the neck/repeat region is involved in oligomeric dimerization, the CRD recognizes the mannose-containing structures present on specific glycoproteins such as those found on the SARS-CoV-2 spike protein. Considering the role of CD209L and related proteins in diverse pathogen recognition, this review article discusses the recent advances in the cellular and biochemical characterization of CD209 and CD209L and their roles in viral uptake, which has important implications in understanding the host-pathogen interaction, the viral pathobiology and driving vaccine development of SARS-CoV-2.
Collapse
Affiliation(s)
- Nader Rahimi
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| |
Collapse
|
11
|
Zhang X, Zhang B, Masoudi A, Wang X, Xue X, Li M, Xiao Q, Wang M, Liu J, Wang H. Comprehensive analysis of protein expression levels and phosphorylation levels in host skin in response to tick (Haemaphysalis longicornis) bite. J Proteomics 2020; 226:103898. [PMID: 32682108 DOI: 10.1016/j.jprot.2020.103898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 11/15/2022]
Abstract
Ticks are parasitic arthropods that suck blood from the surface of most vertebrates. They can transmit a variety of pathogens. The blood sucking of ticks causes varying degrees of damage to the skin of the host. Proteins related to immune regulation, vascular repair, and wound healing in mammalian skin respond to tick bites by regulating their expression and post-translational modifications to protect the skin from injury. Phosphorylation of proteins, as the most common post-translational modification of proteins, plays an important role in the rapid regulation of cell signal transduction, gene expression and cell cycle. To systematically explore the molecular regulatory mechanisms employed by mammalian skin to resist tick bites, larval, nymphal, and adult Haemaphysalis longicornis were used to bite the skin tissues of healthy rabbits in the present study. The quantitative proteomic technology data-independent acquisition was then carried out to investigate in depth the changes in protein expression and phosphorylation in rabbit skin after tick bite. The results showed that among the 4034 proteins and 1795 phosphorylated proteins identified, a total of 202 proteins and 435 phosphorylation sites were changed after H. longicornis bite. In order to provide convenience for sucking blood, active substances in the saliva of H. longicornis injected into the rabbit's skin can cause the expression level of trichohyalin and peptidyl arginine deiminase 3 in the skin of the host downregulate, which can make the host hair loss and regeneration disorders. At the same time, the active substances in saliva of the H. longicornis led to the phosphorylation of microtubule actin cross-linking factor 1 in the host's skin and further inactivation, so as to delay the healing of the host wound. In response to tick bites, the host skin promotes coagulation through high expression of fibrinogen and fibronectin, and vascular repair through high expression of integrin linked kinase and tenascin C, as well as accelerated phosphorylation of the phosphorylated protein Nck adaptor protein 1, and wound healing through high expression of ezrin and integrin. The upregulation of proteins such as coronin, NADPH oxidase, calnexin, and calreticulin and phosphorylation level of IL-4R in the host skin after the H. longicornis bite indicated that the immune response was playing an important defensive role in response to tick bites. Meanwhile, we found that the upregulated two lectins, mannose receptor C-type 1 and DC-SIGN, may serve as molecular makers to identify and monitor whether the skin is bitten by ticks. SIGNIFICANCE: Haemaphysalis longicornis are parasitic arthropods that suck blood from the surface of most vertebrates. They can transmit a variety of pathogens and are harmful to humans and livestock. The present study is the first quantitative proteomic study on protein expression levels in the rabbit skin after infection by H. longicornis. It is also the first quantitative phosphoproteomic study in the host skin infected by ticks. In this study, we found that tick bites cause the host hair loss and regeneration disorders. For resisting tick bite, the host activates the immune response and initiates vascular repair and wound-healing systems. In addition, some phosphorylated proteins promote host immunity and vascular repair. These results can help us further understand the defence mechanism of the host against tick bites, provide a basis for the development of an anti-tick vaccine, the development of anti-tick drugs, and the diagnosis of tick-borne diseases.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Baowen Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Abolfazl Masoudi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Xiaoshuang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Xiaomin Xue
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Mengxue Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Qi Xiao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Minjing Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Hui Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| |
Collapse
|
12
|
Mnich ME, van Dalen R, van Sorge NM. C-Type Lectin Receptors in Host Defense Against Bacterial Pathogens. Front Cell Infect Microbiol 2020; 10:309. [PMID: 32733813 PMCID: PMC7358460 DOI: 10.3389/fcimb.2020.00309] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Antigen-presenting cells (APCs) are present throughout the human body—in tissues, at barrier sites and in the circulation. They are critical for processing external signals to instruct both local and systemic responses toward immune tolerance or immune defense. APCs express an extensive repertoire of pattern-recognition receptors (PRRs) to detect and transduce these signals. C-type lectin receptors (CLRs) comprise a subfamily of PRRs dedicated to sensing glycans, including those expressed by commensal and pathogenic bacteria. This review summarizes recent findings on the recognition of and responses to bacteria by membrane-expressed CLRs on different APC subsets, which are discussed according to the primary site of infection. Many CLR-bacterial interactions promote bacterial clearance, whereas other interactions are exploited by bacteria to enhance their pathogenic potential. The discrimination between protective and virulence-enhancing interactions is essential to understand which interactions to target with new prophylactic or treatment strategies. CLRs are also densely concentrated at APC dendrites that sample the environment across intact barrier sites. This suggests an–as yet–underappreciated role for CLR-mediated recognition of microbiota-produced glycans in maintaining tolerance at barrier sites. In addition to providing a concise overview of identified CLR-bacteria interactions, we discuss the main challenges and potential solutions for the identification of new CLR-bacterial interactions, including those with commensal bacteria, and for in-depth structure-function studies on CLR-bacterial glycan interactions. Finally, we highlight the necessity for more relevant tissue-specific in vitro, in vivo and ex vivo models to develop therapeutic applications in this area.
Collapse
Affiliation(s)
- Malgorzata E Mnich
- Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, Netherlands.,GSK, Siena, Italy
| | - Rob van Dalen
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Nina M van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
13
|
Njiri OA, Zhang X, Zhang Y, Wu B, Jiang L, Li Q, Liu W, Chen T. CD209 C-Type Lectins Promote Host Invasion, Dissemination, and Infection of Toxoplasma gondii. Front Immunol 2020; 11:656. [PMID: 32391004 PMCID: PMC7190871 DOI: 10.3389/fimmu.2020.00656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/23/2020] [Indexed: 01/24/2023] Open
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis and a major opportunistic parasite associated with AIDS, is able to invade host cells of animals and humans. Studies suggested that the ability of host invasion by the tachyzoite, the infectious form of T. gondii, is essential for the pathogenicity to promote its dissemination to other parts of animal hosts. However, the detailed molecular mechanisms for host invasion and dissemination of the parasites are not clear. On the other hand, viruses and bacteria are able to interact with and hijack DC-SIGN (CD209) C-type lectin on antigen presenting cells (APCs), such as dendritic cells and macrophages as the Trojan horses to promote host dissemination. In this study, we showed that invasion of T. gondii into host cells was enhanced by this parasite-CD209 interaction that were inhibited by ligand mimicking-oligosaccharides and the anti-CD209 antibody. Furthermore, covering the exposures of DC-SIGN by these oligosaccharides reduced parasite burden, host spreading and mortality associated with T. gondii infection. These results suggested that interaction of T. gondii to APCs expressing DC-SIGN might promote host dissemination and infection. Can the blockage of this interaction with Mannan and/or anti-CD209 antibody be developed as a prevention or treatment method for T. gondii infection?
Collapse
Affiliation(s)
- Olivia Adhiambo Njiri
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.,Department of Biological Sciences, Faculty of Science, Engineering and Technology, Chuka University, Chuka, Kenya
| | - Xiaoyan Zhang
- Division of Parasitology, Department of Pathogen Biology, School of Basic Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingmiao Zhang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Bicong Wu
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Lingyu Jiang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qiao Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Wenqi Liu
- Division of Parasitology, Department of Pathogen Biology, School of Basic Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| |
Collapse
|
14
|
Zhang Y, Zhang S, He Y, Sun Z, Cai W, Lv Y, Jiang L, Li Q, Zhu S, Li W, Ye C, Wu B, Xue Y, Chen H, Cai H, Chen T. Murine SIGNR1 (CD209b) Contributes to the Clearance of Uropathogenic Escherichia coli During Urinary Tract Infections. Front Cell Infect Microbiol 2020; 9:457. [PMID: 31998663 PMCID: PMC6965063 DOI: 10.3389/fcimb.2019.00457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/16/2019] [Indexed: 12/28/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC), a Gram-negative bacterial pathogen, is a major causative agent of urinary tract infections (UTIs). However, the molecular mechanisms of how UPEC causes infections have not been determined. Recent studies indicated that certain enteric Gram-negative bacteria interact with and hijack innate immune receptors DC-SIGN (CD209a) and SIGNR1 (CD209b), often expressed by antigen-presenting cells (APCs), such as macrophages, leading to dissemination and infection. It was not known whether UPEC could utilize DC-SIGN receptors to promote its infection and dissemination similarly to the enteric pathogens. The results of this study reveal that UPEC interacts with CD209-expressing macrophages and transfectants. This interaction is inhibited by anti-CD209 antibody, indicating that CD209s are receptors for UPEC. Additionally, in contrast to the results of previous studies, mice lacking SIGNR1 are more susceptible to infection of this uropathogen, leading to prolonged bacterial persistence. Overall, the results of our study indicate that the innate immune receptor CD209s participate in the clearance of UPEC during UTIs.
Collapse
Affiliation(s)
- Yingmiao Zhang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingxia He
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ziyong Sun
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Wentong Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yin Lv
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Lingyu Jiang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qiao Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Sizhe Zhu
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Wenjin Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Chenglin Ye
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Bicong Wu
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ying Xue
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huahua Cai
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| |
Collapse
|
15
|
Byvalov AA, Konyshev IV. Yersinia pseudotuberculosis-derived adhesins. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2019. [DOI: 10.15789/2220-7619-2019-3-4-437-448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Around fifteen surface components referred to adhesins have been identified in Yersinia pseudotuberculosis combining primarily microbiological, molecular and genetic, as well as immunochemical and biophysical methods. Y. pseudotuberculosis-derived adhesins vary in structure and chemical composition but they are mainly presented by protein molecules. Some of them were shown to participate not only in adhesive but in other pathogen-related physiological functions in the host-parasite interplay. Adhesins can mediate bacterial adhesion to eukaryotic cell either directly or via the extracellular matrix components. These adhesion molecules are encoded by chromosomal DNA excepting YadA protein which gene is located in the calcium-dependence plasmid pYV common for pathogenic yersisniae. An optimum temperature for adhesin biosynthesis is located close to the body temperature of warm-blooded animals; however, at low temperature only invasin InvA, full-length smooth lipopolysaccharide and porin OmpF are produced in Y. pseudotuberculosis. Several adhesins (Psa, InvA) can be expressed at low pH (corresponds to intracellular content), thereby defining pathogenic yersiniae as facultative intracellular parasites. Three human Yersinia genus pathogens differ by ability to produce adhesins. Y. pseudotuberculosis adherence to host cells or extracellular matrix components is determined by a cumulative adhesion-based activity, which expression depends on chemical composition and physicochemical environmental conditions. It’s proposed that at the initial stage of infectious process adherence of Y. pseudotuberculosis to intestinal epithelium is mediated by InvA protein and “smooth” LPS form. These adhesins are produced in bacterial cells at low (lower than 30°С) temperature occurring in environment from which a pathogen invades into the host. At later stages of pathogenesis, after penetrating through intestinal epithelium, bacterial cells produce other adhesins, which promote survival and dissemination primarily into the mesenteric lymph nodes and, possibly, liver and spleen. At later stages of pathogenesis, after penetrating through intestinal epithelium, bacterial cells produce other adhesins, which promote survival and dissemination primarily into the mesenteric lymph nodes and, perhaps, liver and spleen. Qualitative and quantitative spectrum of Y. pseudotuberculosis adhesins is determined by environmental parameters (intercellular space, intracellular content within the diverse eukaryotic cells).
Collapse
|
16
|
Ye C, Li Q, Li X, Park CG, He Y, Zhang Y, Wu B, Xue Y, Yang K, Lv Y, Ying XL, Ding HH, Cai H, Alkraiem AA, Njiri O, Tembo J, Huang HP, Li AY, Gong J, Qin J, Cheng B, Wei X, Sun Z, Zhang SS, Zhang P, Zheng GX, Li W, Kan B, Yan M, Xiding X, Huo X, Zeng Y, Peng H, Fu Y, Klena JD, Skurnik M, Jiang LY, Chen T. Salmonella enterica Serovar Typhimurium Interacts with CD209 Receptors To Promote Host Dissemination and Infection. Infect Immun 2019; 87:e00100-19. [PMID: 31085704 PMCID: PMC6652768 DOI: 10.1128/iai.00100-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/04/2019] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica serovar Typhimurium, a Gram-negative bacterium, can cause infectious diseases ranging from gastroenteritis to systemic dissemination and infection. However, the molecular mechanisms underlying this bacterial dissemination have yet to be elucidated. A study indicated that using the lipopolysaccharide (LPS) core as a ligand, S Typhimurium was able to bind human dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (hCD209a), an HIV receptor that promotes viral dissemination by hijacking antigen-presenting cells (APCs). In this study, we showed that S Typhimurium interacted with CD209s, leading to the invasion of APCs and potentially the dissemination to regional lymph nodes, spleen, and liver in mice. Shielding of the exposed LPS core through the expression of O-antigen reduces dissemination and infection. Thus, we propose that similar to HIV, S Typhimurium may also utilize APCs via interactions with CD209s as a way to disseminate to the lymph nodes, spleen, and liver to initiate host infection.
Collapse
Affiliation(s)
- Chenglin Ye
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Qiao Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Xinyi Li
- Department of Clinical Laboratory, Jingmen No. 1 People's Hospital, Jingmen, China
| | - Chae Gyu Park
- Laboratory of Immunology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yingxia He
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Yingmiao Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Bicong Wu
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Ying Xue
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Kun Yang
- Department of Pathogen Biology and Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yin Lv
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Xiao-Ling Ying
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Hong-Hui Ding
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Huahua Cai
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Ayman Ahmad Alkraiem
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
- Department of Biology, College of Science, Taibah University, Medina, Kingdom of Saudi Arabia
| | - Olivia Njiri
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - John Tembo
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Hong-Ping Huang
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - An-Yi Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Jianping Gong
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Jichao Qin
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Bing Cheng
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Xiang Wei
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Ziyong Sun
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Shu-Sheng Zhang
- Department of Biomedical Science, College of Medicine-Rockford, University of Illinois at Chicago, Rockford, Illinois, USA
| | - Pei Zhang
- Department of Biomedical Science, College of Medicine-Rockford, University of Illinois at Chicago, Rockford, Illinois, USA
| | - Guo-Xing Zheng
- Department of Biomedical Science, College of Medicine-Rockford, University of Illinois at Chicago, Rockford, Illinois, USA
| | - Wei Li
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Biao Kan
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Meiying Yan
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Xiamu Xiding
- Division of Disease Control and Prevention for Endemic Diseases, Wenquan Center for Disease Control and Prevention, Xinjiang, China
| | - Xixiang Huo
- Hubei Provincial Center for Disease Control and Prevention (CDC), Wuhan, Hubei, China
| | - Yingchun Zeng
- Hubei Provincial Center for Disease Control and Prevention (CDC), Wuhan, Hubei, China
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yangxin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John D Klena
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Ling-Yu Jiang
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Tie Chen
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Yang K, He Y, Park CG, Kang YS, Zhang P, Han Y, Cui Y, Bulgheresi S, Anisimov AP, Dentovskaya SV, Ying X, Jiang L, Ding H, Njiri OA, Zhang S, Zheng G, Xia L, Kan B, Wang X, Jing H, Yan M, Li W, Wang Y, Xiamu X, Chen G, Ma D, Bartra SS, Plano GV, Klena JD, Yang R, Skurnik M, Chen T. Yersinia pestis Interacts With SIGNR1 (CD209b) for Promoting Host Dissemination and Infection. Front Immunol 2019; 10:96. [PMID: 30915064 PMCID: PMC6422942 DOI: 10.3389/fimmu.2019.00096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
Abstract
Yersinia pestis, a Gram-negative bacterium and the etiologic agent of plague, has evolved from Yersinia pseudotuberculosis, a cause of a mild enteric disease. However, the molecular and biological mechanisms of how Y. pseudotuberculosis evolved to such a remarkably virulent pathogen, Y. pestis, are not clear. The ability to initiate a rapid bacterial dissemination is a characteristic hallmark of Y. pestis infection. A distinguishing characteristic between the two Yersinia species is that Y. pseudotuberculosis strains possess an O-antigen of lipopolysaccharide (LPS) while Y. pestis has lost the O-antigen during evolution and therefore exposes its core LPS. In this study, we showed that Y. pestis utilizes its core LPS to interact with SIGNR1 (CD209b), a C-type lectin receptor on antigen presenting cells (APCs), leading to bacterial dissemination to lymph nodes, spleen and liver, and the initiation of a systemic infection. We therefore propose that the loss of O-antigen represents a critical step in the evolution of Y. pseudotuberculosis into Y. pestis in terms of hijacking APCs, promoting bacterial dissemination and causing the plague.
Collapse
Affiliation(s)
- Kun Yang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathogen Biology and Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Yingxia He
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chae Gyu Park
- Laboratory of Immunology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Sun Kang
- Laboratory of Immunology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Pei Zhang
- Department of Biomedical Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Silvia Bulgheresi
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Andrey P Anisimov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | | | - Xiaoling Ying
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyu Jiang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honghui Ding
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Olivia Adhiambo Njiri
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Biological Sciences, Faculty of Science, Technology and Engineering, Chuka University, Chuka, Kenya
| | - Shusheng Zhang
- Department of Biomedical Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Guoxing Zheng
- Department of Biomedical Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Lianxu Xia
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Biao Kan
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Wang
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaiqi Jing
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meiying Yan
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Li
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanzhi Wang
- Department of Pathogen Biology and Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Xiding Xiamu
- Department of Pathogen Biology and Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sara Schesser Bartra
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - John D Klena
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Haartman Institute, Helsinki University Central Hospital Laboratory Diagnostics, University of Helsinki, Helsinki, Finland
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathogen Biology and Immunology, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
18
|
He YX, Ye CL, Zhang P, Li Q, Park CG, Yang K, Jiang LY, Lv Y, Ying XL, Ding HH, Huang HP, Mambwe Tembo J, Li AY, Cheng B, Zhang SS, Zheng GX, Chen SY, Li W, Xia LX, Kan B, Wang X, Jing HQ, Yang RF, Peng H, Fu YX, Klena JD, Skurnik M, Chen T. Yersinia pseudotuberculosis Exploits CD209 Receptors for Promoting Host Dissemination and Infection. Infect Immun 2019; 87:e00654-18. [PMID: 30348825 PMCID: PMC6300620 DOI: 10.1128/iai.00654-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Yersinia pseudotuberculosis is a Gram-negative enteropathogen and causes gastrointestinal infections. It disseminates from gut to mesenteric lymph nodes (MLNs), spleen, and liver of infected humans and animals. Although the molecular mechanisms for dissemination and infection are unclear, many Gram-negative enteropathogens presumably invade the small intestine via Peyer's patches to initiate dissemination. In this study, we demonstrate that Y. pseudotuberculosis utilizes its lipopolysaccharide (LPS) core to interact with CD209 receptors, leading to invasion of human dendritic cells (DCs) and murine macrophages. These Y. pseudotuberculosis-CD209 interactions result in bacterial dissemination to MLNs, spleens, and livers of both wild-type and Peyer's patch-deficient mice. The blocking of the Y. pseudotuberculosis-CD209 interactions by expression of O-antigen and with oligosaccharides reduces infectivity. Based on the well-documented studies in which HIV-CD209 interaction leads to viral dissemination, we therefore propose an infection route for Y. pseudotuberculosis where this pathogen, after penetrating the intestinal mucosal membrane, hijacks the Y. pseudotuberculosis-CD209 interaction antigen-presenting cells to reach their target destinations, MLNs, spleens, and livers.
Collapse
Affiliation(s)
- Ying-Xia He
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Cheng-Lin Ye
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Pei Zhang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Qiao Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Chae Gyu Park
- Laboratory of Immunology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kun Yang
- Department of Pathogen Biology and Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Ling-Yu Jiang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Yin Lv
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Xiao-Ling Ying
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Hong-Hui Ding
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Hong-Ping Huang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - John Mambwe Tembo
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
- Department of Paediatrics & Child Health, The University of Zambia-University College London Medical School at Zambia, Lusaka, Zambia
| | - An-Yi Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Bing Cheng
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Shu-Sheng Zhang
- Department of Biomedical Science, College of Medicine-Rockford, University of Illinois at Chicago, Rockford, Illinois, USA
| | - Guo-Xing Zheng
- Department of Biomedical Science, College of Medicine-Rockford, University of Illinois at Chicago, Rockford, Illinois, USA
| | - Shi-Yun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Li
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Lian-Xu Xia
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Biao Kan
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Xin Wang
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Huai-Qi Jing
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Rui-Fu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John D Klena
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| |
Collapse
|
19
|
Xue D, Guang-Hua W, Yan-Li S, Min Z, Yong-Hua H. Black rockfish C-type lectin, SsCTL4: A pattern recognition receptor that promotes bactericidal activity and virus escape from host immune defense. FISH & SHELLFISH IMMUNOLOGY 2018; 79:340-350. [PMID: 29803666 DOI: 10.1016/j.fsi.2018.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
C-type lectin (CTL) is an immune receptor and is received extensive attention of its important roles in immune response and immune escape. Some CTL, such as CTL4, has been well characterized in human and several other mammals, but much less documentation exists about the immunological function of CTL4 in lower vertebrates. In the present study, a C-type lectin domain family 4 member, SsCTL4, which is also high homology with CD209 antigen-like protein, from the teleost fish black rockfish (Sebastes schlegelii) was identified and examined at expression and functional levels. The open reading frame of SsCTL4 is 765 bp, and the deduced amino acid sequence of SsCTL4 shares 78%-84% overall identities with the C-type lectin of several fish species. In silico analysis identified several conserved C-type lectin features, including a carbohydrate-recognition domain and four disulfide bond-forming cysteine residues. Expression of SsCTL4 occurred in multiple tissues and was upregulated during bacterial and viral infection. Recombinant SsCTL4 (rSsCTL4) exhibited apparent binding activities against bacteria (Edwardsiella tarda and Vibrio anguillarum) and virus (infectious spleen and kidney necrosis virus, ISKNV). rSsCTL4 was able to agglutinate the Gram-negative and Gram-positive bacteria in a Ca2+-dependent manner. The agglutinating ability of rSsCTL4 was abolished in the absence of calcium or presence of mannose. rSsCTL4 also increased macrophage bactericidal activity. In the presence of rSsCTL4, fish exhibited enhanced resistance against bacterial infection but increased susceptibility to viral infections. Collectively, these results indicate that SsCTL4 serves as a pattern recognition receptor that not only promotes bactericidal activity, but may also serve as targets for virus manipulation of host defense system.
Collapse
Affiliation(s)
- Du Xue
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wang Guang-Hua
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Su Yan-Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhang Min
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Hu Yong-Hua
- Institute of Tropical Biosciece and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
20
|
Byvalov AA, Kononenko VL, Konyshev IV. Single-Cell Force Spectroscopy of Interaction of Lipopolysaccharides from Yersinia pseudotuberculosis and Yersinia pestis with J774 Macrophage Membrane Using Optical Tweezers. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2018. [DOI: 10.1134/s1990747818020058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Tongue Sole CD209: A Pattern-Recognition Receptor that Binds a Broad Range of Microbes and Promotes Phagocytosis. Int J Mol Sci 2017; 18:ijms18091848. [PMID: 28869534 PMCID: PMC5618497 DOI: 10.3390/ijms18091848] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/12/2017] [Accepted: 08/15/2017] [Indexed: 01/24/2023] Open
Abstract
CD209 is an immune receptor that plays an important role in the initiation of innate immunity and activation of adaptive immunity in mammals. However, much less is known about the immunological function of CD209 in lower vertebrates. In the present study, we examined the immune effect of a CD209 homologue (CsCD209) from the teleost fish tongue sole Cynoglossus semilaevis. CsCD209 possesses a lectin domain that shares high levels of similarity with the lectin domains of human and mouse CD209. CsCD209 expression was most abundant in kidney and blood and was significantly upregulated during bacterial infection. CsCD209 exhibited a subcellular localization mainly on the cell surface of myelomonocytes. Recombinant CsCD209 displayed apparent binding capacities to a broad range of bacteria and fungi, and significantly promoted the phagocytosis of the bound bacteria by C. semilaevis leukocytes. Collectively, the results indicate that teleost CD209 serves as a pattern recognition receptor that exerts an influence on the phagocytosis process during pathogen infections.
Collapse
|
22
|
Castillo-Acosta VM, Balzarini J, González-Pacanowska D. Surface Glycans: A Therapeutic Opportunity for Kinetoplastid Diseases. Trends Parasitol 2017; 33:775-787. [PMID: 28760415 DOI: 10.1016/j.pt.2017.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/29/2017] [Accepted: 06/22/2017] [Indexed: 11/30/2022]
Abstract
Trypanosomal diseases are in need of innovative therapies that exploit novel mechanisms of action. The cell surface of trypanosomatid parasites is characterized by a dense coat of glycoconjugates with important functions in host cell recognition, immune evasion, infectivity, and cell function. The nature of parasite surface glycans is highly dynamic and changes during differentiation and in response to different stimuli through the action of glycosyltransferases and glycosidases. Here we propose a new approach to antiparasitic drug discovery that involves the use of carbohydrate-binding agents that bind specifically to cell-surface glycans, giving rise to cytotoxic events and parasite death. The potential and limitations of this strategy are addressed with a specific focus on the treatment of sleeping sickness.
Collapse
Affiliation(s)
- Víctor M Castillo-Acosta
- Instituto de Parasitología y Biomedicina 'López-Neyra', Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n 18016-Armilla (Granada), Spain
| | - Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina 'López-Neyra', Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n 18016-Armilla (Granada), Spain.
| |
Collapse
|
23
|
Green ER, Clark S, Crimmins GT, Mack M, Kumamoto CA, Mecsas J. Fis Is Essential for Yersinia pseudotuberculosis Virulence and Protects against Reactive Oxygen Species Produced by Phagocytic Cells during Infection. PLoS Pathog 2016; 12:e1005898. [PMID: 27689357 PMCID: PMC5045184 DOI: 10.1371/journal.ppat.1005898] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022] Open
Abstract
All three pathogenic Yersinia species share a conserved virulence plasmid that encodes a Type 3 Secretion System (T3SS) and its associated effector proteins. During mammalian infection, these effectors are injected into innate immune cells, where they block many bactericidal functions, including the production of reactive oxygen species (ROS). However, Y. pseudotuberculosis (Yptb) lacking the T3SS retains the ability to colonize host organs, demonstrating that chromosome-encoded factors are sufficient for growth within mammalian tissue sites. Previously we uncovered more than 30 chromosomal factors that contribute to growth of T3SS-deficient Yptb in livers. Here, a deep sequencing-based approach was used to validate and characterize the phenotype of 18 of these genes during infection by both WT and plasmid-deficient Yptb. Additionally, the fitness of these mutants was evaluated in immunocompromised mice to determine whether any genes contributed to defense against phagocytic cell restriction. Mutants containing deletions of the dusB-fis operon, which encodes the nucleoid associated protein Fis, were markedly attenuated in immunocompetent mice, but were restored for growth in mice lacking neutrophils and inflammatory monocytes, two of the major cell types responsible for restricting Yersinia infection. We determined that Fis was dispensable for secretion of T3SS effectors, but was essential for resisting ROS and regulated the transcription of several ROS-responsive genes. Strikingly, this protection was critical for virulence, as growth of ΔdusB-fis was restored in mice unable to produce ROS. These data support a model in which ROS generated by neutrophils and inflammatory monocytes that have not been translocated with T3SS effectors enter bacterial cells during infection, where their bactericidal effects are resisted in a Fis-dependent manner. This is the first report of the requirement for Fis during Yersinia infection and also highlights a novel mechanism by which Yptb defends against ROS in mammalian tissues. The pathogenic members of the genus Yersinia share a conserved virulence plasmid that primarily serves to encode a Type 3 Secretion System and its associated effector proteins. During mammalian infection, these effectors are targeted toward phagocytic cells, where they neutralize a multitude of functions, including oxidative burst. However, it has previously been reported that strains of Yersinia pseudotuberculosis lacking the virulence plasmid retain the ability to grow in mammalian tissue sites, suggesting that the Yersinia chromosome encodes a number of poorly appreciated factors that enable survival in mammalian tissue sites, even in the absence of a functional T3SS. Here, we further characterize a number of these factors, including the operon dusB-fis. Using a variety of in vitro and vivo approaches, we determined that Fis regulates the transcription of several genes implicated in ROS resistance and that dusB-fis is essential for preventing growth restriction by ROS produced by the NADPH complex of phagocytes, even in a T3SS-expressing strain. Combined, these data suggest a model in which, during tissue infection, Yersinia evade killing by ROS through both T3SS-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Erin R. Green
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Stacie Clark
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Gregory T. Crimmins
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthias Mack
- Universitatsklinikum Regensburg, Innere Medizin II/Nephrologie-Transplantation, Regensburg, Germany
| | - Carol A. Kumamoto
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Joan Mecsas
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
Chauhan N, Wrobel A, Skurnik M, Leo JC. Yersinia adhesins: An arsenal for infection. Proteomics Clin Appl 2016; 10:949-963. [PMID: 27068449 DOI: 10.1002/prca.201600012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/14/2016] [Accepted: 04/06/2016] [Indexed: 11/09/2022]
Abstract
The Yersiniae are a group of Gram-negative coccobacilli inhabiting a wide range of habitats. The genus harbors three recognized human pathogens: Y. enterocolitica and Y. pseudotuberculosis, which both cause gastrointestinal disease, and Y. pestis, the causative agent of plague. These three organisms have served as models for a number of aspects of infection biology, including adhesion, immune evasion, evolution of pathogenic traits, and retracing the course of ancient pandemics. The virulence of the pathogenic Yersiniae is heavily dependent on a number of adhesin molecules. Some of these, such as the Yersinia adhesin A and invasin of the enteropathogenic species, and the pH 6 antigen of Y. pestis, have been extensively studied. However, genomic sequencing has uncovered a host of other adhesins present in these organisms, the functions of which are only starting to be investigated. Here, we review the current state of knowledge on the adhesin molecules present in the Yersiniae, and their functions and putative roles in the infection process.
Collapse
Affiliation(s)
- Nandini Chauhan
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Agnieszka Wrobel
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland.,Central Hospital Laboratory Diagnostics, Helsinki University, Helsinki, Finland
| | - Jack C Leo
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
25
|
Billings EA, Lee CS, Owen KA, D'Souza RS, Ravichandran KS, Casanova JE. The adhesion GPCR BAI1 mediates macrophage ROS production and microbicidal activity against Gram-negative bacteria. Sci Signal 2016; 9:ra14. [PMID: 26838550 PMCID: PMC4894535 DOI: 10.1126/scisignal.aac6250] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The detection of microbes and initiation of an innate immune response occur through pattern recognition receptors (PRRs), which are critical for the production of inflammatory cytokines and activation of the cellular microbicidal machinery. In particular, the production of reactive oxygen species (ROS) by the NADPH oxidase complex is a critical component of the macrophage bactericidal machinery. We previously characterized brain-specific angiogenesis inhibitor 1 (BAI1), a member of the adhesion family of G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs), as a PRR that mediates the selective phagocytic uptake of Gram-negative bacteria by macrophages. We showed that BAI1 promoted phagosomal ROS production through activation of the Rho family guanosine triphosphatase (GTPase) Rac1, thereby stimulating NADPH oxidase activity. Primary BAI1-deficient macrophages exhibited attenuated Rac GTPase activity and reduced ROS production in response to several Gram-negative bacteria, resulting in impaired microbicidal activity. Furthermore, in a peritoneal infection model, BAI1-deficient mice exhibited increased susceptibility to death by bacterial challenge because of impaired bacterial clearance. Together, these findings suggest that BAI1 mediates the clearance of Gram-negative bacteria by stimulating both phagocytosis and NADPH oxidase activation, thereby coupling bacterial detection to the cellular microbicidal machinery.
Collapse
Affiliation(s)
- Emily A Billings
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Chang Sup Lee
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Katherine A Owen
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Ryan S D'Souza
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - James E Casanova
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA. Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
26
|
Abstract
Be it their pervasiveness, experimental tractability or their impact on human health and agriculture, nematode–bacterium associations are far-reaching research subjects. Although the omics hype did not spare them and helped reveal mechanisms of communication and exchange between the associated partners, a huge amount of knowledge still awaits to be harvested from their study. Here, I summarize and compare the kind of research that has been already performed on the model nematode Caenorhabditis elegans and on symbiotic nematodes, both marine and entomopathogenic ones. The emerging picture highlights how complementing genetic studies with ecological ones (in the case of well-established genetic model systems such as C. elegans) and vice versa (in the case of the yet uncultured Stilbonematinae) will deepen our understanding of how microbial symbioses evolved and how they impact our environment. Nematode–bacterium associations are major research subjects. Complementing genetic studies with ecological ones is necessary to boost our understanding of how microbial symbioses evolved and how they impact the environment.
Collapse
Affiliation(s)
- Silvia Bulgheresi
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
27
|
Yang K, Park CG, Cheong C, Bulgheresi S, Zhang S, Zhang P, He Y, Jiang L, Huang H, Ding H, Wu Y, Wang S, Zhang L, Li A, Xia L, Bartra SS, Plano GV, Skurnik M, Klena JD, Chen T. Host Langerin (CD207) is a receptor for Yersinia pestis phagocytosis and promotes dissemination. Immunol Cell Biol 2015; 93:815-24. [PMID: 25829141 PMCID: PMC4612776 DOI: 10.1038/icb.2015.46] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/17/2022]
Abstract
Yersinia pestis is a Gram-negative bacterium that causes plague. After Y. pestis overcomes the skin barrier, it encounters antigen-presenting cells (APCs), such as Langerhans and dendritic cells. They transport the bacteria from the skin to the lymph nodes. However, the molecular mechanisms involved in bacterial transmission are unclear. Langerhans cells (LCs) express Langerin (CD207), a calcium-dependent (C-type) lectin. Furthermore, Y. pestis possesses exposed core oligosaccharides. In this study, we show that Y. pestis invades LCs and Langerin-expressing transfectants. However, when the bacterial core oligosaccharides are shielded or truncated, Y. pestis propensity to invade Langerhans and Langerin-expressing cells decreases. Moreover, the interaction of Y. pestis with Langerin-expressing transfectants is inhibited by purified Langerin, a DC-SIGN (DC-specific intercellular adhesion molecule 3 grabbing nonintegrin)-like molecule, an anti-CD207 antibody, purified core oligosaccharides and several oligosaccharides. Furthermore, covering core oligosaccharides reduces the mortality associated with murine infection by adversely affecting the transmission of Y. pestis to lymph nodes. These results demonstrate that direct interaction of core oligosaccharides with Langerin facilitates the invasion of LCs by Y. pestis. Therefore, Langerin-mediated binding of Y. pestis to APCs may promote its dissemination and infection.
Collapse
Affiliation(s)
- Kun Yang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Chae G Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Cheolho Cheong
- Institut de Recherches Cliniques de Montréal (IRCM)MontrealQuebecCanada
| | - Silvia Bulgheresi
- Department of Ecogenomics and Systems Biology, University of ViennaViennaAustria
| | - Shusheng Zhang
- Department of Biomedical Science, University of Illinois at ChicagoRockfordILUSA
| | - Pei Zhang
- Department of Biomedical Science, University of Illinois at ChicagoRockfordILUSA
| | - Yingxia He
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Lingyu Jiang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Hongping Huang
- The Center for Experimental Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Honghui Ding
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Lin Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Anyi Li
- The Animal Experimental Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Lianxu Xia
- Department of Zoonotic Diseases, National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and PreventionBeijingChina
| | - Sara S Bartra
- Department of Microbiology and Immunology, University of Miami Miller School of MedicineMiamiFLUSA
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of MedicineMiamiFLUSA
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Research Programs Unit, Immunobiology, University of Helsinki, and Helsinki University HospitalHelsinkiFinland
| | - John D Klena
- The School of Basic Medical Sciences, Peking UniversityBeijingChina
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
28
|
Garcia-Vallejo JJ, van Kooyk Y. A new cellular target for Yersinia pestis. Immunol Cell Biol 2015; 93:769-70. [PMID: 26124192 DOI: 10.1038/icb.2015.60] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juan J Garcia-Vallejo
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Rana A, Ahmed M, Rub A, Akhter Y. A tug-of-war between the host and the pathogen generates strategic hotspots for the development of novel therapeutic interventions against infectious diseases. Virulence 2015; 6:566-80. [PMID: 26107578 PMCID: PMC4720223 DOI: 10.1080/21505594.2015.1062211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 12/30/2022] Open
Abstract
Microbial pathogens are known to express an array of specific signaling molecules referred as Pathogen Associated Molecular Patterns (PAMPs), which are recognized by Pattern Recognition Receptors (PRRs), present on the surface of the host cells. Interactions between PAMPs and PRRs on the surface of the host cells lead to signaling events which could culminate into either successful infection or clearance of the pathogens. Here, we summarize how these events may generate novel host based as well as pathogen based molecular targets for designing effective therapeutic strategies against infections.
Collapse
Affiliation(s)
- Aarti Rana
- School of Life Sciences; Central University of Himachal Pradesh; Shahpur, District-Kangra, Himachal Pradesh, India
| | - Mushtaq Ahmed
- School of Earth and Environmental Sciences; Central University of Himachal Pradesh; Shahpur, District-Kangra, Himachal Pradesh, India
| | - Abdur Rub
- Infection and Immunity Lab; Department of Biotechnology; Jamia Millia Islamia (A Central University); New Delhi, India
| | - Yusuf Akhter
- School of Life Sciences; Central University of Himachal Pradesh; Shahpur, District-Kangra, Himachal Pradesh, India
| |
Collapse
|
30
|
Adhesive properties of YapV and paralogous autotransporter proteins of Yersinia pestis. Infect Immun 2015; 83:1809-19. [PMID: 25690102 DOI: 10.1128/iai.00094-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis is the causative agent of plague. This bacterium evolved from an ancestral enteroinvasive Yersinia pseudotuberculosis strain by gene loss and acquisition of new genes, allowing it to use fleas as transmission vectors. Infection frequently leads to a rapidly lethal outcome in humans, a variety of rodents, and cats. This study focuses on the Y. pestis KIM yapV gene and its product, recognized as an autotransporter protein by its typical sequence, outer membrane localization, and amino-terminal surface exposure. Comparison of Yersinia genomes revealed that DNA encoding YapV or each of three individual paralogous proteins (YapK, YapJ, and YapX) was present as a gene or pseudogene in a strain-specific manner and only in Y. pestis and Y. pseudotuberculosis. YapV acted as an adhesin for alveolar epithelial cells and specific extracellular matrix (ECM) proteins, as shown with recombinant Escherichia coli, Y. pestis, or purified passenger domains. Like YapV, YapK and YapJ demonstrated adhesive properties, suggesting that their previously related in vivo activity is due to their capacity to modulate binding properties of Y. pestis in its hosts, in conjunction with other adhesins. A differential host-specific type of binding to ECM proteins by YapV, YapK, and YapJ suggested that these proteins participate in broadening the host range of Y. pestis. A phylogenic tree including 36 Y. pestis strains highlighted an association between the gene profile for the four paralogous proteins and the geographic location of the corresponding isolated strains, suggesting an evolutionary adaption of Y. pestis to specific local animal hosts or reservoirs.
Collapse
|
31
|
Gonzalez RJ, Lane MC, Wagner NJ, Weening EH, Miller VL. Dissemination of a highly virulent pathogen: tracking the early events that define infection. PLoS Pathog 2015; 11:e1004587. [PMID: 25611317 PMCID: PMC4303270 DOI: 10.1371/journal.ppat.1004587] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/23/2014] [Indexed: 11/19/2022] Open
Abstract
The series of events that occurs immediately after pathogen entrance into the body is largely speculative. Key aspects of these events are pathogen dissemination and pathogen interactions with the immune response as the invader moves into deeper tissues. We sought to define major events that occur early during infection of a highly virulent pathogen. To this end, we tracked early dissemination of Yersinia pestis, a highly pathogenic bacterium that causes bubonic plague in mammals. Specifically, we addressed two fundamental questions: (1) do the bacteria encounter barriers in disseminating to draining lymph nodes (LN), and (2) what mechanism does this nonmotile bacterium use to reach the LN compartment, as the prevailing model predicts trafficking in association with host cells. Infection was followed through microscopy imaging in addition to assessing bacterial population dynamics during dissemination from the skin. We found and characterized an unexpected bottleneck that severely restricts bacterial dissemination to LNs. The bacteria that do not pass through this bottleneck are confined to the skin, where large numbers of neutrophils arrive and efficiently control bacterial proliferation. Notably, bottleneck formation is route dependent, as it is abrogated after subcutaneous inoculation. Using a combination of approaches, including microscopy imaging, we tested the prevailing model of bacterial dissemination from the skin into LNs and found no evidence of involvement of migrating phagocytes in dissemination. Thus, early stages of infection are defined by a bottleneck that restricts bacterial dissemination and by neutrophil-dependent control of bacterial proliferation in the skin. Furthermore, and as opposed to current models, our data indicate an intracellular stage is not required by Y. pestis to disseminate from the skin to draining LNs. Because our findings address events that occur during early encounters of pathogen with the immune response, this work can inform efforts to prevent or control infection. The earliest stage of any infection takes place when a pathogen enters the body (inoculation) at an initial site of contact. From this point, the pathogen can spread into deeper tissues where the pathogen itself and the immune responses against it cause disease. Very little is known about the events that follow inoculation and how pathogens move from the initial site of contact into deeper tissues. A better understanding of this process can potentially result in strategies to control or prevent disease. We studied the highly infectious bacterium that causes bubonic plague (Yersinia pestis) and how it spreads inside the body, from the skin into lymph nodes. We found that movement from the skin is highly restricted as only a small fraction of the bacteria that are deposited into this tissue are found in lymph nodes. While it is currently thought that Y. pestis spreads from the skin inside trafficking cells of the innate immune response, our work suggests these cells are not required for the bacteria to move into lymph nodes. Our findings can influence vaccine development efforts as these strategies are based on the study of early pathogen interactions with cells of the immune response.
Collapse
Affiliation(s)
- Rodrigo J. Gonzalez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - M. Chelsea Lane
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nikki J. Wagner
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Eric H. Weening
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Virginia L. Miller
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
32
|
Davis KM, Isberg RR. Plague's partners in crime. Immunity 2014; 41:347-349. [PMID: 25238090 DOI: 10.1016/j.immuni.2014.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hallmark of bubonic plague is the presence of grotesquely swollen lymph nodes, called buboes. This frenzied inflammatory response to Yersinia pestis is poorly understood. In this issue of Immunity, St. John et al. (2014) explore the mechanism by which Y. pestis spreads and thus leads to this striking lymphadenopathy.
Collapse
Affiliation(s)
- Kimberly M Davis
- Howard Hughes Medical Institute, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA; Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | - Ralph R Isberg
- Howard Hughes Medical Institute, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA; Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
33
|
Pustylnikov S, Sagar D, Jain P, Khan ZK. Targeting the C-type lectins-mediated host-pathogen interactions with dextran. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2014; 17:371-92. [PMID: 25224349 PMCID: PMC5553543 DOI: 10.18433/j3n590] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Dextran, the α-1,6-linked glucose polymer widely used in biology and medicine, promises new applications. Linear dextran applied as a blood plasma substitute demonstrates a high rate of biocompatibility. Dextran is present in foods, drugs, and vaccines and in most cases is applied as a biologically inert substance. In this review we analyze dextran's cellular uptake principles, receptor specificity and, therefore, its ability to interfere with pathogen-lectin interactions: a promising basis for new antimicrobial strategies. Dextran-binding receptors in humans include the DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) family receptors: DC-SIGN (CD209) and L-SIGN (the liver and lymphatic endothelium homologue of DC-SIGN), the mannose receptor (CD206), and langerin. These receptors take part in the uptake of pathogens by dendritic cells and macrophages and may also participate in the modulation of immune responses, mostly shown to be beneficial for pathogens per se rather than host(s). It is logical to predict that owing to receptor-specific interactions, dextran or its derivatives can interfere with these immune responses and improve infection outcome. Recent data support this hypothesis. We consider dextran a promising molecule for the development of lectin-glycan interaction-blocking molecules (such as DC-SIGN inhibitors) that could be applied in the treatment of diseases including tuberculosis, influenza, hepatitis B and C, human immunodeficiency virus infection and AIDS, etc. Dextran derivatives indeed change the pathology of infections dependent on DC-SIGN and mannose receptors. Complete knowledge of specific dextran-lectin interactions may also be important for development of future dextran applications in biological research and medicine.
Collapse
Affiliation(s)
- Sergey Pustylnikov
- Group of Molecular Biology Research, Novosibirsk Tuberculosis Research Institute, Novosibirsk, Russia. Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
34
|
Kolodziejek AM, Hovde CJ, Minnich SA. Yersinia pestis Ail: multiple roles of a single protein. Front Cell Infect Microbiol 2012; 2:103. [PMID: 22919692 PMCID: PMC3417512 DOI: 10.3389/fcimb.2012.00103] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/14/2012] [Indexed: 01/03/2023] Open
Abstract
Yersinia pestis is one of the most virulent bacteria identified. It is the causative agent of plague—a systemic disease that has claimed millions of human lives throughout history. Y. pestis survival in insect and mammalian host species requires fine-tuning to sense and respond to varying environmental cues. Multiple Y. pestis attributes participate in this process and contribute to its pathogenicity and highly efficient transmission between hosts. These include factors inherited from its enteric predecessors; Y. enterocolitica and Y. pseudotuberculosis, as well as phenotypes acquired or lost during Y. pestis speciation. Representatives of a large Enterobacteriaceae Ail/OmpX/PagC/Lom family of outer membrane proteins (OMPs) are found in the genomes of all pathogenic Yersiniae. This review describes the current knowledge regarding the role of Ail in Y. pestis pathogenesis and virulence. The pronounced role of Ail in the following areas are discussed (1) inhibition of the bactericidal properties of complement, (2) attachment and Yersinia outer proteins (Yop) delivery to host tissue, (3) prevention of PMNL recruitment to the lymph nodes, and (4) inhibition of the inflammatory response. Finally, Ail homologs in Y. enterocolitica and Y. pseudotuberculosis are compared to illustrate differences that may have contributed to the drastic bacterial lifestyle change that shifted Y. pestis from an enteric to a vector-born systemic pathogen.
Collapse
Affiliation(s)
- Anna M Kolodziejek
- School of Food Science, University of Idaho Moscow, ID, USA. akolodziejek@ vandals.uidaho.edu
| | | | | |
Collapse
|
35
|
Yamashita S, Lukacik P, Barnard TJ, Noinaj N, Felek S, Tsang TM, Krukonis ES, Hinnebusch BJ, Buchanan SK. Structural insights into Ail-mediated adhesion in Yersinia pestis. Structure 2012; 19:1672-82. [PMID: 22078566 DOI: 10.1016/j.str.2011.08.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/16/2011] [Accepted: 08/19/2011] [Indexed: 12/24/2022]
Abstract
Ail is an outer membrane protein from Yersinia pestis that is highly expressed in a rodent model of bubonic plague, making it a good candidate for vaccine development. Ail is important for attaching to host cells and evading host immune responses, facilitating rapid progression of a plague infection. Binding to host cells is important for injection of cytotoxic Yersinia outer proteins. To learn more about how Ail mediates adhesion, we solved two high-resolution crystal structures of Ail, with no ligand bound and in complex with a heparin analog called sucrose octasulfate. We identified multiple adhesion targets, including laminin and heparin, and showed that a 40 kDa domain of laminin called LG4-5 specifically binds to Ail. We also evaluated the contribution of laminin to delivery of Yops to HEp-2 cells. This work constitutes a structural description of how a bacterial outer membrane protein uses a multivalent approach to bind host cells.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-8030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
In the immune system, C-type lectins and CTLDs have been shown to act both as adhesion and as pathogen recognition receptors. The Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) and its homologs in human and mouse represent an important C-type lectin family. DC-SIGN contains a lectin domain that recognizes in a Ca2+-dependent manner carbohydrates such as mannose-containing structures present on glycoproteins such as ICAM-2 and ICAM-3. DC-SIGN is a prototype C-type lectin organized in microdomains, which have their role as pathogen recognition receptors in sensing microbes. Although the integrin LFA-1 is a counter-receptor for both ICAM-2 and ICAM-3 on DC, DC-SIGN is the high affinity adhesion receptor for ICAM-2/-3. While cell–cell contact is a primary function of selectins, collectins are specialized in recognition of pathogens. Interestingly, DC-SIGN is a cell adhesion receptor as well as a pathogen recognition receptor. As adhesion receptor, DC-SIGN mediates the contact between dendritic cells (DCs) and T lymphocytes, by binding to ICAM-3, and mediates rolling of DCs on endothelium, by interacting with ICAM-2. As pathogen receptor, DC-SIGN recognizes a variety of microorganisms, including viruses, bacteria, fungi and several parasites (Cambi et al. 2005). The natural ligands of DC-SIGN consist of mannose oligosaccharides or fucose-containing Lewis-type determinants. In this chapter, we shall focus on the structure and functions of DC-SIGN and related CTLDs in the recognition of pathogens, the molecular and structural determinants that regulate the interaction with pathogen-associated molecular patterns. The heterogeneity of carbohydrate residues exposed on cellular proteins and pathogens regulates specific binding of DC-expressed C-type lectins that contribute to the diversity of immune responses created by DCs (van Kooyk et al. 2003a; Cambi et al. 2005).
Collapse
|
37
|
Thomas RJ. Receptor mimicry as novel therapeutic treatment for biothreat agents. Bioeng Bugs 2011; 1:17-30. [PMID: 21327124 DOI: 10.4161/bbug.1.1.10049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 12/20/2022] Open
Abstract
The specter of intentional release of pathogenic microbes and their toxins is a real threat. This article reviews the literature on adhesins of biothreat agents, their interactions with oligosaccharides and the potential for anti-adhesion compounds as an alternative to conventional therapeutics. The minimal binding structure of ricin has been well characterised and offers the best candidate for successful anti-adhesion therapy based on the Galβ1-4GlcNAc structure. The botulinum toxin serotypes A-F bind to a low number of gangliosides (GT1b, GQ1b, GD1a and GD1b) hence it should be possible to determine the minimal structure for binding. The minimal disaccharide sequence of GalNAcβ1-4Gal found in the gangliosides asialo-GM1 and asialo-GM2 is required for adhesion for many respiratory pathogens. Although a number of adhesins have been identified in bacterial biothreat agents such as Yersinia pestis, Bacillus anthracis, Francisella tularensis, Brucella species and Burkholderia pseudomallei, specific information regarding their in vivo expression during pneumonic infection is lacking. Limited oligosaccharide inhibition studies indicate the potential of GalNAcβ1-4Gal, GalNAcβ-3Gal and the hydrophobic compound, para-nitrophenol as starting points for the rational design of generic anti-adhesion compounds. A cocktail of multivalent oligosaccharides based on the minimal binding structures of identified adhesins would offer the best candidates for anti-adhesion therapy.
Collapse
|
38
|
Guo J, Nair MKM, Galván EM, Liu SL, Schifferli DM. Tn5AraOut mutagenesis for the identification of Yersinia pestis genes involved in resistance towards cationic antimicrobial peptides. Microb Pathog 2011; 51:121-32. [PMID: 21575704 DOI: 10.1016/j.micpath.2011.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/21/2011] [Accepted: 04/29/2011] [Indexed: 12/27/2022]
Abstract
Bacterial pathogens display a variety of protection mechanisms against the inhibitory and lethal effects of host cationic antimicrobial peptides (CAMPs). To identify Yersinia pestis genes involved in CAMP resistance, libraries of DSY101 (KIM6 caf1 pla psa) minitransposon Tn5AraOut mutants were selected at 37°C for resistance to the model CAMPs polymyxin B or protamine. This approach targeted genes that needed to be repressed (null mutations) or induced (upstream P(BAD) insertions) for the detection of CAMP resistance, and predictably for improved pathogen fitness in mammalian hosts. Ten mutants demonstrated increased resistance to polymyxin B or protamine, with the mapped mutations pointing towards genes suspected to participate in modifying membrane components, genes encoding transport proteins or enzymes, or the regulator of a ferrous iron uptake system (feoC). Not all the mutants were resistant to both CAMPs used for selection. None of the polymyxin B- and only some protamine-resistant mutants, including the feoC mutant, showed increased resistance to rat bronchoalveolar lavage fluid (rBALF) known to contain cathelicidin and β-defensin 1. Thus, findings on bacterial resistance to polymyxin B or protamine don't always apply to CAMPs of the mammalian innate immune system, such as the ones in rBALF.
Collapse
Affiliation(s)
- Jitao Guo
- Department of Microbiology, Peking University Health Science Center, Beijing 100191, China.
| | | | | | | | | |
Collapse
|
39
|
Bulgheresi S, Gruber-Vodicka HR, Heindl NR, Dirks U, Kostadinova M, Breiteneder H, Ott JA. Sequence variability of the pattern recognition receptor Mermaid mediates specificity of marine nematode symbioses. ISME JOURNAL 2011; 5:986-98. [PMID: 21228893 DOI: 10.1038/ismej.2010.198] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selection of a specific microbial partner by the host is an all-important process. It guarantees the persistence of highly specific symbioses throughout host generations. The cuticle of the marine nematode Laxus oneistus is covered by a single phylotype of sulfur-oxidizing bacteria. They are embedded in a layer of host-secreted mucus containing the mannose-binding protein Mermaid. This Ca(2+)-dependent lectin mediates symbiont aggregation and attachment to the nematode. Here, we show that Stilbonema majum-a symbiotic nematode co-occurring with L. oneistus in shallow water sediment-is covered by bacteria phylogenetically distinct to those covering L. oneistus. Mermaid cDNA analysis revealed extensive protein sequence variability in both the nematode species. We expressed three recombinant Mermaid isoforms, which based on the structural predictions display the most different carbohydrate recognition domains (CRDs). We show that the three CRDs (DNT, DDA and GDA types) possess different affinities for L. oneistus and S. majum symbionts. In particular, the GDA type, exclusively expressed by S. majum, displays highest agglutination activity towards its symbionts and lowest towards its L. oneistus symbionts. Moreover, incubation of L. oneistus in the GDA type does not result in complete symbiont detachment, whereas incubation in the other types does. This indicates that the presence of particular Mermaid isoforms on the nematode surface has a role in the attachment of specific symbionts. This is the first report of the functional role of sequence variability in a microbe-associated molecular patterns receptor in a beneficial association.
Collapse
|
40
|
Kabanov DS, Prokhorenko IR. Structural analysis of lipopolysaccharides from Gram-negative bacteria. BIOCHEMISTRY (MOSCOW) 2010; 75:383-404. [PMID: 20618127 DOI: 10.1134/s0006297910040012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review covers data on composition and structure of lipid A, core, and O-polysaccharide of the known lipopolysaccharides from Gram-negative bacteria. The relationship between the structure and biological activity of lipid A is discussed. The data on roles of core and O-polysaccharide in biological activities of lipopolysaccharides are presented. The structural homology of some oligosaccharide sequences of lipopolysaccharides to gangliosides of human cell membranes is considered.
Collapse
Affiliation(s)
- D S Kabanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
41
|
Cheong C, Matos I, Choi JH, Schauer JD, Dandamudi DB, Shrestha E, Makeyeva JA, Li X, Li P, Steinman RM, Park CG. New monoclonal anti-mouse DC-SIGN antibodies reactive with acetone-fixed cells. J Immunol Methods 2010; 360:66-75. [PMID: 20558171 PMCID: PMC2924951 DOI: 10.1016/j.jim.2010.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
Mouse DC-SIGN CD209a is a type II transmembrane protein, one of a family of C-type lectin genes syntenic and homologous to human DC-SIGN. Current anti-mouse DC-SIGN monoclonal antibodies (MAbs) are unable to react with DC-SIGN in acetone-fixed cells, limiting the chance to visualize DC-SIGN in tissue sections. We first produced rabbit polyclonal PAb-DSCYT14 against a 14-aa peptide in the cytosolic domain of mouse DC-SIGN, and it specifically detected DC-SIGN and not the related lectins, SIGN-R1 and SIGN-R3 expressed in transfected CHO cells. MAbs were generated by immunizing rats and DC-SIGN knockout mice with the extracellular region of mouse DC-SIGN. Five rat IgG2a or IgM MAbs, named BMD10, 11, 24, 25, and 30, were selected and each MAb specifically detected DC-SIGN by FACS and Western blots, although BMD25 was cross-reactive to SIGN-R1. Two mouse IgG2c MAbs MMD2 and MMD3 interestingly bound mouse DC-SIGN but at 10 fold higher levels than the rat MAbs. When the binding epitopes of the new BMD and two other commercial rat anti-DC-SIGN MAbs, 5H10 and LWC06, were examined by competition assays, the epitopes of BMD11, 24, and LWC06 were identical or closely overlapping while BMD10, 30, and 5H10 were shown to bind different epitopes. MMD2 and MMD3 epitopes were on a 3rd noncompeting region of mouse DC-SIGN. DC-SIGN expressed on the cell surface was sensitive to collagenase treatment, as monitored by polyclonal and MAb. These new reagents should be helpful to probe the biology of DC-SIGN in vivo.
Collapse
MESH Headings
- Acetone/metabolism
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- CHO Cells
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Cricetinae
- Cricetulus
- Cross Reactions/immunology
- Epitope Mapping
- Epitopes/metabolism
- Female
- Hybridomas
- Immunization
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Mice
- Mice, Knockout
- Protein Engineering
- Protein Structure, Tertiary/genetics
- Rabbits
- Rats
- Rats, Inbred WF
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Recombinant Fusion Proteins/genetics
- Tissue Fixation
Collapse
Affiliation(s)
- Cheolho Cheong
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ines Matos
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jae-Hoon Choi
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Joseph D. Schauer
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Durga Bhavani Dandamudi
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Elina Shrestha
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jessy A. Makeyeva
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Xiaojun Li
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128
| | - Ralph M. Steinman
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Chae Gyu Park
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
42
|
Balboa L, Romero MM, Yokobori N, Schierloh P, Geffner L, Basile JI, Musella RM, Abbate E, Barrera S, Sasiain MC, Alemán M. Mycobacterium tuberculosis
impairs dendritic cell response by altering CD1b, DC‐SIGN and MR profile. Immunol Cell Biol 2010; 88:716-26. [DOI: 10.1038/icb.2010.22] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luciana Balboa
- Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina Buenos Aires Argentina
| | - María Mercedes Romero
- Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina Buenos Aires Argentina
| | - Noemí Yokobori
- Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina Buenos Aires Argentina
| | - Pablo Schierloh
- Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina Buenos Aires Argentina
| | - Laura Geffner
- Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina Buenos Aires Argentina
| | - Juan I Basile
- Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina Buenos Aires Argentina
| | - Rosa M Musella
- Servicio de Tisioneumonología, Hospital Muñiz Buenos Aires Argentina
| | - Eduardo Abbate
- Servicio de Tisioneumonología, Hospital Muñiz Buenos Aires Argentina
| | - Silvia Barrera
- Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina Buenos Aires Argentina
| | - María C Sasiain
- Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina Buenos Aires Argentina
| | - Mercedes Alemán
- Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina Buenos Aires Argentina
| |
Collapse
|
43
|
Mittal R, Bulgheresi S, Emami C, Prasadarao NV. Enterobacter sakazakii targets DC-SIGN to induce immunosuppressive responses in dendritic cells by modulating MAPKs. THE JOURNAL OF IMMUNOLOGY 2009; 183:6588-99. [PMID: 19846880 DOI: 10.4049/jimmunol.0902029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enterobacter sakazakii (ES) is an emerging pathogen that causes meningitis and necrotizing enterocolitis in infants. Dendritic cells (DCs) are professional phagocytic cells that play an essential role in host defense against invading pathogens; however, the interaction of ES with DCs is not known. In this study, we demonstrate that ES targets DC-specific ICAM nonintegrin (DC-SIGN) to survive in myeloid DCs for which outer membrane protein A (OmpA) expression in ES is critical, although it is not required for uptake. In addition, DC-SIGN expression was sufficient to cause a significant invasion by ES in HeLa cells and intestinal epithelial cells, which are normally not invaded by ES. OmpA(+) ES prevented the maturation of DCs by triggering the production of high levels of IL-10 and TGF-beta and by suppressing the activation of MAPKs. Pretreatment of DCs with Abs to IL-10 and TGF-beta or of bacteria with anti-OmpA Abs significantly enhanced the maturation markers on DCs. Furthermore, DCs pretreated with various inhibitors of MAPKs prohibited the increased production of proinflammatory cytokines stimulated by LPS or OmpA(-) ES. LPS pretreatment followed by OmpA(+) ES infection of DCs failed to induce maturation of DCs, indicating that OmpA(+) ES renders the cells in immunosuppressive state to external stimuli. Similarly, OmpA(+) ES-infected DCs failed to present Ag to T cells as indicated by the inability of T cells to proliferate in MLR. We conclude that ES interacts with DC-SIGN to subvert the host immune responses by disarming MAPK pathway in DCs.
Collapse
Affiliation(s)
- Rahul Mittal
- Division of Infectious Diseases, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | |
Collapse
|
44
|
Fahlgren A, Westermark L, Akopyan K, Fällman M. Cell type-specific effects of Yersinia pseudotuberculosis virulence effectors. Cell Microbiol 2009; 11:1750-67. [PMID: 19681909 DOI: 10.1111/j.1462-5822.2009.01365.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
One important feature of Yersinia pseudotuberculosis that enables resistance against the host immune defence is delivery of the antiphagocytic effectors YopH and YopE into phagocytic cells. The tyrosine phosphatase YopH influences integrin signalling, and YopE impairs cytoskeletal dynamics by inactivating Rho GTPases. Here, we report the impact of these effectors on internalization by dendritic cells (DCs), which internalize antigens to orchestrate host immune responses. We found that this pathogen resists internalization by DCs via YopE. YopH that is important for blocking phagocytosis by macrophages and neutrophils and which is also present inside the DCs does not contribute to the resistance. However, the YopH targets Fyb and p130Cas show higher expression levels in macrophages than in DCs. Furthermore, live cell microscopy revealed that the cells internalize Y. pseudotuberculosis in different ways: the macrophages utilize a locally restricted receptor-mediated zipper mechanism, whereas DCs utilize macropinocytosis involving constitutive ruffling that randomly catches bacteria into membrane folds. We conclude that YopH impacts early phagocytic signalling from the integrin receptor to which the bacterium binds and that this tight receptor-mediated stimulation is absent in DC macropinocytosis. Inactivation of cytoskeletal dynamics by YopE affects ruffling activity and hence also internalization. The different modes of internalization can be coupled to the major functions of these respective cell types: elimination by phagocytosis and antigen sampling.
Collapse
Affiliation(s)
- Anna Fahlgren
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, S-90187 Umeå, Sweden
| | | | | | | |
Collapse
|
45
|
Kline KA, Fälker S, Dahlberg S, Normark S, Henriques-Normark B. Bacterial adhesins in host-microbe interactions. Cell Host Microbe 2009; 5:580-92. [PMID: 19527885 DOI: 10.1016/j.chom.2009.05.011] [Citation(s) in RCA: 422] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 05/23/2009] [Accepted: 05/27/2009] [Indexed: 02/09/2023]
Abstract
Most commensal and pathogenic bacteria interacting with eukaryotic hosts express adhesive molecules on their surfaces that promote interaction with host cell receptors or with soluble macromolecules. Even though bacterial attachment to epithelial cells may be beneficial for bacterial colonization, adhesion may come at a cost because bacterial attachment to immune cells can facilitate phagocytosis and clearing. Many pathogenic bacteria have solved this dilemma by producing an antiphagocytic surface layer usually consisting of polysaccharide and by expressing their adhesins on polymeric structures that extend out from the cell surface. In this review, we will focus on the interaction between bacterial adhesins and the host, with an emphasis on pilus-like structures.
Collapse
Affiliation(s)
- Kimberly A Kline
- Swedish Institute for Infectious Disease Control and Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
46
|
Kerrigan AM, Brown GD. C-type lectins and phagocytosis. Immunobiology 2009; 214:562-75. [PMID: 19261355 PMCID: PMC2702671 DOI: 10.1016/j.imbio.2008.11.003] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 01/22/2023]
Abstract
To recognise and respond to pathogens, germ-line encoded pattern recognition receptors (PRRs) bind to conserved microbial structures and activate host defence systems, including microbial uptake by phagocytosis. Phagocytosis is a complex process that is instrumental in the control of extracellular pathogens, and this activity is mediated by several PRRs, including a number of C-type lectins. While some of these receptors have clearly been shown to mediate or regulate the uptake of pathogens, others are more contentious and are less well understood in terms of their phagocytic potential. Furthermore, very little is known about the underlying phagocytic mechanisms. Here, we review the phagocytic roles of the mannose receptor, Dectin-1, dendritic cell-specific ICAM grabbing non-integrin (DC-SIGN), DCL-1, mannose binding lectin and surfactant proteins A and D.
Collapse
Affiliation(s)
- Ann M Kerrigan
- Institute of Infectious Disease and Molecular Medicine, CLS, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | | |
Collapse
|
47
|
Robinson RT, Khader SA, Locksley RM, Lien E, Smiley ST, Cooper AM. Yersinia pestis evades TLR4-dependent induction of IL-12(p40)2 by dendritic cells and subsequent cell migration. THE JOURNAL OF IMMUNOLOGY 2008; 181:5560-7. [PMID: 18832714 DOI: 10.4049/jimmunol.181.8.5560] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
At the temperature of its flea vector (approximately 20-30 degrees C), the causative agent of plague, Yersinia pestis, expresses a profile of genes distinct from those expressed in a mammalian host (37 degrees C). When dendritic cells (DC) are exposed to Y. pestis grown at 26 degrees C (Y. pestis-26 degrees), they secrete copious amounts of IL-12p40 homodimer (IL-12(p40)(2)). In contrast, when DCs are exposed to Y. pestis grown at 37 degrees C (Y. pestis-37 degrees), they transcribe very little IL-12p40, which is secreted as IL-12p40 monomer (IL-12p40). Y. pestis-26 degrees also induces migration of DCs to the homeostatic chemokine CCL19, whereas Y. pestis-37 degrees does not; migratory DCs are positive for IL-12p40 transcription and secrete mostly IL-12(p40)(2); DCs lacking IL-12p40 do not migrate. Expression of acyltransferase LpxL from Escherichia coli in Y. pestis-37 degrees results in the production of a hexa-acylated lipid A, also seen in Y. pestis-26 degrees, rather than tetra-acylated lipid A normally seen in Y. pestis-37 degrees. The LpxL-expressing Y. pestis-37 degrees promotes DC IL-12(p40)(2) production and induction of DC migration. In addition, absence of TLR4 ablates production of IL-12(p40)(2) in DC exposed to Y. pestis-26 degrees. The data demonstrate the molecular pathway by which Y. pestis evades induction of early DC activation as measured by migration and IL-12(p40)(2) production.
Collapse
|
48
|
Zhang SS, Park CG, Zhang P, Bartra SS, Plano GV, Klena JD, Skurnik M, Hinnebusch BJ, Chen T. Plasminogen activator Pla of Yersinia pestis utilizes murine DEC-205 (CD205) as a receptor to promote dissemination. J Biol Chem 2008; 283:31511-21. [PMID: 18650418 DOI: 10.1074/jbc.m804646200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yersinia pestis, a Gram-negative bacterium that causes bubonic and pneumonic plague, is able to rapidly disseminate to other parts of its mammalian hosts. Y. pestis expresses plasminogen activator (PLA) on its surface, which has been suggested to play a role in bacterial dissemination. It has been speculated that Y. pestis hijacks antigen-presenting cells, such as macrophages (MPhis) and dendritic cells, to be delivered to lymph nodes to initiate dissemination and infection. Both alveolar MPhis and pulmonary dendritic cells express a C-type lectin receptor, DEC-205 (CD205), which mediates antigen uptake and presentation. However, no ligand has been identified for DEC-205. In this study, we show that the invasion of alveolar MPhisby Y. pestis depends both in vitro and in vivo on the expression of PLA. DEC-205-expressing MPhis and transfectants, but not their negative counterparts, phagocytosed PLA-expressing Y. pestis and Escherichia coli K12 more efficiently than PLA-negative controls. The interactions between PLA-expressing bacteria and DEC-205-expressing transfectants or alveolar MPhis could be inhibited by an anti-DEC-205 antibody. Importantly, the blockage of the PLA-DEC-205 interaction reduced the dissemination of Y. pestis in mice. In conclusion, murine DEC-205 is a receptor for PLA of Y. pestis, and this host-pathogen interaction appears to play a key role in promoting bacterial dissemination.
Collapse
Affiliation(s)
- Shu-sheng Zhang
- Department of Biomedical Sciences, College of Medicine-Rockford, University of Illinois at Chicago, Rockford, Illinois 61107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nabatov AA, de Jong MAWP, de Witte L, Bulgheresi S, Geijtenbeek TBH. C-type lectin Mermaid inhibits dendritic cell mediated HIV-1 transmission to CD4+ T cells. Virology 2008; 378:323-8. [PMID: 18597806 DOI: 10.1016/j.virol.2008.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 04/25/2008] [Accepted: 05/22/2008] [Indexed: 10/21/2022]
Abstract
Dendritic cells (DCs) are important in HIV-1 transmission; DCs capture invading HIV-1 through the interaction of the gp120 oligosaccharides with the C-type lectin DC-SIGN and migrate to the lymphoid tissues where HIV-1 is transmitted to T cells. Thus, the HIV-1 envelope glycoprotein gp120 is an attractive target to prevent interactions with DCs and subsequent viral transmission. Here, we have investigated whether the structural homologue of DC-SIGN, the nematode C-type lectin Mermaid can be used to prevent HIV-1 transmission by DCs. Our data demonstrate that Mermaid interacts with high mannose structures present on HIV-1 gp120 and thereby inhibits HIV-1 binding to DC-SIGN on DCs. Moreover, Mermaid inhibits DC-SIGN-mediated HIV-1 transmission from DC to T cells. We have identified Mermaid as a non-cytotoxic agent that shares the glycan specificity with DC-SIGN and inhibits DC-SIGN-gp120 interaction. The results are important for the anti-HIV-1 microbicide development directed at preventing DC-HIV-1 interactions.
Collapse
Affiliation(s)
- Alexey A Nabatov
- Department of Molecular Cellular Biology and Immunology, VU University Medical Center, vd Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|