1
|
Galeev A, Suwandi A, Cepic A, Basu M, Baines JF, Grassl GA. The role of the blood group-related glycosyltransferases FUT2 and B4GALNT2 in susceptibility to infectious disease. Int J Med Microbiol 2021; 311:151487. [PMID: 33662872 DOI: 10.1016/j.ijmm.2021.151487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/01/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The glycosylation profile of the gastrointestinal tract is an important factor mediating host-microbe interactions. Variation in these glycan structures is often mediated by blood group-related glycosyltransferases, and can lead to wide-ranging differences in susceptibility to both infectious- as well as chronic disease. In this review, we focus on the interplay between host glycosylation, the intestinal microbiota and susceptibility to gastrointestinal pathogens based on studies of two exemplary blood group-related glycosyltransferases that are conserved between mice and humans, namely FUT2 and B4GALNT2. We highlight that differences in susceptibility can arise due to both changes in direct interactions, such as bacterial adhesion, as well as indirect effects mediated by the intestinal microbiota. Although a large body of experimental work exists for direct interactions between host and pathogen, determining the more complex and variable mechanisms underlying three-way interactions involving the intestinal microbiota will be the subject of much-needed future research.
Collapse
Affiliation(s)
- Alibek Galeev
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Abdulhadi Suwandi
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Aleksa Cepic
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Meghna Basu
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany.
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany.
| |
Collapse
|
2
|
Wilkerson S, Broadway PR, Carroll JA, Burdick Sanchez NC, Tigue DA, Rehm JG, Lawhon S, Callaway TR, Bratcher CL. Translocation of Orally Inoculated Salmonella Following Mild Immunosuppression in Holstein Calves and the Presence of the Salmonella in Ground Beef Samples. Foodborne Pathog Dis 2020; 17:533-540. [PMID: 32366128 DOI: 10.1089/fpd.2019.2761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to determine if immunosuppression through daily dexamethasone (DEX) infusion altered Salmonella translocation from the gastrointestinal tract. Weaned Holstein steers (n = 20; body weight [BW] = 102 ± 2.7 kg) received DEX (n = 10; 0.5 mg/kg BW) or saline (control [CON]; n = 10;) for 4 days (from day -1 to 2) before oral inoculation of naldixic acid-resistant Salmonella enterica Typhimurium (SAL; 3.4 × 106 colony-forming units [CFU]/animal) on day 0. Fecal swabs were obtained daily, and blood was collected daily for hematology. At harvest (day 5), ileum, cecal fluid, lymph nodes (ileocecal, mandibular, popliteal, and subscapular), and synovial (stifle, coxofemoral, and shoulder) samples were collected for isolation of the inoculated strain of SAL. White blood cell (WBC) and neutrophil concentrations were elevated (p < 0.01) in DEX calves following each administration event. Following inoculation, 100% of DEX calves shed the experimental strain of SAL for all 5 days, 90% of CON calves shed from day 1 to 3, and 100% of CON calves shed from day 4 to 5. Greater (p < 0.01) concentrations of SAL were quantified from the cecum of DEX calves (3.86 ± 0.37 log CFU/g) compared with CON calves (1.37 ± 0.37 log CFU/g). There was no difference in SAL concentrations between DEX and CON calves in ileal tissue (p = 0.07) or ileocecal (p = 0.57), mandibular (p = 0.12), popliteal (p = 0.99), or subscapular (p = 0.83) lymph nodes. Of the stifle samples collected, 3.3% were positive for SAL, highlighting a contamination opportunity during hindquarter breakdown. While more research is needed to elucidate the interactions of immunosuppression and pathogen migration patterns, these data confirm that orally inoculated SAL can translocate from the gastrointestinal tract and be harbored in atypical locations representing a food safety risk.
Collapse
Affiliation(s)
| | | | | | | | - D Alex Tigue
- Animal Science, Auburn University, Auburn, Alabama, USA
| | - John G Rehm
- Animal Science, Auburn University, Auburn, Alabama, USA
| | - Sara Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Todd R Callaway
- Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Christy L Bratcher
- College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
3
|
Tan Z, Chekabab SM, Yu H, Yin X, Diarra MS, Yang C, Gong J. Growth and Virulence of Salmonella Typhimurium Mutants Deficient in Iron Uptake. ACS OMEGA 2019; 4:13218-13230. [PMID: 31460449 PMCID: PMC6705229 DOI: 10.1021/acsomega.9b01367] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
The present study investigated the effects of iron, iron chelators, and mutations of tonB or iroN fepA genes on the growth and virulence of Salmonella Typhimurium. Results indicated that organic iron (ferric citrate and ferrous-l-ascorbate) supported better growth of Salmonella compared to inorganic iron. Among tested chelators, 2,2'-bipyridyl at 500 μM showed the highest inhibition of Salmonella growth with 5 μM ferrous sulfate. Deletion of genes (tonB- and iroN- fepA- ) in the iron uptake system attenuated Salmonella invasion of Caco-2 cells and its ability to damage the epithelial monolayer. The expression of all tested host genes in Caco-2 was not affected under the iron-poor condition. However, claudin 3, tight junction protein 1, tumor necrosis factor α (TNF-α), and interleukin-8 (IL-8) were altered under the iron-rich condition depending on individual mutations. In Caenorhabditis elegans, a significant down-regulation of ferritin 1 expression was observed when the nematode was infected by the wild-type (WT) strain.
Collapse
Affiliation(s)
- Zhigang Tan
- Guelph Research
and Development Centre, Agriculture and
Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Samuel M. Chekabab
- Guelph Research
and Development Centre, Agriculture and
Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Hai Yu
- Guelph Research
and Development Centre, Agriculture and
Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Xianhua Yin
- Guelph Research
and Development Centre, Agriculture and
Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Moussa S. Diarra
- Guelph Research
and Development Centre, Agriculture and
Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Joshua Gong
- Guelph Research
and Development Centre, Agriculture and
Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| |
Collapse
|
4
|
Müştak İB, Yardımcı H. Construction and in vitro characterisation of aroA defective (aroAΔ) mutant Salmonella Infantis. Arch Microbiol 2019; 201:1277-1284. [PMID: 31240343 DOI: 10.1007/s00203-019-01694-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/24/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
Poultry vaccine programs are important for control of Salmonella infections. Although there are vaccines for Salmonella Enteritidis, Salmonella Typhimurium and Salmonella Typhi, there are no vaccines for Salmonella Infantis which has an increased rate in the world. In this study, it was aimed to generate aroA gene deleted mutant bacteria for the constitution of S. Infantis vaccine prototype and the in vitro characterisation of this bacterium. S. Infantis auxotrophic mutant which has a block at any step of chorismate pathway has been constituted for the first time in the world and it was determined that this bacterium gets susceptibility against some antibiotics and antimicrobial substances. It was also observed that the adhesion and invasion rate of mutant strain tenfold decreased in comparison with the field strain in cell culture assay. It is understood from the in vitro evaluation of this mutant strain that it can be used as a vaccine candidate in further vaccine development studies.
Collapse
Affiliation(s)
- İnci Başak Müştak
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Şehit Ömer Halisdemir Bulv. Dışkapı, 06110, Ankara, Turkey.
| | - Hakan Yardımcı
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Şehit Ömer Halisdemir Bulv. Dışkapı, 06110, Ankara, Turkey
| |
Collapse
|
5
|
Frey A, Ramaker K, Röckendorf N, Wollenberg B, Lautenschläger I, Gébel G, Giemsa A, Heine M, Bargheer D, Nielsen P. Fate and Translocation of (Nano)Particulate Matter in the Gastrointestinal Tract. BIOLOGICAL RESPONSES TO NANOSCALE PARTICLES 2019. [DOI: 10.1007/978-3-030-12461-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Quan G, Xia P, Zhao J, Zhu C, Meng X, Yang Y, Wang Y, Tian Y, Ding X, Zhu G. Fimbriae and related receptors for Salmonella Enteritidis. Microb Pathog 2018; 126:357-362. [PMID: 30347261 DOI: 10.1016/j.micpath.2018.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/09/2018] [Accepted: 10/19/2018] [Indexed: 01/05/2023]
Abstract
Infection with Salmonella Enteritidis (SE) is one of the main causes for food- and water-borne diseases, and is a major concern to public health for both humans and animals worldwide. Some fimbrial antigens expressed by SE strains have been described and characterized, containing SEF14, SEF17, SEF21, long polar fimbriae and plasmid-encoded fimbriae, they play a role in bacterial survival in the host or external environment. However, their functions remain to be well elucidated, with the initial attachment and binding for fimbriae-mediated SE infections only minimally understood. Meanwhile, host-pathogen interactions provide insights into receptor modulation of the host innate immune system. Therefore, to well understand the pathogenicity of SE bacteria and to comprehend the host response to infection, the host cell-SE interactions need to be characterized. This review describes SE fimbriae receptors with an emphasis on the interaction between the receptor and SE fimbriae.
Collapse
Affiliation(s)
- Guomei Quan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Jing Zhao
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Chunhong Zhu
- Jiangsu Institute of Poultry Science, Yangzhou 225125, China.
| | - Xia Meng
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yuqian Yang
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yiting Wang
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yan Tian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Xiuyan Ding
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
7
|
Kappala D, Sarkhel R, Dixit SK, Lalsangpuii, Mahawar M, Singh M, Ramakrishnan S, Goswami TK. Role of different receptors and actin filaments on Salmonella Typhimurium invasion in chicken macrophages. Immunobiology 2018; 223:501-507. [PMID: 29395289 DOI: 10.1016/j.imbio.2018.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 12/31/2022]
Abstract
Bacterial attachment to host cell is the first event for pathogen entry. The attachment is mediated through membrane expressed adhesins present on the organism and receptors on the cell surface of host. The objective of this study was to investigate the significance of Fc receptors (FcRs), actin filament polymerization, mannose receptors (MRs), carbohydrate moieties like N-linked glycans and sialic acid on chicken macrophages for invasion of S. Typhimurium. Opsonisation of S. Typhimurium resulted in three folds more invasion in chicken monocyte derived macrophages. Cytochalasin D, an inhibitor of actin filament polymerization prevented uptake of S. Typhimurium. Pre-incubation of macrophages with cytochalasin D, showed severe decrease (28 folds) in S. Typhimurium invasion. Next we attempted to analyse the role of carbohydrate receptors of macrophages in S. Typhimurium invasion. Treatment of macrophages with methyl α-d-mannopyranoside, PNGase F and neuraminidase, showed 2.5, 5 and 2.5 folds decrease in invasion respectively. Our data suggest that deglycosylation of N-linked glycans including sialic acid by PNGase F is more effective in inhibition of S. Typhimurium invasion than neuraminidase which removes only sialic acid. These findings suggested FcRs, actin filament polymerization, MRs, N-linked glycans and sialic acid may act as gateway for entry of S. Typhimurium.
Collapse
Affiliation(s)
- Deepthi Kappala
- Immunology Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Ratanti Sarkhel
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Sunil Kumar Dixit
- Immunology Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Lalsangpuii
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Manish Mahawar
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Mithilesh Singh
- Immunology Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Saravanan Ramakrishnan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Tapas Kumar Goswami
- Immunology Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India.
| |
Collapse
|
8
|
Abed J, Emgård JEM, Zamir G, Faroja M, Almogy G, Grenov A, Sol A, Naor R, Pikarsky E, Atlan KA, Mellul A, Chaushu S, Manson AL, Earl AM, Ou N, Brennan CA, Garrett WS, Bachrach G. Fap2 Mediates Fusobacterium nucleatum Colorectal Adenocarcinoma Enrichment by Binding to Tumor-Expressed Gal-GalNAc. Cell Host Microbe 2017; 20:215-25. [PMID: 27512904 DOI: 10.1016/j.chom.2016.07.006] [Citation(s) in RCA: 467] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 06/01/2016] [Accepted: 07/13/2016] [Indexed: 12/12/2022]
Abstract
Fusobacterium nucleatum is associated with colorectal cancer and promotes colonic tumor formation in preclinical models. However, fusobacteria are core members of the human oral microbiome and less prevalent in the healthy gut, raising questions about how fusobacteria localize to CRC. We identify a host polysaccharide and fusobacterial lectin that explicates fusobacteria abundance in CRC. Gal-GalNAc, which is overexpressed in CRC, is recognized by fusobacterial Fap2, which functions as a Gal-GalNAc lectin. F. nucleatum binding to clinical adenocarcinomas correlates with Gal-GalNAc expression and is reduced upon O-glycanase treatment. Clinical fusobacteria strains naturally lacking Fap2 or inactivated Fap2 mutants show reduced binding to Gal-GalNAc-expressing CRC cells and established CRCs in mice. Additionally, intravenously injected F. nucleatum localizes to mouse tumor tissues in a Fap2-dependent manner, suggesting that fusobacteria use a hematogenous route to reach colon adenocarcinomas. Thus, targeting F. nucleatum Fap2 or host epithelial Gal-GalNAc may reduce fusobacteria potentiation of CRC.
Collapse
Affiliation(s)
- Jawad Abed
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel
| | - Johanna E M Emgård
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel
| | - Gideon Zamir
- Department of General Surgery, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Mouhammad Faroja
- Department of General Surgery, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Gideon Almogy
- Department of General Surgery, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Amalie Grenov
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel
| | - Asaf Sol
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel
| | - Ronit Naor
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel
| | - Eli Pikarsky
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Karine A Atlan
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Anna Mellul
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Stella Chaushu
- Department of Orthodontics, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel
| | - Abigail L Manson
- Broad Institute of MIT and Harvard University, Cambridge, MA 02141, USA
| | - Ashlee M Earl
- Broad Institute of MIT and Harvard University, Cambridge, MA 02141, USA
| | - Nora Ou
- Departments of Immunology and Infectious Diseases and Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Caitlin A Brennan
- Departments of Immunology and Infectious Diseases and Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Wendy S Garrett
- Broad Institute of MIT and Harvard University, Cambridge, MA 02141, USA; Departments of Immunology and Infectious Diseases and Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel.
| |
Collapse
|
9
|
Exploitation of SPR to Investigate the Importance of Glycan Chains in the Interaction between Lactoferrin and Bacteria. SENSORS 2017; 17:s17071515. [PMID: 28653977 PMCID: PMC5539864 DOI: 10.3390/s17071515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 01/22/2023]
Abstract
Bovine lactoferrin (LF) has been shown to prevent adhesion to and invasion of mammalian cell lines by pathogenic bacteria, with evidence for direct bacterial binding by the milk glycoprotein. However, the glycosylation pattern of LF changes over the lactation cycle. In this study, we aim to investigate the effect that this variation has on the milk glycoprotein's ability to interact with pathogens. Surface plasmon resonance technology was employed to compare the binding of LF from colostrum (early lactation) and mature milk (late lactation) to a panel of pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Cronobacter sakazakii, Streptococcus pneumoniae, Pseudomonas aeruginosa, Listeria monocytogenes and Salmonella typhimurium). Novel interactions with LF were identified for C. sakazakii, S. pneumoniae and P. aeruginosa with the highest binding ability observed for mature milk LF in all cases, with the exception of S. typhimurium. The difference in bacterial binding observed may be as a result of the varying glycosylation profiles. This work demonstrates the potential of LF as a functional food ingredient to prevent bacterial infection.
Collapse
|
10
|
Blood Group Antigen Recognition via the Group A Streptococcal M Protein Mediates Host Colonization. mBio 2017; 8:mBio.02237-16. [PMID: 28119471 PMCID: PMC5263248 DOI: 10.1128/mbio.02237-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Streptococcus pyogenes (group A streptococcus [GAS]) is responsible for over 500,000 deaths worldwide each year. The highly virulent M1T1 GAS clone is one of the most frequently isolated serotypes from streptococcal pharyngitis and invasive disease. The oral epithelial tract is a niche highly abundant in glycosylated structures, particularly those of the ABO(H) blood group antigen family. Using a high-throughput approach, we determined that a strain representative of the globally disseminated M1T1 GAS clone 5448 interacts with numerous, structurally diverse glycans. Preeminent among GAS virulence factors is the surface-expressed M protein. M1 protein showed high affinity for several terminal galactose blood group antigen structures. Deletion mutagenesis shows that M1 protein mediates glycan binding via its B repeat domains. Association of M1T1 GAS with oral epithelial cells varied significantly as a result of phenotypic differences in blood group antigen expression, with significantly higher adherence to those cells expressing H antigen structures compared to cells expressing A, B, or AB antigen structures. These data suggest a novel mechanism for GAS attachment to host cells and propose a link between host blood group antigen expression and M1T1 GAS colonization. IMPORTANCE There has been a resurgence in group A streptococcal (GAS) invasive disease, which has been paralleled by the emergence of the highly virulent M1T1 GAS clone. Intensive research has focused on mechanisms that contribute to the invasive nature of this serotype, while the mechanisms that contribute to host susceptibility to disease and bacterial colonization and persistence are still poorly understood. The M1T1 GAS clone is frequently isolated from the throat, an environment highly abundant in blood group antigen structures. This work examined the interaction of the M1 protein, the preeminent GAS surface protein, against a wide range of host-expressed glycan structures. Our data suggest that susceptibility to infection by GAS in the oral tract may correlate with phenotypic differences in host blood group antigen expression. Thus, variations in host blood group antigen expression may serve as a selective pressure contributing to the dissemination and overrepresentation of M1T1 GAS.
Collapse
|
11
|
Abstract
In recent decades, probiotics have shown beneficial effects on animal and human health. Probiotics can protect the host against several health threats, including infectious diseases. Before 1995, researchers believed that the effect of probiotics was only on gut microbiota which can restore the gut flora and thus prevent pathogenic bacteria from triggering gastroenteritis. Recent studies have shown that the immunomodulatory activity is the most important mechanism of action of probiotics. From this information, researchers started to evaluate the effect of some immunobiotics, not only on pathogenic bacteria but also on viruses, including enteric and respiratory viruses. Several studies have confirmed the potential antiviral activity of some probiotics due to the immunomodulatory effect. These studies were conducted on humans (clinical trials) and in animal models. In this chapter, probiotics with antiviral effect against respiratory and enteric viruses will be presented and discussed, as well as their mechanisms of action.
Collapse
|
12
|
Potočnjak M, Pušić P, Frece J, Abram M, Janković T, Gobin I. Three New Lactobacillus plantarum Strains in the Probiotic Toolbox against Gut Pathogen Salmonella enterica Serotype Typhimurium. Food Technol Biotechnol 2017; 55:48-54. [PMID: 28559733 DOI: 10.17113/ftb.55.01.17.4693] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The benefits of probiotic bacteria have been widely explored. However, fermented foods and digestive system of humans and animals are an inexhaustible source of new potentially probiotic microorganisms. In this study we present three new Lactobacillus plantarum strains isolated from different dairy products: cow's cheese, sheep's cheese and whey. In order to determine the antibacterial activity of yet unexplored L. plantarum strains against Salmonella enterica serotype Typhimurium, in vitro competition and co-culture tests were done. Furthermore, adhesion of these strains to Caco-2 cells and their influence on the adhesion of Salmonella were tested. Results showed the potential probiotic activity of isolated strains. L. plantarum strains survived in the presence of 1% bile salts, they possessed acidification ability, antibacterial activity and significantly attenuated the growth of S. Typhimurium in brain heart infusion broth. All tested L. plantarum strains were able to adhere to Caco-2 cells and significantly impair the adhesion of S. Typhimurium. All three L. plantarum strains exhibited significant probiotic potential and anti-Salmonella activity; therefore, further testing on in vivo models should follow.
Collapse
Affiliation(s)
- Mia Potočnjak
- University of Rijeka, Faculty of Medicine, Department of Microbiology and Parasitology,
Braće Branchetta 20, HR-51000 Rijeka, Croatia
| | - Petra Pušić
- University of Rijeka, Faculty of Medicine, Department of Microbiology and Parasitology,
Braće Branchetta 20, HR-51000 Rijeka, Croatia
| | - Jadranka Frece
- University of Zagreb, Faculty of Food Technology and Biotechnology, Laboratory for General
Microbiology and Food Microbiology, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Maja Abram
- University of Rijeka, Faculty of Medicine, Department of Microbiology and Parasitology,
Braće Branchetta 20, HR-51000 Rijeka, Croatia
| | - Tamara Janković
- University of Rijeka, Faculty of Medicine, Department of Microbiology and Parasitology,
Braće Branchetta 20, HR-51000 Rijeka, Croatia
| | - Ivana Gobin
- University of Rijeka, Faculty of Medicine, Department of Microbiology and Parasitology,
Braće Branchetta 20, HR-51000 Rijeka, Croatia
| |
Collapse
|
13
|
Carbohydrate-binding specificities of potential probiotic Lactobacillus strains in porcine jejunal (IPEC-J2) cells and porcine mucin. J Microbiol 2016; 54:510-9. [DOI: 10.1007/s12275-016-6168-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 11/25/2022]
|
14
|
Rausch P, Steck N, Suwandi A, Seidel JA, Künzel S, Bhullar K, Basic M, Bleich A, Johnsen JM, Vallance BA, Baines JF, Grassl GA. Expression of the Blood-Group-Related Gene B4galnt2 Alters Susceptibility to Salmonella Infection. PLoS Pathog 2015; 11:e1005008. [PMID: 26133982 PMCID: PMC4489644 DOI: 10.1371/journal.ppat.1005008] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/05/2015] [Indexed: 12/16/2022] Open
Abstract
Glycans play important roles in host-microbe interactions. Tissue-specific expression patterns of the blood group glycosyltransferase β-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2) are variable in wild mouse populations, and loss of B4galnt2 expression is associated with altered intestinal microbiota. We hypothesized that variation in B4galnt2 expression alters susceptibility to intestinal pathogens. To test this, we challenged mice genetically engineered to express different B4galnt2 tissue-specific patterns with a Salmonella Typhimurium infection model. We found B4galnt2 intestinal expression was strongly associated with bacterial community composition and increased Salmonella susceptibility as evidenced by increased intestinal inflammatory cytokines and infiltrating immune cells. Fecal transfer experiments demonstrated a crucial role of the B4galnt2-dependent microbiota in conferring susceptibility to intestinal inflammation, while epithelial B4galnt2 expression facilitated epithelial invasion of S. Typhimurium. These data support a critical role for B4galnt2 in gastrointestinal infections. We speculate that B4galnt2-specific differences in host susceptibility to intestinal pathogens underlie the strong signatures of balancing selection observed at the B4galnt2 locus in wild mouse populations.
Collapse
Affiliation(s)
- Philipp Rausch
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Natalie Steck
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
- Models of Inflammation, Research Center Borstel, Borstel, Germany
| | - Abdulhadi Suwandi
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Janice A. Seidel
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Kirandeep Bhullar
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Jill M. Johnsen
- Research Institute, Puget Sound Blood Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Bruce A. Vallance
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - John F. Baines
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Guntram A. Grassl
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
- Models of Inflammation, Research Center Borstel, Borstel, Germany
| |
Collapse
|
15
|
Costello CM, Sorna RM, Goh YL, Cengic I, Jain NK, March JC. 3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics. Mol Pharm 2014; 11:2030-9. [PMID: 24798584 PMCID: PMC4096232 DOI: 10.1021/mp5001422] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/01/2014] [Accepted: 05/05/2014] [Indexed: 01/02/2023]
Abstract
Biomimetic in vitro intestinal models are becoming useful tools for studying host-microbial interactions. In the past, these models have typically been limited to simple cultures on 2-D scaffolds or Transwell inserts, but it is widely understood that epithelial cells cultured in 3-D environments exhibit different phenotypes that are more reflective of native tissue, and that different microbial species will preferentially adhere to select locations along the intestinal villi. We used a synthetic 3-D tissue scaffold with villous features that could support the coculture of epithelial cell types with select bacterial populations. Our end goal was to establish microbial niches along the crypt-villus axis in order to mimic the natural microenvironment of the small intestine, which could potentially provide new insights into microbe-induced intestinal disorders, as well as enabling targeted probiotic therapies. We recreated the surface topography of the small intestine by fabricating a biodegradable and biocompatible villous scaffold using poly lactic-glycolic acid to enable the culture of Caco-2 with differentiation along the crypt-villus axis in a similar manner to native intestines. This was then used as a platform to mimic the adhesion and invasion profiles of both Salmonella and Pseudomonas, and assess the therapeutic potential of Lactobacillus and commensal Escherichia coli in a 3-D setting. We found that, in a 3-D environment, Lactobacillus is more successful at displacing pathogens, whereas Nissle is more effective at inhibiting pathogen adhesion.
Collapse
Affiliation(s)
- Cait M. Costello
- Department of Biological and Environmental
Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rachel M. Sorna
- Department of Biological and Environmental
Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yih-Lin Goh
- Department of Biological and Environmental
Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ivana Cengic
- Department of Biological and Environmental
Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Nina K. Jain
- Department of Biological and Environmental
Engineering, Cornell University, Ithaca, New York 14853, United States
| | - John C. March
- Department of Biological and Environmental
Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
16
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
17
|
Wagner C, Barlag B, Gerlach RG, Deiwick J, Hensel M. TheSalmonella entericagiant adhesin SiiE binds to polarized epithelial cells in a lectin-like manner. Cell Microbiol 2014; 16:962-75. [DOI: 10.1111/cmi.12253] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Carolin Wagner
- Abteilung Mikrobiologie; Universität Osnabrück; Osnabrück Germany
- Mikrobiologisches Institut; Universitätsklinikum Erlangen; Erlangen Germany
| | - Britta Barlag
- Abteilung Mikrobiologie; Universität Osnabrück; Osnabrück Germany
| | | | - Jörg Deiwick
- Abteilung Mikrobiologie; Universität Osnabrück; Osnabrück Germany
| | - Michael Hensel
- Abteilung Mikrobiologie; Universität Osnabrück; Osnabrück Germany
| |
Collapse
|
18
|
Knodler LA, Nair V, Steele-Mortimer O. Quantitative assessment of cytosolic Salmonella in epithelial cells. PLoS One 2014; 9:e84681. [PMID: 24400108 PMCID: PMC3882239 DOI: 10.1371/journal.pone.0084681] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/17/2013] [Indexed: 12/21/2022] Open
Abstract
Within mammalian cells, Salmonella enterica serovar Typhimurium (S. Typhimurium) inhabits a membrane-bound vacuole known as the Salmonella-containing vacuole (SCV). We have recently shown that wild type S. Typhimurium also colonizes the cytosol of epithelial cells. Here we sought to quantify the contribution of cytosolic Salmonella to the total population over a time course of infection in different epithelial cell lines and under conditions of altered vacuolar escape. We found that the lysosomotropic agent, chloroquine, acts on vacuolar, but not cytosolic, Salmonella. After chloroquine treatment, vacuolar bacteria are not transcriptionally active or replicative and appear degraded. Using a chloroquine resistance assay, in addition to digitonin permeabilization, we found that S. Typhimurium lyses its nascent vacuole in numerous epithelial cell lines, albeit with different frequencies, and hyper-replication in the cytosol is also widespread. At later times post-infection, cytosolic bacteria account for half of the total population in some epithelial cell lines, namely HeLa and Caco-2 C2Bbe1. Both techniques accurately measured increased vacuole lysis in epithelial cells upon treatment with wortmannin. By chloroquine resistance assay, we also determined that Salmonella pathogenicity island-1 (SPI-1), but not SPI-2, the virulence plasmid nor the flagellar apparatus, was required for vacuolar escape and cytosolic replication in epithelial cells. Together, digitonin permeabilization and the chloroquine resistance assay will be useful, complementary tools for deciphering the mechanisms of SCV lysis and Salmonella replication in the epithelial cell cytosol.
Collapse
Affiliation(s)
- Leigh A. Knodler
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| | - Vinod Nair
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Olivia Steele-Mortimer
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
19
|
Ganesh BP, Klopfleisch R, Loh G, Blaut M. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS One 2013; 8:e74963. [PMID: 24040367 PMCID: PMC3769299 DOI: 10.1371/journal.pone.0074963] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/13/2013] [Indexed: 12/24/2022] Open
Abstract
Excessive mucin degradation by intestinal bacteria may contribute to inflammatory bowel diseases because access of luminal antigens to the intestinal immune system is facilitated. This study investigated how the presence of a mucin degrading commensal bacterium affects the severity of an intestinal Salmonella enterica Typhimurium-induced gut inflammation. Using a gnotobiotic C3H mouse model with a background microbiota of eight bacterial species (SIHUMI) the impact of the mucin-degrading commensal bacterium Akkermansia muciniphila (SIHUMI-A) on inflammatory and infectious symptoms caused by S. Typhimurium was investigated. Presence of A. muciniphila in S. Typhimurium-infected SIHUMI mice caused significantly increased histopathology scores and elevated mRNA levels of IFN-γ, IP-10, TNF-α, IL-12, IL-17 and IL-6 in cecal and colonic tissue. The increase in pro-inflammatory cytokines was accompanied by 10-fold higher S. Typhimurium cell numbers in mesenteric lymph nodes of SIHUMI mice associated with A. muciniphila and S. Typhimurium (SIHUMI-AS) compared to SIHUMI mice with S. Typhimurium only (SIHUMI-S). The number of mucin filled goblet cells was 2- to 3- fold lower in cecal tissue of SIHUMI-AS mice compared to SIHUMI-S, SIHUMI-A or SIHUMI mice. Reduced goblet cell numbers significantly correlated with increased IFN-γ mRNA levels (r2 = −0.86, ***P<0.001) in all infected mice. In addition, loss of cecal mucin sulphation was observed in SIHUMI mice containing both A. muciniphila and S. Typhimurium compared to other mouse groups. Concomitant presence of A. muciniphila and S. Typhimurium resulted in a drastic change in microbiota composition of SIHUMI mice: the proportion of B. thetaiotaomicron in SIHUMI-AS mice was 0.02% of total bacteria compared to 78% – 88% in the other mouse groups and the proportion of S. Typhimurium was 94% in SIHUMI-AS mice but only 2.2% in the SIHUMI-S mice. These results indicate that A. muciniphila exacerbates S. Typhimurium-induced intestinal inflammation by its ability to disturb host mucus homeostasis.
Collapse
Affiliation(s)
- Bhanu Priya Ganesh
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Gunnar Loh
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- * E-mail:
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| |
Collapse
|
20
|
Abstract
The healthy human gut supports a complex and diverse microbiota, dominated by bacterial phylotypes belonging to Bacteroidetes and Firmicutes. In the inflamed gut, overall diversity decreases, coincident with a greater representation of Proteobacteria. There is growing evidence supporting an important role for human gut bacteria in mucosal immunity; interactions at the level of both intestinal and colonic epithelial cells, dendritic cells, and T and B immune cells have been documented. These interactions influence gut barrier and defense mechanisms that include antimicrobial peptide and secretory IgA synthesis. The functional effects of commensal bacteria on T helper cell differentiation have led to the emerging concept that microbiota composition determines T effector- and T regulatory-cell balance, immune responsiveness, and homeostasis. The importance of this biology in relation to immune homeostasis, inflammatory bowel disease, and the rising incidence of autoimmune diseases will be discussed. The detailed description of the human gut microbiota, integrated with evidence-based mechanisms of immune modulation, provides an exciting platform for the identification of next-generation probiotics and related pharmaceutical products.
Collapse
Affiliation(s)
- Denise Kelly
- Rowett Institute of Nutrition & Health, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK.
| | | |
Collapse
|
21
|
The effect of high and low dietary crude protein and inulin supplementation on nutrient digestibility, nitrogen excretion, intestinal microflora and manure ammonia emissions from finisher pigs. Animal 2012; 1:1112-21. [PMID: 22444856 DOI: 10.1017/s1751731107000407] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A 2 × 2 factorial experiment was performed to investigate the interaction between a high- and low-crude-protein (CP) diet (200 v. 140 g/kg) and inulin supplementation (0 v. 12.5 g/kg) on nutrient digestibility, nitrogen (N) excretion, intestinal microflora, volatile fatty acid (VFA) concentration and manure ammonia emissions from 24 boars (n = 6, 74.0 kg live weight). The diets were formulated to contain similar concentrations of digestible energy and lysine. Pigs offered the high-CP diets had a higher excretion of urinary N (P < 0.001), faecal N (P < 0.01) and total N (P < 0.001) than the pigs offered the low-CP diets. Inulin supplementation increased faecal N excretion (P < 0.05) and decreased the urine N : faeces N ratio (P < 0.05) compared with the inulin-free diets. There was no effect (P > 0.05) of dietary treatment on N retention. There was an interaction (P < 0.05) between dietary CP concentration and inulin supplementation on caecal Enterobacteria spp. Pigs offered the diet containing 200 g/kg of CP plus inulin decreased the population of Enterobacteria spp. compared to those with the inulin-supplemented 140 g/kg CP diet. However, CP level had no significant effect on the population of Enterobacteria spp. in the unsupplemented diets. Inulin supplementation increased caecal Bifidobacteria (P < 0.01) compared with the inulin-free diets. There was no effect of inulin supplementation on VFA concentration or intestinal pH (P > 0.05). Pigs offered the 200 g/kg CP diets had higher (P < 0.05) manure ammonia emissions from 0 to 240 h of storage than pigs offered the 140 g/kg CP. In conclusion, inulin supplementation resulted in an increase in Bifidobacteria concentration and a reduction in Enterobacteria spp. at the high CP level indicating that inulin has the ability to beneficially manipulate gut microflora in a proteolytic environment.
Collapse
|
22
|
Liu B, Yu Z, Chen C, Kling DE, Newburg DS. Human milk mucin 1 and mucin 4 inhibit Salmonella enterica serovar Typhimurium invasion of human intestinal epithelial cells in vitro. J Nutr 2012; 142:1504-9. [PMID: 22718031 PMCID: PMC3397338 DOI: 10.3945/jn.111.155614] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many human milk glycans inhibit pathogen binding to host receptors and their consumption by infants is associated with reduced risk of disease. Salmonella infection is more frequent among infants than among the general population, but the incidence is lower in breast-fed babies, suggesting that human milk could contain components that inhibit Salmonella. This study aimed to test whether human milk per se inhibits Salmonella invasion of human intestinal epithelial cells in vitro and, if so, to identify the milk components responsible for inhibition. Salmonella enterica serovar Typhimurium SL1344 (SL1344) invasion of FHs 74 Int and Caco-2 cells were the models of human intestinal epithelium infection. Internalization of fluorescein-5-isothiocyanate-labeled SL1344 into intestinal cells was measured by flow cytometry to quantify infection. Human milk and its fractions inhibited infection; the inhibitory activity localized to the high molecular weight glycans. Mucin 1 and mucin 4 were isolated to homogeneity. At 150 μg/L, a typical concentration in milk, human milk mucin 1 and mucin 4 inhibited SL1344 invasion of both target cell types. These mucins inhibited SL1344 invasion of epithelial cells in a dose-dependent manner. Thus, mucins may prove useful as a basis for developing novel oral prophylactic and therapeutic agents that inhibit infant diseases caused by Salmonella and related pathogens.
Collapse
Affiliation(s)
- Bo Liu
- Department of Pediatric Gastroenterology and Nutrition, Harvard Medical School and Massachusetts General Hospital, Boston, MA; and,Program in Glycobiology, Department of Biology, Boston College, MA
| | - Zhuoteng Yu
- Department of Pediatric Gastroenterology and Nutrition, Harvard Medical School and Massachusetts General Hospital, Boston, MA; and,Program in Glycobiology, Department of Biology, Boston College, MA
| | - Ceng Chen
- Department of Pediatric Gastroenterology and Nutrition, Harvard Medical School and Massachusetts General Hospital, Boston, MA; and,Program in Glycobiology, Department of Biology, Boston College, MA
| | - David E. Kling
- Program in Glycobiology, Department of Biology, Boston College, MA
| | - David S. Newburg
- Department of Pediatric Gastroenterology and Nutrition, Harvard Medical School and Massachusetts General Hospital, Boston, MA; and,Program in Glycobiology, Department of Biology, Boston College, MA,To whom correspondence should be addressed: E-mail:
| |
Collapse
|
23
|
Staphylococcus aureus throat carriage is associated with ABO-/secretor status. J Infect 2012; 65:310-7. [PMID: 22664149 DOI: 10.1016/j.jinf.2012.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/06/2012] [Accepted: 05/28/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVES In 30% of carriers, Staphylococcus aureus colonization affects exclusively the pharynx and occurs independently from its presence in the nares. This additional reservoir has implications for S. aureus transmission, infection, and decolonization. Host factors promoting colonization of the throat, however, are unknown. METHODS We determined pharyngeal and persistent nasal carriage of S. aureus, ABO histo-blood group and ABH secretor status phenotypes in 227 individuals. RESULTS Compared to group A/non-secretors, group O/non-secretor individuals were at increased risk of carrying S. aureus in their throat (OR 6.50, 95% confidence interval 1.28-33.03, P = 0.02) and group O/secretor individuals were protected (OR 0.24, 0.07-0.77, P = 0.02). Both associations became moderately stronger after adjusting for persistent S. aureus nasal carriage, which was found to be a risk factor for pharyngeal colonization in the univariable analysis (OR 2.41, 1.35-4.33, p = 0.003). Most simultaneous carriers (72%) had identical S. aureus genotypes in their nose and throat. CONCLUSIONS These findings are consistent with in vitro studies that proposed a role of histo-blood group antigens as ligands for S. aureus and support their contribution to the observed population variation in nasopharyngeal S. aureus colonization. Based on their tissue specific expression histo-blood group antigens appear to modulate individual S. aureus colonization patterns.
Collapse
|
24
|
Production of autoantibodies by murine B-1a cells stimulated with Helicobacter pylori urease through toll-like receptor 2 signaling. Infect Immun 2011; 79:4791-801. [PMID: 21947775 DOI: 10.1128/iai.05808-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Helicobacter pylori infection is associated with several autoimmune diseases, in which autoantibody-producing B cells must be activated. Among these B cells, CD5-positive B-1a cells from BALB/c mice were confirmed to secrete autoantibodies when cocultured with purified H. pylori urease in the absence of T cells. To determine the mechanisms for autoantibody production, CD5-positive B-1a cells were sorted from murine spleen cells and stimulated with either purified H. pylori urease or H. pylori coated onto plates (referred to hereafter as plate-coated H. pylori), and autoantibody production was measured by enzyme-linked immunosorbent assay (ELISA). Complete urease was not secreted from H. pylori but was visually expressed over the bacterium-like endotoxin. Urease-positive plated-coated H. pylori stimulated B-1a cells to produce autoantibodies, although urease-deficient isotype-matched H. pylori did not. Autoantibody secretion by B-1a cells was inhibited when bacteria were pretreated with anti-H. pylori urease-specific antibody having neutralizing ability against urease enzymatic activity but not with anti-H. pylori urease-specific antibody without neutralizing capacity. The B-1a cells externally express various Toll-like receptors (TLRs): TLR1, TLR2, TLR4, and TLR6. Among the TLRs, blocking of TLR2 on B-1a cells with a specific monoclonal antibody (MAb), T2.5, inhibited autoantibody secretion when B-1a cells were stimulated with plate-coated H. pylori or H. pylori urease. Moreover, B-1a cells from TLR2-knockout mice did not produce those autoantibodies. The present study provides evidence that functional urease expressed on the surface of H. pylori will directly stimulate B-1a cells via innate TLR2 to produce various autoantibodies and may induce autoimmune disorders.
Collapse
|
25
|
Jahn KA, Biazik JM, Braet F. GM1 Expression in Caco-2 Cells: Characterisation of a Fundamental Passage-dependent Transformation of a Cell Line. J Pharm Sci 2011; 100:3751-62. [DOI: 10.1002/jps.22418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/20/2010] [Accepted: 11/01/2010] [Indexed: 01/23/2023]
|
26
|
Bu XD, Li N, Tian XQ, Huang PL. Caco-2 and LS174T cell lines provide different models for studying mucin expression in colon cancer. Tissue Cell 2011; 43:201-6. [PMID: 21470648 DOI: 10.1016/j.tice.2011.03.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/05/2011] [Accepted: 03/07/2011] [Indexed: 12/19/2022]
Abstract
To compare the differences in MUC2 and MUC5AC mRNA among four colon cancer cell lines and to identify the best in vitro models for studying mucin expression, quantitative real-time polymerase chain reaction was used to measure the expression of MUC2 and MUC5AC mRNA in Caco-2, HT29, LoVo, and LS174T cell lines. The levels of MUC2 mRNA expression in the four colon cancer cell lines ranked in order of mRNA abundance were: LS174T>LoVo>HT-29>Caco-2. In contrast to MUC2, the abundances of MUC5AC mRNA were in the order: Caco-2>HT-29>LS174T>LoVo. Caco-2 (highest level of MUC5AC mRNA) and LS174T (highest level of MUC2 mRNA) were used to investigate the phenotypes. Morphologically, Caco-2 cells were larger with low electron density mucus-storing vacuoles, many cell surface microvilli, and no obvious intercellular spaces between cells, compared to LS174T cells. The proliferative and invasive capacities of LS174T cells were significantly higher than those of Caco-2 cells. Caco-2 and LS174T cells provide excellent in vitro models for studying mucin expression in colon cancer.
Collapse
Affiliation(s)
- Xiao-Dong Bu
- Department of Pathology, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, Jiangsu Province, China
| | | | | | | |
Collapse
|
27
|
Keely S, Feighery L, Campion DP, O’Brien L, Brayden DJ, Baird AW. Chloride-led Disruption of the Intestinal Mucous Layer Impedes Salmonella Invasion: Evidence for an ‘Enteric Tear’ Mechanism. Cell Physiol Biochem 2011; 28:743-52. [DOI: 10.1159/000335768] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2011] [Indexed: 01/20/2023] Open
|
28
|
Mantis NJ, Forbes SJ. Secretory IgA: arresting microbial pathogens at epithelial borders. Immunol Invest 2010; 39:383-406. [PMID: 20450284 DOI: 10.3109/08820131003622635] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Secretory IgA (SIgA) is the predominant class of antibody found in intestinal secretions. Although SIgA's role in protecting the intestinal epithelium from the enteric pathogens and toxins has long been recognized, surprisingly little is known about the molecular mechanisms by which this is achieved. The present review summarizes the current understanding of how SIgA functions to prevent microbial pathogens and toxins from gaining access to the intestinal epithelium. We also discuss recent work from our laboratory examining the interaction of a particular protective monoclonal IgA with Salmonella and propose, based on this work, that SIgA has a previously unrecognized capacity to directly interfere with microbial virulence at mucosal surfaces.
Collapse
Affiliation(s)
- Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, University at Albany School of Public Health, Albany, New York 12208, USA.
| | | |
Collapse
|
29
|
Biazik JM, Jahn KA, Su Y, Wu YN, Braet F. Unlocking the ultrastructure of colorectal cancer cells in vitro using selective staining. World J Gastroenterol 2010; 16:2743-53. [PMID: 20533594 PMCID: PMC2883130 DOI: 10.3748/wjg.v16.i22.2743] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To characterise differences between three widely used colorectal cancer cell lines using ultrastructural selective staining for glycogen to determine variation in metastatic properties.
METHODS: Transmission electron microscopy was used in this investigation to help identify intracellular structures and morphological features which are precursors of tumor invasion. In addition to morphological markers, we used selective staining of glycogen as a marker for neoplastic cellular proliferation and determined whether levels of glycogen change between the three different cell lines.
RESULTS: Ultrastructural analysis revealed morphological differences between the cell lines, as well as differentiation into two sub-populations within each cell line. Caco-2 cells contained large glycogen deposits as well as showing the most obvious morphological changes between the two sub-populations. SW480 cells also contained large glycogen stores as well as deep cellular protrusions when grown on porous filter membranes. HT-29 cells had trace amounts of glycogen stores with few cellular projections into the filter pores and no tight junction formation.
CONCLUSION: Morphology indicative of metastatic properties coincided with larger glycogen deposits, providing strong evidence for the use of selective staining to determine the neoplastic properties of cells.
Collapse
|
30
|
Sakarya S, Göktürk C, Öztürk T, Ertugrul MB. Sialic acid is required for nonspecific adherence of Salmonella entericassp. entericaserovar Typhi on Caco-2 cells. FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY 2010; 58:330-335. [DOI: 10.1111/j.1574-695x.2010.00650.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
31
|
Halpin R, Brady D, OâRiordan E, OâSullivan M. Untreated and enzyme-modified bovine whey products reduce association ofSalmonellaTyphimurium,Escherichia coliO157:H7 andCronobacter malonaticus(formerlyEnterobacter sakazakii) to CaCo-2 cells. J Appl Microbiol 2010; 108:406-15. [DOI: 10.1111/j.1365-2672.2009.04436.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Chalghoumi R, Théwis A, Beckers Y, Marcq C, Portetelle D, Schneider YJ. Adhesion and Growth Inhibitory Effect of Chicken Egg Yolk Antibody (IgY) onSalmonella entericaSerovars Enteritidis and TyphimuriumIn Vitro. Foodborne Pathog Dis 2009; 6:593-604. [DOI: 10.1089/fpd.2008.0258] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Raja Chalghoumi
- Animal Science Unit, Gembloux Agricultural University, Gembloux, Belgium
| | - André Théwis
- Animal Science Unit, Gembloux Agricultural University, Gembloux, Belgium
| | - Yves Beckers
- Animal Science Unit, Gembloux Agricultural University, Gembloux, Belgium
| | - Christopher Marcq
- Animal Science Unit, Gembloux Agricultural University, Gembloux, Belgium
| | - Daniel Portetelle
- Animal and Microbial Biology Unit, Gembloux Agricultural University, Gembloux, Belgium
| | - Yves-Jacques Schneider
- Biochimie Cellulaire, Nutritionnelle & Toxicologique, Institut des Sciences de la Vie, UCL-Louvain-la-Neuve, Académie Louvain, Université Catholique de Louvain, Croix du Sud, Louvain-la-Neuve, Belgium
| |
Collapse
|
33
|
Shoaf-Sweeney KD, Hutkins RW. Adherence, anti-adherence, and oligosaccharides preventing pathogens from sticking to the host. ADVANCES IN FOOD AND NUTRITION RESEARCH 2008; 55:101-61. [PMID: 18772103 DOI: 10.1016/s1043-4526(08)00402-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For many pathogenic bacteria, infections are initiated only after the organism has first adhered to the host cell surface. If adherence can be inhibited, then the subsequent infection can also be inhibited. This approach forms the basis of anti-adherence strategies, which have been devised to prevent a variety of bacterial infections. In this chapter, the molecular basis by which respiratory, urinary, and gastrointestinal tract pathogens adhere to host cells will be described. The five general types of anti-adherence agents will also be reviewed. The most well-studied are the receptor analogs, which include oligosaccharides produced synthetically or derived from natural sources, including milk, berries, and other plants. Their ability to inhibit pathogen adherence may lead to development of novel, food-grade anti-infective agents that are inexpensive and safe.
Collapse
Affiliation(s)
- Kari D Shoaf-Sweeney
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | | |
Collapse
|
34
|
Keely S, Rawlinson LAB, Haddleton DM, Brayden DJ. A tertiary amino-containing polymethacrylate polymer protects mucus-covered intestinal epithelial monolayers against pathogenic challenge. Pharm Res 2007; 25:1193-201. [PMID: 18046631 DOI: 10.1007/s11095-007-9501-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
Abstract
PURPOSE We examined the cytoprotective influences of the mucoadhesive polymer, poly(DMAEMA), on human mucus-producing intestinal epithelial monolayers against two bacterial exotoxins and S. typhimurium. Direct anti-bacterial effects were also assessed against S. typhimurium. METHODS In the presence and absence of mucus, untreated or poly(DMAEMA)-exposed monolayers were challenged with S. typhimurium or supernatants containing either cholera (CTx) or C. difficile toxins. Assays included LDH, cytokine secretion, cyclic AMP (cAMP) and microscopy to visualise bacterial adherence by monolayers. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of poly(DMAEMA) against S. typhimurium were established, along with a time-kill study. RESULTS CTx and C. difficile toxin induced LDH release from E12 monolayers. CTx also elevated intracellular epithelial cAMP, while S. typhimurium induced basolateral IL-8 secretion. Pre-treatment of E12 monolayers with poly(DMAEMA) reduced these effects, but only in the presence of mucus. The polymer co-localised with S. typhimurium in mucus and reduced bacteria-epithelia association. Poly(DMAEMA) was directly bactericidal against S. typhimurium at 1 mg/ml within 30 min. CONCLUSIONS Poly(DMAEMA) may have potential as a non-absorbed polymer therapeutic against infection. These effects were mediated by a combination of physical interaction with mucus and by direct bacterial killing.
Collapse
Affiliation(s)
- Simon Keely
- School of Agriculture, Food Science and Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
35
|
Mantis NJ, McGuinness CR, Sonuyi O, Edwards G, Farrant SA. Immunoglobulin A antibodies against ricin A and B subunits protect epithelial cells from ricin intoxication. Infect Immun 2006; 74:3455-62. [PMID: 16714576 PMCID: PMC1479255 DOI: 10.1128/iai.02088-05] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epithelial cells of the respiratory and gastrointestinal tracts are extremely vulnerable to the cytotoxic effects of ricin, a Shiga-like toxin with ribosome-inactivating properties. While mucosal immunity to ricin correlates with secretory immunoglobulin A (IgA) antibody levels in vivo, the potential of IgA to protect epithelial cells from ricin in vitro has not been examined due to the unavailability of well-defined antitoxin IgA antibodies. Here we report the characterization of four monoclonal IgA antibodies (IgA MAbs) produced from the Peyer's patches and mesenteric lymph nodes of BALB/c mice immunized intragastrically with ricin toxoid. Two IgA MAbs (33G2 and 35H6) were active against ricin's lectin subunit (RTB), and two (23D7 and 25A4) reacted with the toxin's enzymatic subunit (RTA). All four IgA MAbs neutralized ricin in a Vero cell cytotoxicity assay, blocked toxin-induced interleukin-8 release by the human monocyte/macrophage cell line 28SC, and protected polarized epithelial cell monolayers from ricin-mediated protein synthesis inhibition. 33G2 and 35H6 reduced ricin binding to the luminal surfaces of human intestinal epithelial cells to undetectable levels in tissue section overlay assays, whereas 23D7 had no effect on toxin attachment. 23D7 and 25A4 did, however, reduce ricin transcytosis across MDCK II cell monolayers, possibly by interfering with intracellular toxin transport. We conclude that IgA antibodies against RTA and RTB can protect mucosal epithelial cells from ricin intoxication.
Collapse
Affiliation(s)
- Nicholas J Mantis
- Division of Infectious Disease, Wadsworth Center, N.Y. State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| | | | | | | | | |
Collapse
|
36
|
Coppa GV, Zampini L, Galeazzi T, Facinelli B, Ferrante L, Capretti R, Orazio G. Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr Res 2006; 59:377-82. [PMID: 16492975 DOI: 10.1203/01.pdr.0000200805.45593.17] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Breast-fed children, compared with the bottle-fed ones, have a lower incidence of acute gastroenteritis due to the presence of several antiinfective factors in human milk. The aim of this work is to study the ability of human milk oligosaccharides to prevent infections related to some common pathogenic bacteria. Oligosaccharides of human milk were fractionated by gel-filtration and characterized by thin-layer chromatography and high-performance anion exchange chromatography. Fractions obtained contained, respectively, 1) acidic oligosaccharides, 2) neutral high-molecular-weight oligosaccharides, and 3) neutral low-molecular-weight oligosaccharides. Experiments were carried out to study the ability of oligosaccharides in inhibiting the adhesion of three intestinal microorganisms (enteropathogenic Escherichia coli serotype O119, Vibrio cholerae, and Salmonella fyris) to differentiated Caco-2 cells. The study showed that the acidic fraction had an antiadhesive effect on the all three pathogenic strains studied (with different degrees of inhibition). The neutral high-molecular-weight fraction significantly inhibited the adhesion of E. coli O119 and V. cholerae, but not that of S. fyris; the neutral low-molecular-weight fraction was effective toward E. coli O119 and S. fyris but not V. cholerae. Our results demonstrate that human milk oligosaccharides inhibit the adhesion to epithelial cells not only of common pathogens like E. coli but also for the first time of other aggressive bacteria as V. cholerae and S. fyris. Consequently, oligosaccharides are one of the important defensive factors contained in human milk against acute diarrheal infections of breast-fed infants.
Collapse
Affiliation(s)
- Giovanni V Coppa
- Institute of Maternal-Infantile Sciences, Polytechnic University of Marche, Italy.
| | | | | | | | | | | | | |
Collapse
|
37
|
van Asten AJAM, Koninkx JFJG, van Dijk JE. Salmonella entry: M cells versus absorptive enterocytes. Vet Microbiol 2005; 108:149-52. [PMID: 15885932 DOI: 10.1016/j.vetmic.2005.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 04/03/2005] [Accepted: 04/04/2005] [Indexed: 01/17/2023]
|
38
|
Hedemann MS, Mikkelsen LL, Naughton PJ, Jensen BB. Effect of feed particle size and feed processing on morphological characteristics in the small and large intestine of pigs and on adhesion of Salmonella enterica serovar Typhimurium DT12 in the ileum in vitro1. J Anim Sci 2005; 83:1554-62. [PMID: 15956464 DOI: 10.2527/2005.8371554x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A 2 x 2 factorial experiment with pigs was undertaken to investigate the effect of particle size (fine and coarse) and feed processing (pelleted and nonpelleted) on morphological characteristics in the small intestine, cecum, and colon of pigs and on the adhesion of Salmonella enterica serovar Typhimurium DT12 to the ileum in vitro. Ninety-six pigs (average BW = 33 +/- 7 kg) were fed the experimental diets. After 4 wk, 24 pigs were selected (six pigs per diet) and euthanized, and tissue samples were taken from the mid and distal small intestine, cecum, and distal colon. The effects of particle size and feed processing on villus height and crypt depth in the small intestine were minor. Feeding coarse diets increased (P = 0.05) the crypt depth in the colon. The crypt depth was 420 +/- 12 and 449 +/- 12 microm in pigs fed finely and coarsely ground feed, respectively. Pigs fed pelleted diets had a larger (P = 0.01) staining area for neutral mucins, as well as for acidic and sulfomucins on the villi of the distal small intestine than pigs fed nonpelleted diets. The area was 41, 46, and 33% larger for neutral, acidic, and sulfomucins, respectively. The mucin-staining areas of the crypts in the cecum and the colon were not affected by the experimental diets. Examination of lectin binding characteristics of the distal small intestine and the cecum did not reveal any differences between the experimental diets. Using a pig intestine organ culture model, Salmonella adhered less (P < 0.05) to the ileal tissue of pigs fed the nonpelleted diets than to those fed pelleted diets; the adherence was 60% less in these pigs. Results of this study suggest that pigs fed pelleted diets secrete mucins that are capable of binding Salmonella enterica serovar Typhimurium DT12 and thereby allowing for colonization. Therefore, pigs fed a nonpelleted diet are better protected against Salmonella infections than pigs fed a pelleted diet.
Collapse
Affiliation(s)
- M S Hedemann
- Department of Animal Health, Welfare and Nutrition, Danish Institute of Agricultural Sciences, Research Centre Foulum, DK-8830 Tjele, Denmark.
| | | | | | | |
Collapse
|
39
|
Neutra MR, Kraehenbuhl JP. Cellular and Molecular Basis for Antigen Transport Across Epithelial Barriers. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50011-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
40
|
Mantis NJ, Farrant SA, Mehta S. Oligosaccharide side chains on human secretory IgA serve as receptors for ricin. THE JOURNAL OF IMMUNOLOGY 2004; 172:6838-45. [PMID: 15153502 DOI: 10.4049/jimmunol.172.11.6838] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Secretory IgA (sIgA) Abs are polymeric Igs comprised of two or more IgA monomers joined together at their C termini and covalently associated with a 70-kDa glycoprotein called secretory component. As the predominant Ig type in gastrointestinal sections, sIgA Abs are centrally important in adaptive immunity to enteropathogenic bacteria, viruses, and toxins. In this study, we demonstrate that sIgA Abs may also function in innate defense against ricin, a naturally occurring, galactose-specific plant lectin with extremely potent shiga toxin-like enzymatic activity. In lectin blot overlay assays, we found that ricin bound to secretory component and the H chain of human IgA, and this binding was inhibited by the addition of excess galactose. The toxin also recognized IgM (albeit with less affinity than to IgA), but not IgG. Ricin bound to both human IgA1 and IgA2, primarily via N-linked oligosaccharide side chains. At 100-fold molar excess concentration, sIgA (but not IgG) Abs inhibited ricin attachment to the apical surfaces of polarized intestinal epithelial cells grown in culture. sIgA Abs also visibly reduced toxin binding to the luminal surfaces of human duodenum in tissue section overlay assays. We conclude that sIgA Abs in mucosal secretions may serve as receptor analogues for ricin, thereby reducing the effective dose of toxin capable of gaining access to glycolipid and glycoprotein receptors on epithelial cell surfaces.
Collapse
Affiliation(s)
- Nicholas J Mantis
- Gastrointestinal Cell Biology Laboratory, Children's Hospital Boston, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
41
|
Mukai T, Kaneko S, Matsumoto M, Ohori H. Binding of Bifidobacterium bifidum and Lactobacillus reuteri to the carbohydrate moieties of intestinal glycolipids recognized by peanut agglutinin. Int J Food Microbiol 2004; 90:357-62. [PMID: 14751691 DOI: 10.1016/s0168-1605(03)00317-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We examined binding of Bifidobacterium bifidum and Lactobacillus reuteri to the carbohydrate moieties of glycolipids extracted from human enterocyte-like Caco-2 cells in this study. In binding assays to reference glycolipids of different carbohydrate compositions, B. bifidum EB102 bound strongly to gangliotetraosylceramide (asialo-GM1) and less strongly to gangliotriaosylceramide (asialo-GM2), lactosylceramide and sulfatide. The binding profile of B. bifidum EB102 was almost identical to that of L. reuteri JCM1081 described previously [Lett. Appl. Microbiol. 27 (1998) 130]. When we examined binding to neutral glycolipids extracted from Caco-2 cells, the binding profiles of B. bifidum EB102 and L. reuteri JCM1081 were very similar to that shown by peanut agglutinin (PNA). Binding of both strains to periodate-treated intestinal glycolipids was completely abolished, suggesting that the bacterial cells bind to carbohydrate moieties of the glycolipids. Furthermore, B. bifidum EB102 was found to express multiple glycolipid-binding proteinaceaous components on the cell surface. These results strongly suggested involvement of cell-surface proteinaceous components of B. bifidum in binding to the carbohydrate moieties of intestinal glycolipids recognized by PNA. Binding ability of B. bifidum and L. reuteri to intestinal glycolipids may play a crucial role for colonization on the mucosal surface of the intestine.
Collapse
Affiliation(s)
- Takao Mukai
- School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori 034-8628, Japan.
| | | | | | | |
Collapse
|
42
|
Hutchings AB, Helander A, Silvey KJ, Chandran K, Lucas WT, Nibert ML, Neutra MR. Secretory immunoglobulin A antibodies against the sigma1 outer capsid protein of reovirus type 1 Lang prevent infection of mouse Peyer's patches. J Virol 2004; 78:947-57. [PMID: 14694126 PMCID: PMC368743 DOI: 10.1128/jvi.78.2.947-957.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 10/02/2003] [Indexed: 12/18/2022] Open
Abstract
Reovirus type 1 Lang (T1L) adheres to M cells in the follicle-associated epithelium of mouse intestine and exploits the transport activity of M cells to enter and infect the Peyer's patch mucosa. Adult mice that have previously cleared a reovirus T1L infection have virus-specific immunoglobulin G (IgG) in serum and IgA in secretions and are protected against reinfection. Our aim in this study was to determine whether secretory IgA is sufficient for protection of Peyer's patches against oral reovirus challenge and, if so, against which reovirus antigen(s) the IgA may be directed. Monoclonal antibodies (MAbs) of the IgA isotype, directed against the sigma1 protein of reovirus T1L, the viral adhesin, were produced and tested along with other, existing IgA and IgG MAbs against reovirus T1L outer capsid proteins. Anti-sigma1 IgA and IgG MAbs neutralized reovirus T1L in L cell plaque reduction assays and inhibited T1L adherence to L cells and Caco-2(BBe) intestinal epithelial cells in vitro, but MAbs against other proteins did not. Passive oral administration of anti-sigma1 IgA and IgG MAbs prevented Peyer's patch infection in adult mice, but other MAbs did not. When anti-sigma1 IgA and IgG MAbs were produced in mice from hybridoma backpack tumors, however, the IgA prevented Peyer's patch infection, but the IgG did not. The results provide evidence that neutralizing IgA antibodies specific for the sigma1 protein are protective in vitro and in vivo and that the presence of these antibodies in intestinal secretions is sufficient for protection against entry of reovirus T1L into Peyer's patches.
Collapse
Affiliation(s)
- Amy B Hutchings
- GI Cell Biology Laboratory, Children's Hospital, Departments of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Ridenour DA, Cirillo SLG, Feng S, Samrakandi MM, Cirillo JD. Identification of a gene that affects the efficiency of host cell infection by Legionella pneumophila in a temperature-dependent fashion. Infect Immun 2003; 71:6256-63. [PMID: 14573644 PMCID: PMC219575 DOI: 10.1128/iai.71.11.6256-6263.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ability to infect host cells is critical for the survival and replication of intracellular pathogens in humans. We previously found that many genes involved in the ability of Legionella pneumophila to infect macrophages are not expressed efficiently under standard laboratory growth conditions. We have developed an approach using expression of L. pneumophila genes from an exogenous constitutive promoter on a low-copy-number vector that allows identification of genes involved in host cell infection. Through the use of this strategy, we found that expression of a gene, lvhB2, enhances the efficiency of L. pneumophila infection of mammalian cells. The putative protein encoded by lvhB2 has similarity to structural pilin subunits of type IV secretion systems. We confirmed that this gene plays a role in host cell infection by the construction of an in-frame deletion in the L. pneumophila lvhB2 gene and complementation of this mutant with the wild-type gene. The lvhB2 mutant does not display a very obvious defect in interactions with host cells when the bacteria are grown at 37 degrees C, but it has an approximately 100-fold effect on entry and intracellular replication when grown at 30 degrees C. These data suggest that lvhB2 plays an important role in the efficiency of host cell infection by L. pneumophila grown at lower temperatures.
Collapse
Affiliation(s)
- Dennis A Ridenour
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68583, USA
| | | | | | | | | |
Collapse
|
44
|
Laarmann S, Schmidt MA. The Escherichia coli AIDA autotransporter adhesin recognizes an integral membrane glycoprotein as receptor. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1871-1882. [PMID: 12855738 DOI: 10.1099/mic.0.26264-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The AIDA-I autotransporter adhesin, as a prototype of the AIDA adhesin family, represents a tripartite antigen consisting of the functional adhesin AIDA-I (alpha-domain), which mediates the specific attachment of bacteria to target cells, and a two-domain translocator (AIDA(c)) organized in the beta(1)- and beta(2)-domains. Cellular receptor moieties for the adhesin AIDA-I have not been identified. Here, it is demonstrated that the purified adhesin binds specifically to a high-affinity class of receptors on HeLa cells. Additionally, the adhesin was found to bind to a variety of mammalian cell types, indicating a broad tissue distribution of the receptor moiety. By using complementary techniques, including co-immunoprecipitation and one- and two-dimensional gel electrophoresis, the AIDA-I binding protein on HeLa cells was identified as a surface glycoprotein of about 119 kDa (gp119). The gp119 AIDA-I cellular receptor protein was characterized biochemically and found to be an integral N-glycosylated membrane protein with a pI of 5.2.
Collapse
Affiliation(s)
- Sven Laarmann
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Westfälische Wilhelms-Universität Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| | - M Alexander Schmidt
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Westfälische Wilhelms-Universität Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
45
|
Helander A, Silvey KJ, Mantis NJ, Hutchings AB, Chandran K, Lucas WT, Nibert ML, Neutra MR. The viral sigma1 protein and glycoconjugates containing alpha2-3-linked sialic acid are involved in type 1 reovirus adherence to M cell apical surfaces. J Virol 2003; 77:7964-77. [PMID: 12829836 PMCID: PMC161912 DOI: 10.1128/jvi.77.14.7964-7977.2003] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Accepted: 04/30/2003] [Indexed: 12/20/2022] Open
Abstract
Type 1 reoviruses invade the intestinal mucosa of mice by adhering selectively to M cells in the follicle-associated epithelium and then exploiting M cell transport activity. The purpose of this study was to identify the apical cell membrane component and viral protein that mediate the M cell adherence of these viruses. Virions and infectious subviral particles of reovirus type 1 Lang (T1L) adhered to rabbit M cells in Peyer's patch mucosal explants and to tissue sections in an overlay assay. Viral adherence was abolished by pretreatment of sections with periodate and in the presence of excess sialic acid or lectins MAL-I and MAL-II (which recognize complex oligosaccharides containing sialic acid linked alpha2-3 to galactose). The binding of T1L particles to polarized human intestinal (Caco-2(BBe)) cell monolayers was correlated with the presence of MAL-I and MAL-II binding sites, blocked by excess MAL-I and -II, and abolished by neuraminidase treatment. Other type 1 reovirus isolates exhibited MAL-II-sensitive binding to rabbit M cells and polarized Caco-2(BBe) cells, but type 2 or type 3 isolates including type 3 Dearing (T3D) did not. In assays using T1L-T3D reassortants and recoated viral cores containing T1L, T3D, or no sigma1 protein, MAL-II-sensitive binding to rabbit M cells and polarized Caco-2(BBe) cells was consistently associated with the T1L sigma1. MAL-II-recognized oligosaccharide epitopes are not restricted to M cells in vivo, but MAL-II immobilized on virus-sized microparticles bound only to the follicle-associated epithelium and M cells. The results suggest that selective binding of type 1 reoviruses to M cells in vivo involves interaction of the type 1 sigma1 protein with glycoconjugates containing alpha2-3-linked sialic acid that are accessible to viral particles only on M cell apical surfaces.
Collapse
Affiliation(s)
- Anna Helander
- GI Cell Biology Laboratory, Enders 1220, Children's Hospital and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Houle VM, Li W, Montgomery RK, Grand RJ. mRNA localization in polarized intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2003; 284:G722-7. [PMID: 12490432 DOI: 10.1152/ajpgi.00458.2002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An important feature of enterocyte maturation is the asymmetrical distribution of cellular functions including protein localization. mRNA sorting is one mechanism for establishment and maintenance of this process in other systems, and we have previously demonstrated differential localization of mRNAs in human enterocytes. To study regulation of mRNA sorting, we established a model in polarized Caco-2 cells. Proxy cDNA constructs containing beta-galactosidase (beta-gal)/green fluorescence protein (GFP) and the 3'-untranslated region (3'-UTR) of either human sucrase-isomaltase or villin were transfected transiently or stably. A control construct contained poly-A sequence in place of 3'-UTR. Expression of GFP was observed by confocal microscopy; intracellular location of the construct mRNA was imaged by in situ hybridization. The sucrase-isomaltase mRNA proxy localized to an apical position in Caco-2 cells as in native enterocytes; the villin mRNA proxy did not show significant localization. The control construct was not localized and was found diffusely throughout the cell. Proxy GFP proteins tended to localize with their mRNA proxies, but with less precision. This study establishes a valuable model for the investigation of mRNA localization in intestinal epithelial cells. Mechanisms controlling asymmetrical distribution of intestinal mRNAs can be now be elucidated.
Collapse
Affiliation(s)
- Vicki M Houle
- Gastrointestinal Cell Biology Research, Division of Gastroenterology and Nutrition, Harvard Digestive Disease Center, Children's Hospital, Harvard Medical School, Boston 02115, USA
| | | | | | | |
Collapse
|
47
|
Ferreira EO, Falcão LS, Vallim DC, Santos FJ, Andrade JRC, Andrade AFB, Vommaro RC, Ferreira MCS, Domingues RMCP. Bacteroides fragilis adherence to Caco-2 cells. Anaerobe 2002; 8:307-14. [PMID: 16887674 DOI: 10.1016/s1075-9964(03)00008-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2002] [Revised: 10/18/2002] [Accepted: 12/20/2002] [Indexed: 11/30/2022]
Abstract
The ability of ten Bacteroides fragilis strains isolated from intestinal and non-intestinal infections, normal flora and environment to adhere to human colon carcinoma cells, Caco-2, was examined. The adherence capacity varied among the strains tested from strongly adherent (76-100%) to non- or weakly adherent (0-25%). Negative staining with Indian ink showed that all the strains were capsulated, although strain 1032 (strongly adherent and originated from bacteremia) had the highest rate of capsulated cells in the culture. All strains studied presented an electron-dense layer and no fimbrial structures in their surface after PTA negative staining. The analysis of the strains with ruthenium red showed the presence of an acidic polysaccharide and also surface vesicles in all of them. The strain 1032 presented an aggregative adherence pattern toward Caco-2 cells monolayers. It could be seen trapped by elongated microvilli and surrounded by extracellular material in the scanning electron microscope. Treatment with sodium periodate (100 mM/1 h) reduced significantly its adherence capacity and also the expression of an electron-dense layer and of the capsule, detected with PTA and Indian ink staining, respectively. We suggest that the capsular polysaccharide might mediate the adherence of the B. fragilis to Caco-2 cells.
Collapse
Affiliation(s)
- E O Ferreira
- Instituto de Microbiologia Prof. Paulo de Góes, UFRJ, Av. Brigadeiro Trompovsky, s/n, CCS, Bloco I, 2o andar, sala 6, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Bacterial pathogens have evolved two major strategies to colonise the intestinal epithelium. Adherent microorganisms bind to the apical pole of the intestinal epithelium, whereas invasive microorganisms disrupt and invade the epithelium. Recognition of the genetic bases of bacterial pathogenicity and analysis of the molecular cross talks established between pathogens and their mammalian target cells have illuminated this diversity of interactions. We have compared the strategies of enteroinvasive pathogens, with emphasis on bacterial species such as Shigella, Yersinia, and Salmonella, that represent paradigms of interaction. Cross talks leading to alteration of the epithelial cell actin cytoskeleton appear as a recurrent theme during entry and dissemination into epithelial cells. Other cross talks alter the trafficking of cellular vesicles and induce changes in the intracellular compartment in which they reside, thus creating niches favourable to bacterial survival and growth. Finally, a variety of strategies also exist to deal with other components of the epithelial barrier, such as macrophages. Pro-phagocytic, anti-phagocytic, and pro-apoptotic processes appear to be of particular importance.
Collapse
Affiliation(s)
- P Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, Paris, France.
| |
Collapse
|
49
|
Cerquetti M, Serafino A, Sebastianelli A, Mastrantonio P. Binding of Clostridium difficile to Caco-2 epithelial cell line and to extracellular matrix proteins. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2002; 32:211-8. [PMID: 11934566 DOI: 10.1111/j.1574-695x.2002.tb00556.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adhesion of Clostridium difficile to Caco-2 was examined as a function of monolayers polarization and differentiation. The number of adherent C. difficile C253 bacteria per cell strongly decreased when postconfluent 15-day-old monolayers were used (1.7 bacteria per cell versus 17.3 with 3-day-old monolayers). Following disruption of intercellular junctions by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid, a significant rise in the level of bacterial adhesion was observed, above all in postconfluent monolayers. Immunofluorescence studies of bacteria and transferrin receptor, a marker of basolateral pole of polarized monolayers, showed that C. difficile C253 adheres mainly to the basolateral surface of differentiated and undifferentiated polarized Caco-2 cells. Furthermore, binding of C. difficile C253 to several extracellular matrix proteins in vitro was demonstrated by an ELISA-based assay.
Collapse
Affiliation(s)
- Marina Cerquetti
- Laboratory of Bacteriology and Medical Mycology, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | |
Collapse
|
50
|
Mynott TL, Crossett B, Prathalingam SR. Proteolytic inhibition of Salmonella enterica serovar typhimurium-induced activation of the mitogen-activated protein kinases ERK and JNK in cultured human intestinal cells. Infect Immun 2002; 70:86-95. [PMID: 11748167 PMCID: PMC127615 DOI: 10.1128/iai.70.1.86-95.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Bromelain, a mixture of cysteine proteases from pineapple stems, blocks signaling by the mitogen-activated protein (MAP) kinases extracellular regulated kinase 1 (ERK-1) and ERK-2, inhibits inflammation, and protects against enterotoxigenic Escherichia coli infection. In this study, we examined the effect of bromelain on Salmonella enterica serovar Typhimurium infection, since an important feature of its pathogenesis is its ability to induce activation of ERK-1 and ERK-2, which leads to internalization of bacteria and induction of inflammatory responses. Our results show that bromelain dose dependently blocks serovar Typhimurium-induced ERK-1, ERK-2, and c-Jun NH(2)-terminal kinase (JNK) activation in Caco-2 cells. Bromelain also blocked signaling induced by carbachol and anisomycin, pharmacological MAP kinase agonists. Despite bromelain inhibition of serovar Typhimurium-induced MAP kinase signaling, it did not prevent subsequent invasion of the Caco-2 cells by serovar Typhimurium or alter serovar Typhimurium -induced decreases in resistance across Caco-2 monolayers. Surprisingly, bromelain also did not block serovar Typhimurium-induced interleukin-8 (IL-8) secretion but synergized with serovar Typhimurium to enhance IL-8 production. We also found that serovar Typhimurium does not induce ERK phosphorylation in Caco-2 cells in the absence of serum but that serovar Typhimurium-induced invasion and decreases in monolayer resistance are unaffected. Collectively, these data indicate that serovar Typhimurium-induced invasion of Caco-2 cells, changes in the resistance of epithelial cell monolayers, and IL-8 production can occur independently of the ERK and JNK signaling pathways. Data also confirm that bromelain is a novel inhibitor of MAP kinase signaling pathways and suggest a novel role for proteases as inhibitors of signal transduction pathways in intestinal epithelial cells.
Collapse
Affiliation(s)
- Tracey L Mynott
- Center for Molecular Microbiology and Infection, Imperial College of Science, Technology and Medicine, London, United Kingdom.
| | | | | |
Collapse
|