1
|
Mordue DG, Katseff AS, Galeota AJ, Hale SJ, Rezaee S, Schwartz I, Sambir M, Arnaboldi PM. Tumor Necrosis Factor Receptors and C-C Chemokine Receptor-2 Positive Cells Play an Important Role in the Intraerythrocytic Death and Clearance of Babesia microti. Pathogens 2024; 13:858. [PMID: 39452729 PMCID: PMC11510159 DOI: 10.3390/pathogens13100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Babesia microti is an Apicomplexan parasite that infects erythrocytes and causes the tick-transmitted infection, babesiosis. B. microti can cause a wide variety of clinical manifestations ranging from asymptomatic to severe infection and death. Some risk factors for severe disease are well-defined, an immune compromised state, age greater than 50, and asplenia. However, increasing cases of severe disease and hospitalization in otherwise healthy individuals suggests that there are unknown risk factors. The immunopathology of babesiosis is poorly described. CD4+ T cells and the spleen both play a critical role in parasite clearance, but few other factors have been found that significantly impact the course of disease. Here, we evaluated the role of several immune mediators in B. microti infection. Mice lacking TNF receptors 1 and 2, the receptors for TNFα and LTα, had a higher peak parasitemia, reduced parasite killing in infected red blood cells (iRBCs), and delayed parasite clearance compared to control mice. Mice lacking CCR2, a chemokine receptor involved in the recruitment of inflammatory monocytes, and mice lacking NADPH oxidase, which generates superoxide radicals, demonstrated reduced parasite killing but had little effect on the course of parasitemia. These results suggest that TNFR-mediated responses play an important role in limiting parasite growth, the death of parasites in iRBCs, and the clearance of iRBCs, and that the parasite killing in iRBCs is being primarily mediated by ROS and inflammatory monocytes/macrophages. By identifying factors involved in parasite killing and clearance, we can begin to identify additional risk factors for severe infection and newer therapeutic interventions.
Collapse
Affiliation(s)
- Dana G. Mordue
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595, USA (A.J.G.); (I.S.)
| | - Adiya S. Katseff
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595, USA (A.J.G.); (I.S.)
| | - Andrew J. Galeota
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595, USA (A.J.G.); (I.S.)
| | - Synthia J. Hale
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595, USA (A.J.G.); (I.S.)
| | - Shaaf Rezaee
- Touro College of Dental Medicine, Hawthorne, NY 10532, USA
| | - Ilana Schwartz
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595, USA (A.J.G.); (I.S.)
| | - Mariya Sambir
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595, USA (A.J.G.); (I.S.)
- Biopeptides Corp, Ridgefield, CT 06877, USA
| | - Paul M. Arnaboldi
- Biopeptides Corp, Ridgefield, CT 06877, USA
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA
| |
Collapse
|
2
|
Horowitz RI, Fallon J, Freeman PR. Comparison of the Efficacy of Longer versus Shorter Pulsed High Dose Dapsone Combination Therapy in the Treatment of Chronic Lyme Disease/Post Treatment Lyme Disease Syndrome with Bartonellosis and Associated Coinfections. Microorganisms 2023; 11:2301. [PMID: 37764145 PMCID: PMC10537894 DOI: 10.3390/microorganisms11092301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Twenty-five patients with relapsing and remitting Borreliosis, Babesiosis, and bartonellosis despite extended anti-infective therapy were prescribed double-dose dapsone combination therapy (DDDCT), followed by one or several courses of High Dose Dapsone Combination Therapy (HDDCT). A retrospective chart review of these 25 patients undergoing DDDCT therapy and HDDCT demonstrated that 100% improved their tick-borne symptoms, and patients completing 6-7 day pulses of HDDCT had superior levels of improvement versus 4-day pulses if Bartonella was present. At the completion of treatment, 7/23 (30.5%) who completed 8 weeks of DDDCT followed by a 5-7 day pulse of HDDCT remained in remission for 3-9 months, and 3/23 patients (13%) who recently finished treatment were 1 ½ months in full remission. In conclusion, DDDCT followed by 6-7 day pulses of HDDCT could represent a novel, effective anti-infective strategy in chronic Lyme disease/Post Treatment Lyme Disease Syndrome (PTLDS) and associated co-infections, including Bartonella, especially in individuals who have failed standard antibiotic protocols.
Collapse
Affiliation(s)
- Richard I. Horowitz
- Lyme and Tick-Borne Diseases Working Group, New York State Department of Health, Albany, NY 12224, USA
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| | - John Fallon
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| | - Phyllis R. Freeman
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| |
Collapse
|
3
|
Kumar A, Kabra A, Igarashi I, Krause PJ. Animal models of the immunology and pathogenesis of human babesiosis. Trends Parasitol 2023; 39:38-52. [PMID: 36470781 DOI: 10.1016/j.pt.2022.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022]
Abstract
Animal models of human babesiosis have provided a basic understanding of the immunological mechanisms that clear, or occasionally exacerbate, Babesia infection and those pathological processes that cause disease complications. Human Babesia infection can cause asymptomatic infection, mild to moderate disease, or severe disease resulting in organ dysfunction and death. More than 100 Babesia species infect a wide array of wild and domestic animals, and many of the immunologic and pathologic responses to Babesia infection are similar in animals and humans. In this review, we summarize the knowledge gained from animal studies, their limitations, and how animal models or alternative approaches can be further leveraged to improve our understanding of human babesiosis.
Collapse
Affiliation(s)
- Abhinav Kumar
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Aditya Kabra
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Peter J Krause
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA; Department of Infectious Diseases, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
4
|
Al-Nazal H, Low L, Kumar S, Good MF, Stanisic DI. A vaccine for human babesiosis: prospects and feasibility. Trends Parasitol 2022; 38:904-918. [PMID: 35933301 DOI: 10.1016/j.pt.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
Babesiosis is a tick-borne disease caused by intraerythrocytic Babesia parasites. It is a well-known illness in companion animals and livestock, resulting in substantial economic losses in the cattle industry. Babesiosis is also recognized as an emerging zoonosis of humans in many countries worldwide. There is no vaccine against human babesiosis. Currently, preventive measures are focused on vector avoidance. Although not always effective, treatment includes antimicrobial therapy and exchange transfusion. In this review, we discuss the host's immune response to the parasite, vaccines being used to prevent babesiosis in animals, and lessons from malaria vaccine development efforts to inform the development of a human babesiosis vaccine. An effective human vaccine would be a significant advance towards curtailing this rapidly emerging disease.
Collapse
Affiliation(s)
- Hanan Al-Nazal
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia
| | - Leanne Low
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, USA
| | - Sanjai Kumar
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Centre for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia
| | - Danielle I Stanisic
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia.
| |
Collapse
|
5
|
Zafar I, Galon EM, Kondoh D, Efstratiou A, Li J, Ji S, Liu M, Li Y, Hasegawa Y, Zhou J, Xuan X. The Cross-Species Immunity During Acute Babesia Co-Infection in Mice. Front Cell Infect Microbiol 2022; 12:885985. [PMID: 35719355 PMCID: PMC9198632 DOI: 10.3389/fcimb.2022.885985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Babesiosis causes high morbidity and mortality in immunocompromised individuals. An earlier study suggested that lethal Babesia rodhaini infection in murine can be evaded by Babesia microti primary infection via activated macrophage-based immune response during the chronic stage of infection. However, whether the same immune dynamics occur during acute B. microti co-infection is not known. Hence, we used the mouse model to investigate the host immunity during simultaneous acute disease caused by two Babesia species of different pathogenicity. Results showed that B. microti primary infection attenuated parasitemia and conferred immunity in challenge-infected mice as early as day 4 post-primary infection. Likewise, acute Babesia co-infection undermined the splenic immune response, characterized by the significant decrease in splenic B and T cells leading to the reduction in antibody levels and decline in humoral immunity. Interestingly, increased macrophage and natural killer splenic cell populations were observed, depicting their subtle role in the protection. Pro-inflammatory cytokines (i.e. IFN-γ, TNF-α) were downregulated, while the anti-inflammatory cytokine IL-10 was upregulated in mouse sera during the acute phase of Babesia co-infection. Herein, the major cytokines implicated in the lethality caused by B. rodhaini infection were IFN- γ and IL-10. Surprisingly, significant differences in the levels of serum IFN- γ and IL-10 between co-infected survival groups (day 4 and 6 challenge) indicated that even a two-day delay in challenge infection was crucial for the resulting pathology. Additionally, oxidative stress in the form of reactive oxygen species contributed to the severity of pathology during acute babesiosis. Histopathological examination of the spleen showed that the erosion of the marginal zone was more pronounced during B. rodhaini infection, while the loss of cellularity of the marginal zone was less evident during co-infection. Future research warrants investigation of the roles of various immune cell subtypes in the mechanism involved in the protection of Babesia co-infected hosts.
Collapse
Affiliation(s)
- Iqra Zafar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Livestock and Dairy Development Department, Veterinary Research Institute, Lahore, Pakistan
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Daisuke Kondoh
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | - Jixu Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Microbiology and Immunology, School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Yongchang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, China
| | - Yae Hasegawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Jinlin Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
6
|
Shu X, Nie Z, Luo W, Zheng Y, Han Z, Zhang H, Xia Y, Deng H, Li F, Wang S, Zhao J, He L. Babesia microti Infection Inhibits Melanoma Growth by Activating Macrophages in Mice. Front Microbiol 2022; 13:862894. [PMID: 35814662 PMCID: PMC9257138 DOI: 10.3389/fmicb.2022.862894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Babesia microti is an obligate intraerythrocytic protozoan transmitted by an Ixodes tick. Infections caused by protozoa, including Plasmodium yoelii and Toxoplasma gondii, are shown to inhibit tumor development by activating immune responses. Th1 immune response and macrophages not only are essential key factors in Babesia infection control but also play an important role in regulating tumor development. In this study, we investigated the effects of B. microti infection on melanoma in tumor-bearing mice. The results showed that B. microti infection could inhibit the growth of melanoma, significantly enlarge the spleen size (p ≤ 0.0001), and increase the survival period (over 7 days) of tumor-bearing mice. Mouse spleen immune cell analysis revealed that B. microti-infected tumor-bearing mice could increase the number of macrophages and CD4+ T cells, as well as the proportion of CD4+ T cells and M1 macrophages in the tumor. Immunohistochemical assays showed that B. microti infection could inhibit tumor angiogenesis (p ≤ 0.0032). Meanwhile, both B. microti-infected erythrocytes and culture supernatant were observed to significantly (p ≤ 0.0021) induce the mRNA expression of iNOS, IL-6, and TNF-α in macrophages. Moreover, B. microti culture supernatant could also repolarize IL-4-induced M2 macrophages to the M1 type. Overall, B. microti exerted antitumor effects by stimulating the immune system of tumor-bearing mice and inducing the polarization of immunosuppressive M2 macrophages to pro-inflammatory M1 macrophages.
Collapse
Affiliation(s)
- Xiang Shu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zheng Nie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Wanxin Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yaxin Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zhen Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Hongyan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yingjun Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Han Deng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Fangjie Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Sen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Junlong Zhao,
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- Lan He,
| |
Collapse
|
7
|
Rojas-Pirela M, Medina L, Rojas MV, Liempi AI, Castillo C, Pérez-Pérez E, Guerrero-Muñoz J, Araneda S, Kemmerling U. Congenital Transmission of Apicomplexan Parasites: A Review. Front Microbiol 2021; 12:751648. [PMID: 34659187 PMCID: PMC8519608 DOI: 10.3389/fmicb.2021.751648] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Apicomplexans are a group of pathogenic protists that cause various diseases in humans and animals that cause economic losses worldwide. These unicellular eukaryotes are characterized by having a complex life cycle and the ability to evade the immune system of their host organism. Infections caused by some of these parasites affect millions of pregnant women worldwide, leading to various adverse maternal and fetal/placental effects. Unfortunately, the exact pathogenesis of congenital apicomplexan diseases is far from being understood, including the mechanisms of how they cross the placental barrier. In this review, we highlight important aspects of the diseases caused by species of Plasmodium, Babesia, Toxoplasma, and Neospora, their infection during pregnancy, emphasizing the possible role played by the placenta in the host-pathogen interaction.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Maria Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ana Isabel Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | | | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian Araneda
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Facultad de Salud y Odontología, Universidad Diego Portales, Santiago, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Hildebrandt A, Zintl A, Montero E, Hunfeld KP, Gray J. Human Babesiosis in Europe. Pathogens 2021; 10:1165. [PMID: 34578196 PMCID: PMC8468516 DOI: 10.3390/pathogens10091165] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Babesiosis is attracting increasing attention as a worldwide emerging zoonosis. The first case of human babesiosis in Europe was described in the late 1950s and since then more than 60 cases have been reported in Europe. While the disease is relatively rare in Europe, it is significant because the majority of cases present as life-threatening fulminant infections, mainly in immunocompromised patients. Although appearing clinically similar to human babesiosis elsewhere, particularly in the USA, most European forms of the disease are distinct entities, especially concerning epidemiology, human susceptibility to infection and clinical management. This paper describes the history of the disease and reviews all published cases that have occurred in Europe with regard to the identity and genetic characteristics of the etiological agents, pathogenesis, aspects of epidemiology including the eco-epidemiology of the vectors, the clinical courses of infection, diagnostic tools and clinical management and treatment.
Collapse
Affiliation(s)
- Anke Hildebrandt
- St. Vincenz Hospital Datteln, Department of Internal Medicine I, 45711 Datteln, Germany;
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany
| | - Annetta Zintl
- UCD School of Veterinary Sciences, University College Dublin, D04 W6F6 Dublin, Ireland;
| | - Estrella Montero
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Klaus-Peter Hunfeld
- Institute of Laboratory Medicine, Microbiology & Infection Control, Northwest Medical Center, Medical Faculty Goethe University Frankfurt, Steinbacher Hohl 2-26, 60488 Frankfurt am Main, Germany;
- Society for Promoting Quality Assurance in Medical Laboratories (INSTAND, e.v.), Ubierstraße 20, 40223 Düsseldorf, Germany
- ESGBOR Study Group of the European Society for Clinical Microbiology & Infectious Diseases (ESCMID), ESCMID Executive Office, P.O. Box 214, 4010 Basel, Switzerland
| | - Jeremy Gray
- UCD School of Biology and Environmental Science, University College Dublin, D04 N2E5 Dublin, Ireland
| |
Collapse
|
9
|
Pre-clinical evaluation of a whole-parasite vaccine to control human babesiosis. Cell Host Microbe 2021; 29:894-903.e5. [PMID: 33989514 DOI: 10.1016/j.chom.2021.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 04/15/2021] [Indexed: 01/31/2023]
Abstract
Babesia spp. are tick-transmitted intra-erythrocytic protozoan parasites that infect humans and animals, causing a flu-like illness and hemolytic anemia. There is currently no human vaccine available. People most at risk of severe disease are the elderly, immunosuppressed, and asplenic individuals. B. microti and B. divergens are the predominant species affecting humans. Here, we present a whole-parasite Babesia vaccine. To establish proof-of-principle, we employed chemically attenuated B. microti parasitized red blood cells from infected mice. To aid clinical translation, we produced liposomes containing killed parasite material. Vaccination significantly reduces peak parasitemia following challenge. B cells and anti-parasite antibodies do not significantly contribute to vaccine efficacy. Protection is abrogated by the removal of CD4+ T cells or macrophages prior to challenge. Importantly, splenectomized mice are protected by vaccination. To further facilitate translation, we prepared a culture-based liposomal vaccine and demonstrate that this performs as a universal vaccine inducing immunity against different human Babesia species.
Collapse
|
10
|
Prevalence of tick-borne haemoparasites and their perceived co-occurrences with viral outbreaks of FMD and LSD and their associated factors. Heliyon 2021; 7:e06479. [PMID: 33768176 PMCID: PMC7980057 DOI: 10.1016/j.heliyon.2021.e06479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/02/2020] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
Species of Theileria, Babesia, and Anaplasma are Tick-borne pathogens (TBPs) that are prevalent throughout the world, particularly in the tropical and subtropical regions. Associated diseases of Theileriosis, Babesiosis, and Anaplasmosis, respectively, represents a major threat to livestock production in many countries. TBPs have a high prevalence in different geographical locations in Egypt. Foot and mouth disease (FMD) and Lumpy skin disease (LSD) are considered endemic bovine viral diseases in Egypt. Our clinical observations during the epidemics of LSD and FMD viruses showed higher prevalence rates for the TBPs. To investigate this correlation, a total of 670 samples from cattle and buffalo were collected during the summers of 2017 and 2018 distributed throughout ranches and smallholders in two geographical locations in Egypt. Two farms with a recent clinical outbreak of LSD with a total of 270 animals, while the other location included three farms with a recent FMD outbreak with a combined 400 cattle. Examined animals were classified mainly according to age, gender, species, breed (native versus crossbred), and the presence of ticks. Whole blood samples were collected for TBPs and viral (LSD and FMD) examinations, while tissue specimens were collected for detection of FMD and LSD viruses by real-time PCR. Our results confirmed significantly higher prevalence rates for the TBPs in LSD-positive than LSD-negative animals, while no significant difference could be detected for the prevalence rate of the TBPs in the FMD positive and negative groups. The prevalence of Babesia and Theileria was significantly (P < 0.05) higher in cross-breeds than native cattle. Infections with Anaplasma and co-infections with Babesia-Anaplasma and Theileria-Anaplasma were significantly higher in native than cross-breeds cattle. The intensity of parasitic infection (parasitemia) has a significant difference in the positive groups for the two viruses compared to the negative groups. These results collectively confirming the enhancing role of LSD on the prevalence rate of the haemoprotozoal infections leading to more serious outcomes to the livestock infections, and therefore the control of haemoprotozoal infections should be implemented as a part of viral epidemics control.
Collapse
|
11
|
Efstratiou A, Galon EMS, Wang G, Umeda K, Kondoh D, Terkawi MA, Kume A, Liu M, Ringo AE, Guo H, Gao Y, Lee SH, Li J, Moumouni PFA, Nishikawa Y, Suzuki H, Igarashi I, Xuan X. Babesia microti Confers Macrophage-Based Cross-Protective Immunity Against Murine Malaria. Front Cell Infect Microbiol 2020; 10:193. [PMID: 32411624 PMCID: PMC7200999 DOI: 10.3389/fcimb.2020.00193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/09/2020] [Indexed: 01/26/2023] Open
Abstract
Malaria and babesiosis, the two primary intraerythrocytic protozoan diseases of humans, have been reported in multiple cases of co-infection in endemic regions. As the geographic range and incidence of arthropod-borne infectious diseases is being affected by climate change, co-infection cases with Plasmodium and Babesia are likely to increase. The two parasites have been used in experimental settings, where prior infection with Babesia microti has been shown to protect against fatal malarial infections in mice and primates. However, the immunological mechanisms behind such phenomena of cross-protection remain unknown. Here, we investigated the effect of a primary B. microti infection on the outcome of a lethal P. chabaudi challenge infection using a murine model. Simultaneous infection with both pathogens led to high mortality rates in immunocompetent BALB/c mice, similar to control mice infected with P. chabaudi alone. On the other hand, mice with various stages of B. microti primary infection were thoroughly immune to a subsequent P. chabaudi challenge. Protected mice exhibited decreased levels of serum antibodies and pro-inflammatory cytokines during early stages of challenge infection. Mice repeatedly immunized with dead B. microti quickly succumbed to P. chabaudi infection, despite induction of high antibody responses. Notably, cross-protection was observed in mice lacking functional B and T lymphocytes. When the role of other innate immune effector cells was examined, NK cell-depleted mice with chronic B. microti infection were also found to be protected against P. chabaudi. Conversely, in vivo macrophage depletion rendered the mice vulnerable to P. chabaudi. The above results show that the mechanism of cross-protection conferred by B. microti against P. chabaudi is innate immunity-based, and suggest that it relies predominantly upon the function of macrophages. Further research is needed for elucidating the malaria-suppressing effects of babesiosis, with a vision toward development of novel tools to control malaria.
Collapse
Affiliation(s)
- Artemis Efstratiou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Eloiza May S Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Guanbo Wang
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Kousuke Umeda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Daisuke Kondoh
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamad Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Orthopedic Surgery, Hokkaido University, Sapporo, Japan
| | - Aiko Kume
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Aaron Edmond Ringo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Huanping Guo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yang Gao
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Seung-Hun Lee
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Jixu Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
12
|
Henning A, Clift SJ, Leisewitz AL. The pathology of the spleen in lethal canine babesiosis caused by Babesia rossi. Parasite Immunol 2020; 42:e12706. [PMID: 32119124 DOI: 10.1111/pim.12706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
To provide useful information based on the macropathology, histopathology and immunohistochemical investigation in the spleens of dogs with Babesia rossi infection. Control spleens were collected from four healthy dogs euthanized for welfare reasons. Nine dogs that died naturally because of a mono-infection with Babesia rossi were selected for the diseased group. One haematoxylin-and-eosin-stained section of splenic tissue from each of the infected and control dogs was examined under the light microscope. Immunohistochemical markers were applied to characterize different immunocyte populations. The application of analytic software enabled semi-quantitative comparison of leucocyte subpopulations. Routine splenic histopathology revealed diffuse intermingling of white and red pulp from infected dogs with a clear loss of distinction between these zones. Immunohistochemistry revealed an increase in the proportion of tissue resident and bone marrow origin macrophages in the infected spleens. Apart from a few remnant lymphocytes within the peri-arteriolar lymphatic sheaths and follicles, the majority of the immunocytes redistributed to the red pulp, supporting the observation of white and red pulp intermingling. The majority of our findings are in agreement with histomorphological descriptions of the spleen in a variety of noncanid mammalian hosts with lethal malaria or babesiosis.
Collapse
Affiliation(s)
- Alischa Henning
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Sarah Jane Clift
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Andrew Lambert Leisewitz
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
13
|
Djokic V, Akoolo L, Primus S, Schlachter S, Kelly K, Bhanot P, Parveen N. Protozoan Parasite Babesia microti Subverts Adaptive Immunity and Enhances Lyme Disease Severity. Front Microbiol 2019; 10:1596. [PMID: 31354683 PMCID: PMC6635642 DOI: 10.3389/fmicb.2019.01596] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Lyme disease is the most prominent tick-borne disease in the United States. Co-infections with the tick-transmitted pathogens Babesia microti and Borrelia burgdorferi sensu stricto are becoming a serious health problem. B. burgdorferi is an extracellular spirochete that causes Lyme disease while B. microti is a protozoan that infects erythrocytes and causes babesiosis. Testing of donated blood for Babesia species is not currently mandatory due to unavailability of an FDA approved test. Transmission of this protozoan by blood transfusion often results in high morbidity and mortality in recipients. Infection of C3H/HeJ mice with B. burgdorferi and B. microti individually results in inflammatory Lyme disease and display of human babesiosis-like symptoms, respectively. Here we use this mouse model to provide a detailed investigation of the reciprocal influence of the two pathogens on each other during co-infection. We show that B. burgdorferi infection attenuates parasitemia in mice while B. microti subverts the splenic immune response, such that a marked decrease in splenic B and T cells, reduction in antibody levels and diminished functional humoral immunity, as determined by spirochete opsonophagocytosis, are observed in co-infected mice compared to only B. burgdorferi infected mice. Furthermore, immunosuppression by B. microti in co-infected mice showed an association with enhanced Lyme disease manifestations. This study demonstrates the effect of only simultaneous infection by B. burgdorferi and B. microti on each pathogen, immune response and on disease manifestations with respect to infection by the spirochete and the parasite. In our future studies, we will examine the overall effects of sequential infection by these pathogens on host immune responses and disease outcomes.
Collapse
Affiliation(s)
- Vitomir Djokic
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Lavoisier Akoolo
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Shekerah Primus
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Samantha Schlachter
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Kathleen Kelly
- Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| | - Purnima Bhanot
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
14
|
Krause PJ. Human babesiosis. Int J Parasitol 2019; 49:165-174. [PMID: 30690090 DOI: 10.1016/j.ijpara.2018.11.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
Babesiosis is a worldwide emerging tick-borne disease that is increasing in frequency and geographic range. It imposes a significant health burden, especially on those who are immunocompromised and those who acquire the infection through blood transfusion. Death from babesiosis occurs in up to 20 percent of these groups. Diagnosis is confirmed with identification of typical intraerythrocytic parasites on a thin blood smear or Babesia DNA using PCR. Treatment consists of atovaquone and azithromycin or clindamycin and quinine, and exchange transfusion in severe cases. Personal and communal protective measures can limit the burden of infection but it is important to recognize that none of these measures are likely to prevent the continued expansion of Babesia into non-endemic areas.
Collapse
Affiliation(s)
- Peter J Krause
- Yale School of Public Health and Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
15
|
Yi W, Bao W, Rodriguez M, Liu Y, Singh M, Ramlall V, Cursino-Santos JR, Zhong H, Elton CM, Wright GJ, Mendelson A, An X, Lobo CA, Yazdanbakhsh K. Robust adaptive immune response against Babesia microti infection marked by low parasitemia in a murine model of sickle cell disease. Blood Adv 2018; 2:3462-3478. [PMID: 30518538 PMCID: PMC6290097 DOI: 10.1182/bloodadvances.2018026468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/08/2018] [Indexed: 01/05/2023] Open
Abstract
The intraerythrocytic parasite Babesia microti is the number 1 cause of transfusion-transmitted infection and can induce serious, often life-threatening complications in immunocompromised individuals including transfusion-dependent patients with sickle cell disease (SCD). Despite the existence of strong long-lasting immunological protection against a second infection in mouse models, little is known about the cell types or the kinetics of protective adaptive immunity mounted following Babesia infection, especially in infection-prone SCD that are thought to have an impaired immune system. Here, we show, using a mouse B microti infection model, that infected wild-type (WT) mice mount a very strong adaptive immune response, characterized by (1) coordinated induction of a robust germinal center (GC) reaction; (2) development of follicular helper T (TFH) cells that comprise ∼30% of splenic CD4+ T cells at peak expansion by 10 days postinfection; and (3) high levels of effector T-cell cytokines, including interleukin 21 and interferon γ, with an increase in the secretion of antigen (Ag)-specific antibodies (Abs). Strikingly, the Townes SCD mouse model had significantly lower levels of parasitemia. Despite a highly disorganized splenic architecture before infection, these mice elicited a surprisingly robust adaptive immune response (including comparable levels of GC B cells, TFH cells, and effector cytokines as control and sickle trait mice), but higher immunoglobulin G responses against 2 Babesia-specific proteins, which may contain potential immunogenic epitopes. Together, these studies establish the robust emergence of adaptive immunity to Babesia even in immunologically compromised SCD mice. Identification of potentially immunogenic epitopes has implications to identify long-term carriers, and aid Ag-specific vaccine development.
Collapse
Affiliation(s)
| | - Weili Bao
- Laboratory of Complement Biology and
| | - Marilis Rodriguez
- Laboratory of Blood-Borne Parasites, New York Blood Center, New York, NY
| | | | - Manpreet Singh
- Laboratory of Blood-Borne Parasites, New York Blood Center, New York, NY
| | | | | | - Hui Zhong
- Laboratory of Complement Biology and
| | - Catherine M Elton
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom; and
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom; and
| | | | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Cheryl A Lobo
- Laboratory of Blood-Borne Parasites, New York Blood Center, New York, NY
| | | |
Collapse
|
16
|
Djokic V, Primus S, Akoolo L, Chakraborti M, Parveen N. Age-Related Differential Stimulation of Immune Response by Babesia microti and Borrelia burgdorferi During Acute Phase of Infection Affects Disease Severity. Front Immunol 2018; 9:2891. [PMID: 30619263 PMCID: PMC6300717 DOI: 10.3389/fimmu.2018.02891] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Lyme disease is the most prominent tick-borne disease with 300,000 cases estimated by CDC every year while ~2,000 cases of babesiosis occur per year in the United States. Simultaneous infection with Babesia microti and Borrelia burgdorferi are now the most common tick-transmitted coinfections in the U.S.A., and they are a serious health problem because coinfected patients show more intense and persisting disease symptoms. B. burgdorferi is an extracellular spirochete responsible for systemic Lyme disease while B. microti is a protozoan that infects erythrocytes and causes babesiosis. Immune status and spleen health are important for resolution of babesiosis, which is more severe and even fatal in the elderly and splenectomized patients. Therefore, we investigated the effect of each pathogen on host immune response and consequently on severity of disease manifestations in both young, and 30 weeks old C3H mice. At the acute stage of infection, Th1 polarization in young mice spleen was associated with increased IFN-γ and TNF-α producing T cells and a high Tregs/Th17 ratio. Together, these changes could help in the resolution of both infections in young mice and also prevent fatality by B. microti infection as observed with WA-1 strain of Babesia. In older mature mice, Th2 polarization at acute phase of B. burgdorferi infection could play a more effective role in preventing Lyme disease symptoms. As a result, enhanced B. burgdorferi survival and increased tissue colonization results in severe Lyme arthritis only in young coinfected mice. At 3 weeks post-infection, diminished pathogen-specific antibody production in coinfected young, but not older mice, as compared to mice infected with each pathogen individually may also contribute to increased inflammation observed due to B. burgdorferi infection, thus causing persistent Lyme disease observed in coinfected mice and reported in patients. Thus, higher combined proinflammatory response to B. burgdorferi due to Th1 and Th17 cells likely reduced B. microti parasitemia significantly only in young mice later in infection, while the presence of B. microti reduced humoral immunity later in infection and enhanced tissue colonization by Lyme spirochetes in these mice even at the acute stage, thereby increasing inflammatory arthritis.
Collapse
Affiliation(s)
- Vitomir Djokic
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Shekerah Primus
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Lavoisier Akoolo
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Monideep Chakraborti
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
17
|
Rodríguez Y, Rojas M, Gershwin ME, Anaya JM. Tick-borne diseases and autoimmunity: A comprehensive review. J Autoimmun 2018; 88:21-42. [DOI: 10.1016/j.jaut.2017.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
|
18
|
Djokic V, Akoolo L, Parveen N. Babesia microti Infection Changes Host Spleen Architecture and Is Cleared by a Th1 Immune Response. Front Microbiol 2018; 9:85. [PMID: 29445365 PMCID: PMC5797759 DOI: 10.3389/fmicb.2018.00085] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/12/2018] [Indexed: 12/11/2022] Open
Abstract
Babesia microti is a malaria-like parasite, which infects ∼2000 people annually, such that babesiosis is now a notifiable disease in the United States. Immunocompetent individuals often remain asymptomatic and are tested only after they feel ill. Susceptible C3H/HeJ mice show several human-like disease manifestations and are ideal to study pathogenesis of Babesia species. In this study, we examined parasitemia of B. microti at different time points and assessed its impact on hemoglobin levels in blood, on spleen pathology and overall immune response in C3H/HeJ mice. Peak parasitemia of 42.5% was immediately followed by diminished hemoglobin level. Parasitemia at 21 days of infection was barely detectable by microscopy presented 5.7 × 108 to 5.9 × 109B. microti DNA copies confirming the sensitivity of our qPCR. We hypothesize that qPCR detects DNA released from recently lysed parasites or from extracellular B. microti in blood, which are not easily detected in blood smears and might result in under-diagnosis of babesiosis in patients. Splenectomized patients have been reported to show increased babesiosis severity and result in high morbidity and mortality. These results emphasize the importance of splenic immunity in resolution of B. microti infection. Splenomegaly in infected mice associated with destruction of marginal zone with lysed erythrocytes and released B. microti life forms in our experiments support this premise. At conclusion of the experiment at 21 days post-infection, significant splenic B and T cells depletion and increase in macrophages levels were observed in B. microti infected mice suggesting a role of macrophage in disease resolution. Infected mice also showed significantly higher plasmatic concentration of CD4 Th1 cells secreted cytokines such as IL-2 and IFN-γ while cytokines such as IL-4, IL-5, and IL-13 secreted by Th2 cells increase was not always significant. Thus, Th1 cells-mediated immunity appears to be important in clearance of this intracellular pathogen. Significant increase in IL-6 that promotes differentiation of Th17 cells was observed but it resulted in only moderate change in IL-17A, IL-17F, IL-21, and IL-22, all secreted by Th17 cells. A similar immune response to Trypanosoma infection has been reported to influence the clearance of this protozoan, and co-infecting pathogen(s).
Collapse
Affiliation(s)
- Vitomir Djokic
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Lavoisier Akoolo
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
19
|
Man S, Fu Y, Guan Y, Feng M, Qiao K, Li X, Gao H, Cheng X. Evaluation of a Major Surface Antigen of Babesia microti Merozoites as a Vaccine Candidate against Babesia Infection. Front Microbiol 2017; 8:2545. [PMID: 29312230 PMCID: PMC5742146 DOI: 10.3389/fmicb.2017.02545] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/07/2017] [Indexed: 02/02/2023] Open
Abstract
Babesia species are tick-borne intraerythrocytic protozoa that cause babesiosis in humans worldwide. No vaccine has yet proven effective against Babesia infection. Surface antigens of merozoites are involved in the invasion of erythrocytes by Babesia. Surface antigens may be presented by both babesial sporozoites and merozoites and provide a general target for antibody-mediated inhibition of erythrocyte invasion. Here we evaluated a major surface antigen of B. microti merozoites, BMSA, as a potential vaccine to prevent babesiosis. Our data indicated that bmsa is transcribed during different phases, including ring form, amoeboid form, and merozoites, and that its expression is significantly increased in mature merozoites. The protein was found to be located in the membrane of B. microti and in the cytoplasm of infected erythrocytes. The immune response induced by BMSA had a significant inhibitory effect on parasite invasion of the host erythrocytes (83.3% inhibition of invasion) and parasite growth in vivo. The levels of parasitemia significantly decreased after BMSA vaccination when mice were infected with babesia parasite. Importantly, protective immunity was significantly related to the upregulation of the Th17 cytokine interleukin-17, the Th1 cytokine interleukin-12p70 and the Th2 cytokines, such as interleukin-4, -6, and -10. Ingenuity Pathway Analysis indicated that interleukin-17 facilitated the secretion of Th2 cytokines, such as interleukin-10, -4, and -6, thereby inducing a predominately Th2 protective immune response and promoting the expression a high level of special IgG1 against Babesia infection. Further, an anti-BMSA monoclonal antibody successfully protected NOD/SCID mice from a challenge with B. microti. Taken together, our results indicated that BMSA induces a protective immune response against Babesia infection and may serve as a potential vaccine.
Collapse
Affiliation(s)
- Suqin Man
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yongfeng Fu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yue Guan
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ke Qiao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xueping Li
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongjian Gao
- Department of Electron Microscopy, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Skariah S, Arnaboldi P, Dattwyler RJ, Sultan AA, Gaylets C, Walwyn O, Mulhall H, Wu X, Dargham SR, Mordue DG. Elimination of Babesia microti Is Dependent on Intraerythrocytic Killing and CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:633-642. [PMID: 28607116 DOI: 10.4049/jimmunol.1601193] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 05/17/2017] [Indexed: 11/19/2022]
Abstract
Babesiosis is a tick-borne zoonosis caused by protozoans of the genus Babesia, apicomplexan parasites that replicate within erythrocytes. However, unlike related Plasmodium species, the pathogenesis of Babesia infection remains poorly understood. The primary etiological agent of babesiosis in the United States is B. microti. In healthy individuals, tick-transmitted infection with Babesia causes no specific clinical manifestations, with many having no symptoms at all. However, even in asymptomatic people, a Babesia carriage state can be established that can last up to a year or more. Current blood bank screening methods do not identify infected donors, and Babesia parasites survive blood-banking procedures and storage. Thus, Babesia can also be transmitted by infected blood, and it is currently the number one cause of reportable transfusion-transmitted infection in the United States. Despite a significant impact on human health, B. microti remains understudied. In this study, we evaluated the course of Babesia infection in three strains of mice, C57BL/6J, BALB/cJ, and C3H-HeJ, and examined the contribution of multiple immune parameters, including TLRs, B cells, CD4+ cells, IFN-γ, and NO, on the level of parasitemia and parasite clearance during acute babesiosis. We found that B. microti reaches high parasitemia levels during the first week of infection in all three mice strains before resolving spontaneously. Our results indicate that resolution of babesiosis requires CD4 T cells and a novel mechanism of parasite killing within infected erythrocytes.
Collapse
Affiliation(s)
- Sini Skariah
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation - Education City, Doha, Qatar
| | - Paul Arnaboldi
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595.,Biopeptides Corp., East Setauket, NY 11733; and
| | - Raymond J Dattwyler
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595.,Biopeptides Corp., East Setauket, NY 11733; and
| | - Ali A Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation - Education City, Doha, Qatar
| | - Corey Gaylets
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Odaelys Walwyn
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Hannah Mulhall
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Xia Wu
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Soha R Dargham
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Qatar Foundation - Education City, Doha, Qatar
| | - Dana G Mordue
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595;
| |
Collapse
|
21
|
Wang G, Efstratiou A, Adjou Moumouni PF, Liu M, Jirapattharasate C, Guo H, Gao Y, Cao S, Zhou M, Suzuki H, Igarashi I, Xuan X. Primary Babesia rodhaini infection followed by recovery confers protective immunity against B. rodhaini reinfection and Babesia microti challenge infection in mice. Exp Parasitol 2016; 169:6-12. [PMID: 27423972 DOI: 10.1016/j.exppara.2016.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 11/19/2022]
Abstract
In the present study, we investigated the protective immunity against challenge infections with Babesia rodhaini and Babesia microti in the mice recovered from B. rodhaini infection. Six groups with 5 test mice in each group were used in this study, and were intraperitoneally immunized with alive and dead B. rodhaini. The challenge infections with B. rodhaini or B. microti were performed using different time courses. Our results showed that the mice recovered from primary B. rodhaini infection exhibited low parasitemia and no mortalities after the challenge infections, whereas mock mice which had received no primary infection showed a rapid increase of parasitemia and died within 7 days after the challenge with B. rodhaini. Mice immunized with dead B. rodhaini were not protected against either B. rodhaini or B. microti challenge infections, although high titers of antibody response were induced. These results indicate that only mice immunized with alive B. rodhaini could acquire protective immunity against B. rodhaini or B. microti challenge infection. Moreover, the test mice produced high levels of antibody response and low levels of cytokines (INF-γ, IL-4, IL-12, IL-10) against B. rodhaini or B. microti after challenge infection. Mock mice, however, showed rapid increases of these cytokines, which means disordered cytokines secretion occurred during the acute stage of challenge infection. The above results proved that mice immunized with alive B. rodhaini could acquire protective immunity against B. rodhaini and B. microti infections.
Collapse
Affiliation(s)
- Guanbo Wang
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Artemis Efstratiou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Charoonluk Jirapattharasate
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Huanping Guo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Yang Gao
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Shinuo Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, China
| | - Mo Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, China
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
22
|
Identification and characterization of profilin antigen among Babesia species as a common vaccine candidate against babesiosis. Exp Parasitol 2016; 166:29-36. [DOI: 10.1016/j.exppara.2016.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 11/23/2022]
|
23
|
Recombinant methionine aminopeptidase protein of Babesia microti: immunobiochemical characterization as a vaccine candidate against human babesiosis. Parasitol Res 2016; 115:3669-76. [DOI: 10.1007/s00436-016-5172-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
|
24
|
Lawres LA, Garg A, Kumar V, Bruzual I, Forquer IP, Renard I, Virji AZ, Boulard P, Rodriguez EX, Allen AJ, Pou S, Wegmann KW, Winter RW, Nilsen A, Mao J, Preston DA, Belperron AA, Bockenstedt LK, Hinrichs DJ, Riscoe MK, Doggett JS, Ben Mamoun C. Radical cure of experimental babesiosis in immunodeficient mice using a combination of an endochin-like quinolone and atovaquone. J Exp Med 2016; 213:1307-18. [PMID: 27270894 PMCID: PMC4925016 DOI: 10.1084/jem.20151519] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 04/25/2016] [Indexed: 01/24/2023] Open
Abstract
Human babesiosis is a tick-borne multisystem disease caused by Babesia species of the apicomplexan phylum. Most clinical cases and fatalities of babesiosis are caused by Babesia microti Current treatment for human babesiosis consists of two drug combinations, atovaquone + azithromycin or quinine + clindamycin. These treatments are associated with adverse side effects and a significant rate of drug failure. Here, we provide evidence for radical cure of experimental babesiosis in immunodeficient mice using a combination of an endochin-like quinolone (ELQ) prodrug and atovaquone. In vivo efficacy studies in mice using ELQ-271, ELQ-316, and the ELQ-316 prodrug, ELQ-334, demonstrated excellent growth inhibitory activity against the parasite, with potency equal to that of orally administered atovaquone at 10 mg/kg. Analysis of recrudescent parasites after ELQ or atovaquone monotherapy identified genetic substitutions in the Qi or Qo sites, respectively, of the cytochrome bc1 complex. Impressively, a combination of ELQ-334 and atovaquone, at doses as low as 5.0 mg/kg each, resulted in complete clearance of the parasite with no recrudescence up to 122 d after discontinuation of therapy. These results will set the stage for future clinical evaluation of ELQ and atovaquone combination therapy for treatment of human babesiosis.
Collapse
Affiliation(s)
- Lauren A Lawres
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520
| | - Aprajita Garg
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520
| | - Vidya Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520
| | - Igor Bruzual
- Veterans Affairs Medical Center, Portland, OR 97239
| | | | - Isaline Renard
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520
| | - Azan Z Virji
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520
| | - Pierre Boulard
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520
| | - Eduardo X Rodriguez
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520
| | - Alexander J Allen
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520
| | - Sovitj Pou
- Veterans Affairs Medical Center, Portland, OR 97239
| | | | | | - Aaron Nilsen
- Veterans Affairs Medical Center, Portland, OR 97239
| | - Jialing Mao
- Department of Internal Medicine, Section of Rheumatology, Yale School of Medicine, New Haven, CT 06520
| | | | - Alexia A Belperron
- Department of Internal Medicine, Section of Rheumatology, Yale School of Medicine, New Haven, CT 06520
| | - Linda K Bockenstedt
- Department of Internal Medicine, Section of Rheumatology, Yale School of Medicine, New Haven, CT 06520
| | | | | | | | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
25
|
Munkhjargal T, Ishizaki T, Guswanto A, Takemae H, Yokoyama N, Igarashi I. Molecular and biochemical characterization of methionine aminopeptidase of Babesia bovis as a potent drug target. Vet Parasitol 2016; 221:14-23. [PMID: 27084466 DOI: 10.1016/j.vetpar.2016.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 01/10/2023]
Abstract
Aminopeptidases are increasingly being investigated as therapeutic targets in various diseases. In this study, we cloned, expressed, and biochemically characterized a member of the methionine aminopeptidase (MAP) family from Babesia bovis (B. bovis) to develop a potential molecular drug target. Recombinant B. bovis MAP (rBvMAP) was expressed in Escherichia coli (E. coli) as a glutathione S-transferase (GST)-fusion protein, and we found that it was antigenic. An antiserum against the rBvMAP protein was generated in mice, and then a native B. bovis MAP was identified in B. bovis by Western blot assay. Further, an immunolocalization assay showed that MAP is present in the cytoplasm of the B. bovis merozoite. Analysis of the biochemical properties of rBvMAP revealed that it was enzymatically active, with optimum activity at pH 7.5. Enhanced enzymatic activity was observed in the presence of divalent manganese cations and was effectively inhibited by a metal chelator, ethylenediaminetetraacetic acid (EDTA). Moreover, the enzymatic activity of BvMAP was inhibited by amastatin and bestatin as inhibitors of MAP (MAPi) in a dose-dependent manner. Importantly, MAPi was also found to significantly inhibit the growth of Babesia parasites both in vitro and in vivo; additionally, they induced high levels of cytokines and immunoglobulin (IgG) titers in the host. Therefore, our results suggest that BvMAP is a molecular target of amastatin and bestatin, and those inhibitors may be drug candidates for the treatment of babesiosis, though more studies are required to confirm this.
Collapse
Affiliation(s)
- Tserendorj Munkhjargal
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; Institute of Veterinary Medicine, Zaisan 17042, Ulaanbaatar, Mongolia
| | - Takahiro Ishizaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Azirwan Guswanto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Hitoshi Takemae
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
26
|
Gumber S, Nascimento FS, Rogers KA, Bishop HS, Rivera HN, Xayavong MV, Devare SG, Schochetman G, Amancha PK, Qvarnstrom Y, Wilkins PP, Villinger F. Experimental transfusion-induced Babesia microti infection: dynamics of parasitemia and immune responses in a rhesus macaque model. Transfusion 2016; 56:1508-19. [PMID: 26892459 DOI: 10.1111/trf.13521] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Babesiosis is an emerging tick-borne infection in humans. The increasing numbers of reported cases of transfusion-associated babesiosis (TAB), primarily caused by Babesia microti, represents a concern for the safety of the US blood supply. STUDY DESIGN AND METHODS This study investigated kinetics of parasitemia and innate immune responses and dynamics of antibody responses during B. microti infection in rhesus macaques (RMs) using blood smears, quantitative polymerase chain reaction (qPCR), flow cytometry, and indirect fluorescent antibody testing. A total of six monkeys were transfused with either hamster or monkey-passaged B. microti-infected red blood cells (two and four monkeys, respectively) simulating TAB. RESULTS The prepatent period in monkeys inoculated with hamster-passaged B. microti was 35 days compared with 4 days in monkeys transfused with monkey-passaged B. microti; the latter monkeys also had markedly higher parasitemia levels. The duration of the window period from the first detected parasitemia by qPCR analysis to the first detected antibody response ranged from 10 to 17 days. Antibody responses fluctuated during the course of the infection. Innate responses assessed by the frequencies of monocytes and activated B cells correlated with the kinetics and magnitude of parasitemia. On Day 14, additional activation peaks were noted for CD14+CD16+ and CD14-CD16+ monocytes and for CD11c+ myeloid dendritic cells, but only in animals transfused with monkey-passaged B. microti. Parasitemia persisted in these immunocompetent animals, similar to human infection. CONCLUSION The results suggest that transfusion-associated transmission of B. microti leads to rapid onset of parasitemia (Day 4) in RMs, detectable antibody response 14 days later, and persistent parasitemia.
Collapse
Affiliation(s)
- Sanjeev Gumber
- Division of Pathology, Yerkes National Primate Research Center, Atlanta, Georgia.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine
| | - Fernanda S Nascimento
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control & Prevention, Atlanta, Georgia
| | - Kenneth A Rogers
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control & Prevention, Atlanta, Georgia
| | - Henry S Bishop
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control & Prevention, Atlanta, Georgia
| | - Hilda N Rivera
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control & Prevention, Atlanta, Georgia
| | - Maniphet V Xayavong
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control & Prevention, Atlanta, Georgia
| | - Sushil G Devare
- Abbott Diagnostics, Abbott Laboratories, Abbott Park, Illinois
| | | | - Praveen K Amancha
- Division of Microbiology and Immunology, Yerkes National Primate Research Center
| | - Yvonne Qvarnstrom
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control & Prevention, Atlanta, Georgia
| | - Patricia P Wilkins
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control & Prevention, Atlanta, Georgia
| | - François Villinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine
| |
Collapse
|
27
|
Abstract
Babesiosis is caused by intraerythrocytic protozoan parasites that are transmitted by ticks, or less commonly through blood transfusion or transplacentally. Human babesiosis was first recognized in a splenectomized patient in Europe but most cases have been reported from the northeastern and upper midwestern United States in people with an intact spleen and no history of immune impairment. Cases are reported in Asia, Africa, Australia, Europe, and South America. Babesiosis shares many clinical features with malaria and can be fatal, particularly in the elderly and the immunocompromised.
Collapse
Affiliation(s)
- Edouard G Vannier
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Tufts University School of Medicine, 800 Washington Street Box #041, Boston, MA 02111, USA
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Yale School of Medicine, 15 York Street, New Haven, CT 06520, USA
| | - Peter J Krause
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06520, USA; Departments of Internal Medicine and Pediatrics, Yale School of Medicine, 15 York Street, New Haven, CT 06520, USA.
| |
Collapse
|