1
|
Zhang L, Yang Z, Wu F, Ge Q, Zhang Y, Li D, Gao M, Liu X. Multiple cytokine analysis based on QuantiFERON-TB gold plus in different tuberculosis infection status: an exploratory study. BMC Infect Dis 2024; 24:28. [PMID: 38166667 PMCID: PMC10762904 DOI: 10.1186/s12879-023-08943-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND More efficient and convenient diagnostic method is a desperate need to reduce the burden of tuberculosis (TB). This study explores the multiple cytokines secretion based on QuantiFERON-TB Gold Plus (QFT-Plus), and screens for optimal cytokines with diagnostic potential to differentiate TB infection status. METHODS Twenty active tuberculosis (ATB) patients, fifteen patients with latent TB infection (LTBI), ten patients with previous TB and ten healthy controls (HC) were enrolled. Whole blood samples were collected and stimulated by QFT-Plus TB1 and TB2 antigens. The levels of IFN-γ, TNF-α, IL-2, IL-6, IL-5, IL-10, IP-10, IL-1Ra, CXCL-1 and MCP-1 in supernatant were measured by Luminex bead-based multiplex assays. The receiver operating characteristic curve was used to evaluate the diagnostic accuracy of cytokine for distinguishing different TB infection status. RESULTS After stimulation with QFT-Plus TB1 and TB2 antigens, the levels of all cytokines, except IL-5 in TB2 tube, in ATB group were significantly higher than that in HC group. The levels of IL-1Ra concurrently showed the equally highest AUC for distinguishing TB infection from HC, followed by the levels of IP-10 in both TB1 tube and TB2 tube. Moreover, IP-10 levels displayed the largest AUC for distinguishing ATB patients from non-ATB patients. Meanwhile, the levels of IP-10 also demonstrated the largest AUC in both TB1 tube and TB2 tube for distinguishing ATB patients from LTBI. CONCLUSIONS In addition to conventional detection of IFN-γ, measuring IP-10 and IL-1Ra based on QFT-Plus may have the more tremendous potential to discriminate different TB infection status.
Collapse
Affiliation(s)
- Lifan Zhang
- Division of Infectious Diseases, Department of Internal medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Epidemiology Unit, Peking Union Medical College, International Clinical Epidemiology Network, Beijing, China
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengrong Yang
- Division of Infectious Diseases, Department of Internal medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengying Wu
- Division of Infectious Diseases, Department of Internal medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiping Ge
- Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yueqiu Zhang
- Division of Infectious Diseases, Department of Internal medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongyu Li
- Division of Infectious Diseases, Department of Internal medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengqiu Gao
- Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaoqing Liu
- Division of Infectious Diseases, Department of Internal medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Clinical Epidemiology Unit, Peking Union Medical College, International Clinical Epidemiology Network, Beijing, China.
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Scott NR, Thirunavukkarasu S, Rangel-Moreno J, Griggs DW, Khader SA. CWHM-12, an Antagonist of Integrin-Mediated Transforming Growth Factor-Beta Activation Confers Protection During Early Mycobacterium tuberculosis Infection in Mice. J Interferon Cytokine Res 2022; 42:421-429. [PMID: 35914102 PMCID: PMC9422778 DOI: 10.1089/jir.2022.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/15/2022] [Indexed: 11/12/2022] Open
Abstract
Tuberculosis (TB) caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb) is one of the most lethal infectious diseases in the world. Presently, Bacillus Calmette-Guerin, the vaccine approved for use against TB, does not offer complete protection against the disease, which necessitates the development of new therapeutics to treat this infection. Overexpression of transforming growth factor beta (TGF-β) is associated with pulmonary profibrotic changes. The inactive TGF-β secreted is activated through its cleavage and release by αv integrins. Integrin-mediated regulation of TGF-β is considered as a master switch in the profibrotic process and a potential therapeutic target. Thus, in this study, we sought to determine if treatment with a broad range antagonist of integrins, CWHM-12, has the potency to inhibit pulmonary fibrosis and enhance Mtb control in a highly susceptible mouse model of Mtb infection, namely the C3Heb/FeJ (FeJ). CWHM-12 treatment at the early stages of Mtb infection was efficacious in reducing disease severity and inflammation associated with decreased iNOS, MIP-2, and IL-10 production without degradation of collagen. This suggests a potential for CWHM-12 targeting of TGF-β to be explored as an adjunct therapeutic for early Mtb infection.
Collapse
Affiliation(s)
- Ninecia R. Scott
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Shyamala Thirunavukkarasu
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - David W. Griggs
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Shabaana A. Khader
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Barral TD, Rebouças MF, Loureiro D, Raynal JT, Sousa TJ, Moura-Costa LF, Azevedo V, Meyer R, Portela RW. Chemokine production induced by Corynebacterium pseudotuberculosis in a murine model. Braz J Microbiol 2022; 53:1019-1027. [PMID: 35138630 PMCID: PMC9151972 DOI: 10.1007/s42770-022-00694-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Corynebacterium pseudotuberculosis is the etiological agent of caseous lymphadenitis. The main clinical sign of this disease is the development of granulomas, especially in small ruminants; however, the pathways that are involved in the formation and maintenance of these granulomas are unknown. Cytokines and chemokines are responsible for the migration of immune cells to specific sites and tissues; therefore, it is possible that chemokines participate in abscess formation. This study aimed to evaluate the induction of chemokine production by two C. pseudotuberculosis strains in a murine model. A highly pathogenic (VD57) and an attenuated (T1) strain of C. pseudotuberculosis, as well as somatic and secreted antigens derived from these strains, was used to stimulate murine splenocytes. Then, the concentrations of the chemokines CCL-2, CCL-3, CCL-4, and CCL-5 and the cytokines IL-1 and TNF were measured in the culture supernatants. The VD57 strain had a higher ability to stimulate the production of chemokines when compared to T1 strain, especially in the early stages of stimulation, which can have an impact on granuloma formation. The T1 lysate antigen was able to stimulate most of the chemokines studied herein when compared to the other antigenic fractions of both strains. These results indicate that C. pseudotuberculosis is a chemokine production inducer, and the bacterial strains differ in their induction pattern, a situation that can be related to the specific behavior of each strain.
Collapse
Affiliation(s)
- Thiago Doria Barral
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia State, 40110-100, Brazil
| | - Miriam Flores Rebouças
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia State, 40110-100, Brazil
| | - Dan Loureiro
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia State, 40110-100, Brazil
| | - José Tadeu Raynal
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia State, 40110-100, Brazil
| | - Thiago Jesus Sousa
- Laboratory of Molecular and Cellular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais State, 31270-901, Brazil
| | - Lilia Ferreira Moura-Costa
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia State, 40110-100, Brazil
| | - Vasco Azevedo
- Laboratory of Molecular and Cellular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais State, 31270-901, Brazil
| | - Roberto Meyer
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia State, 40110-100, Brazil
| | - Ricardo Wagner Portela
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia State, 40110-100, Brazil.
| |
Collapse
|
4
|
Evaluation of Cytokines as Robust Diagnostic Biomarkers for COVID-19 Detection. J Pers Med 2021; 11:jpm11070681. [PMID: 34357148 PMCID: PMC8303564 DOI: 10.3390/jpm11070681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 01/08/2023] Open
Abstract
Antigen tests or polymerase chain reaction (PCR) amplification are currently COVID-19 diagnostic tools. However, developing complementary diagnosis tools is mandatory. Thus, we performed a plasma cytokine array in COVID-19 patients to identify novel diagnostic biomarkers. A discovery-validation study in two independent prospective cohorts was performed. The discovery cohort included 136 COVID-19 and non-COVID-19 patients recruited consecutively from 24 March to 11 April 2020. Forty-five cytokines' quantification by the MAGPIX system (Luminex Corp., Austin, TX, USA) was performed in plasma samples. The validation cohort included 117 patients recruited consecutively from 15 to 25 April 2020 for validating results by ELISA. COVID-19 patients showed different levels of multiple cytokines compared to non-COVID-19 patients. A single chemokine, IP-10, accurately identified COVID-19 patients who required hospital admission (AUC: 0.962; 95%CI (0.933-0.992); p < 0.001)). The results were validated in an independent cohort by multivariable analysis (OR: 25.573; 95%CI (8.127-80.469); p < 0.001) and AUROC (AUC: 0.900; 95%CI (0.846-0.954); p < 0.001). Moreover, showing IP-10 plasma levels over 173.35 pg/mL identified COVID-19 with higher sensitivity (86.20%) than the first SARS-CoV-2 PCR. Our discover-validation study identified IP-10 as a robust biomarker in clinical practice for COVID-19 diagnosis at hospital. Therefore, IP-10 could be used as a complementary tool in clinical practice, especially in emergency departments.
Collapse
|
5
|
Increased susceptibility to Mycobacterium tuberculosis infection in a diet-induced murine model of type 2 diabetes. Microbes Infect 2020; 22:303-311. [PMID: 32234542 DOI: 10.1016/j.micinf.2020.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/05/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022]
Abstract
Tuberculosis (TB)-type 2 diabetes mellitus (T2D) comorbidity is re-emerging as a global public health problem. T2D is a major risk factor for increased susceptibility to TB infection and reactivation leading to higher morbidity and mortality. The pathophysiological mechanisms of T2D contributing to TB susceptibility are not fully understood, but likely involve dysregulated immune responses. In this study, a diet-induced murine model that reflects the cardinal features of human T2D was used to assess the immune responses following an intravenous Mycobacterium tuberculosis (Mtb) infection. In this study, T2D significantly increased mortality, organ bacillary burden and inflammatory lesions compared to non-diabetic controls. Organ-specific pro-inflammatory cytokine responses were dysregulated as early as one day post-infection in T2D mice. Macrophages derived from T2D mice showed reduced bacterial internalization and killing capacity. An early impairment of antimycobacterial functions of macrophages in diabetes is a key mechanism that leads to increased susceptibility of T2D.
Collapse
|
6
|
Mamishi S, Mahmoudi S, Banar M, Hosseinpour Sadeghi R, Marjani M, Pourakbari B. Diagnostic accuracy of interferon (IFN)-γ inducible protein 10 (IP-10) as a biomarker for the discrimination of active and latent tuberculosis. Mol Biol Rep 2019; 46:6263-6269. [PMID: 31564016 DOI: 10.1007/s11033-019-05067-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/10/2019] [Indexed: 01/28/2023]
Abstract
To assess the potency of Interferon (IFN)-γ inducible protein 10 (IP-10) stimulated by recombinant PE35 and PPE68 as a biomarker in differentiating between active and latent tuberculosis. Patients with active pulmonary TB (PTB) (n = 30), latent TB infection (LTBI) (n = 29), and BCG-vaccinated healthy controls (HCs) (n = 30) were enrolled and blood samples were taken from them. The diagnostic performance of IP-10 was evaluated by the Receiver operator characteristic (ROC) curve and the area under the curve (AUC) and their 95% confidence intervals (CI) were calculated. The median IP-10 concentrations following stimulation with recombinant PE35 and PPE68 were significantly higher in TB-infected group (both PTB and LTBI) compared with HCs (P < 0.05). It was also significantly higher in PTB patients compared with individuals with LTBI (P < 0.05). The discriminatory performance of IP-10 following stimulation with recombinant PE35 and PPE68 (assessed by AUC) between TB patients and HCs were similar (AUC: 0.79 [95% CI 0.68-0.89] and 0.79 [95% CI 0.69-0.89], respectively). AUCs of IP-10 following stimulation with recombinant PE35 and PPE68 for distinguishing between PTB and LTBI groups were 0.63 (95% CI 0.47-0.79) and 0.61 (0.45-0.77), respectively. Under the selected cut-off values, the sensitivity and specificity of IP-10 for distinguishing of TB-infected and HCs after stimulation with recombinant PE35 was 74.5% and 73%, respectively and after stimulation with recombinant PPE68 were 76.5% and 63%, respectively. Moreover, the sensitivity and specificity of IP-10 for differentiating of PTB and LTBI following stimulation with recombinant PE35 and PPE68 were 770 pg/ml (sensitivity: 63%; specificity: 62%) and 502 pg/ml (sensitivity: 80%; specificity: 52%), respectively. IP-10 stimulated by recombinant PE35 and PPE68 is a promising biomarker for TB diagnosis. However, it doesn't have desirable sensitivity and specificity in distinguishing between PTB and LTBI.
Collapse
Affiliation(s)
- Setareh Mamishi
- Pediatric Infectious Disease Research Center, Children Medical Center Hospital, Tehran University of Medical Sciences, No.62, Gharib St., Keshavarz Blvd., Tehran, Iran.,Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Mahmoudi
- Pediatric Infectious Disease Research Center, Children Medical Center Hospital, Tehran University of Medical Sciences, No.62, Gharib St., Keshavarz Blvd., Tehran, Iran
| | - Maryam Banar
- Pediatric Infectious Disease Research Center, Children Medical Center Hospital, Tehran University of Medical Sciences, No.62, Gharib St., Keshavarz Blvd., Tehran, Iran
| | - Reihaneh Hosseinpour Sadeghi
- Pediatric Infectious Disease Research Center, Children Medical Center Hospital, Tehran University of Medical Sciences, No.62, Gharib St., Keshavarz Blvd., Tehran, Iran
| | - Majid Marjani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Pourakbari
- Pediatric Infectious Disease Research Center, Children Medical Center Hospital, Tehran University of Medical Sciences, No.62, Gharib St., Keshavarz Blvd., Tehran, Iran.
| |
Collapse
|
7
|
Marino R, Capoferri R, Panelli S, Minozzi G, Strozzi F, Trevisi E, Snel GGM, Ajmone-Marsan P, Williams JL. Johne's disease in cattle: an in vitro model to study early response to infection of Mycobacterium avium subsp. paratuberculosis using RNA-seq. Mol Immunol 2017; 91:259-271. [PMID: 28988040 DOI: 10.1016/j.molimm.2017.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/07/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
Abstract
Johne's disease is a chronic granulomatous enteritis caused by Mycobacterium avium subsp. paratubercolosis (MAP) which affects ruminants worldwide and has a significant economic impact. MAP has also been associated with human Crohn's disease, although this connection is not well established. MAP is highly adapted for survival within host macrophages and prevents macrophage activation, blocks phagosome acidification and maturation, and attenuates presentation of antigens to the immune system. The consequence is a very long silent infection before clinical signs are observed. The present work examined the transcriptome of bovine monocyte-derived macrophages (MDM) infected with the L1 strain of MAP at 2h, 6h and 24h post infection using RNA-seq. Pathway over-representation analysis of genes differentially expressed between infected vs. control MDM identified that immune related pathways were affected. Genes belonging to the cytokine-cytokine receptor interaction pathway and members of the JAK-STAT pathway, which is involved in the regulation of immune response, were up-regulated. However, in parallel inhibitors of immune functions were activated, including suppressor of cytokine signaling (SOCS) and cytokine-inducible SH2-containing protein (CISH), which most likely suppresses IFNγ and the JAK/STAT signaling cascade in infected MDM, which may favour MAP survival. After exposure, macrophages phagocytise pathogens, activate the complement cascade and the adaptive immune system through the antigen presentation process. However, data presented here suggest that genes related to phagocytosis and lysosome function are down regulated in MAP infected MDM. Genes of MHC class II and complement pathway were also down-regulated. This study therefore shows that MAP infection is associated with changes in expression of genes related to the host immune response that may affect its ability to survive and multiply inside the host cell.
Collapse
Affiliation(s)
- Rosanna Marino
- CREA Research Centre for Animal Production and Aquaculture, Via Antonio Lombardo 11, 26900 Lodi, Italy; Istituto Sperimentale Italiano "Lazzaro Spallanzani", 26027, Rivolta d'Adda, Cremona, Italy; Institute of Zootechnics, Università Cattolica del S. Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Rossana Capoferri
- Istituto Sperimentale Italiano "Lazzaro Spallanzani", 26027, Rivolta d'Adda, Cremona, Italy.
| | - Simona Panelli
- Parco Tecnologico Padano, via Einstein, 26900 Lodi, Italy.
| | | | | | - Erminio Trevisi
- Institute of Zootechnics, Università Cattolica del S. Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; Nutrigenomics and Proteomic Research Center - PRONUTRIGEN, Università Cattolica del S. Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy.
| | | | - Paolo Ajmone-Marsan
- Institute of Zootechnics, Università Cattolica del S. Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; Nutrigenomics and Proteomic Research Center - PRONUTRIGEN, Università Cattolica del S. Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - John L Williams
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia.
| |
Collapse
|
8
|
Host transcriptional responses following ex vivo re-challenge with Mycobacterium tuberculosis vary with disease status. PLoS One 2017; 12:e0185640. [PMID: 28977039 PMCID: PMC5627917 DOI: 10.1371/journal.pone.0185640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 09/15/2017] [Indexed: 12/30/2022] Open
Abstract
The identification of immune correlates that are predictive of disease outcome for tuberculosis remains an ongoing challenge. To address this issue, we evaluated gene expression profiles from peripheral blood mononuclear cells following ex vivo challenge with Mycobacterium tuberculosis, among participants with active TB disease (ATBD, n = 10), latent TB infection (LTBI, n = 10), and previous active TB disease (after successful treatment; PTBD, n = 10), relative to controls (n = 10). Differential gene expression profiles were assessed by suppression-subtractive hybridization, dot blot, real-time polymerase chain reaction, and the comparative cycle threshold methods. Comparing ATBD to control samples, greater fold-increases of gene expression were observed for a number of chemotactic factors (CXCL1, CXCL3, IL8, MCP1, MIP1α). ATBD was also associated with higher IL1B gene expression, relative to controls. Among LTBI samples, gene expression of several chemotactic factors (CXCL2, CXCL3, IL8) was similarly elevated, compared to individuals with PTBD. Our results demonstrated that samples from participants with ATBD and LTBI have distinct gene expression profiles in response to ex vivo M. tuberculosis infection. These findings indicate the value in further characterizing the peripheral responses to M. tuberculosis challenge as a route to defining immune correlates of disease status or outcome.
Collapse
|
9
|
Kirschner D, Pienaar E, Marino S, Linderman JJ. A review of computational and mathematical modeling contributions to our understanding of Mycobacterium tuberculosis within-host infection and treatment. CURRENT OPINION IN SYSTEMS BIOLOGY 2017; 3:170-185. [PMID: 30714019 PMCID: PMC6354243 DOI: 10.1016/j.coisb.2017.05.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tuberculosis (TB) is an ancient and deadly disease characterized by complex host-pathogen dynamics playing out over multiple time and length scales and physiological compartments. Computational modeling can be used to integrate various types of experimental data and suggest new hypotheses, mechanisms, and therapeutic approaches to TB. Here, we offer a first-time comprehensive review of work on within-host TB models that describe the immune response of the host to infection, including the formation of lung granulomas. The models include systems of ordinary and partial differential equations and agent-based models as well as hybrid and multi-scale models that are combinations of these. Many aspects of M. tuberculosis infection, including host dynamics in the lung (typical site of infection for TB), granuloma formation, roles of cytokine and chemokine dynamics, and bacterial nutrient availability have been explored. Finally, we survey applications of these within-host models to TB therapy and prevention and suggest future directions to impact this global disease.
Collapse
Affiliation(s)
- Denise Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Elsje Pienaar
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
| | - Simeone Marino
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | | |
Collapse
|
10
|
Mycobacterium tuberculosis-triggered Hippo pathway orchestrates CXCL1/2 expression to modulate host immune responses. Sci Rep 2016; 6:37695. [PMID: 27883091 PMCID: PMC5121601 DOI: 10.1038/srep37695] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) pathogenesis encompasses a plethora of finely regulated alterations within the host which eventually coin the outcome of infection. Chemokines are important components in directing immune cell recruitment to the site of infection, and shaping the disease progression. Here, we demonstrate that Hippo (mammalian sterile 20-like 1 and 2 kinases, MST1/2, in mammals), is activated during mycobacterial infection in a toll-like receptor (TLR) 2-interleukin receptor-1 associated kinases (IRAK1/4)-dependent manner. Mtb-triggered Hippo signaling modulates the expression and secretion of chemokines (CXCL1 and CXCL2); as silencing MST1/2 compromised the ability of Mtb to furnish the same. Further insight into the mechanism of Hippo-mediated regulation of chemokines revealed the role for a non-canonical Hippo effector interferon (IFN) regulatory factor (IRF) 3 in the process and marked the effect to be independent of LATS1. Alongside their ability to guide directed recruitment of immune cells, we have uncovered a paracrine role for Hippo-mediated secretion of CXCL1 and CXCL2 in the production of anti-microbial peptides (beta-defensins), iNOS, NOX2 and pro-inflammatory molecules during mycobacterial infection of the host. This study highlights the involvement of TLR2-IRAK1/4-MST1/2-IRF3 axis in Mtb-triggered modulation of chemokines and identifies Hippo signaling as a novel regulator of host-mycobacterial interactions.
Collapse
|
11
|
Enwere GC, Ota MO, Obaro SK. The host response in malaria and depression of defence against tuberculosis. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1999.11813470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Evangelopoulos D, McHugh TD. Improving the tuberculosis drug development pipeline. Chem Biol Drug Des 2015; 86:951-60. [PMID: 25772393 DOI: 10.1111/cbdd.12549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/04/2015] [Accepted: 02/24/2015] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis is considered one of the most successful pathogens and multidrug-resistant tuberculosis, a disease that urgently requires new chemical entities to be developed for treatment. There are currently several new molecules under clinical investigation in the tuberculosis (TB) drug development pipeline. However, the complex lifestyle of M. tuberculosis within the host presents a barrier to the development of new drugs. In this review, we highlight the reasons that make TB drug discovery and development challenging as well as providing solutions, future directions and alternative approaches to new therapeutics for TB.
Collapse
Affiliation(s)
| | - Timothy D McHugh
- Centre for Clinical Microbiology, University College London, London, NW3 2PF, UK
| |
Collapse
|
13
|
Discrimination between active and latent tuberculosis based on ratio of antigen-specific to mitogen-induced IP-10 production. J Clin Microbiol 2014; 53:504-10. [PMID: 25428147 DOI: 10.1128/jcm.02758-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mycobacterium tuberculosis is the major causative agent of tuberculosis (TB). The gamma interferon (IFN-γ) release assay (IGRA) has been widely used to diagnose TB by testing cell-mediated immune responses but has no capacity for distinguishing between active TB and latent TB infection (LTBI). This study aims to identify a parameter that will help to discriminate active TB and LTBI. Whole-blood samples from 33 active TB patients, 20 individuals with LTBI, and 26 non-TB controls were applied to the commercial IFN-γ release assay, QuantiFERON-TB Gold In-Tube, and plasma samples were analyzed for interleukin-2 (IL-2), IL-6, IL-8, IL-10, IL-13, tumor necrosis factor-alpha (TNF-α), IFN-γ, monokine induced by IFN-γ (MIG), interferon gamma inducible protein 10 (IP-10), interferon-inducible T cell alpha chemoattractant (I-TAC), and monocyte chemoattractant protein 1 (MCP-1) by using a commercial cytometric bead array. The Mycobacterium tuberculosis antigen-specific production of most of the assayed cytokines and chemokines was higher in the active TB than in the LTBI group. The mitogen-induced responses were lower in the active TB than in the LTBI group. When the ratio of TB-specific to mitogen-induced responses was calculated, IL-2, IL-6, IL-10, IL-13, TNF-α, IFN-γ, MIG, and IP-10 were more useful in discriminating active TB from LTBI. In particular, most patients showed higher IP-10 production to Mycobacterium tuberculosis antigens than to mitogen at the individual level, and the ratio for IP-10 was the strongest indicator of active infection versus LTBI with 93.9% sensitivity and 90% specificity. In conclusion, the ratio of the TB-specific to the mitogen-induced IP-10 responses showed the most promising accuracy for discriminating active TB versus LTBI and should be further studied to determine whether it can serve as a biomarker that might help clinicians administer appropriate treatments.
Collapse
|
14
|
Carpenter D, Taype C, Goulding J, Levin M, Eley B, Anderson S, Shaw MA, Armour JAL. CCL3L1 copy number, CCR5 genotype and susceptibility to tuberculosis. BMC MEDICAL GENETICS 2014; 15:5. [PMID: 24405814 PMCID: PMC3897992 DOI: 10.1186/1471-2350-15-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/19/2013] [Indexed: 11/10/2022]
Abstract
Background Tuberculosis is a major infectious disease and functional studies have provided evidence that both the chemokine MIP-1α and its receptor CCR5 play a role in susceptibility to TB. Thus by measuring copy number variation of CCL3L1, one of the genes that encode MIP-1α, and genotyping a functional promoter polymorphism -2459A > G in CCR5 (rs1799987) we investigate the influence of MIP-1α and CCR5, independently and combined, in susceptibility to clinically active TB in three populations, a Peruvian population (n = 1132), a !Xhosa population (n = 605) and a South African Coloured population (n = 221). The three populations include patients with clinically diagnosed pulmonary TB, as well as other, less prevalent forms of extrapulmonary TB. Methods and results Copy number of CCL3L1 was measured using the paralogue ratio test and exhibited ranges between 0–6 copies per diploid genome (pdg) in Peru, between 0–12 pdg in !Xhosa samples and between 0–10 pdg in South African Coloured samples. The CCR5 promoter polymorphism was observed to differ significantly in allele frequency between populations (*A; Peru f = 0.67, !Xhosa f = 0.38, Coloured f = 0.48). Conclusions The case–control association studies performed however find, surprisingly, no evidence for an influence of variation in genes coding for MIP-1α or CCR5 individually or together in susceptibility to clinically active TB in these populations.
Collapse
Affiliation(s)
- Danielle Carpenter
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
NF-κB repressing factor inhibits chemokine synthesis by peripheral blood mononuclear cells and alveolar macrophages in active pulmonary tuberculosis. PLoS One 2013; 8:e77789. [PMID: 24223729 PMCID: PMC3817197 DOI: 10.1371/journal.pone.0077789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022] Open
Abstract
NF-κB repressing factor (NRF) is a transcriptional silencer implicated in the basal silencing of specific NF-κB targeting genes, including iNOS, IFN-β and IL-8/CXCL8. IP-10/CXCL10 and IL-8/CXCL8 are involved in neutrophil and lymphocyte recruitment against M. tuberculosis (MTb) and disease progression of pulmonary tuberculosis (TB). Alveolar macrophages (AM) and peripheral blood mononuclear cells (PBMC) were used to study the regulatory role of NRF in pulmonary TB. AM and PBMC were purified from 19 TB patients and 15 normal subjects. To study the underlying mechanism, PBMC were exposed to heated TB bacilli. The regulation role of NRF in IP-10/CXCL10 and IL-8/CXCL8 was determined by NRF knock-down or over-expression. NRF binding capabilities in promoter sites were measured by chromatin immunoprecipitation (ChIP) assay. The levels of IP-10/CXCL10, IL-8/CXCL8 and NRF were significantly higher in AM and PBMC in patients with active TB. NRF played an inhibitory role in IP-10/CXCL10 and IL-8/CXCL8 inductions. We delineate the role of NRF in pulmonary TB, which inhibits the expressions of IP-10/CXCL10 and IL-8/CXCL8 in AM and PBMC of patients with high bacterial load. NRF may serve as an endogenous repressor to prevent robust increase in IP-10/CXCL10 and IL-8/CXCL8 when TB bacterial load is high.
Collapse
|
16
|
Abstract
The immune response against Mycobacterium tuberculosis is multifactorial, involving a network of innate and adaptive immune responses. Characterization of the immune response, a clear understanding of the dynamics and interplay of different arms of the immune response are critical to allow the development of better tools for combating tuberculosis. Dendritic cells (DCs) are one of the key cells in bridging innate and adaptive immune response through their significant role in capturing, processing and presenting antigens. The outcome of interaction of M. tuberculosis with DCs is not fully understood and the available reports are contradictory were some findings reported that DCs strengthen the cellular immune response against mycobacterium infection whereas others reported M. tuberculosis impairs the function of DCs were infected DCs are poor stimulators of M. tuberculosis Ag-specific CD4 T cells. Other studies showed that the outcome depends on M. tuberculosis strain type and type of receptor on DCs during recognition. In this review I shall highlight the recent findings in the outcome of interaction of Mycobacterium tuberculosis with DCs.
Collapse
Affiliation(s)
- Adane Mihret
- Armauer Hansen Research Institute; Addis Ababa, Ethopia.
| |
Collapse
|
17
|
Mycobacteria and biological response modifiers: two sides of the relationship. Infect Dis Clin North Am 2012; 25:865-93. [PMID: 22054761 DOI: 10.1016/j.idc.2011.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
With increasing use of biological response modifiers (BRMs) for various systemic inflammatory diseases there is a need to be vigilant about complications with the use of these therapies. It is important to have appropriate screening for the infections in patients requiring BRMs. However, many studies have reported benefits of certain BRMs in the treatment of infections such as tuberculosis as adjuncts. Continued research and technical advances in immunogenetics helps understand complex mechanisms in the usage of the BRMs. This article summarizes the different aspects of the relationship between mycobacterial infections and the use of various BRMs for inflammatory conditions.
Collapse
|
18
|
Garcia I, Olleros ML, Quesniaux VFJ, Jacobs M, Allie N, Nedospasov SA, Szymkowski DE, Ryffel B. Roles of soluble and membrane TNF and related ligands in mycobacterial infections: effects of selective and non-selective TNF inhibitors during infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:187-201. [PMID: 21153323 DOI: 10.1007/978-1-4419-6612-4_20] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Irene Garcia
- Department of Pathology and Immunology, CMU, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Reactive oxygen species-activated p38/ERK 1/2 MAPK signaling pathway in the Mycobacterium bovis bacillus Calmette Guérin (BCG)-induced CCL2 secretion in human monocytic cell line THP-1. Arch Med Res 2011; 41:579-85. [PMID: 21199725 DOI: 10.1016/j.arcmed.2010.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 10/18/2010] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS CCL2 plays an important role in mycobacterial infection by inducing leukocyte recruitment and activation. Here we assess the role of reactive oxygen species (ROS) in the secretion of the CCL2 and the activation of mitogen-activated protein kinases (MAPKs) by human monocytic cells infected with Mycobacterium bovis bacillus Calmette Guérin (BCG). METHODS CCL2 mRNA and protein expression were measured by reverse transcriptase polymerase chain reaction (RT-PCR), quantitative PCR and ELISA. Kinase phosphorylation was determined by immunoblotting. RESULTS Treatment of human monocytic cells with M. bovis BCG activated rapid superoxide generation. mRNA expression of CCL2 was increased in M. bovis BCG-infected monocytic cells, and this increase was abrogated by administration of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor diphenyleneiodonium (DPI). Importantly, M. bovis BCG-induced CCL2 protein secretion was also inhibited by the NADPH oxidase inhibitor DPI, the selective inhibitor of NADPH oxidase apocynin, the mitochondrial electron transfer chain subunit I inhibitor rotenone and H(2)O(2) scavenging enzyme catalase, indicating that the inhibition is through the NADPH/ROS pathway. Analysis of downstream signals showed that inhibition of NADPH oxidase inhibited M. bovis BCG-induced phosphorylation of MAPK (extracellular signal-regulated kinase (ERK) 1/2 and p38). CONCLUSIONS These results strongly suggest that NADPH oxidase-derived ROS-mediated activation of p38 and ERK 1/2 is essential for the M. bovis BCG-induced CCL2 production.
Collapse
|
20
|
Cannas A, Calvo L, Chiacchio T, Cuzzi G, Vanini V, Lauria FN, Pucci L, Girardi E, Goletti D. IP-10 detection in urine is associated with lung diseases. BMC Infect Dis 2010; 10:333. [PMID: 21092156 PMCID: PMC2995466 DOI: 10.1186/1471-2334-10-333] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 11/22/2010] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Blood cytokines and chemokines have been proposed as biomarkers for tuberculosis (TB). Recently, some immune mediators found in the urine of patients with renal dysfunctions have also been suggested as potential biomarkers. Finding biomarkers for TB in urine would present several advantages over blood in terms of collection and safety. The objective of this study was to investigate the presence of cytokines and chemokines in the urine of patients with pulmonary TB at the time of diagnosis. In a subgroup, the evaluation was also performed during TB treatment and at therapy completion. Patients with lung diseases other than TB, and healthy subjects were also enrolled. METHODS Urine samples from 138 individuals, after exclusion of renal dysfunctions, were collected during an 18 month-period. Among them, 58 received a diagnosis of pulmonary TB, 28 resulted having lung diseases other than TB, and 34 were healthy subjects. Moreover, 18 TB patients, 9 of whom were tested 2 months after AFB smear sputum reversion and 9 of whom were cured of TB were also included. Cytokines and chemokines in urine were evaluated using a Cytometric-Bead-Array-Flex-Set. IP-10 detection in 49 subjects was also carried out in parallel by using an Enzyme Linked ImmunoSorbent Assay (ELISA). RESULTS IFN-γ, TNF-α, IL-2, IL-8, MIP-1α, MIP-1β and RANTES were poorly detected in all urine samples. Conversely, IP-10 was consistently detected in urine and its level was significantly increased in patients with lung disease compared to healthy subjects (p < 0.001). Increased IP-10 levels were found in both pulmonary TB and lung diseases other than TB. Moreover lower IP-10 levels were found in cured-TB patients compared to the levels at the time of diagnosis, and this difference was close to significance (p = 0.06). Interestingly, we demonstrated a significant correlation between the data obtained by flow cytometry and ELISA (r² 0.82, p < 0.0001). CONCLUSIONS IP-10, in contrast to IFN-γ, TNF-α, IL-2, IL-8, MIP-1α, MIP-1β and RANTES, is detectable in the urine of patients with pulmonary diseases in the absence of renal dysfunctions. Moreover, the IP-10 level in cured-TB patients is comparable to that found in healthy subjects. More studies are needed to further investigate the clinical utility of these findings.
Collapse
Affiliation(s)
- Angela Cannas
- Department of Epidemiology and Preclinical Research, L. Spallanzani National Institute for Infectious Diseases (INMI), Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bru A, Cardona PJ. Mathematical modeling of tuberculosis bacillary counts and cellular populations in the organs of infected mice. PLoS One 2010; 5:e12985. [PMID: 20886087 PMCID: PMC2944881 DOI: 10.1371/journal.pone.0012985] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 08/28/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis is a particularly aggressive microorganism and the host's defense is based on the induction of cellular immunity, in which the creation of a granulomatous structure has an important role. METHODOLOGY We present here a new 2D cellular automata model based on the concept of a multifunctional process that includes key factors such as the chemokine attraction of the cells; the role of innate immunity triggered by natural killers; the presence of neutrophils; apoptosis and necrosis of infected macrophages; the removal of dead cells by macrophages, which induces the production of foamy macrophages (FMs); the life cycle of the bacilli as a determinant for the evolution of infected macrophages; and the immune response. RESULTS The results obtained after the inclusion of two degrees of tolerance to the inflammatory response triggered by the infection shows that the model can cover a wide spectrum, ranging from highly-tolerant (i.e. mice) to poorly-tolerant hosts (i.e. mini-pigs or humans). CONCLUSIONS This model suggest that stopping bacillary growth at the onset of the infection might be difficult and the important role played by FMs in bacillary drainage in poorly-tolerant hosts together with apoptosis and innate lymphocytes. It also shows the poor ability of the cellular immunity to control the infection, provides a clear protective character to the granuloma, due its ability to attract a sufficient number of cells, and explains why an already infected host can be constantly reinfected.
Collapse
Affiliation(s)
- Antonio Bru
- Departamento de Matemática Aplicada, Facultad de Matemáticas, Universidad Complutense de Madrid, Madrid, Spain
| | - Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Fundació Institut per a la Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Centro de Investigación Biomédica en Red (CIBER) Enfermedades Respiratorias, Instituto Carlos III, Palma de Mallorca, Spain
- * E-mail:
| |
Collapse
|
22
|
Rajavelu P, Das SD. Kinetics of chemokine secretion in human macrophages infected with various strains of Mycobacterium tuberculosis. Indian J Med Microbiol 2010; 28:201-6. [PMID: 20644306 DOI: 10.4103/0255-0857.66470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND PURPOSE It has been shown that chemokine secretion upon infection with Mycobacterium tuberculosis is influenced by the virulence of the strain, and it is suggested that virulence-associated differences in chemokine secretion contribute to the failure in containing the infection due to poor granuloma formation. MATERIALS AND METHODS In this study, we used prevalent M tuberculosis clinical strains (S7 and S10) to study the chemokine secretion profile in infected THP-1 cells and monocyte-derived macrophages (MDM) and compared this with the chemokine secretion induced by laboratory strains. RESULTS This study showed that comparatively lower levels of IP-10 were induced by clinical strains than by laboratory strains in both differentiated THP-1 and MDMs. The secretion of MIP-1alpha was also depressed but only in the THP-1 cells infected with clinical strains. This depressed chemokine secretion may hinder the movement of Th-1 cells from the periphery into the infection foci to control the infection. Correlation between IP-10 and IL-12p40 showed a negative relationship in control MDMs, while there was a positive correlation in all the infected strains, indicating their cooperative role in attracting and activating Th1 cells for a protective immune response at the site. This relationship was strain dependent, with avirulent H37Ra showing higher correlation, followed by the clinical strains and the virulent H37Rv. A positive correlation of IP-10 with IFN-gamma (S7 and H37Ra) and with IL-10 (H37Ra and H37Rv) suggested a definitive interplay of these molecules in infection. CONCLUSIONS The chemokines secretion by infected THP-1 cells and MDMs was strain dependant and the lower induction by the clinical strains may indicate that the clinical strains maintain a quiescent nature to mislead the host immune system for their benefit.
Collapse
Affiliation(s)
- P Rajavelu
- Department of Immunology, Tuberculosis Research Centre ICMR, Chennai 600031, India
| | | |
Collapse
|
23
|
Lee YH, Hong YC, Yang CF, Wu HT, Huang LJ, Tzeng CH, Liu CY. Severe extensive bone marrow necrosis from miliary tuberculosis without granulomas and pulmonary presentations. J Chin Med Assoc 2010; 73:208-11. [PMID: 20457443 DOI: 10.1016/s1726-4901(10)70043-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 01/28/2010] [Indexed: 11/22/2022] Open
Abstract
Bone marrow necrosis (BMN) is a rare clinicopathologic entity caused by hypoxemia after failure of the microcirculation, which frequently manifests with bone pain, fever, and peripheral cytopenia. In most reported cases of BMN resulting from miliary tuberculosis (TB), the presence of marrow granulomas, pulmonary infiltrates and/or extrapulmonary involvement is common. We report a female patient with extensive BMN from miliary TB, whose initial presentation was only severe peripheral cytopenia with extensive marrow necrosis, with neither evident pulmonary manifestations nor granulomas in the marrow biopsy. Serial Ziehl-Neelsen stains and Mycobacterium tuberculosis cultures were negative. The diagnosis of suspected miliary TB was made by consecutive positive results from polymerase chain reaction analysis for TB of marrow samples at 2 separate examination time points and a good treatment response to anti-TB therapy. Magnetic resonance imaging showed a geographic pattern of multiple signal abnormalities, indicating bone infarcts over the bilateral iliac bones and T-L-spine vertebral bodies, compatible with extensive BMN. The unusual presentation of extensive BMN with severe peripheral cytopenia in the absence of granulomas or pulmonary presentations should alert clinical physicians in epidemic areas. We discuss the use of polymerase chain reaction analysis for TB and magnetic resonance imaging for diagnosis of these patients.
Collapse
Affiliation(s)
- Yun-Hsuan Lee
- Department of Medicine, Taipei Veterans General Hospital, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
24
|
Okamoto Yoshida Y, Umemura M, Yahagi A, O'Brien RL, Ikuta K, Kishihara K, Hara H, Nakae S, Iwakura Y, Matsuzaki G. Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. THE JOURNAL OF IMMUNOLOGY 2010; 184:4414-22. [PMID: 20212094 DOI: 10.4049/jimmunol.0903332] [Citation(s) in RCA: 311] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Granulomas play an essential role in the sequestration and killing of mycobacteria in the lung; however, the mechanisms of their development and maturation are still not clearly understood. IL-17A is involved in mature granuloma formation in the mycobacteria-infected lung. Therefore, IL-17A gene-knockout (KO) mice fail to develop mature granulomas in the Mycobacterium bovis bacille Calmette-Guérin (BCG)-infected lung. This study analyzed the mechanism of IL-17A-dependent mature granuloma formation in the mycobacteria-infected lung. The IL-17A KO mice showed a normal level of nascent granuloma formation on day 14 but failed to develop mature granulomas on day 28 after the BCG infection in the lung. The observation implies that IL-17A is required for the maturation of granuloma from the nascent to mature stage. TCR gammadelta T cells expressing TCR Vgamma4 or Vgamma6 were identified as the major IL-17A-producing cells that resided in the BCG-induced lung granuloma. The adoptive transfer of the IL-17A-producing TCR gammadelta T cells reconstituted granuloma formation in the IL-17A KO mice. The expression of ICAM-1 and LFA-1, which are adhesion molecules important in granuloma formation, decreased in the lung of the BCG-infected IL-17A KO mice, and their expression was induced on BCG-infected macrophages in coculture with IL-17A-producing TCR gammadelta T cells. Furthermore, IL-17A KO mice showed not only an impaired mature granuloma formation, but also an impaired protective response to virulent Mycobacterium tuberculosis. Therefore, IL-17A produced by TCR gammadelta T cells plays a critical role in the prevention of M. tuberculosis infection through the induction of mature granuloma formation.
Collapse
Affiliation(s)
- Yuko Okamoto Yoshida
- Tropical Biosphere Research Center, Division of Host Defense and Vaccinology, Department of Microbiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Na HS, Lim YJ, Yun YS, Kweon MN, Lee HC. Ginsan enhances humoral antibody response to orally delivered antigen. Immune Netw 2010; 10:5-14. [PMID: 20228931 PMCID: PMC2837155 DOI: 10.4110/in.2010.10.1.5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 12/16/2022] Open
Abstract
Background There have been several reports describing the capability of ginseng extracts as an adjuvant. In this study, we tested if ginsan, a polysaccharide extracted from Panax ginseng, was effective in enhancing antibody response to orally delivered Salmonella antigen. Methods Ginsan was treated before oral salmonella antigen administration. Salmonella specific antibody was determined by ELISA. mRNA expression was determined by RT-PCR. Cell migration was determined by confocal microscopy and flow cytometry. COX expression was detected by western blot. Results Ginsan treatment before oral Salmonella antigen delivery significantly increased both secretory and serum antibody production. Ginsan increased the expression of COX in the Peyer's patches. Various genes were screened and we found that CCL3 mRNA expression was increased in the Peyer's patch. Ginsan increased dendritic cells in the Peyer's patch and newly migrated dendritic cells were mostly found in the subepithelial dome region. When COX inhibitors were treated, the expression of CCL3 was reduced. COX inhibitor also antagonized both the migration of dendritic cells and the humoral immune response against oral Salmonella antigen. Conclusion Ginsan effectively enhances the humoral immune response to orally delivered antigen, mediated by CCL3 via COX. Ginsan may serve as a potent vaccine suppliment for oral immunization.
Collapse
Affiliation(s)
- Hee Sam Na
- Department of Microbiology, Dankook University College of Medicine, Cheonan 330-714, Korea
| | | | | | | | | |
Collapse
|
26
|
Murine and Guinea Pig Models of Tuberculosis. METHODS IN MICROBIOLOGY 2010. [DOI: 10.1016/s0580-9517(10)37012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
27
|
Blasi P, Schoubben A, Giovagnoli S, Rossi C, Ricci M. Fighting tuberculosis: old drugs, new formulations. Expert Opin Drug Deliv 2009; 6:977-93. [PMID: 19678791 DOI: 10.1517/17425240903130577] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review reports the state of the art on innovative drug delivery strategies designed for antitubercular chemotherapeutics. The introduction contains the fundamental biological background concerning tuberculosis and a review of the current antitubercular therapy, and is followed by a critical report of the micrometric and nanometric particulate systems designed and investigated to improve tuberculosis chemotherapy.
Collapse
Affiliation(s)
- Paolo Blasi
- University of Perugia, School of Pharmacy, Department of Chemistry and Technology of Drugs, Perugia, Italy.
| | | | | | | | | |
Collapse
|
28
|
Kundu M, Pathak SK, Kumawat K, Basu S, Chatterjee G, Pathak S, Noguchi T, Takeda K, Ichijo H, Thien CBF, Langdon WY, Basu J. A TNF- and c-Cbl-dependent FLIP(S)-degradation pathway and its function in Mycobacterium tuberculosis-induced macrophage apoptosis. Nat Immunol 2009; 10:918-26. [PMID: 19597496 DOI: 10.1038/ni.1754] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 05/14/2009] [Indexed: 11/09/2022]
Abstract
Apoptosis is central to the interaction between pathogenic mycobacteria and host macrophages. Caspase-8-dependent apoptosis of infected macrophages, which requires activation of the mitogen-activated protein (MAP) kinase p38, lowers the spread of mycobacteria. Here we establish a link between the release of tumor necrosis factor (TNF) and mycobacteria-mediated macrophage apoptosis. TNF activated a pathway involving the kinases ASK1, p38 and c-Abl. This pathway led to phosphorylation of FLIP(S), which facilitated its interaction with the E3 ubiquitin ligase c-Cbl. This interaction triggered proteasomal degradation of FLIP(S), which promoted activation of caspase-8 and apoptosis. Our findings identify a previously unappreciated signaling pathway needed for Mycobacterium tuberculosis-triggered macrophage cell death.
Collapse
|
29
|
Tang NLS, Fan HPY, Chang KC, Ching JKL, Kong KPS, Yew WW, Kam KM, Leung CC, Tam CM, Blackwell J, Chan CY. Genetic association between a chemokine gene CXCL-10 (IP-10, interferon gamma inducible protein 10) and susceptibility to tuberculosis. Clin Chim Acta 2009; 406:98-102. [PMID: 19523460 PMCID: PMC7124215 DOI: 10.1016/j.cca.2009.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/30/2009] [Accepted: 06/01/2009] [Indexed: 11/07/2022]
Abstract
Background Previous studies showed that activation of CXCL-10 and other chemokines were prominent in many infectious diseases. These chemokines are components of innate immune response to respiratory tract pathogens. We examined the promoter variants of CXCL-10 and their role in predisposition to tuberculosis (TB). Methods The promoter 1.8 kb of CXCL-10 was sequenced in 24 healthy Chinese individuals to identify genetic polymorphisms. Three tagging SNPs in CXCL-10 promoter (− 1447A > G, − 872G > A, − 135G > A) were selected, and genotyping were performed in 240 TB patients and 176 healthy Chinese subjects. Disease associations were examined by χ2 and Fisher exact test. Results A promoter SNP (− 135G > A) with minor allele frequency of 0.1 showed a moderate association with TB both in genotype analysis (p = 0.01) and allelic analysis (p = 0.03); other tagging SNPs (− 1447A > G, − 872G > A) were not associated with TB. The odd ratio of the protective allele − 135G > A was 0.51(C.I 0.29 − 0.91) for homozygotes and heterozygotes carriers of the A allele. Conclusion A new potential protective SNP (− 135G > A) for TB is identified in the promoter of chemokine gene, CXCL-10. Interestingly, the exact same allele has been shown to enhance IP-10 transactivation and susceptibility to Hepatitis B virus infection in a recent publication. This SNP, located at 14 bp upstream of a NF-kB binding site, might also account for the susceptibility to TB. Our results expanded the clinical significance of this SNP in CXCL-10 promoter.
Collapse
Affiliation(s)
- Nelson Leung-Sang Tang
- Department of Chemical Pathology, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pokkali S, Das SD. Augmented chemokine levels and chemokine receptor expression on immune cells during pulmonary tuberculosis. Hum Immunol 2008; 70:110-5. [PMID: 19100801 DOI: 10.1016/j.humimm.2008.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/31/2008] [Accepted: 11/13/2008] [Indexed: 02/09/2023]
Abstract
The systemic changes in immune mediators such as cytokine and chemokines, and their synchronized interaction that regulates the cell trafficking during Mycobacterium tuberculosis (M. tuberculosis) infection, were studied. Cytokines and chemokines were evaluated by cytometric bead array (CBA) and enzyme-linked immunosorbent assay (ELISA) in 34 pulmonary tuberculosis (PTB) patients and 30 healthy subjects. The expression of chemokine receptors was assessed by flow cytometry. A significant increase in IP-10, MIG, interleukin-8, RANTES, and interleukin-6 levels was found, whereas a decrease in interferon-gamma, tumor necrosis factor-alpha, and transforming growth factor-beta was observed during PTB. Significant correlation within chemokines and between cytokines was observed in PTB. All immune cells except monocytes and B cells expressed significantly higher levels of CCR1, CCR2, and CXCR2 whereas CCR7 expression was upregulated only on monocytes and neutrophils in PTB. Both T and B cells expressed significantly high levels of CXCR3 which also correlated well with the chemokine levels in PTB. Thus, it was found that chemokines function coordinately and consistently during PTB. This balanced chemokine and cytokine relationship at the periphery may aid in amplified effector immune cell trafficking and retarded monocyte migration through differential chemokine receptor expression.
Collapse
Affiliation(s)
- Supriya Pokkali
- Department of Immunology, Tuberculosis Research Centre (ICMR), Chennai, India
| | | |
Collapse
|
31
|
Rosas-Taraco AG, Higgins DM, Sánchez-Campillo J, Lee EJ, Orme IM, González-Juarrero M. Intrapulmonary delivery of XCL1-targeting small interfering RNA in mice chronically infected with Mycobacterium tuberculosis. Am J Respir Cell Mol Biol 2008; 41:136-45. [PMID: 19097989 DOI: 10.1165/rcmb.2008-0363oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mice infected for 60 days with Mycobacterium tuberculosis were treated with aerosolized XCL1-targeting small interfering RNA (siRNA) to induce local and transient suppression of XCL1/lymphotactin (an important chemokine in tuberculoid granuloma formation). The local pulmonary siRNA therapy resulted in a 50% decrease in the total amount of xcl1 gene transcripts at 3 days, and 40 to 50% protein suppression 3 and 5 days after treatment. Reduced XCL1 expression in the lungs was associated with decreased numbers of T lymphocytes, reduction in the IFN-gamma response, disorganized granulomatous lesions, and higher fibrosis when compared with control mice treated with either PBS or nontargeting siRNA. This indicates that a transient but strong modulation of the production of XCL1 in the lungs has a significant effect on the influx of IFN-gamma-secreting T cells, as well as local pathology, but without significantly altering containment of the infection.
Collapse
Affiliation(s)
- Adrian G Rosas-Taraco
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | | | | | | | | | | |
Collapse
|
32
|
Early pulmonary cytokine and chemokine responses in mice immunized with three different vaccines against Mycobacterium tuberculosis determined by PCR array. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 16:122-6. [PMID: 19038785 DOI: 10.1128/cvi.00359-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, the early pulmonary cytokine and chemokine responses in mice immunized with either BCG vaccine, a DeltasecA2 mutant of Mycobacterium tuberculosis, or a DNA vaccine expressing an ESAT6-antigen 85B fusion protein and then aerogenically challenged with a low dose of M. tuberculosis were evaluated by PCR array. The cellular immune responses at day 10 postchallenge were essentially equivalent in the lungs of mice immunized with either the highly immunogenic BCG vaccine or the DeltasecA2 M. tuberculosis mutant strain. Specifically, 12 immune biomolecules (including gamma interferon [IFN-gamma], interleukin-21 [IL-21], IL-27, IL-17f, CXCL9, CXCL10, and CXCL11) were differentially regulated, relative to the levels for naïve controls, in the lungs of vaccinated mice at this time point. Although the vaccine-related immune responses evoked in mice immunized with the DNA vaccine were relatively limited at 10 days postinfection, upregulation of IFN-gamma RNA synthesis as well as increased expression levels of CXCL9, CXCL10, and CXCL11 chemokines were detected.
Collapse
|
33
|
|
34
|
Méndez-Samperio P. Expression and regulation of chemokines in mycobacterial infection. J Infect 2008; 57:374-84. [PMID: 18838171 DOI: 10.1016/j.jinf.2008.08.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/19/2008] [Accepted: 08/26/2008] [Indexed: 11/26/2022]
Abstract
Chemokines are the key molecules that recruit immune cells by chemotaxis and act in leukocyte activation during mycobacterial diseases. Currently, tuberculosis is a leading infectious disease affecting millions of people worldwide. The purpose of this review is to describe a series of recent scientific evidence concerning to the protective role of some members of the CC- and the CXC chemokine subfamilies for the control of mycobacterial infection. The discussion will (1) highlight the effectiveness of some chemokines as potent immunoprophylactic tool for controlling the mycobacterial establishment within the host, (2) describe recent work on the relevance of cellular signaling pathways by which mycobacterial antigens mediate chemokine induction, and (3) summarize current progress in the understanding of the potential use of chemokines as potent adjuvants in antimycobacterial immune responses.
Collapse
Affiliation(s)
- Patricia Méndez-Samperio
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, IPN., Prol. Carpio y Plan de Ayala, México D.F. 11340, Mexico.
| |
Collapse
|
35
|
Abstract
SUMMARY Tuberculosis (TB) has plagued mankind for millennia yet is classified as an emerging infectious disease, because its prevalence in the human population continues to increase. Immunity to TB depends critically on the generation of effective CD4(+) T-cell responses. Sterile immunity has not been achieved through vaccination, although early T-cell responses are effective in controlling steady-state infection in the lungs. Although such early T-cell responses are clearly protective, the initiation of the Mycobacterium tuberculosis (Mtb) T-cell response occurs much later than is the case following other aerogenic infections. This fact suggests that there is a critical period, before the activation of the T-cell response, in which Mtb is able to establish infection. An understanding of the factors that regulate early T-cell activation should, therefore, lead to better control of the disease. This review discusses recent work that has investigated the early development of T-cell immunity following Mtb infection in the mouse.
Collapse
Affiliation(s)
- Gary M Winslow
- New York State Department of Health, Wadsworth Center, Albany, NY 12208, USA.
| | | | | | | | | |
Collapse
|
36
|
Abdul-Majid KB, Ly LH, Converse PJ, Geiman DE, McMurray DN, Bishai WR. Altered cellular infiltration and cytokine levels during early Mycobacterium tuberculosis sigC mutant infection are associated with late-stage disease attenuation and milder immunopathology in mice. BMC Microbiol 2008; 8:151. [PMID: 18798983 PMCID: PMC2564956 DOI: 10.1186/1471-2180-8-151] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 09/17/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mouse virulence assessments of certain Mycobacterium tuberculosis mutants have revealed an immunopathology defect in which high tissue CFU counts are observed but the tissue pathology and lethality are reduced. M. tuberculosis mutants which grow and persist in the mouse lungs, but have attenuated disease progression, have the immunopathology (imp) phenotype. The antigenic properties of these strains may alter the progression of disease due to a reduction in host immune cell recruitment to the lungs resulting in disease attenuation and prolonged host survival. RESULTS In this study we focused on the mouse immune response to one such mutant; the M. tuberculosis Delta sigC mutant. Aerosol infection of DBA/2 and SCID mice with the M. tuberculosis Delta sigC mutant, complemented mutant and wild type strain showed proliferation of mutant bacilli in mouse lungs, but with decreased inflammation and mortality in DBA/2 mice. SCID mice shared the same phenotype as the DBA/2 mice in response to the Delta sigC mutant, however, they succumbed to the infection faster. Bronchoalveolar lavage (BAL) fluid analysis revealed elevated numbers of infiltrating neutrophils in the lungs of mice infected with wild type and complemented Delta sigC mutant strains but not in mice infected with the Delta sigC mutant. In addition, DBA/2 mice infected with the Delta sigC mutant had reduced levels of TNF-alpha, IL-1beta, IL-6 and IFN-gamma in the lungs. Similarly, there was a reduction in proinflammatory cytokines in the lungs of SCID mice. In contrast to the mouse model, the Delta sigC mutant had reduced initial growth in guinea pig lungs. A possible mechanism of attenuation in the Delta sigC mutant may be a reduction in neutrophilic-influx in the alveolar spaces of the lungs, and decreased proinflammatory cytokine secretion. In contrast to mouse data, the M. tuberculosis Delta sigC mutant proliferates slowly in guinea pig lungs, a setting characterized by caseating necrosis. CONCLUSION Our observations suggest that the immunopathology phenotype is associated with the inability to trigger a strong early immune response, resulting in disease attenuation. While macrophages and T cells have been shown to be important in containing M. tuberculosis disease our study has shown that neutrophils may also play an important role in the containment of this organism.
Collapse
Affiliation(s)
- Khairul-Bariah Abdul-Majid
- Center for Tuberculosis Research, Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD 21231-1001, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Di Liberto D, Locati M, Caccamo N, Vecchi A, Meraviglia S, Salerno A, Sireci G, Nebuloni M, Caceres N, Cardona PJ, Dieli F, Mantovani A. Role of the chemokine decoy receptor D6 in balancing inflammation, immune activation, and antimicrobial resistance in Mycobacterium tuberculosis infection. J Exp Med 2008; 205:2075-84. [PMID: 18695004 PMCID: PMC2526202 DOI: 10.1084/jem.20070608] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 07/03/2008] [Indexed: 11/04/2022] Open
Abstract
D6 is a decoy and scavenger receptor for inflammatory CC chemokines. D6-deficient mice were rapidly killed by intranasal administration of low doses of Mycobacterium tuberculosis. The death of D6(-/-) mice was associated with a dramatic local and systemic inflammatory response with levels of M. tuberculosis colony-forming units similar to control D6-proficient mice. D6-deficient mice showed an increased numbers of mononuclear cells (macrophages, dendritic cells, and CD4 and CD8 T lymphocytes) infiltrating inflamed tissues and lymph nodes, as well as abnormal increased concentrations of CC chemokines (CCL2, CCL3, CCL4, and CCL5) and proinflammatory cytokines (tumor necrosis factor alpha, interleukin 1beta, and interferon gamma) in bronchoalveolar lavage and serum. High levels of inflammatory cytokines in D6(-/-) infected mice were associated with liver and kidney damage, resulting in both liver and renal failure. Blocking inflammatory CC chemokines with a cocktail of antibodies reversed the inflammatory phenotype of D6(-/-) mice but led to less controlled growth of M. tuberculosis. Thus, the D6 decoy receptor plays a key role in setting the balance between antimicrobial resistance, immune activation, and inflammation in M. tuberculosis infection.
Collapse
Affiliation(s)
- Diana Di Liberto
- Dipartimento di Biopatologia e Metodologie Biomediche, Università di Palermo, 90134 Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Protective immunity to Mycobacterium tuberculosis infection by chemokine and cytokine conditioned CFP-10 differentiated dendritic cells. PLoS One 2008; 3:e2869. [PMID: 18682728 PMCID: PMC2478708 DOI: 10.1371/journal.pone.0002869] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 07/11/2008] [Indexed: 11/19/2022] Open
Abstract
Background Dendritic cells (DCs) play major roles in mediating immune responses to mycobacteria. A crucial aspect of this is the priming of T cells via chemokines and cytokines. In this study we investigated the roles of chemokines RANTES and IP-10 in regulating protective responses from Mycobacterium tuberculosis (M. tb) 10 kDa Culture Filtrate Protein-10 (CFP-10) differentiated DCs (CFP10-DCs). Methods and Findings Infection of CFP10-DCs with mycobacteria down-modulated RANTES and IP-10 levels. Pathway specific microarray analyses showed that in addition to RANTES and IP-10, mycobacteria infected CFP10-DCs showed reduced expression of many Th1 promoting chemokines and chemokine receptors. Importantly, T cells co-cultured with RANTES and IP-10 conditioned CFP10-DCs mediated killing of mycobacteria from infected macrophages. Similarly, T cells recruited by RANTES and IP-10 conditioned CFP10-DCs mediated significant killing of mycobacteria from infected macrophages. IFN-gamma treatment of CFP10-DCs restored RANTES and IP-10 levels and T cells activated by these DCs mediated significant killing of virulent M. tb inside macrophages. Adoptive transfer of either RANTES and IP-10 or IL-12 and IFN-gamma conditioned CFP10-DCs cleared an established M. tb infection in mice. The extent of clearance was similar to that obtained with drug treatment. Conclusions These results indicate that chemokine and cytokine secretion by DCs differentiated by M. tb antigens such as CFP-10 play major roles in regulating protective immune responses at sites of infection.
Collapse
|
39
|
Arias MA, Jaramillo G, López YP, Mejía N, Mejía C, Pantoja AE, Shattock RJ, García LF, Griffin GE. Mycobacterium tuberculosis antigens specifically modulate CCR2 and MCP-1/CCL2 on lymphoid cells from human pulmonary hilar lymph nodes. THE JOURNAL OF IMMUNOLOGY 2008; 179:8381-91. [PMID: 18056384 DOI: 10.4049/jimmunol.179.12.8381] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Macrophages and dendritic cells are involved in the immune response to Mycobacterium tuberculosis (Mtb). Such a response, although extensively studied using animal models and cells from human blood, has not been characterized in cells from pulmonary hilar lymph nodes (PHLN). We characterized populations of myeloid APC from PHLN and determined their expression of CCR2, CCR5, CCR7, CD40, CD54, CD80, and CD86 as well as the cytokine/chemokine microenvironment before and after purified protein derivative (PPD) and mannosilated lipoarabinomannan (ManLAM) stimulation. Results show that there are at least three APC populations in PHLN, defined as CD14highHLA-DRlow/-, CD14dimHLA-DRdim, and CD14-HLA-DRhigh/dendritic cells (DC), with the largest number represented by CD14dimHLA-DRdim cells (where dim indicates intermediate levels). CD14-HLA-DRhigh/DC expressed higher levels of costimulatory molecules and lower levels of CCR2 and CCR5, but all cell populations showed similar CCR7 levels. PPD and ManLAM specifically down-regulated CCR2 expression but not that of CCR5 and CCR7, and such down-regulation was observed on all APC populations. Mtb Ag did not affect the expression of costimulatory molecules. PPD but not ManLAM specifically induced MCP-1/CCL2 production, which was likely associated with the induction of IFN-gamma because this cytokine was highly induced by PPD. We characterized, for the first time, different APC from human PHLN and show that Mtb Ag exert fine and specific regulation of molecules closely associated with the immune response to Mtb infection. Because knowledge of this response in secondary lymphoid tissues is still poorly understood in humans, such studies are necessary and important for a better understanding of lymphoid cell microenvironment and migrating capacities and their role in the immunopathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Mauricio A Arias
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Teixeira HC, Abramo C, Munk ME. Diagnóstico imunológico da tuberculose: problemas e estratégias para o sucesso. J Bras Pneumol 2007; 33:323-34. [PMID: 17906795 DOI: 10.1590/s1806-37132007000300015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 10/25/2006] [Indexed: 11/22/2022] Open
Abstract
A tuberculose continua sendo um grave problema social e de saúde, afetando milhões de pessoas anualmente. A vacina Bacille Calmette-Guerin (BCG), usada no controle profilático, é incapaz de conter a progressão da doença, que usualmente se manifesta através da queda da imunidade celular do indivíduo. O diagnóstico da tuberculose em seus estágios iniciais, aliado à poliquimioterapia, pode contribuir para o controle da disseminação da infecção. Os atuais métodos de diagnóstico apresentam problemas, como: baixa sensibilidade da baciloscopia; longo tempo de realização das culturas microbiológicas; e baixa especificidade do teste cutâneo com o derivado protéico purificado do M. tuberculosis. Novos métodos de diagnóstico que utilizam antígenos específicos (por exemplo, os conhecidos em inglês como o early secreted antigenic target 6-kDa e o culture filtrate protein 10-kDa), estão sendo testados. Os genes que codificam esses antígenos estão localizados na região de diferença 1 do M. tuberculosis, M. africanum e M. bovis, mas estão ausentes no M. bovis (BCG) e na maioria das micobactérias do meio ambiente. Métodos de diagnóstico baseados na produção de interferon-gama por linfócitos T, em resposta a esses antígenos, como o QuantiFERON-TB® e o T SPOT.TB®, estão sendo testados, e superam o teste cutâneo com o derivado protéico purificado nas seguintes características: maior sensibilidade; menor reatividade cruzada devido à vacinação com o BCG ou infecção por micobactérias do meio ambiente; e tempo de execução. A introdução de métodos de diagnóstico mais específicos e sensíveis, assim como um maior entendimento dos mecanismos moleculares e celulares que regulam a interação parasito-hospedeiro, pode contribuir para um eficiente combate à tuberculose.
Collapse
|
41
|
Torrado E, Adusumilli S, Fraga AG, Small PLC, Castro AG, Pedrosa J. Mycolactone-mediated inhibition of tumor necrosis factor production by macrophages infected with Mycobacterium ulcerans has implications for the control of infection. Infect Immun 2007; 75:3979-88. [PMID: 17517872 PMCID: PMC1951989 DOI: 10.1128/iai.00290-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The pathogenicity of Mycobacterium ulcerans, the agent of Buruli ulcer, depends on the cytotoxic exotoxin mycolactone. Little is known about the immune response to this pathogen. Following the demonstration of an intracellular growth phase in the life cycle of M. ulcerans, we investigated the production of tumor necrosis factor (TNF) induced by intramacrophage bacilli of diverse toxigenesis/virulence, as well as the biological relevance of TNF during M. ulcerans experimental infections. Our data show that murine bone marrow-derived macrophages infected with mycolactone-negative strains of M. ulcerans (nonvirulent) produce high amounts of TNF, while macrophages infected with mycolactone-positive strains of intermediate or high virulence produce intermediate or low amounts of TNF, respectively. These results are in accordance with the finding that TNF receptor P55-deficient (TNF-P55 KO) mice are not more susceptible than wild-type mice to infection by the highly virulent strains but are more susceptible to nonvirulent and intermediately virulent strains, demonstrating that TNF is required to control the proliferation of these strains in animals experimentally infected by M. ulcerans. We also show that mycolactone produced by intramacrophage M. ulcerans bacilli inhibits, in a dose-dependent manner, but does not abrogate, the production of macrophage inflammatory protein 2, which is consistent with the persistent inflammatory responses observed in experimentally infected mice.
Collapse
Affiliation(s)
- Egídio Torrado
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
| | | | | | | | | | | |
Collapse
|
42
|
Co DO, Hogan LH, Karman J, Heninger E, Vang S, Wells K, Kawaoka Y, Sandor M. Interactions between T cells responding to concurrent mycobacterial and influenza infections. THE JOURNAL OF IMMUNOLOGY 2007; 177:8456-65. [PMID: 17142743 DOI: 10.4049/jimmunol.177.12.8456] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4(+) T cells are central in mediating granuloma formation and limiting growth and dissemination of mycobacterial infections. To determine whether T cells responding to influenza infection can interact with T cells responding to Mycobacterium bovis bacille Calmette-Guérin (BCG) infection and disrupt granuloma formation, we infected mice containing two monoclonal T cell populations specific for the model Ags pigeon cytochrome c (PCC) and hen egg lysozyme (HEL). These mice were chronically infected with PCC epitope-tagged BCG (PCC-BCG) and acutely infected with HEL epitope-tagged influenza virus (HEL-flu). In these mice, PCC-BCG infection is much more abundant in the liver than the lung, whereas HEL-flu infection is localized to the lung. We observe that both T cells have access to both inflammatory sites, but that PCC-specific T cells dominate the PCC-BCG inflammatory site in the liver, whereas HEL-specific T cells dominate the HEL-flu inflammatory site in the lung. Influenza infection, in the absence of an influenza-specific T cell response, is able to increase the activation state and IFN-gamma secretion of PCC-BCG-specific T cells in the granuloma. Activation of HEL-specific T cells allows them to secrete IFN-gamma and contribute to protection in the granuloma. Ultimately, infection with influenza has little effect on bacterial load, and bacteria do not disseminate. In summary, these data illustrate complex interactions between T cell responses to infectious agents that can affect effector responses to pathogens.
Collapse
Affiliation(s)
- Dominic O Co
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, School of Veterinary Medicine, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Tuberculosis (TB), an illness that mainly affects the respiratory system, is one of the world's most pernicious diseases. TB currently infects one-third of the world's population and kills approximately 1.7 million people each year. Most infected individuals fail to progress to full-blown disease because the TB bacilli are 'walled off' by the immune system inside a tissue nodule known as a granuloma. The granuloma's primary function is one of containment and it prevents the dissemination of the mycobacteria. But what is the role of the TB bacillus in the progression of the granuloma? This Review explores how Mycobacterium tuberculosis influences granuloma formation and maintenance, and ensures the spread of the disease.
Collapse
Affiliation(s)
- David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
44
|
Rojas RE, Thomas JJ, Gehring AJ, Hill PJ, Belisle JT, Harding CV, Boom WH. Phosphatidylinositol mannoside from Mycobacterium tuberculosis binds alpha5beta1 integrin (VLA-5) on CD4+ T cells and induces adhesion to fibronectin. THE JOURNAL OF IMMUNOLOGY 2006; 177:2959-68. [PMID: 16920931 DOI: 10.4049/jimmunol.177.5.2959] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The pathological hallmark of the host response to Mycobacterium tuberculosis is the granuloma where T cells and macrophages interact with the extracellular matrix (ECM) to control the infection. Recruitment and retention of T cells within inflamed tissues depend on adhesion to the ECM. T cells use integrins to adhere to the ECM, and fibronectin (FN) is one of its major components. We have found that the major M. tuberculosis cell wall glycolipid, phosphatidylinositol mannoside (PIM), induces homotypic adhesion of human CD4+ T cells and T cell adhesion to immobilized FN. Treatment with EDTA and cytochalasin D prevented PIM-induced T cell adhesion. PIM-induced T cell adhesion to FN was blocked with mAbs against alpha5 integrin chain and with RGD-containing peptides. Alpha5beta1 (VLA-5) is one of two major FN receptors on T cells. PIM was found to bind directly to purified human VLA-5. Thus, PIM interacts directly with VLA-5 on CD4+ T lymphocytes, inducing activation of the integrin, and promoting adhesion to the ECM glycoprotein, FN. This is the first report of direct binding of a M. tuberculosis molecule to a receptor on human T cells resulting in a change in CD4+ T cell function.
Collapse
Affiliation(s)
- Roxana E Rojas
- Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Lin PL, Pawar S, Myers A, Pegu A, Fuhrman C, Reinhart TA, Capuano SV, Klein E, Flynn JL. Early events in Mycobacterium tuberculosis infection in cynomolgus macaques. Infect Immun 2006; 74:3790-803. [PMID: 16790751 PMCID: PMC1489679 DOI: 10.1128/iai.00064-06] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known regarding the early events of infection of humans with Mycobacterium tuberculosis. The cynomolgus macaque is a useful model of tuberculosis, with strong similarities to human tuberculosis. In this study, eight cynomolgus macaques were infected bronchoscopically with low-dose M. tuberculosis; clinical, immunologic, microbiologic, and pathologic events were assessed 3 to 6 weeks postinfection. Gross pathological abnormalities were observed as early as 3 weeks, including Ghon complex formation by 5 weeks postinfection. Caseous granulomas were observed in the lung as early as 4 weeks postinfection. Only caseous granulomas were observed in the lungs at these early time points, reflecting a rigorous initial response. T-cell activation (CD29 and CD69) and chemokine receptor (CXCR3 and CCR5) expression appeared localized to different anatomic sites. Activation markers were increased on cells from airways and only at modest levels on cells in peripheral blood. The priming of mycobacterium-specific T cells, characterized by the production of gamma interferon occurred slowly, with responses seen only after 4 weeks of infection. These responses were observed from T lymphocytes in blood, airways, and hilar lymph node, with responses predominantly localized to the site of infection. From these studies, we conclude that immune responses to M. tuberculosis are relatively slow in the local and peripheral compartments and that necrosis occurs surprisingly quickly during granuloma formation.
Collapse
Affiliation(s)
- Philana Ling Lin
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, W1157 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rodgers A, Whitmore KM, Walker KB. Potential correlates of BCG induced protection against tuberculosis detected in a mouse aerosol model using gene expression profiling. Tuberculosis (Edinb) 2006; 86:255-62. [PMID: 16600686 DOI: 10.1016/j.tube.2006.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
Tuberculosis (TB) is responsible for more than 2 million deaths per year with the incidence of new cases rising throughout the world. Mycobacterium bovis bacillus Calmette Guerin (BCG) is currently the only available licensed vaccine against M. tuberculosis. Despite the variable protective efficacy in different populations it affords some protection, particularly against childhood and disseminated forms of the disease. BCG remains the gold standard for assessing other prospective TB vaccines, yet there is a lack of information on the mechanisms of BCG protection and consequently there are no definitive correlates of protection for this vaccine. In order to further studies in this area we assessed lung RNA homogenates from naïve, BCG vaccinated and aerosol challenged mice. We found increased IFN-gamma levels in lungs of aerosol challenged mice previously vaccinated with BCG and a number of transcripts regulated by IFN-gamma were also increased in the lungs of these animals. These transcripts represent a cluster of IFN-gamma related transcripts that may assist in determining if BCG and maybe other potential vaccines will elicit protection against M. tuberculosis.
Collapse
Affiliation(s)
- Angela Rodgers
- Division of Immunology and Endocrinology, NIBSC, South Mymms, Potters Bar, Herts, UK
| | | | | |
Collapse
|
47
|
Ozeki Y, Tsutsui H, Kawada N, Suzuki H, Kataoka M, Kodama T, Yano I, Kaneda K, Kobayashi K. Macrophage scavenger receptor down-regulates mycobacterial cord factor-induced proinflammatory cytokine production by alveolar and hepatic macrophages. Microb Pathog 2006; 40:171-6. [PMID: 16517114 DOI: 10.1016/j.micpath.2005.12.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 12/13/2005] [Indexed: 01/13/2023]
Abstract
We aimed to reveal the regulatory function of macrophage scavenger receptor-A (MSR-A) in proinflammatory cytokine production by macrophages stimulated with mycobacterial cord factor (CF). By the culture with CF, MSR-A (+/+) alveolar macrophages and Kupffer cells produced TNF-alpha/MIP-1alpha in a time- and dose-dependent manner. However, the amounts of cytokines produced by them were much less compared to those produced by MSR-A (-/-) macrophages. Consistent with this, treatment of MSR-A (+/+) macrophages with anti-MSR-A antibody increased TNF-alpha production. Binding of CF to MSR-A was demonstrated by measuring the binding affinity. These results indicate that CF binds MSR-A, and MSR-A down-regulates TNF-alpha/MIP-1alpha production by activated macrophages, suggesting the role of this receptor in suppression of excessive inflammatory responses during mycobacterial infection.
Collapse
Affiliation(s)
- Yuriko Ozeki
- Department of Host Defense, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhu XW, Friedland JS. Multinucleate giant cells and the control of chemokine secretion in response to Mycobacterium tuberculosis. Clin Immunol 2006; 120:10-20. [PMID: 16504587 DOI: 10.1016/j.clim.2006.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 01/05/2006] [Accepted: 01/18/2006] [Indexed: 01/18/2023]
Abstract
Multinucleate giant cells (MGC) are characteristic of tuberculous granulomas, but their function is not well understood. In a comparative study, we investigated regulation of chemokine secretion by MGC generated using 5 microg/ml ConA and 1000 IU/ml IFN-gamma. After 72-h differentiation of MGC cultures, CXCL8, CCL2 and CCL3 concentrations were 9540+/-110 pg/ml, 11190+/-2210 pg/ml and 19440+/-440 pg/ml respectively all significantly higher than in MDM (P<0.01). There was associated increased chemokine gene expression. M.tb stimulation of MGC, MDM and monocytes increased CXCL8 secretion. M.tb increased monocyte CCL2 secretion, whereas MGC and MDM secreted CCL2 constitutively. CXCL10 secretion was induced in M.tb-stimulated MDM and constitutive in MGC. All cell types responded to M.tb with CCL3 secretion. Monocyte chemokine secretion was associated with increased gene expression, whereas M.tb-stimulated MGC principally upregulated CCL3 gene expression. In summary, differentiating MGC express genes for and secrete chemokines which regulate cell influx to sites of infection. Established MGC will contribute to cell recruitment to granuloma, but this may not depend on exposure to the pathogen.
Collapse
MESH Headings
- Cell Differentiation/immunology
- Chemokines, CC/genetics
- Chemokines, CC/immunology
- Chemokines, CC/metabolism
- Chemokines, CXC/genetics
- Chemokines, CXC/immunology
- Chemokines, CXC/metabolism
- Gene Expression
- Giant Cells/cytology
- Giant Cells/immunology
- Giant Cells/microbiology
- Humans
- Macrophages/immunology
- Macrophages/microbiology
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Mycobacterium tuberculosis/immunology
- Nucleic Acid Hybridization
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Tuberculosis/immunology
- Tuberculosis/microbiology
Collapse
Affiliation(s)
- Xing Wu Zhu
- Department of Infectious Diseases, Faculty of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | | |
Collapse
|
49
|
Freeman S, Post FA, Bekker LG, Harbacheuski R, Steyn LM, Ryffel B, Connell ND, Kreiswirth BN, Kaplan G. Mycobacterium tuberculosisH37Ra and H37Rv Differential Growth and Cytokine/Chemokine Induction in Murine MacrophagesIn Vitro. J Interferon Cytokine Res 2006; 26:27-33. [PMID: 16426145 DOI: 10.1089/jir.2006.26.27] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The role of tumor necrosis factor-alpha (TNF-alpha) in controlling growth of Mycobacterium tuberculosis in murine peritoneal macrophages infected in vitro was studied. TNF-alpha was shown to be required but not sufficient, and the amount of TNF-alpha produced by the infected cells did not correlate with the extent of growth control. In this system, TNF-alpha-dependent control of growth of the avirulent strain H37Ra was independent of inducible nitric oxide synthase (iNOS) and interferon-gamma (IFN-gamma), as shown by the infection of macrophages from selected gene-disrupted mice. TNF-alpha-mediated bacteriostasis of H37Ra in the infected macrophages was associated with increased expression of selected Th1-type cytokines and chemokines. In contrast, growth of the virulent strain H37Rv in macrophages involved upregulation by infected cells of Th2-type cytokines, including interleukin-5 (IL-5), IL-10, and IL-13. Taken together, these results suggest that the particular nature of macrophage activation and the cytokine and chemokine response to infection with different M. tuberculosis strains determine the ability of the cells to control the growth of the intracellular bacilli.
Collapse
Affiliation(s)
- Sherry Freeman
- Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Badewa AP, Quinton LJ, Shellito JE, Mason CM. Chemokine receptor 5 and its ligands in the immune response to murine tuberculosis. Tuberculosis (Edinb) 2005; 85:185-95. [PMID: 15850756 DOI: 10.1016/j.tube.2004.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 10/13/2004] [Indexed: 10/25/2022]
Abstract
SETTING The ability of chemokines such as macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, and regulated-upon-activation, normal T cell expressed and secreted (RANTES), to attract and activate T cells and monocytes, the building blocks of the granuloma, suggests that these chemokines may have a role in modulating immune responses to Mycobacterium tuberculosis infection. OBJECTIVE We hypothesized that the chemokine receptor 5 (CCR5) ligands, MIP-1alpha, MIP-1beta and RANTES, are virulence correlates in M. tuberculosis infection and are indispensable to granuloma formation. DESIGN The ability of virulent (H37Rv) and avirulent (H37Ra) strains of M. tuberculosis to induce chemokine production in vivo and in vitro was determined at protein and mRNA levels. We also compared bacterial burden, and granuloma numbers and size in H37Rv-infected CCR5-/- or wild-type C57BL/6 mice. RESULTS In vivo, lung mRNA and protein measurements of MIP-1alpha, MIP-1beta and RANTES indicate significantly higher (p<0.05) values (days 14-28) in the H37Rv-infected than the H37Ra-infected mice. This is consistent with a higher infection burden of the virulent strain. However, in vitro alveolar macrophage stimulation by H37Rv or H37Ra yielded no significant differences in production of the three chemokines at all time points. Histological analysis of granulomas did not show any significant differences in granuloma numbers, size and M. tuberculosis growth in CCR5-/- compared to wild-type mice. CONCLUSIONS The production of the CCR5 ligands, MIP-1alpha, MIP-1beta, and RANTES, does not clearly correlate with virulence of M. tuberculosis. These ligands and their receptors may not be indispensable to the development of granulomas in murine tuberculosis.
Collapse
Affiliation(s)
- A P Badewa
- Section of Pulmonary/Critical Care Medicine, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|