1
|
Lee J, Park N, Nicosia M, Park JY, Pruett SB, Seo KS. Stimulation Strength Determined by Superantigen Dose Controls Subcellular Localization of FOXP3 Isoforms and Suppressive Function of CD4+CD25+FOXP3+ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:421-432. [PMID: 38108423 PMCID: PMC10784726 DOI: 10.4049/jimmunol.2300019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Staphylococcal superantigens induce massive activation of T cells and inflammation, leading to toxic shock syndrome. Paradoxically, increasing evidence indicates that superantigens can also induce immunosuppression by promoting regulatory T cell (Treg) development. In this study, we demonstrate that stimulation strength plays a critical role in superantigen-mediated induction of immunosuppressive human CD4+CD25+FOXP3+ T cells. Suboptimal stimulation by a low dose (1 ng/ml) of staphylococcal enterotoxin C1 (SEC1) led to de novo generation of Treg-like CD4+CD25+FOXP3+ T cells with strong suppressive activity. In contrast, CD4+CD25+ T cells induced by optimal stimulation with high-dose SEC1 (1 µg/ml) were not immunosuppressive, despite high FOXP3 expression. Signal transduction pathway analysis revealed differential activation of the PI3K signaling pathway and expression of PTEN in optimal and suboptimal stimulation with SEC1. Additionally, we identified that FOXP3 isoforms in Treg-like cells from the suboptimal condition were located in the nucleus, whereas FOXP3 in nonsuppressive cells from the optimal condition localized in cytoplasm. Sequencing analysis of FOXP3 isoform transcripts identified five isoforms, including a FOXP3 isoform lacking partial exon 3. Overexpression of FOXP3 isoforms confirmed that both an exon 2-lacking isoform and a partial exon 3-lacking isoform confer suppressive activity. Furthermore, blockade of PI3K in optimal stimulation conditions led to induction of suppressive Treg-like cells with nuclear translocation of FOXP3, suggesting that PI3K signaling impairs induction of Tregs in a SEC1 dose-dependent manner. Taken together, these data demonstrate that the strength of activation signals determined by superantigen dose regulates subcellular localization of FOXP3 isoforms, which confers suppressive functionality.
Collapse
Affiliation(s)
- Juyeun Lee
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Nogi Park
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Michael Nicosia
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Joo Youn Park
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Stephen B. Pruett
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Keun Seok Seo
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| |
Collapse
|
2
|
Progress towards the Elusive Mastitis Vaccines. Vaccines (Basel) 2022; 10:vaccines10020296. [PMID: 35214754 PMCID: PMC8876843 DOI: 10.3390/vaccines10020296] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 01/25/2023] Open
Abstract
Mastitis is a major problem in dairy farming. Vaccine prevention of mammary bacterial infections is of particular interest in helping to deal with this issue, all the more so as antibacterial drug inputs in dairy farms must be reduced. Unfortunately, the effectiveness of current vaccines is not satisfactory. In this review, we examine the possible reasons for the current shortcomings of mastitis vaccines. Some reasons stem from the peculiarities of the mammary gland immunobiology, others from the pathogens adapted to the mammary gland niche. Infection does not induce sterilizing protection, and recurrence is common. Efficacious vaccines will have to elicit immune mechanisms different from and more effective than those induced by infection. We propose focusing our research on a few points pertaining to either the current immune knowledge or vaccinology approaches to get out of the current deadlock. A possible solution is to focus on the contribution of cell-mediated immunity to udder protection based on the interactions of T cells with the mammary epithelium. On the vaccinology side, studies on the orientation of the immune response by adjuvants, the route of vaccine administration and the delivery systems are among the keys to success.
Collapse
|
3
|
Palomares RA, Bittar JHJ, Woolums AR, Hoyos-Jaramillo A, Hurley DJ, Saliki JT, Ferrer MS, Bullington AC, Rodriguez A, Murray T, Thoresen M, Jones K, Stoskute A. Comparison of the immune response following subcutaneous versus intranasal modified-live virus booster vaccination against bovine respiratory disease in pre-weaning beef calves that had received primary vaccination by the intranasal route. Vet Immunol Immunopathol 2021; 237:110254. [PMID: 34034143 DOI: 10.1016/j.vetimm.2021.110254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 11/29/2022]
Abstract
This study was performed to elucidate whether the route of booster vaccination affects the immune response against respiratory vaccine viruses in pre-weaning beef calves that receive primary intranasal (IN) vaccination during the first month of life. The objective was to compare the serum neutralizing antibody (SNA) titers to BHV1, BRSV, and BPI3V, cytokine mRNA expression and mucosal BHV1- and BRSV-specific IgA in nasal secretions following administration of IN or subcutaneous (SC) modified-live virus (MLV) booster vaccines 60 days after primary IN vaccination in young beef calves. Twenty-one beef calves were administered 2 mL of an IN MLV vaccine containing BHV1, BRSV, and BPI3V (Inforce3®) between one and five weeks of age. Sixty days after primary vaccination, calves were randomly assigned to one of two groups: IN-MLV (n = 11): Calves received 2 mL of the same IN MLV vaccine used for primary vaccination and 2 mL of a SC MLV vaccine containing BVDV1 & 2 (Bovi- Shield GOLD® BVD). SC-MLV (n = 10): Calves were administered 2 mL of a MLV vaccine containing, BHV1, BRSV, BPI3V, and BVDV1 & 2 (Bovi-Shield GOLD® 5). Blood and nasal secretion samples were collected on days -61 (primary vaccination), -28, -14, 0 (booster vaccination), 14, 21, 28, 42 and 60 for determination of SNA titers, cytokine gene expression analysis and nasal virus-specific IgA concentrations. Statistical analysis was performed using a repeated measures analysis through PROC GLIMMIX of SAS®. Booster vaccination by neither IN nor SC routes induced a significant increase in SNA titers against BHV1, BRSV, and BPI3V. Subcutaneous booster vaccination induced significantly greater BRSV-specific SNA titers (on day 42) and IgA concentration in nasal secretions (on days 21 and 42) compared to calves receiving IN booster vaccination. Both IN and SC booster vaccination were able to stimulate the production of BHV1-specific IgA in nasal secretions. In summary, booster vaccination of young beef calves using either SC or IN route two months after IN MLV primary vaccination resulted in comparable SNA titers, cytokine gene expression profile and virus-specific IgA concentration in nasal secretions. Only a few differences in the systemic and mucosal immune response against BHV1 and BRSV were observed. Subcutaneous booster vaccination induced significantly greater BRSV-specific SNA and secretory IgA titers compared to IN booster vaccination.
Collapse
Affiliation(s)
- Roberto A Palomares
- Group for Reproduction in Animals, Vaccinology and Infectious Diseases (GRAVID™), College of Veterinary Medicine, University of Georgia, Athens, GA 30602-2771, United States; Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States; Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-2771, United States.
| | - João H J Bittar
- Group for Reproduction in Animals, Vaccinology and Infectious Diseases (GRAVID™), College of Veterinary Medicine, University of Georgia, Athens, GA 30602-2771, United States; Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Amelia R Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Alejandro Hoyos-Jaramillo
- Group for Reproduction in Animals, Vaccinology and Infectious Diseases (GRAVID™), College of Veterinary Medicine, University of Georgia, Athens, GA 30602-2771, United States; Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - David J Hurley
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States; Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-2771, United States
| | - Jeremiah T Saliki
- Oklahoma Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States
| | - Maria S Ferrer
- Group for Reproduction in Animals, Vaccinology and Infectious Diseases (GRAVID™), College of Veterinary Medicine, University of Georgia, Athens, GA 30602-2771, United States; Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-2771, United States
| | - Anna C Bullington
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-2771, United States
| | - Adriana Rodriguez
- Group for Reproduction in Animals, Vaccinology and Infectious Diseases (GRAVID™), College of Veterinary Medicine, University of Georgia, Athens, GA 30602-2771, United States; Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - Tyler Murray
- Department of Animal and Dairy Sciences, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA 30602-2771, United States
| | - Merrilee Thoresen
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Katie Jones
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Agne Stoskute
- Group for Reproduction in Animals, Vaccinology and Infectious Diseases (GRAVID™), College of Veterinary Medicine, University of Georgia, Athens, GA 30602-2771, United States
| |
Collapse
|
4
|
Aylward B, Clark M, Galileo D, Baernard A, Wilson J, Brannick E, Gressley T, Fecteau M, Davis W, Dyer R. Immune cell populations residing in mesenteric adipose depots and mesenteric lymph nodes of lean dairy cows. J Dairy Sci 2019; 102:3452-3468. [DOI: 10.3168/jds.2018-15156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022]
|
5
|
Adegoke EO, Adeniran SO, Zeng Y, Wang X, Wang H, Wang C, Zhang H, Zheng P, Zhang G. Pharmacological inhibition of TLR4/NF-κB with TLR4-IN-C34 attenuated microcystin-leucine arginine toxicity in bovine Sertoli cells. J Appl Toxicol 2019; 39:832-843. [PMID: 30671980 DOI: 10.1002/jat.3771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 01/17/2023]
Abstract
This study investigated the pharmacological inhibition of the toll-like receptor 4 (TLR4) genes as a measure to attenuate microcystin-LR (MC-LR) reproductive toxicity. Bovine Sertoli cells were pretreated with TLR4-IN-C34 (C34) for 1 hour. Thereafter the pretreated and non-pretreated Sertoli cells were cultured in medium containing 10% heat-activated fetal bovine serum + 80 μg/L MC-LR for 24 hours to assess the ability of TLR4-IN-C34 to attenuate the toxic effects of MC-LR. The results showed that TLR4-IN-C34 inhibited MC-LR-induced mitochondria membrane damage, mitophagy and downregulation of blood-testis barrier constituent proteins via TLR4/nuclear factor-kappaB and mitochondria-mediated apoptosis signaling pathway blockage. The downregulation of the mitochondria electron transport chain, energy production and DNA replication related genes (mt-ND2, COX-1, COX-2, ACAT, mtTFA) and upregulation of inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor-α, IL-1β, interferon-γ, IL-4, IL-10, IL-13 and transforming growth factor β1) were modulated by TLR4-IN-C34. Taken together, we conclude that TLR4-IN-C34 inhibits MC-LR-related disruption of mitochondria membrane, mitophagy and downregulation of blood-testis barrier proteins of the bovine Sertoli cell via cytochrome c release and TLR4 signaling blockage.
Collapse
Affiliation(s)
- Elikanah Olusayo Adegoke
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Samson Olugbenga Adeniran
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Yue Zeng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Xue Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Hao Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Chen Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Han Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Peng Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| | - Guixue Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University Harbin, People's Republic of China
| |
Collapse
|
6
|
Heterogeneity in FoxP3- and GARP/LAP-Expressing T Regulatory Cells in an HLA Class II Transgenic Murine Model of Necrotizing Soft Tissue Infections by Group A Streptococcus. Infect Immun 2018; 86:IAI.00432-18. [PMID: 30224551 DOI: 10.1128/iai.00432-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/03/2018] [Indexed: 11/20/2022] Open
Abstract
Invasive group A streptococcus (GAS) infections include necrotizing soft tissue infections (NSTI) and streptococcal toxic shock syndrome (STSS). We have previously shown that host HLA class II allelic variations determine the risk for necrotizing fasciitis (NF), a dominant subgroup of NSTI, and STSS by modulating responses to GAS superantigens (SAgs). SAgs are pivotal mediators of uncontrolled T-cell activation, triggering a proinflammatory cytokine storm in the host. FoxP3-expressing CD4+ CD25+ T regulatory cells (Tregs) comprise phenotypically and functionally heterogeneous subsets with a profound ability to suppress inflammatory responses. Specifically, activated Tregs, which express glycoprotein A repetitions predominant (GARP) and display latent transforming growth factor β1 (TGF-β1) complexes (latency-associated peptide [LAP]), exhibit strong immunosuppressive functions. The significance of Tregs that may participate in suppressing inflammatory responses during NSTI is unknown. Here, we phenotypically characterized FoxP3/GARP/LAP-expressing Tregs in GAS-infected or SAg (SmeZ)-stimulated splenocytes from transgenic (tg) mice expressing human HLA-II DRB1*15 (DR15 allele associated with nonsevere NF/STSS-protective responses) or DRB1*0402/DQB1*0302 (DR4/DQ8 alleles associated with neutral risk for combined NF/STSS). We demonstrated both in vivo and in vitro that the neutral-risk allele upregulates expression of CD4+ CD25+ activated effector T cells, with a significantly lower frequency of Foxp3+/GARP+ LAP- but higher frequency of Foxp3- LAP+ Tregs than seen with the protective allele. Additional in vitro studies revealed that the presentation of SmeZ by the neutral-risk allele significantly increases proliferation and expression of effector cytokines gamma interferon (IFN-γ) and interleukin-2 (IL-2) and upregulates CD4+ CD25+ T cell receptors (TCRs) carrying specific Vβ 11 chain (TCRVβ11+) T cells and Th1 transcription factor Tbx21 mRNA levels. Our data suggest that neutral-risk alleles may drive Th1 differentiation while attenuating the induction of Tregs associated with suppressive function.
Collapse
|
7
|
Bovine Staphylococcus aureus Superantigens Stimulate the Entire T Cell Repertoire of Cattle. Infect Immun 2018; 86:IAI.00505-18. [PMID: 30201699 PMCID: PMC6204692 DOI: 10.1128/iai.00505-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/29/2018] [Indexed: 11/20/2022] Open
Abstract
Superantigens (SAgs) represent a diverse family of bacterial toxins that induce Vβ-specific T cell proliferation associated with an array of important diseases in humans and animals, including mastitis of dairy cows. However, an understanding of the diversity and distribution of SAg genes among bovine Staphylococcus aureus strains and their role in the pathogenesis of mastitis is lacking. Superantigens (SAgs) represent a diverse family of bacterial toxins that induce Vβ-specific T cell proliferation associated with an array of important diseases in humans and animals, including mastitis of dairy cows. However, an understanding of the diversity and distribution of SAg genes among bovine Staphylococcus aureus strains and their role in the pathogenesis of mastitis is lacking. Population genomic analysis of 195 bovine S. aureus isolates representing 57 unique sequence types revealed that strains encode 2 to 13 distinct SAgs and that the majority of isolates contain 5 or more SAg genes. A genome-scale analysis of bovine reference strain RF122 revealed a complement of 11 predicted SAg genes, which were all expressed in vitro. Detection of specific antibodies in convalescent cows suggests expression of 7 of 11 SAgs during natural S. aureus infection. We determined the Vβ T cell activation profile for all functional SAgs encoded by RF122, revealing evidence for bovine host-specific activity among the recently identified RF122-encoded SAgs SElY and SElZ. Remarkably, we discovered that some strains have evolved the capacity to stimulate the entire T cell repertoire of cattle through an array of diverse SAgs, suggesting a key role in bovine immune evasion.
Collapse
|
8
|
Adegoke EO, Wang X, Wang H, Wang C, Zhang H, Zhang G. Selenium (Na 2SeO 3) Upregulates Expression of Immune Genes and Blood-Testis Barrier Constituent Proteins of Bovine Sertoli Cell In Vitro. Biol Trace Elem Res 2018; 185:332-343. [PMID: 29383579 DOI: 10.1007/s12011-018-1248-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/11/2018] [Indexed: 01/03/2023]
Abstract
Sertoli cells were isolated from newborn calves and cultured in a medium supplemented with 0, 0.25, 0.50, 0.75, and 1.00 mg/L of sodium selenite to study their immune stimulatory effect, influence on cell's viability, and expression of blood-testis barrier proteins (occludin, connexin-43, zonula occluden, E-cadherin) using quantitative PCR and western blot analyses. Results showed that medium supplemented with 0.50 mg/L of selenium significantly (P < 0.05) promoted cell viability, upregulated toll-like receptor gene (TLR4), anti-inflammatory cytokines (IL-4, IL-10, TGFβ1), and expressions of blood-testis barrier proteins, and modulated expressions of pro-inflammatory cytokines (TNF-α, IL-1β, IFN-γ). Sertoli cells grown in culture medium supplemented with 0.25 mg/L of selenium significantly upregulated TLR4, IL-4, IL-10, TGFβ1, and blood-testis barrier proteins compared to the control group. Sodium selenite supplementation at 0.75 and 1.00 mg/L levels was cytotoxic and temporarily downregulated the expression of blood-testis barrier protein within 24 h after culture; however, commencing from 72 h post culture, increased cell viability and upregulation of expression of blood-testis barrier proteins were observed. In conclusion, the results of this study showed that selenium supplementation in the culture medium up to 0.50 mg/L concentration upregulates immune genes and blood-testis barrier constituent proteins of bovine Sertoli cells.
Collapse
Affiliation(s)
- E O Adegoke
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xue Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Hao Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chen Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Han Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Guixue Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China.
| |
Collapse
|
9
|
Adegoke EO, Wang C, Machebe NS, Wang X, Wang H, Adeniran SO, Zhang H, Zheng P, Zhang G. Microcystin-leucine arginine (MC-LR) induced inflammatory response in bovine sertoli cell via TLR4/NF-kB signaling pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 63:115-126. [PMID: 30212741 DOI: 10.1016/j.etap.2018.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Sertoli cells were treated with 0, 20, 40, 60 and 80 μg/L of MC-LR to investigate its toxic effects, mechanism of action and immune response of the cells. Our results revealed that treatment containing 20 μg/L of MC-LR was non-toxic to the cells. Treatments containing 40, 60 and 80 μg/L of MC-LR reduced the cell viability, induced nuclear morphological changes and downregulated the blood-testis barrier constituent proteins within 48 h after treatment. The toll-like receptor 4 (TLR4) and nuclear factor-kappaB (NF-kB) were activated and significantly (P < 0.05) upregulated in cells treated with 40, 60 and 80 μg/L of MC-LR compared to the control. The pro-inflammatory cytokines were upregulated within 48 h after treatment. However commencing from 72 h, upregulation of anti-inflammatory cytokines and expression of blood-testis barrier constituent proteins was observed. This study indicates that MC-LR induced inflammatory response in bovine Sertoli cell via activation of TLR4/NF-kB signaling pathway.
Collapse
Affiliation(s)
- E O Adegoke
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Chen Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - N S Machebe
- Department of Animal Science, University of Nigeria, Nsukka, Nigeria
| | - Xue Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Hao Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - S O Adeniran
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Han Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Peng Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Guixue Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China.
| |
Collapse
|
10
|
Lee J, Park N, Park JY, Kaplan BLF, Pruett SB, Park JW, Park YH, Seo KS. Induction of Immunosuppressive CD8 +CD25 +FOXP3 + Regulatory T Cells by Suboptimal Stimulation with Staphylococcal Enterotoxin C1. THE JOURNAL OF IMMUNOLOGY 2017; 200:669-680. [PMID: 29237775 DOI: 10.4049/jimmunol.1602109] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
Abstract
Superantigens (SAgs) produced by Staphylococcus aureus at high concentrations induce proliferation of T cells bearing specific TCR Vβ sequences and massive cytokinemia that cause toxic shock syndrome. However, the biological relevance of SAgs produced at very low concentrations during asymptomatic colonization or chronic infections is not understood. In this study, we demonstrate that suboptimal stimulation of human PBMCs with a low concentration (1 ng/ml) of staphylococcal enterotoxin C1, at which half-maximal T cell proliferation was observed, induced CD8+CD25+ T cells expressing markers related to regulatory T cells (Tregs), such as IFN-γ, IL-10, TGF-β, FOXP3, CD28, CTLA4, TNFR2, CD45RO, and HLA-DR. Importantly, these CD8+CD25+ T cells suppressed responder cell proliferation mediated in contact-dependent and soluble factor-dependent manners, involving galectin-1 and granzymes, respectively. In contrast, optimal stimulation of human PBMCs with a high concentration (1 μg/ml) of staphylococcal enterotoxin C1, at which maximal T cell proliferation was observed, also induced similar expression of markers related to Tregs, including FOXP3 in CD8+CD25+ cells, but these T cells were not functionally immunosuppressive. We further demonstrated that SAg-induced TCR Vβ-restricted and MHC class II-restricted expansion of immunosuppressive CD8+CD25+ T cells is independent of CD4+ T cells. Our results suggest that the concentration of SAg strongly affects the functional characteristics of activated T cells, and low concentrations of SAg produced during asymptomatic colonization or chronic S. aureus infection induce immunosuppressive CD8+ Tregs, potentially promoting colonization, propagation, and invasion of S. aureus in the host.
Collapse
Affiliation(s)
- Juyeun Lee
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Nogi Park
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Joo Youn Park
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Barbara L F Kaplan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Stephen B Pruett
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Juw Won Park
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40292; and
| | - Yong Ho Park
- Department of Microbiology, BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea
| | - Keun Seok Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762;
| |
Collapse
|
11
|
Liu T, Li L, Yin L, Yu H, Jing H, Liu Y, Kong C, Xu M. Superantigen staphylococcal enterotoxin C1 inhibits the growth of bladder cancer. Biosci Biotechnol Biochem 2017; 81:1741-1746. [PMID: 28715277 DOI: 10.1080/09168451.2017.1350564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Superantigens can induce cell-mediated cytotoxicity preferentially against MHC II-positive target cells with large amounts of inflammatory cytokines releasing. In this study, superantigen staphylococcal enterotoxin C (SEC) 1 was investigated to evaluate its potential in bladder cancer immunotherapy in vitro and in vivo. Our results revealed that SEC1 could stimulate the proliferation of human peripheral blood mononuclear cells (PBMCs) in a dose-dependent manner, accompanied with the release of interleukin-2, interferon-γ, and tumor necrosis factor-α, and increased the population of CD4+ T cells and CD8+ T cells. PBMCs stimulated by SEC1 could initiate significant cytotoxicity towards human bladder cancer cells in vitro. The results of in vivo antitumor experiment indicated that SEC1 could decrease the rate of tumor formation and prolong the survival time of tumor-bearing mice. Our study demonstrated that SEC1 inhibited the growth of bladder cancer. And it is also suggested that SEC1 may become a candidate for bladder cancer immunotherapy.
Collapse
Affiliation(s)
- Tao Liu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Lin Li
- Department of Rehabilitation Medicine, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Lei Yin
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Hongyuan Yu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Hongwei Jing
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yang Liu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Chuize Kong
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, People’s Republic of China
| |
Collapse
|
12
|
Nakamura SI, Kim YH, Takashima K, Kimura A, Nagai K, Ichijo T, Sato S. Composition of the microbiota in forestomach fluids and feces of Japanese Black calves with white scours1. J Anim Sci 2017. [DOI: 10.2527/jas.2017.1431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Sci Rep 2017; 7:44929. [PMID: 28322317 PMCID: PMC5359561 DOI: 10.1038/srep44929] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/16/2017] [Indexed: 12/29/2022] Open
Abstract
Discovery of clustered, regularly interspaced, short palindromic repeats and the Cas9 RNA-guided nuclease (CRISPR/Cas9) system provides a new opportunity to create programmable gene-specific antimicrobials that are far less likely to drive resistance than conventional antibiotics. However, the practical therapeutic use of CRISPR/Cas9 is still questionable due to current shortcomings in phage-based delivery systems such as inefficient delivery, narrow host range, and potential transfer of virulence genes by generalized transduction. In this study, we demonstrate genetic engineering strategies to overcome these shortcomings by integrating CRISPR/Cas9 system into a temperate phage genome, removing major virulence genes from the host chromosome, and expanding host specificity of the phage by complementing tail fiber protein. This significantly improved the efficacy and safety of CRISPR/Cas9 antimicrobials to therapeutic levels in both in vitro and in vivo assays. The genetic engineering tools and resources established in this study are expected to provide an efficacious and safe CRISPR/Cas9 antimicrobial, broadly applicable to Staphylococcus aureus.
Collapse
|
14
|
Nagaraj S, Ramlal S, Kingston J, Batra HV. Development of IgY based sandwich ELISA for the detection of staphylococcal enterotoxin G (SEG), an egc toxin. Int J Food Microbiol 2016; 237:136-141. [DOI: 10.1016/j.ijfoodmicro.2016.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 11/30/2022]
|
15
|
Impact of oral meloxicam and long-distance transport on cell-mediated and humoral immune responses in feedlot steers receiving modified live BVDV booster vaccination on arrival. Vet Immunol Immunopathol 2016; 175:42-50. [PMID: 27269791 DOI: 10.1016/j.vetimm.2016.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 01/03/2023]
Abstract
The objective of this study was to investigate the impact of oral meloxicam (MEL) and long-distance transportation on cell-mediated immunity (CMI) in preconditioned steers receiving a booster vaccination on arrival. We hypothesized that steers treated with MEL at 1mg/kg body weight, 6h before night-time transport, would be less immunocompromised on arrival (day 0) and after 7days, and that CMI following vaccination with a modified live bovine viral diarrhea virus (BVDV) recall antigen would be increased. Brahman crossbreed steers, 13-17 months of age (n=87), were randomly assigned to one of four treatment groups: MEL, transported (MTR) (n=22), MEL, non-transported (MNT) (n=22), lactose placebo, transported (CTR) (n=21), and lactose placebo, non-transported (CNT) (n=22). MTR and CTR steers were transported for approximately 16h non-stop on a truck from Mississippi to Iowa (approximately 1300km), whereas steers in the MNT and CNT groups remained in Mississippi as non-transported controls. Body weight was measured and jugular blood was collected at -1, 0, and 7days from all steers at the same time, regardless of location. Multi-parameter flow cytometry (MP-FCM) was used to identify T-cell subsets and detect the expression of three activation markers (CD25 [interleukin (IL)-2 receptor], intracellular interferon-gamma [IFNγ], and IL-4) after in vitro stimulation with BVDV recall antigen. Plasma cortisol concentration was measured on day -1, 0, and 7 as a marker of transport-associated stress. Serum antibody titer to BVDV was assessed on day -1 and day 7 post-booster vaccination. Whole-blood samples were analyzed using MP-FCM on days 0 and 7. Results were log transformed and analyzed using repeated measures of analysis of variance. Compared with non-transported controls, transport led to an increase in BVDV-induced expression of CD25, IFNγ, and IL-4 in CD4(+), CD8(+), and γδ(+) T-cell subsets (P<0.05). MEL treatment mitigated the transportation-associated increase in CD25 expression by peripheral blood mononuclear cells (PBMCs), CD4(+), and γδ(+) T cells. CMI outputs for the MTR group were less than those of the CTR group (P<0.05); however, the MTR and NT groups did not differ (P>0.10). A treatment*transport interaction was noted for the increase in IL-4 expression by CD8(+) T cells after transport, with a significant difference between the CTR and MTR groups at day 7. In conclusion, the use of oral MEL prior to transport appears to have inhibitory or homeostatic effects, but further research is needed to validate the effect of MEL treatment on specific T-cell subsets in transported cattle.
Collapse
|
16
|
Mazzilli M, Piccinini R, Scali F, Zecconi A. Pattern characterization of genes involved in non-specific immune response in Staphylococcus aureus isolates from intramammary infections. Res Vet Sci 2015; 103:54-9. [PMID: 26679796 DOI: 10.1016/j.rvsc.2015.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus isolated from mammary gland are characterized by different genetic patterns. Ninety four isolates from 33 dairy herds were analyzed by the means of a microarray to investigate S. aureus virulence patterns and the distribution of genes believed to be involved in immune evasion. None of the 94 isolates considered were MRSA. However, 50% of the isolates belonged to complexes related to MRSA and to human diseases, while only about 25% of them can be considered as exclusively of bovine origin. The distribution of clonal complexes and the different gene patterns observed confirmed the presence of an influence of geographical localization. The assessment of the influence of genes related to immune evasion on quarter milk cell count showed as four of them showed to be significantly associated to an increase quarter milk SCC. These genes could be potential target for developing new vaccines against S. aureus.
Collapse
Affiliation(s)
- Maria Mazzilli
- Dept. Animal Pathology, Hygiene and Public Health, Università degli Studi di Milano, Via Celoria 10, 20133 Milano, Italy
| | - Renata Piccinini
- Dept. Animal Pathology, Hygiene and Public Health, Università degli Studi di Milano, Via Celoria 10, 20133 Milano, Italy
| | - Federico Scali
- Dept. Animal Pathology, Hygiene and Public Health, Università degli Studi di Milano, Via Celoria 10, 20133 Milano, Italy
| | - Alfonso Zecconi
- Dept. Animal Pathology, Hygiene and Public Health, Università degli Studi di Milano, Via Celoria 10, 20133 Milano, Italy.
| |
Collapse
|
17
|
Brodzki P, Kostro K, Brodzki A, Ziętek J. The concentrations of inflammatory cytokines and acute-phase proteins in the peripheral blood and uterine washings in cows with pyometra. Reprod Domest Anim 2015; 50:417-22. [PMID: 25704413 DOI: 10.1111/rda.12507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/31/2015] [Indexed: 01/01/2023]
Abstract
The development of pyometra in cows depends largely on the state of local immunity of the uterus. The objective of the study was to evaluate the concentration of the following proinflammatory cytokines: tumour necrosis factor (TNF-α) and interleukin-6 (IL-6); anti-inflammatory cytokine: interleukin-10 (IL-10); and acute-phase proteins (APPs): haptoglobin (Hp) and serum amyloid A (SAA), in serum and uterine washings in cows with pyometra and healthy animals. The study was performed on 20 cows divided into two groups based on the results of cytological and ultrasonographic tests: a pyometra and a healthy group (10 cows per group). Experimental material consisted of blood serum and uterine washings. The levels of the following cytokines, TNF-α, IL-6, IL-10 and APPs - Hp and SAA, in the study material were determined by ELISA. The results showed that the values of TNF-α, IL-6, IL-10 as well as SAA and Hp were significantly higher in serum of cows with pyometra compared to controls (p < 0.001). The uterine washings had significantly higher levels of IL-6, IL-10, and Hp in pyometra cows compared to the control (p < 0.001). Our results indicate that it is possible to monitor the course of pyometra in cows based on the evaluation of the concentration of cytokines and Hp in the serum and uterine washings. Simultaneous evaluation of selected indicators of antagonistic interaction can be helpful in determining the current status of local immunity of the uterus. On this basis, it could be possible to properly select an adjunctive therapy in the form of immunomodulating preparations.
Collapse
Affiliation(s)
- P Brodzki
- Department and Clinic of Reproduction, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | | | | | | |
Collapse
|
18
|
Palomares RA, Hurley DJ, Woolums AR, Parrish JE, Brock KV. Analysis of mRNA expression for genes associated with regulatory T lymphocytes (CD25, FoxP3, CTLA4, and IDO) after experimental infection with bovine viral diarrhea virus of low or high virulence in beef calves. Comp Immunol Microbiol Infect Dis 2014; 37:331-8. [PMID: 25456194 PMCID: PMC7112516 DOI: 10.1016/j.cimid.2014.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 09/26/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022]
Abstract
Immunosuppression caused by bovine viral diarrhea virus (BVDV) has been associated with lymphocyte depletion, leukopenia and impairment of leukocyte function; however, no work has been done on the relationship between BVDV and regulatory T lymphocytes (Tregs). The objective of this study was to compare the mRNA expression of genes associated with Tregs (CD25, FoxP3, CTLA4, and IDO), after experimental infection of beef calves with low (LV) or high (HV) virulence BVDV. Thirty BVDV-naïve calves were randomly assigned to three groups. Calves were intra-nasally inoculated with LV (n=10, strain SD-1) or HV (n=10, strain 1373) BVDV or BVDV-free cell culture medium (control, n=10). Quantitative RT-PCR was used to determine the expression of target genes in tracheo-bronchial lymph nodes and spleen on day 5 post-infection. The mRNA expression of CD25 was up-regulated in tracheo-bronchial lymph nodes of LV (P<0.05), but not in HV compared to the control group. The expression of FoxP3 and CTLA4 was not increased in tracheo-bronchial lymph nodes of either of the BVDV-inoculated groups. A dramatic up-regulation of IDO mRNA was observed in tracheo-bronchial lymph nodes of LV (P<0.05), but not HV compared to the control calves. In conclusion, experimental infection with BVDV did not provide evidence of Treg activation based on expression of FoxP3 and CTL4. Differential expression of CD25 and IDO mRNA on day 5 post-infection with HV or LV BVDV might reflect temporal differences in transcription occurring during the immune response elicited by these viral strains, or differences in viral infectivity of the host cells.
Collapse
Affiliation(s)
- Roberto A Palomares
- Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States.
| | - David J Hurley
- Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| | - Amelia R Woolums
- Department of Large Animal Medicine, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| | - Jacqueline E Parrish
- Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| | - Kenny V Brock
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
19
|
Brodzki P, Kostro K, Brodzki A, Niemczuk K, Lisiecka U. Cytometric analysis of surface molecules of leucocytes and phagocytic activity of granulocytes and monocytes/macrophages in cows with pyometra. Reprod Domest Anim 2014; 49:858-64. [PMID: 25124985 DOI: 10.1111/rda.12381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 06/19/2014] [Indexed: 01/17/2023]
Abstract
Pyometra is a serious problem in dairy cow herds, causing large economic losses due to infertility. The development of pyometra depends mainly on the immunological status of the cow. The aim of the study was a comparative evaluation of selected indicators involving non-specific and specific immunity in cows with pyometra and in cows without inflammation of the uterus. The study was performed in 20 cows, which were divided into two groups: pyometra group and healthy group, each comprising 10 cows, based on the results of cytological and ultrasonographic tests. A flow cytometric analysis was performed for the surface molecules CD4, CD8, CD14, CD21, CD25 and CD4(+) CD25(+) on leucocytes, and the phagocytic activity was determined from granulocytes and monocytes/macrophages in the peripheral blood and uterine washings, respectively. It was demonstrated that the percentage of phagocytic granulocytes and monocytes/macrophages in both the peripheral blood and uterine washings was significantly lower in cows with pyometra compared with the healthy group (p < 0.001). Significantly (p ≤ 0.001) lower percentage of CD4(+) , CD14(+) , CD25(+) and CD4(+) CD25(+) phenotype leucocytes was also observed in the peripheral blood of cows from the pyometra group, along with a significantly higher (p < 0.001) percentage of CD8(+) and CD21(+) lymphocytes as compared to the healthy group. The results of work indicate that disfunction of cell immunity coexisting with pyometra may be caused by a bacterial infection and the presence of blocking agents (IL-10), released by the increasing number of CD8(+) lymphocytes what leads to the advanced inflammation of uterus.
Collapse
Affiliation(s)
- P Brodzki
- Department and Clinic of Reproduction, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | | | | | | | | |
Collapse
|
20
|
Brodzki P, Kostro K, Brodzki A, Lisiecka U. Determination of selected parameters for non-specific and specific immunity in cows with subclinical endometritis. Anim Reprod Sci 2014; 148:109-14. [PMID: 25022330 DOI: 10.1016/j.anireprosci.2014.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 06/05/2014] [Accepted: 06/20/2014] [Indexed: 12/30/2022]
Abstract
Endometritis in dairy cow herds is a serious economic problem all over the world due to the large economic losses. The aim of the study was a comparative evaluation of selected indicators of non-specific and specific immunity in cows with subclinical endometritis and in cows without inflammation of the uterus. The study was performed on 40 cows on day 65 after delivery. Based on the results of cytological tests, the cows were divided into two groups: experimental (subclinical endometritis) and control (20 cows in each group). A flow cytometric analysis was performed for the leukocyte surface molecules CD4, CD8, CD14, CD21, CD25. Moreover the phagocytic activity of granulocytes and monocytes/macrophages in peripheral blood and uterine washings was determined. It has been demonstrated that the percentage of phagocytic granulocytes and monocytes/macrophages in both the peripheral blood and uterine washings was significantly lower for cows with subclinical endometritis when compared to cows undergoing a normal puerperal period (p<0.001). A significant (p≤0.001) decrease in the percentage of CD4+, CD14+, CD25+ and CD4+CD25+ leukocytes was also observed in peripheral blood of the cows from the experimental group. In uterine washings a significant decrease (p<0.001) in CD21+ and increase in CD8+ lymphocytes was detected. The results indicate that dysfunction of cell immunity coexisting with subclinical endometritis may be the main factor causing advanced inflammation of the uterus. Knowledge of immunological mechanisms observed in cows with subclinical endometritis could aid in choosing the right adjuvant therapy using immunomodulating agents.
Collapse
Affiliation(s)
- P Brodzki
- Department and Clinic of Reproduction, University of Life Sciences in Lublin, ul. Głęboka 30, 20-612 Lublin, Poland.
| | - K Kostro
- Department of Epizootiology and Clinic of Infections Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-033 Lublin, Poland
| | - A Brodzki
- Department and Clinic of Animal Surgery, University of Life Sciences in Lublin, ul. Głęboka 30, 20-612 Lublin, Poland
| | - U Lisiecka
- Department of Epizootiology and Clinic of Infections Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-033 Lublin, Poland
| |
Collapse
|
21
|
Vanderhaeghen W, Piepers S, Leroy F, Van Coillie E, Haesebrouck F, De Vliegher S. Invited review: effect, persistence, and virulence of coagulase-negative Staphylococcus species associated with ruminant udder health. J Dairy Sci 2014; 97:5275-93. [PMID: 24952781 DOI: 10.3168/jds.2013-7775] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 05/12/2014] [Indexed: 01/12/2023]
Abstract
The aim of this review is to assess the effect of coagulase-negative staphylococci (CNS) species on udder health and milk yield in ruminants, and to evaluate the capacity of CNS to cause persistent intramammary infections (IMI). Furthermore, the literature on factors suspected of playing a role in the pathogenicity of IMI-associated CNS, such as biofilm formation and the presence of various putative virulence genes, is discussed. The focus is on the 5 CNS species that have been most frequently identified as causing bovine IMI using reliable molecular identification methods (Staphylococcus chromogenes, Staphylococcus simulans, Staphylococcus haemolyticus, Staphylococcus xylosus, and Staphylococcus epidermidis). Although the effect on somatic cell count and milk production is accepted to be generally limited or nonexistent for CNS as a group, indications are that the typical effects differ between CNS species and perhaps even strains. It has also become clear that many CNS species can cause persistent IMI, contrary to what has long been believed. However, this trait appears to be quite complicated, being partly strain dependent and partly dependent on the host's immunity. Consistent definitions of persistence and more uniform methods for testing this phenomenon will benefit future research. The factors explaining the anticipated differences in pathogenic behavior appear to be more difficult to evaluate. Biofilm formation and the presence of various staphylococcal virulence factors do not seem to (directly) influence the effect of CNS on IMI but the available information is indirect or insufficient to draw consistent conclusions. Future studies on the effect, persistence, and virulence of the different CNS species associated with IMI would benefit from using larger and perhaps even shared strain collections and from adjusting study designs to a common framework, as the large variation currently existing therein is a major problem. Also within-species variation should be investigated.
Collapse
Affiliation(s)
- W Vanderhaeghen
- M-Team & Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - S Piepers
- M-Team & Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - F Leroy
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - E Van Coillie
- Technology and Food Science Unit, Institute for Agricultural and Fisheries Research (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium
| | - F Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - S De Vliegher
- M-Team & Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| |
Collapse
|
22
|
Guzman E, Hope J, Taylor G, Smith AL, Cubillos-Zapata C, Charleston B. Bovine γδ T cells are a major regulatory T cell subset. THE JOURNAL OF IMMUNOLOGY 2014; 193:208-22. [PMID: 24890724 PMCID: PMC4065783 DOI: 10.4049/jimmunol.1303398] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In humans and mice, γδ T cells represent <5% of the total circulating lymphocytes. In contrast, the γδ T cell compartment in ruminants accounts for 15–60% of the total circulating mononuclear lymphocytes. Despite the existence of CD4+CD25high Foxp3+ T cells in the bovine system, these are neither anergic nor suppressive. We present evidence showing that bovine γδ T cells are the major regulatory T cell subset in peripheral blood. These γδ T cells spontaneously secrete IL-10 and proliferate in response to IL-10, TGF-β, and contact with APCs. IL-10–expressing γδ T cells inhibit Ag-specific and nonspecific proliferation of CD4+ and CD8+ T cells in vitro. APC subsets expressing IL-10 and TFG-β regulate proliferation of γδ T cells producing IL-10. We propose that γδ T cells are a major regulatory T cell population in the bovine system.
Collapse
Affiliation(s)
- Efrain Guzman
- The Pirbright Institute, Surrey GU24 0NF, United Kingdom;
| | - Jayne Hope
- The Roslin Institute University of Edinburgh, Midlothian EH259RG, United Kingdom; and
| | | | - Adrian L Smith
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | | | | |
Collapse
|
23
|
Brodzki P, Kostro K, Brodzki A, Lisiecka U, Kurek L, Marczuk J. Phenotyping of leukocytes and granulocyte and monocyte phagocytic activity in the peripheral blood and uterus of cows with endometritis. Theriogenology 2014; 82:403-10. [PMID: 24857644 DOI: 10.1016/j.theriogenology.2014.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/18/2014] [Accepted: 04/18/2014] [Indexed: 11/28/2022]
Abstract
This study was a comparative evaluation of selected immunological parameters in peripheral blood and uterine wash samples from cows with a normal postpartum period compared with cows with endometritis. We aimed to determine the usefulness of these parameters in monitoring the puerperium. In total, 40 cows were included in the study: 20 had endometritis (experimental group), and 20 did not have uterine inflammation (control group). Animals were chosen on the basis of cytological and bacteriological test results. The tests were conducted 5, 22, and 40 days postpartum. In both groups, flow cytometric analysis of the surface molecules CD4, CD8, CD21, CD25, and CD14 in the peripheral blood and uterine washings was performed. Granulocyte and monocyte phagocytic activity was determined using a commercial Phagotest kit that was adapted for flow cytometry. The percentage of phagocytic granulocytes and monocytes in both the peripheral blood and the uterine washings was significantly lower for cows in the experimental group compared with the control group (P < 0.01). A significant decrease (P < 0.01) in the percentage of CD4+, CD25+, CD14+, and CD4 + CD25(high) leukocyte subpopulations was also observed in the peripheral blood of cows with endometritis. A significant decrease (P < 0.01) in CD21+ lymphocytes and an increase in CD8+ lymphocytes was detected in uterine washings. The results of this work indicate that cell immunity dysfunction may be the main factor causing advanced inflammation of the uterus in endometritis. Knowledge of the immunological mechanisms observed in cows with endometritis might aid in choosing the correct immunomodulating agent-based adjuvant therapy.
Collapse
Affiliation(s)
- P Brodzki
- Department and Clinic of Reproduction, University of Life Sciences in Lublin, Głęboka, Lublin, Poland.
| | - K Kostro
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, Głęboka, Lublin, Poland
| | - A Brodzki
- Department and Clinic of Animal Surgery, University of Life Sciences in Lublin, Głęboka, Lublin, Poland
| | - U Lisiecka
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, Głęboka, Lublin, Poland
| | - L Kurek
- Department and Clinic of Internal Medicine, University of Life Sciences in Lublin, Głęboka, Lublin, Poland
| | - J Marczuk
- Department and Clinic of Internal Medicine, University of Life Sciences in Lublin, Głęboka, Lublin, Poland
| |
Collapse
|
24
|
Palomares RA, Brock KV, Walz PH. Differential expression of pro-inflammatory and anti-inflammatory cytokines during experimental infection with low or high virulence bovine viral diarrhea virus in beef calves. Vet Immunol Immunopathol 2014; 157:149-54. [DOI: 10.1016/j.vetimm.2013.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 10/15/2013] [Accepted: 12/01/2013] [Indexed: 10/25/2022]
|
25
|
Click RE. Review: 2-mercaptoethanol alteration of in vitro immune functions of species other than murine. J Immunol Methods 2013; 402:1-8. [PMID: 24270017 PMCID: PMC3946847 DOI: 10.1016/j.jim.2013.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/19/2013] [Accepted: 11/15/2013] [Indexed: 11/30/2022]
Abstract
Descriptions that organosulfurs could alter biologically relevant cellular functions began some 40 years ago when cell mediated and humoral murine in vitro immune responses were reported to be dramatically enhanced by any of four xenobiotic, sulfhydryl compounds—2-mercaptoethanol (2-ME), dithiothreitol, glutathione, and l-cysteine; the most effective of the four was 2-ME. These findings triggered a plethora of reports defining 2-ME benefits for a multitude of immunological processes, primarily with murine models. This led to investigations on 2-ME alterations of (a) immune functions in other species, (b) activities of other cell-types, and (c) in situ diseases. In addition, the early findings may have been instrumental in the identification of the previously undefined anticarcinogenic chemicals in specific foods as organosulfurs. Outside the plant organosulfurs, there are no comprehensive reviews of these areas to help define mechanisms by which organosulfurs function as well as identify potential alternative uses. Therefore, the present review will focus on 2-ME alterations of in vitro immune functions in species other than murine; namely, fish, amphibian, reptile, avian, whales, dolphins, rat, hamster, rabbit, guinea pig, feline, canine, porcine, ovine, bovine, and human. Processes, some unique to a given species, were in general, enhanced and in some cases dependent upon the presence of 2-ME. The largest benefits occurred in media that were serum free, followed by those in autologous serum and then fetal bovine serum supplemented medium. Concentrations of 2-ME were generally in the low μM range, with exceptions of those for salamander (20 mM), turtles (70 mM) and dolphins (7 mM). The few studies designed to assess mechanisms found that changes induced by 2-ME were generally accompanied by alterations of reduced/oxidized glutathione cellular concentrations. The major benefit for most studies, however, was to increase the sensitivity of the culture environment, which permitted a specific process to be more easily dissected. 2-ME altered in vitro immune functions of species other than murine. Benefits were found for species from fish to humans. Enhancement occurred in serum-free and in autologous or fetal bovine serum. Generally, optimal concentrations of 2-ME were in the low uM range. Concentration exceptions were salamander (20 mM), turtles (70 mM), and dolphins (7 mM).
Collapse
Affiliation(s)
- Robert E Click
- N8693 1250 Street, River Falls, WI 54022, United States.
| |
Collapse
|
26
|
Dose-dependent immunogenicity of a soluble Neospora caninum tachyzoite-extract vaccine formulated with a soy lecithin/β-glucan adjuvant in cattle. Vet Parasitol 2013; 197:13-21. [DOI: 10.1016/j.vetpar.2013.04.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/10/2013] [Accepted: 04/20/2013] [Indexed: 11/20/2022]
|
27
|
Effects of dexamethasone and meloxicam on bovine CD25+CD8+ and CD25−CD8+ T cells – in vitro study. Res Vet Sci 2013; 94:662-74. [DOI: 10.1016/j.rvsc.2012.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/25/2012] [Accepted: 12/06/2012] [Indexed: 12/21/2022]
|
28
|
Podkowik M, Park J, Seo K, Bystroń J, Bania J. Enterotoxigenic potential of coagulase-negative staphylococci. Int J Food Microbiol 2013; 163:34-40. [PMID: 23500613 PMCID: PMC6671284 DOI: 10.1016/j.ijfoodmicro.2013.02.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/31/2013] [Accepted: 02/02/2013] [Indexed: 01/28/2023]
Abstract
Staphylococci are a worldwide cause of human and animal infections including life-threatening cases of bacteraemia, wound infections, pyogenic lesions, and mastitis. Enterotoxins produced by some staphylococcal species were recognized as causative agents of staphylococcal food poisoning (SFP), being also able to interrupt human and animal immune responses. Only enterotoxins produced by Staphylococcus aureus were as yet well characterized. Much less is known about enterotoxigenic potential of coagulase-negative species of genus Staphylococcus (CNS). The pathogenic role of CNS and their enterotoxigenicity in developing SFP has not been well established. Although it has been reported that enterotoxigenic CNS strains have been associated with human and animal infections and food poisoning, most of research lacked a deeper insight into structure of elements encoding CNS enterotoxins. Recent studies provided us with strong evidence for the presence and localization of enterotoxin-coding elements in CNS genomes and production of enterotoxins. Thus, the importance of pathogenic potential of CNS as a source of staphylococcal enterotoxins has been highlighted in human and animal infections as well as in food poisoning.
Collapse
Affiliation(s)
- M. Podkowik
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - J.Y. Park
- Department of Basic Sciences, Mississippi State University, MS, USA
| | - K.S. Seo
- Department of Basic Sciences, Mississippi State University, MS, USA
| | - J. Bystroń
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - J. Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
29
|
Liu Y, Xu M, Zhang H, Li X, Su Z, Zhang C. SEC2-induced superantigen and antitumor activity is regulated through calcineurin. Appl Microbiol Biotechnol 2013; 97:9695-703. [PMID: 23435984 DOI: 10.1007/s00253-013-4764-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/04/2013] [Accepted: 02/07/2013] [Indexed: 12/22/2022]
Abstract
Once the TCR-SAg-MHC II ternary complex is established, it triggers a variety of intracellular signal transduction pathways, which provoke extreme responses in the immune system. However, the signaling events that involved in SAg-induced immune activation are not well understood. In this study, we demonstrated that the Ca(2+)/calcineurin (CaN)/nuclear factor of activated T cells (NFAT) signaling pathway was involved in SEC2-induced immune activation, and selective blockade of CaN by its inhibitor cyclosporine A (CsA) can completely inhibited the SEC2-induced T-cell stimulating potency. In addition, we selected an engineered SEC2 mutant named SAM-1 based on a series of biological activity tests, and our further studies on it not only confirmed that the CaN activity and gene transcription of its key substrates were proportional to the SEC2/SAM-1-induced T-cell stimulating potency, but also suggested that intensified Ca(2+)/CaN/NFAT signaling transduction induced by SAM-1 resulted in enhanced T-cell stimulating potency, production of cytokines and cytotoxicity, which finally elicit the improved antitumor activity of SAM-1 in vivo.
Collapse
Affiliation(s)
- Yanli Liu
- Institute of Applied of Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis, P.O. Box 417, 110016, Shenyang, Liaoning, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
MASLANKA T, JAROSZEWSKI JJ. Foxp3 Expression in Bovine CD8 + T Cells Is Associated with the Intensity of CD25 Expression. J Vet Med Sci 2013; 75:241-4. [DOI: 10.1292/jvms.12-0284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Tomasz MASLANKA
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowski Street 13, Olsztyn 10–718, Poland
| | - Jerzy Jan JAROSZEWSKI
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowski Street 13, Olsztyn 10–718, Poland
| |
Collapse
|
31
|
Liu Y, Xu M, Su Z, Cai Y, Zhang G, Zhang H. Increased T-cell stimulating activity by mutated SEC2 correlates with its improved antitumour potency. Lett Appl Microbiol 2012; 55:362-9. [PMID: 22925007 DOI: 10.1111/j.1472-765x.2012.03303.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To investigate the improved antitumour activity of SAM-3 compared with recombinant staphylococcal enterotoxins C2 (rSEC2). METHODS AND RESULTS Methylthiazol tetrazolium and flow cytometry assays showed that the antitumour activity of SAM-3 in vivo was improved because of enhanced T-cell stimulating potency, resulting in massive activation of T cells, particularly CD4(+) and CD8(+) T cells, and subsequent cytokine release. Quantitative real-time PCR assay showed that despite similar Vβ specificities induced by rSEC2 and SAM-3, the quantities of activated T cells bearing specific Vβin vitro were different. CONCLUSIONS The results strongly suggested that the increased SAM-3-T-cell receptor (TCR) binding affinity contributed to massive T-cell activation and cytokine release, substantially amplifying antitumour immune response in vivo. SIGNIFICANCE AND IMPACT OF THE STUDY This study provided evidence for the mechanism of SAM-3 antitumour activity improvement compared with rSEC2. Results indicated that SAM-3 could be used as a potent powerful candidate agent for tumour treatment in clinics.
Collapse
Affiliation(s)
- Y Liu
- Microbiology Resources, Institute of Applied Ecology, Chinese Academy of Science, Shenyang, China College of Resource and Environment, Graduate University of Chinese Academy of Sciences, Beijing, China Center for Drug Evaluation and Research, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - M Xu
- Microbiology Resources, Institute of Applied Ecology, Chinese Academy of Science, Shenyang, China College of Resource and Environment, Graduate University of Chinese Academy of Sciences, Beijing, China Center for Drug Evaluation and Research, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Z Su
- Microbiology Resources, Institute of Applied Ecology, Chinese Academy of Science, Shenyang, China College of Resource and Environment, Graduate University of Chinese Academy of Sciences, Beijing, China Center for Drug Evaluation and Research, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Y Cai
- Microbiology Resources, Institute of Applied Ecology, Chinese Academy of Science, Shenyang, China College of Resource and Environment, Graduate University of Chinese Academy of Sciences, Beijing, China Center for Drug Evaluation and Research, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - G Zhang
- Microbiology Resources, Institute of Applied Ecology, Chinese Academy of Science, Shenyang, China College of Resource and Environment, Graduate University of Chinese Academy of Sciences, Beijing, China Center for Drug Evaluation and Research, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - H Zhang
- Microbiology Resources, Institute of Applied Ecology, Chinese Academy of Science, Shenyang, China College of Resource and Environment, Graduate University of Chinese Academy of Sciences, Beijing, China Center for Drug Evaluation and Research, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| |
Collapse
|
32
|
Coussens PM, Sipkovsky S, Murphy B, Roussey J, Colvin CJ. Regulatory T cells in cattle and their potential role in bovine paratuberculosis. Comp Immunol Microbiol Infect Dis 2012; 35:233-9. [DOI: 10.1016/j.cimid.2012.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 12/31/2022]
|
33
|
Maślanka T, Jaroszewski JJ. In vitro effects of dexamethasone on bovine CD25+CD4+ and CD25-CD4+ cells. Res Vet Sci 2012; 93:1367-79. [PMID: 22349593 DOI: 10.1016/j.rvsc.2012.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 01/23/2012] [Accepted: 01/29/2012] [Indexed: 12/31/2022]
Abstract
This paper investigates the in vitro effect of dexamethasone on bovine CD25highCD4+, CD25lowCD4+ and CD25-CD4+ T cells. Only a small percentage of bovine CD25highCD4+ (2-4%) and CD25lowCD4+ (1-2%) cells expressed Foxp3. Dexamethasone caused considerable loss of CD25-CD4+ cells, but it increased the relative and absolute numbers of CD25highCD4+ and CD25lowCD4+ lymphocytes, while at the same time reducing the percentage of Foxp3+ cells within the latter subpopulations. Considering all these, as well as the intrinsically poor Foxp3 expression in bovine CD25+CD4+, it can be concluded that the drug most probably increased the number of activated non-regulatory CD4+ lymphocytes. It has been found that changes in cell number were at least partly caused by proapoptotic effect of the drug on CD25-CD4+ cells and antiapoptotic effect on CD25highCD4+ and CD25lowCD4+ cells. The results obtained from this study indicate that the involvement of CD4+ lymphocytes in producing the anti-inflammatory and immunosuppressive effect of dexamethasone in cattle results from the fact that the drug had a depressive effect on the production of IFN-γ by CD25-CD4+ cells. Secretion of TGF-β and IL-10 by CD4+ lymphocytes was not involved in producing these pharmacological effects, because the drug did not affect production of TGF-β and, paradoxically, it reduced the percentage of IL-10+CD4+ cells.
Collapse
Affiliation(s)
- Tomasz Maślanka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowski Street 13, 10-718 Olsztyn, Poland.
| | | |
Collapse
|
34
|
Colavecchia SB, Jolly A, Fernández B, Fontanals AM, Fernández E, Mundo SL. Effect of lipoarabinomannan from Mycobacterium avium subsp avium in Freund's incomplete adjuvant on the immune response of cattle. Braz J Med Biol Res 2012; 45:139-46. [PMID: 22286534 PMCID: PMC3854252 DOI: 10.1590/s0100-879x2012007500012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 01/16/2012] [Indexed: 11/21/2022] Open
Abstract
The aim of the present study was to determine whether lipoarabinomannan (LAM), in combination with Freund's incomplete adjuvant (FIA), was able to improve cell-mediated and antibody-mediated immune responses against ovalbumin (OVA) in cattle. Twenty-three calves were assigned to four treatment groups, which were subcutaneously immunized with either OVA plus FIA, OVA plus FIA and LAM from Mycobacterium avium subsp avium, FIA plus LAM, or FIA alone. Lymphoproliferation, IFN-γ production and cell subpopulations on peripheral blood mononuclear cells before and 15 days after treatment were evaluated. Delayed hypersensitivity was evaluated on day 57. Specific humoral immune response was measured by ELISA. Inoculation with LAM induced higher levels of lymphoproliferation and IFN-γ production in response to ConA and OVA (P < 0.05). Specific antibody titers were similar in both OVA-immunized groups. Interestingly, our results showed that the use of LAM in vaccine preparations improved specific cell immune response evaluated by lymphoproliferation and IFN-γ production by at least 50 and 25%, respectively, in cattle without interfering with tuberculosis and paratuberculosis diagnosis.
Collapse
Affiliation(s)
- S B Colavecchia
- Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
35
|
Poole DH, Pate JL. Luteal Microenvironment Directs Resident T Lymphocyte Function in Cows1. Biol Reprod 2012; 86:29. [DOI: 10.1095/biolreprod.111.092296] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
36
|
Bharathan M, Mullarky IK. Targeting mucosal immunity in the battle to develop a mastitis vaccine. J Mammary Gland Biol Neoplasia 2011; 16:409-19. [PMID: 21968537 DOI: 10.1007/s10911-011-9233-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/14/2011] [Indexed: 01/31/2023] Open
Abstract
The mucosal immune system encounters antigens that enhance and suppress immune function, and serves as a selective barrier against invading pathogens. The mammary gland not only encounters antigens but also produces a nutrient evolved to protect and enhance mucosal development in the neonate. Efforts to manipulate antibody concentrations in milk to prevent mastitis, an infection of the mammary gland, have been hampered both by complexity and variation in target pathogens and limited knowledge of cellular immunity in the gland. Successful vaccination strategies must overcome the natural processes that regulate types and concentrations of milk antibodies for neonatal development, and enhance cellular immunity. Furthermore, the need to overcome dampening of immunity caused by non-pathogenic encounters to successfully prevent establishment of infection is an additional obstacle in vaccine development at mucosal sites. A significant mastitis pathogen, Staphylococcus aureus, not only resides as a normal flora on a multitude of species, but also causes clinical disease with limited treatment options. Using the bovine model of S. aureus mastitis, researchers can decipher the role of antigen selection and presentation by mammary dendritic cells, enhance development of central and effector memory function, and subsequently target specific memory cells to the mammary gland for successful vaccine development. This brief review provides an overview of adaptive immunity, previous vaccine efforts, current immunological findings relevant to enhancing immune memory, and research technologies that show promise in directing future vaccine efforts to enhance mammary gland immunity and prevent mastitis.
Collapse
Affiliation(s)
- Mini Bharathan
- Immunology, Human Therapeutic Division, Intrexon Corporation, Germantown, MD, USA
| | | |
Collapse
|
37
|
Park KT, Allen AJ, Bannantine JP, Seo KS, Hamilton MJ, Abdellrazeq GS, Rihan HM, Grimm A, Davis WC. Evaluation of two mutants of Mycobacterium avium subsp. paratuberculosis as candidates for a live attenuated vaccine for Johne's disease. Vaccine 2011; 29:4709-19. [PMID: 21565243 DOI: 10.1016/j.vaccine.2011.04.090] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/19/2011] [Accepted: 04/25/2011] [Indexed: 02/07/2023]
Abstract
Control of Johne's disease, caused by Mycobacterium avium subsp. paratuberculosis, has been difficult because of a lack of an effective vaccine. To address this problem we used targeted gene disruption to develop candidate mutants with impaired capacity to survive ex vivo and in vivo to test as a vaccine. We selected relA and pknG, genes known to be important virulence factors in Mycobacterium tuberculosis and Mycobacterium bovis, for initial studies. Deletion mutants were made in a wild type Map (K10) and its recombinant strain expressing the green fluorescent protein (K10-GFP). Comparison of survival in an ex vivo assay revealed deletion of either gene attenuated survival in monocyte-derived macrophages compared to survival of wild-type K10. In contrast, study in calves revealed survival in vivo was mainly affected by deletion of relA. Bacteria were detected in tissues from wild-type and the pknG mutant infected calves by bacterial culture and PCR at three months post infection. No bacteria were detected in tissues from calves infected with the relA mutant (P<0.05). Flow cytometric analysis of the immune response to the wild-type K10-GFP and the mutant strains showed deletion of either gene did not affect their capacity to elicit a strong proliferative response to soluble antigen extract or live Map. Quantitative RT-PCR revealed genes encoding IFN-γ, IL-17, IL-22, T-bet, RORC, and granulysin were up-regulated in PBMC stimulated with live Map three months post infection compared to the response of PBMC pre-infection. A challenge study in kid goats showed deletion of pknG did not interfere with establishment of an infection. As in calves, deletion of relA attenuated survival in vivo. The mutant also elicited an immune response that limited colonization by challenge wild type Map. The findings show the relA mutant is a good candidate for development of a live attenuated vaccine for Johne's disease.
Collapse
Affiliation(s)
- Kun Taek Park
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Garden O, Pinheiro D, Cunningham F. All creatures great and small: regulatory T cells in mice, humans, dogs and other domestic animal species. Int Immunopharmacol 2011; 11:576-88. [DOI: 10.1016/j.intimp.2010.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 11/01/2010] [Indexed: 12/12/2022]
|
39
|
Zhou P, Liang P, Dong B, Yu X, Han X, Wang Y, Han Z. Long-term results of a phase II clinical trial of superantigen therapy with staphylococcal enterotoxin C after microwave ablation in hepatocellular carcinoma. Int J Hyperthermia 2011; 27:132-9. [DOI: 10.3109/02656736.2010.506670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
40
|
Ideta A, Hayama K, Nakamura Y, Sakurai T, Tsuchiya K, Tanaka S, Yamaguchi T, Fujiwara H, Imakawa K, Aoyagi Y. Intrauterine administration of peripheral blood mononuclear cells enhances early development of the pre-implantation bovine embryo. Mol Reprod Dev 2010; 77:954-62. [DOI: 10.1002/mrd.21243] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Sensitive detection of Foxp3 expression in bovine lymphocytes by flow cytometry. Vet Immunol Immunopathol 2010; 138:154-8. [DOI: 10.1016/j.vetimm.2010.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/28/2010] [Accepted: 07/12/2010] [Indexed: 01/08/2023]
|
42
|
Park JY, Fox LK, Seo KS, McGuire MA, Park YH, Rurangirwa FR, Sischo WM, Bohach GA. Detection of classical and newly described staphylococcal superantigen genes in coagulase-negative staphylococci isolated from bovine intramammary infections. Vet Microbiol 2010; 147:149-54. [PMID: 20667668 DOI: 10.1016/j.vetmic.2010.06.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 06/21/2010] [Accepted: 06/23/2010] [Indexed: 10/19/2022]
Abstract
The coagulase-negative staphylococci (CNS) are the most prevalent mastitis pathogen group yet their virulence characteristics have not been well described. We investigated the presence of 19 classical and newly described staphylococcal superantigen (SAg) genes in CNS isolates from bovine intramammary infections (IMI). A total of 263 CNS representing 11 different Staphylococcus spp. were examined, and 31.2% (n=82) of CNS isolates had one or more SAg genes; there were 21 different SAg gene combinations. The most prevalent combination of SAg genes (seb, seln and selq; n=45) was found in S. chromogenes, S. xylosus, S. haemolyticus, S. sciuri subsp. carnaticus, S. simulans and S. succinus. The genes for SAgs appear to be widely distributed amongst CNS isolated from bovine IMI.
Collapse
Affiliation(s)
- Joo Youn Park
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA 99164-6610, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Seo KS, Park JY, Terman DS, Bohach GA. A quantitative real time PCR method to analyze T cell receptor Vbeta subgroup expansion by staphylococcal superantigens. J Transl Med 2010; 8:2. [PMID: 20070903 PMCID: PMC2841588 DOI: 10.1186/1479-5876-8-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 01/13/2010] [Indexed: 12/19/2022] Open
Abstract
Background Staphylococcal enterotoxins (SEs), SE-like (SEl) toxins, and toxic shock syndrome toxin-1 (TSST-1), produced by Staphylococcus aureus, belong to the subgroup of microbial superantigens (SAgs). SAgs induce clonal proliferation of T cells bearing specific variable regions of the T cell receptor β chain (Vβ). Quantitative real time PCR (qRT-PCR) has become widely accepted for rapid and reproducible mRNA quantification. Although the quantification of Vβ subgroups using qRT-PCR has been reported, qRT-PCR using both primers annealing to selected Vβ nucleotide sequences and SYBR Green I reporter has not been applied to assess Vβ-dependent expansion of T cells by SAgs. Methods Human peripheral blood mononuclear cells were stimulated with various SAgs or a monoclonal antibody specific to human CD3. Highly specific expansion of Vβ subgroups was assessed by qRT-PCR using SYBR Green I reporter and primers corresponding to selected Vβ nucleotide sequences. Results qRT-PCR specificities were confirmed by sequencing amplified PCR products and melting curve analysis. To assess qRT-PCR efficiencies, standard curves were generated for each primer set. The average slope and R2 of standard curves were -3.3764 ± 0.0245 and 0.99856 ± 0.000478, respectively, demonstrating that the qRT-PCR established in this study is highly efficient. With some exceptions, SAg Vβ specificities observed in this study were similar to those reported in previous studies. Conclusions The qRT-PCR method established in this study produced an accurate and reproducible assessment of Vβ-dependent expansion of human T cells by staphylococcal SAgs. This method could be a useful tool in the characterization T cell proliferation by newly discovered SAg and in the investigation of biological effects of SAgs linked to pathogenesis.
Collapse
Affiliation(s)
- Keun Seok Seo
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844, USA.
| | | | | | | |
Collapse
|
44
|
Chavatte-Palmer PM, Heyman Y, Richard C, Urien C, Renard JP, Schwartz-Cornil I. The immune status of bovine somatic clones. CLONING AND STEM CELLS 2009; 11:309-18. [PMID: 19508113 DOI: 10.1089/clo.2008.0080] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Agronomical applications of cloned livestock produced by somatic cell nuclear transfer (SCNT) have been authorized in the United States and the European Food Safety Authority published that there was no evidence of risks associated with the use of cloned animal in the breeding industry. Both assessments, however, underlined that complementary data are needed to update their conclusions. SCNT is associated with a high incidence of perinatal losses. After birth, cloned cattle appear to possibly present subtle immune defects, requiring extensive studies to be properly evidenced. Twenty-five cloned Holstein heifers from five distinct genotypes and their contemporary age- and sex-matched controls were compared. An extensive survey of leukocyte subsets was performed and the humoral and T-cell immune responses to exogenous antigens were studied. Cloned cattle presented a normal representation of leukocyte subsets. Functional immunity was not modified in cloned heifers, as they were able to raise an antibody response and to develop B and T cell-specific responses against the model antigen OVA (ovalbumin) and against a rotavirus vaccine as in controls. Thus, this extensive analysis supports previous data suggesting that cloned cattle have a normal immunity.
Collapse
|
45
|
Moore D, Taylor J, Hartman M, Sischo W. Quality assessments of waste milk at a calf ranch. J Dairy Sci 2009. [DOI: 10.3168/jds.2008-1623] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Seo KS, Davis WC, Hamilton MJ, Park YH, Bohach GA. Development of monoclonal antibodies to detect bovine FOXP3 in PBMCs exposed to a staphylococcal superantigen. Vet Immunol Immunopathol 2009; 128:30-6. [PMID: 19054574 PMCID: PMC3774054 DOI: 10.1016/j.vetimm.2008.10.292] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The role of regulatory T cells (Tregs) is well documented in immune homeostasis and protection against autoimmune disease. Forkhead box protein 3 (FOXP3) has been shown to be essential for the development and function of T(reg). Due to the lack of tools for FOXP3 detection in certain species, understanding the role of Treg in a variety of ruminant diseases has been hampered. In this study, we developed monoclonal antibodies (mAbs) against bovine FOXP3 using recombinant bovine FOXP3 lacking the forkhead domain as an immunogen. The specificity of the mAbs was confirmed by immunoblot and mass spectrometry. Expression of FOXP3 was induced in bovine PBMCs after 6 d of exposure to staphylococcal enterotoxin type C1 (SEC1) in vitro. Similar to findings in mice and humans, expression of FOXP3 was restricted to CD4+ CD25+ T cells. Transcriptional analysis of bovine TCR variable regions of the beta chain (boVbeta) showed that transcription of boVbeta sequences reactive with SEC1 increased for 6 d, and then boVbeta sequences non-reactive with SEC1 rapidly increased in the cultures. This indicates that induction of FOXP3+ CD4+ CD25+ Tregs by SEC1 is not Vbeta restricted. The FOXP3 mAbs developed in this study will be useful in the further investigation of the role of Treg in staphylococcal pathogenesis in bovine mastitis and other ruminant diseases.
Collapse
Affiliation(s)
- K. S. Seo
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844
| | - W. C. Davis
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - M. J. Hamilton
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Y. H. Park
- Department of Microbiology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University, Seoul, 151-742, Korea
| | - G. A. Bohach
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844
| |
Collapse
|
47
|
Epithelial Cell Gene Expression Induced by Intracellular Staphylococcus aureus. Int J Microbiol 2009; 2009:753278. [PMID: 20016671 PMCID: PMC2775199 DOI: 10.1155/2009/753278] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 11/14/2008] [Indexed: 11/17/2022] Open
Abstract
HEp-2 cell monolayers were cocultured with intracellular Staphylococcus aureus, and changes in gene expression were profiled using DNA microarrays. Intracellular S. aureus affected genes involved in cellular stress responses, signal transduction, inflammation, apoptosis, fibrosis, and cholesterol biosynthesis. Transcription of stress response and signal transduction-related genes including atf3, sgk, map2k1, map2k3, arhb, and arhe was increased. In addition, elevated transcription of proinflammatory genes was observed for tnfa, il1b, il6, il8, cxcl1, ccl20, cox2, and pai1. Genes involved in proapoptosis and fibrosis were also affected at transcriptional level by intracellular S. aureus. Notably, intracellular S. aureus induced strong transcriptional down-regulation of several cholesterol biosynthesis genes. These results suggest that epithelial cells respond to intracellular S. aureus by inducing genes affecting immunity and in repairing damage caused by the organism, and are consistent with the possibility that the organism exploits an intracellular environment to subvert host immunity and promote colonization.
Collapse
|
48
|
Seo KS, Park JY, Davis WC, Fox LK, McGuire MA, Park YH, Bohach GA. Superantigen-mediated differentiation of bovine monocytes into dendritic cells. J Leukoc Biol 2009; 85:606-16. [PMID: 19129485 DOI: 10.1189/jlb.0608338] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although many effects of staphylococcal superantigens (SAg) on T cells are well established, less is known about their effects on APC. In this study, bovine PBMC were stimulated with a low dose of staphylococcal enterotoxin C1 (SEC1). The phenotype of adherent cells (Ac) derived from bovine PBMC cultured with SEC1 [SEC1-stimulated Ac (sAc)] for 192 h was CD14(-), CD68(-), CD163(-), dendritic cell (DC)-specific ICAM-3-grabbing nonintegrin(+), MHC class II (MHC II)(high), CD11a(low), CD11b(high), CD11c(high), and CD1b(high), suggesting these cells were dendritic cells (DC). SEC1 also induced transcription of the CXCL1, -2, and -3 family, CXCL6, CCL2, and CCL5 genes in sAc, which increased rapidly but returned to basal levels by 48 h. In contrast, increased transcription of CCL3, CCL8, and CXCL12, responsible for mononuclear cell migration and chronic inflammation, was sustained. In vitro cell migration assays showed vigorous migration of granulocytes, followed by migration of mononuclear cells. The autologous MLR showed that sAc induced a dose-dependent proliferation of CD4(+) T cells and an even stronger proliferation of CD8(+) T cells. This effect was inhibited or reduced by pretreatment with mAb to CD11b, MHC II, or MHC II plus CD18. These results indicate that stimulation of bovine PBMC by SAg induces differentiation of monocytes into DC.
Collapse
Affiliation(s)
- Keun Seok Seo
- Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-2337, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Hoek A, Rutten VPMG, Kool J, Arkesteijn GJA, Bouwstra RJ, Van Rhijn I, Koets AP. Subpopulations of bovine WC1(+) gammadelta T cells rather than CD4(+)CD25(high) Foxp3(+) T cells act as immune regulatory cells ex vivo. Vet Res 2009; 40:6. [PMID: 18928784 PMCID: PMC2695017 DOI: 10.1051/vetres:2008044] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 10/15/2008] [Indexed: 11/22/2022] Open
Abstract
Regulatory T cells (Treg) are regarded essential components for maintenance of immune homeostasis. Especially CD4(+)CD25(high) T cells are considered to be important regulators of immune reactivity. In humans and rodents these natural Treg are characterized by their anergic nature, defined as a non-proliferative state, suppressive function and expression of Foxp3. In this study the potential functional role of flowcytometry-sorted bovine white blood cell populations, including CD4(+)CD25(high) T cells and gammadelta T cell subpopulations, as distinct ex vivo regulatory cells was assessed in co-culture suppression assays. Our findings revealed that despite the existence of a distinct bovine CD4(+)CD25(high) T cell population, which showed Foxp3 transcription/expression, natural regulatory activity did not reside in this cell population. In bovine co-culture suppression assays these cells were neither anergic nor suppressive. Subsequently, the following cell populations were tested functionally for regulatory activity: CD4(+)CD25(low) T cells, WC1(+), WC1.1(+) and WC1.2(+) gammadelta T cells, NK cells, CD8(+) T cells and CD14(+) monocytes. Only the WC1.1(+) and WC1.2(+) gammadelta T cells and CD14(+) monocytes proved to act as regulatory cells in cattle, which was supported by the fact that these regulatory cells showed IL-10 transcription/expression. In conclusion, our data provide first evidence that cattle CD4(+)CD25(high)Foxp3(+) and CD4(+)CD25(low) T cells do not function as Treg ex vivo. The bovine Treg function appears to reside in the gammadelta T cell population, more precisely in the WC1.1(+) and the WC1.2(+) subpopulation, major populations present in blood of cattle in contrast to non-ruminant species.
Collapse
Affiliation(s)
- Aad Hoek
- Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
50
|
de Almeida DE, Colvin CJ, Coussens PM. Antigen-specific regulatory T cells in bovine paratuberculosis. Vet Immunol Immunopathol 2008; 125:234-45. [DOI: 10.1016/j.vetimm.2008.05.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 05/09/2008] [Accepted: 05/19/2008] [Indexed: 11/29/2022]
|