1
|
Bansal G, Ghanem M, Sears KT, Galen JE, Tennant SM. Genetic engineering of Salmonella spp. for novel vaccine strategies and therapeutics. EcoSal Plus 2024; 12:eesp00042023. [PMID: 39023252 PMCID: PMC11636237 DOI: 10.1128/ecosalplus.esp-0004-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
Salmonella enterica is a diverse species that infects both humans and animals. S. enterica subspecies enterica consists of more than 1,500 serovars. Unlike typhoidal Salmonella serovars which are human host-restricted, non-typhoidal Salmonella (NTS) serovars are associated with foodborne illnesses worldwide and are transmitted via the food chain. Additionally, NTS serovars can cause disease in livestock animals causing significant economic losses. Salmonella is a well-studied model organism that is easy to manipulate and evaluate in animal models of infection. Advances in genetic engineering approaches in recent years have led to the development of Salmonella vaccines for both humans and animals. In this review, we focus on current progress of recombinant live-attenuated Salmonella vaccines, their use as a source of antigens for parenteral vaccines, their use as live-vector vaccines to deliver foreign antigens, and their use as therapeutic cancer vaccines in humans. We also describe development of live-attenuated Salmonella vaccines and live-vector vaccines for use in animals.
Collapse
Affiliation(s)
- Garima Bansal
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mostafa Ghanem
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Khandra T. Sears
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - James E. Galen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Galen JE, Wahid R, Buskirk AD. Strategies for Enhancement of Live-Attenuated Salmonella-Based Carrier Vaccine Immunogenicity. Vaccines (Basel) 2021; 9:162. [PMID: 33671124 PMCID: PMC7923097 DOI: 10.3390/vaccines9020162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/28/2022] Open
Abstract
The use of live-attenuated bacterial vaccines as carriers for the mucosal delivery of foreign antigens to stimulate the mucosal immune system was first proposed over three decades ago. This novel strategy aimed to induce immunity against at least two distinct pathogens using a single bivalent carrier vaccine. It was first tested using a live-attenuated Salmonella enterica serovar Typhi strain in clinical trials in 1984, with excellent humoral immune responses against the carrier strain but only modest responses elicited against the foreign antigen. Since then, clinical trials with additional Salmonella-based carrier vaccines have been conducted. As with the original trial, only modest foreign antigen-specific immunity was achieved in most cases, despite the incorporation of incremental improvements in antigen expression technologies and carrier design over the years. In this review, we will attempt to deconstruct carrier vaccine immunogenicity in humans by examining the basis of bacterial immunity in the human gastrointestinal tract and how the gut detects and responds to pathogens versus benign commensal organisms. Carrier vaccine design will then be explored to determine the feasibility of retaining as many characteristics of a pathogen as possible to elicit robust carrier and foreign antigen-specific immunity, while avoiding over-stimulation of unacceptably reactogenic inflammatory responses.
Collapse
Affiliation(s)
- James E. Galen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Rezwanul Wahid
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Amanda D. Buskirk
- Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Process and Facilities, Division of Microbiology Assessment II, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA;
| |
Collapse
|
3
|
Kozlowski PA, Aldovini A. Mucosal Vaccine Approaches for Prevention of HIV and SIV Transmission. CURRENT IMMUNOLOGY REVIEWS 2019; 15:102-122. [PMID: 31452652 PMCID: PMC6709706 DOI: 10.2174/1573395514666180605092054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/19/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Optimal protective immunity to HIV will likely require that plasma cells, memory B cells and memory T cells be stationed in mucosal tissues at portals of viral entry. Mucosal vaccine administration is more effective than parenteral vaccine delivery for this purpose. The challenge has been to achieve efficient vaccine uptake at mucosal surfaces, and to identify safe and effective adjuvants, especially for mucosally administered HIV envelope protein immunogens. Here, we discuss strategies used to deliver potential HIV vaccine candidates in the intestine, respiratory tract, and male and female genital tract of humans and nonhuman primates. We also review mucosal adjuvants, including Toll-like receptor agonists, which may adjuvant both mucosal humoral and cellular immune responses to HIV protein immunogens.
Collapse
Affiliation(s)
- Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Anna Aldovini
- Department of Medicine, and Harvard Medical School, Boston Children’s Hospital, Department of Pediatrics, Boston MA, 02115, USA
| |
Collapse
|
4
|
Abstract
Three major plague pandemics caused by the gram-negative bacterium Yersinia pestis have killed nearly 200 million people in human history. Due to its extreme virulence and the ease of its transmission, Y. pestis has been used purposefully for biowarfare in the past. Currently, plague epidemics are still breaking out sporadically in most of parts of the world, including the United States. Approximately 2000 cases of plague are reported each year to the World Health Organization. However, the potential use of the bacteria in modern times as an agent of bioterrorism and the emergence of a Y. pestis strain resistant to eight antibiotics bring out severe public health concerns. Therefore, prophylactic vaccination against this disease holds the brightest prospect for its long-term prevention. Here, we summarize the progress of the current vaccine development for counteracting plague.
Collapse
Affiliation(s)
- Wei Sun
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, 110880, Gainesville, FL, 32611-0880, USA.
| |
Collapse
|
5
|
Lin IYC, Van TTH, Smooker PM. Live-Attenuated Bacterial Vectors: Tools for Vaccine and Therapeutic Agent Delivery. Vaccines (Basel) 2015; 3:940-72. [PMID: 26569321 PMCID: PMC4693226 DOI: 10.3390/vaccines3040940] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022] Open
Abstract
Genetically attenuated microorganisms, including pathogenic and commensal bacteria, can be engineered to carry and deliver heterologous antigens to elicit host immunity against both the vector as well as the pathogen from which the donor gene is derived. These live attenuated bacterial vectors have been given much attention due to their capacity to induce a broad range of immune responses including localized mucosal, as well as systemic humoral and/or cell-mediated immunity. In addition, the unique tumor-homing characteristics of these bacterial vectors has also been exploited for alternative anti-tumor vaccines and therapies. In such approach, tumor-associated antigen, immunostimulatory molecules, anti-tumor drugs, or nucleotides (DNA or RNA) are delivered. Different potential vectors are appropriate for specific applications, depending on their pathogenic routes. In this review, we survey and summarize the main features of the different types of live bacterial vectors and discussed the clinical applications in the field of vaccinology. In addition, different approaches for using live attenuated bacterial vectors for anti-cancer therapy is discussed, and some promising pre-clinical and clinical studies in this field are outlined.
Collapse
Affiliation(s)
- Ivan Y C Lin
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| | - Thi Thu Hao Van
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| | - Peter M Smooker
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| |
Collapse
|
6
|
Abstract
The best-characterized mucosa-associated lymphoid tissue (MALT), and also the most relevant for this review, is the gastrointestinal-associated lymphoid tissue (GALT). The review reviews our understanding of the importance of mucosal immune responses in resisting infections caused by E. coli and Salmonella spp. It focuses on the major human E. coli infections and discusses whether antigen-specific mucosal immune responses are important for resistance against primary infection or reinfection by pathogenic E. coli. It analyzes human data on mucosal immunity against E. coli, a growing body of data of mucosal responses in food production animals and other natural hosts of E. coli, and more recent experimental studies in mice carrying defined deletions in genes encoding specific immunological effectors, to show that there may be considerable conservation of the effective host mucosal immune response against this pathogen. The species Salmonella enterica contains a number of serovars that include pathogens of both humans and animals; these bacteria are frequently host specific and may cause different diseases in different hosts. Ingestion of various Salmonella serovars, such as Typhimurium, results in localized infections of the small intestine leading to gastroenteritis in humans, whereas ingestion of serovar Typhi results in systemic infection and enteric fever. Serovar Typhi infects only humans, and the review discusses the mucosal immune responses against serovar Typhi, focusing on the responses in humans and in the mouse typhoid fever model.
Collapse
|
7
|
Rodriguez Garcia M, Patel MV, Shen Z, Fahey JV, Biswas N, Mestecky J, Wira CR. Mucosal Immunity in the Human Female Reproductive Tract. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00108-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
|
9
|
Sztein MB, Salerno-Goncalves R, McArthur MA. Complex adaptive immunity to enteric fevers in humans: lessons learned and the path forward. Front Immunol 2014; 5:516. [PMID: 25386175 PMCID: PMC4209864 DOI: 10.3389/fimmu.2014.00516] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/03/2014] [Indexed: 01/26/2023] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, and S. Paratyphi A and B, causative agents of paratyphoid fever, are major public health threats throughout the world. Although two licensed typhoid vaccines are currently available, they are only moderately protective and immunogenic necessitating the development of novel vaccines. A major obstacle in the development of improved typhoid, as well as paratyphoid vaccines is the lack of known immunological correlates of protection in humans. Considerable progress has been made in recent years in understanding the complex adaptive host responses against S. Typhi. Although the induction of S. Typhi-specific antibodies (including their functional properties) and memory B cells, as well as their cross-reactivity with S. Paratyphi A and S. Paratyphi B has been shown, the role of humoral immunity in protection remains undefined. Cell mediated immunity (CMI) is likely to play a dominant role in protection against enteric fever pathogens. Detailed measurements of CMI performed in volunteers immunized with attenuated strains of S. Typhi have shown, among others, the induction of lymphoproliferation, multifunctional type 1 cytokine production, and CD8(+) cytotoxic T-cell responses. In addition to systemic responses, the local microenvironment of the gut is likely to be of paramount importance in protection from these infections. In this review, we will critically assess current knowledge regarding the role of CMI and humoral immunity following natural S. Typhi and S. Paratyphi infections, experimental challenge, and immunization in humans. We will also address recent advances regarding cross-talk between the host's gut microbiota and immunization with attenuated S. Typhi, mechanisms of systemic immune responses, and the homing potential of S. Typhi-specific B- and T-cells to the gut and other tissues.
Collapse
Affiliation(s)
- Marcelo B Sztein
- Department of Pediatrics, Center for Vaccine Development (CVD), University of Maryland School of Medicine , Baltimore, MD , USA
| | - Rosangela Salerno-Goncalves
- Department of Pediatrics, Center for Vaccine Development (CVD), University of Maryland School of Medicine , Baltimore, MD , USA
| | - Monica A McArthur
- Department of Pediatrics, Center for Vaccine Development (CVD), University of Maryland School of Medicine , Baltimore, MD , USA
| |
Collapse
|
10
|
Maclean J, Rybicki EP, Williamson AL. Vaccination strategies for the prevention of cervical cancer. Expert Rev Anticancer Ther 2014; 5:97-107. [PMID: 15757442 DOI: 10.1586/14737140.5.1.97] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Infection with high-risk human papillomaviruses (HPVs) is an essential step in the multistep process leading to cervical cancer. There are approximately 120 different types of HPV identified: of these, 18 are high-risk types associated with cervical cancer, with HPV-16 being the dominant type in most parts of the world. The major capsid protein of papillomavirus, produced in a number of expression systems, self assembles to form virus-like particles. Virus-like particles are the basis of the first generation of HPV vaccines presently being tested in clinical trials. Virus-like particles are highly immunogenic and afford protection from infection both in animal models and in Phase IIb clinical trials. A number of Phase III trials are in progress to determine if the vaccine will protect against cervical disease and, in some cases, genital warts. However, it is predicted that these vaccines will be too expensive for the developing world, where they are desperately needed. Another problem is that they will be type specific. Novel approaches to the production of virus-like particles in plants, second-generation vaccine approaches including viral and bacterial vaccine vectors and DNA vaccines, as well as different routes of immunization, are also reviewed.
Collapse
Affiliation(s)
- James Maclean
- University of Cape Town, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, Observatory Cape Town 7925, South Africa.
| | | | | |
Collapse
|
11
|
New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microb Pathog 2012; 58:17-28. [PMID: 23142647 DOI: 10.1016/j.micpath.2012.10.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 01/01/2023]
Abstract
Recombinant attenuated Salmonella vaccine (RASV) vectors producing recombinant gene-encoded protective antigens should have special traits. These features ensure that the vaccines survive stresses encountered in the gastrointestinal tract following oral vaccination to colonize lymphoid tissues without causing disease symptoms and to result in induction of long-lasting protective immune responses. We recently described ways to achieve these goals by using regulated delayed in vivo attenuation and regulated delayed in vivo antigen synthesis, enabling RASVs to efficiently colonize effector lymphoid tissues and to serve as factories to synthesize protective antigens that induce higher protective immune responses. We also developed some additional new strategies to increase vaccine safety and efficiency. Modification of lipid A can reduce the inflammatory responses without compromising the vaccine efficiency. Outer membrane vesicles (OMVs) from Salmonella-containing heterologous protective antigens can be used to increase vaccine efficiency. A dual-plasmid system, possessing Asd+ and DadB+ selection markers, each specifying a different protective antigen, can be used to develop multivalent live vaccines. These new technologies have been adopted to develop a novel, low-cost RASV synthesizing multiple protective pneumococcal protein antigens that could be safe for newborns/infants and induce protective immunity to diverse Streptococcus pneumoniae serotypes after oral immunization.
Collapse
|
12
|
Vi antigen of Salmonella enetrica serovar Typhi — biosynthesis, regulation and its use as vaccine candidate. Open Life Sci 2012. [DOI: 10.2478/s11535-012-0082-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractVi capsular polysaccharide (Vi antigen) was first identified as the virulence antigen of Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever in humans. The presence of Vi antigen differentiates S. Typhi from other serovars of Salmonella. Vi antigen is a linear polymer consisting of α-1,4-linked-N-acetyl-galactosaminuronate, whose expression is controlled by three chromosomal loci, namely viaA, viaB and ompB. Both viaA and viaB region are present on Salmonella Pathogenicity Island-7, a large, mosaic, genetic island. The viaA region encodes a positive regulator and the viaB locus is composed of 11 genes designated tviA-tviE (for Vi biosyhthesis), vexA-vexE (for Vi antigen export) and ORF 11. Vi polysaccharide is synthesized from UDP-N-acetyl glucosamine in a series of steps requiring TviB, TviC, and TviE, and regulation of Vi polysaccharide synthesis is controlled by two regulatory systems, rscB-rscC (viaA locus) and ompR-envZ (ompB locus), which respond to changes in osmolarity. This antigen is highly immunogenic and has been used for the formulation of one of the currently available vaccines against typhoid. Despite advancement in the area of vaccinology, its pace of progress needs to be accelerated and effective control programmes will be needed for proper disease management.
Collapse
|
13
|
Breau C, Cameron DW, Desjardins M, Lee BC. Oral immunization using HgbA in a recombinant chancroid vaccine delivered by attenuated Salmonella typhimurium SL3261 in the temperature-dependent rabbit model. J Immunol Methods 2012; 375:232-42. [DOI: 10.1016/j.jim.2011.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/03/2011] [Accepted: 11/03/2011] [Indexed: 01/17/2023]
|
14
|
Levine MM. “IDEAL” vaccines for resource poor settings. Vaccine 2011; 29 Suppl 4:D116-25. [DOI: 10.1016/j.vaccine.2011.11.090] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/18/2011] [Accepted: 11/23/2011] [Indexed: 12/22/2022]
|
15
|
Progress towards a needle-free hepatitis B vaccine. Pharm Res 2010; 28:986-1012. [PMID: 21088986 DOI: 10.1007/s11095-010-0314-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 10/27/2010] [Indexed: 12/11/2022]
Abstract
Hepatitis B virus (HBV) infection is a worldwide public health problem. Vaccination is the most efficient way to prevent hepatitis B. Despite the success of the currently available vaccine, there is a clear need for the development of new generation of HBV vaccines. Needle-free immunization is an attractive approach for mass immunization campaigns, since avoiding the use of needles reduces the risk of needle-borne diseases and prevents needle-stick injuries and pain, thus augmenting patient compliance and eliminating the need for trained medical personnel. Moreover, this kind of immunization was shown to induce good systemic as well as mucosal immunological responses, which is important for the creation of both a prophylactic and therapeutic vaccine. In order to produce a better, safer, more efficient and more suitable vaccine, adjuvants have been used. In this article, several adjuvants tested over the years for their potential to help create a needle-free vaccine against HBV are reviewed.
Collapse
|
16
|
Boutajangout A, Goni F, Knudsen E, Schreiber F, Asuni A, Quartermain D, Frangione B, Chabalgoity A, Wisniewski T, Sigurdsson EM. Diminished amyloid-beta burden in Tg2576 mice following a prophylactic oral immunization with a salmonella-based amyloid-beta derivative vaccine. J Alzheimers Dis 2010; 18:961-72. [PMID: 19749432 DOI: 10.3233/jad-2009-1204] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Immunotherapy holds great promise for Alzheimer's disease (AD) and other conformational disorders but certain adverse reactions need to be overcome. Prior to the side effects in the first Elan/Wyeth AD vaccine trial, we proposed using amyloid-beta (Abeta) derivatives as a safer approach. The route of administration may also affect vaccine safety. To assess the feasibility of oral immunization that promotes mucosal immunity, Tg2576 AD model mice were treated prophylactically three times over 6 weeks starting at 3-5 months of age with a Salmonella vaccine expressing K6Abeta(1-30). At 22-24 months of age, cortical Abeta plaque burden and total Abeta(40/42) levels were reduced by 48-75% in the immunized mice compared to controls, which received unmodified Salmonella. Plaque clearance was not associated with increased microglial activation, which may be explained by the long treatment period. Furthermore, cerebral microhemorrhages were not increased in the treated mice in contrast to several passive Abeta antibody studies. These results further support our findings with this immunogen delivered subcutaneously and demonstrate its efficacy when given orally, which may provide added benefits for human use.
Collapse
Affiliation(s)
- Allal Boutajangout
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shi H, Santander J, Brenneman KE, Wanda SY, Wang S, Senechal P, Sun W, Roland KL, Curtiss R. Live recombinant Salmonella Typhi vaccines constructed to investigate the role of rpoS in eliciting immunity to a heterologous antigen. PLoS One 2010; 5:e11142. [PMID: 20585446 PMCID: PMC2887840 DOI: 10.1371/journal.pone.0011142] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 05/27/2010] [Indexed: 11/18/2022] Open
Abstract
We hypothesized that the immunogenicity of live Salmonella enterica serovar Typhi vaccines expressing heterologous antigens depends, at least in part, on its rpoS status. As part of our project to develop a recombinant attenuated S. Typhi vaccine (RASTyV) to prevent pneumococcal diseases in infants and children, we constructed three RASTyV strains synthesizing the Streptococcus pneumoniae surface protein PspA to test this hypothesis. Each vector strain carried ten engineered mutations designed to optimize safety and immunogenicity. Two S. Typhi vector strains (chi9639 and chi9640) were derived from the rpoS mutant strain Ty2 and one (chi9633) from the RpoS(+) strain ISP1820. In chi9640, the nonfunctional rpoS gene was replaced with the functional rpoS gene from ISP1820. Plasmid pYA4088, encoding a secreted form of PspA, was moved into the three vector strains. The resulting RASTyV strains were evaluated for safety in vitro and for immunogenicity in mice. All three RASTyV strains were similar to the live attenuated typhoid vaccine Ty21a in their ability to survive in human blood and human monocytes. They were more sensitive to complement and were less able to survive and persist in sewage and surface water than their wild-type counterparts. Adult mice intranasally immunized with any of the RASTyV strains developed immune responses against PspA and Salmonella antigens. The RpoS(+) vaccines induced a balanced Th1/Th2 immune response while the RpoS(-) strain chi9639(pYA4088) induced a strong Th2 immune response. Immunization with any RASTyV provided protection against S. pneumoniae challenge; the RpoS(+) strain chi9640(pYA4088) provided significantly greater protection than the ISP1820 derivative, chi9633(pYA4088). In the pre-clinical setting, these strains exhibited a desirable balance between safety and immunogenicity and are currently being evaluated in a Phase 1 clinical trial to determine which of the three RASTyVs has the optimal safety and immunogenicity profile in human hosts.
Collapse
Affiliation(s)
- Huoying Shi
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Javier Santander
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Karen E. Brenneman
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Soo-Young Wanda
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Shifeng Wang
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | | | - Wei Sun
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Kenneth L. Roland
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
18
|
Reactogenicity and immunogenicity of live attenuated Salmonella enterica serovar Paratyphi A enteric fever vaccine candidates. Vaccine 2010; 28:3679-87. [PMID: 20338215 DOI: 10.1016/j.vaccine.2010.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 03/01/2010] [Accepted: 03/10/2010] [Indexed: 11/23/2022]
Abstract
Eight Salmonella enterica serovar Paratyphi A strains were screened as candidates to create a live attenuated paratyphoid vaccine. Based on biochemical and phenotypic criteria, four strains, RKS2900, MGN9772, MGN9773 and MGN9779, were selected as progenitors for the construction of DeltaphoPQ mutant derivatives. All strains were evaluated in vitro for auxotrophic phenotypes and sensitivity to deoxycholate and polymyxin B. All DeltaphoPQ mutants were more sensitive to deoxycholate and polymyxin B than their wild-type progenitors, however MGN10028, MGN10044 and MGN10048, required exogenous purine for optimal growth. Purine requiring strains had acquired point mutations in purB during strain construction. All four mutants were evaluated for reactogenicity and immunogenicity in an oral rabbit model. Three strains were reactogenic in a dose-dependent manner, while one strain, MGN10028, was well-tolerated at all doses administered. All DeltaphoPQ strains were immunogenic following a single oral dose. The in vitro profile coupled with the favorable reactogenicity and immunogenicity profiles render MGN10028 a suitable live attenuated Paratyphi A vaccine candidate.
Collapse
|
19
|
Amdekar S, Dwivedi D, Roy P, Kushwah S, Singh V. Probiotics: multifarious oral vaccine against infectious traumas. ACTA ACUST UNITED AC 2009; 58:299-306. [PMID: 20100178 DOI: 10.1111/j.1574-695x.2009.00630.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microorganisms have been used for a long time in food and alcoholic fermentation. In the last few years they have undergone scientific scrutiny of their preventative and therapeutic aspects. This has led to the discovery of a new term, probiotics. Lactic acid bacteria (LAB) are microbial communities normally present in the intestine of most animals. They play an important role in humans and other animals, and act as immunomodulators. They are helpful in the treatment and prevention of disease as well as improving the digestion and absorption of nutrients. Probiotic microorganisms include the LAB Lactobacillus acidophilus, Lactobacillus bulgaricus, Lactobacillus casei, Lactobacillus plantarum and Lactobacillus rhamnosus. Use of these live bacteria to elicit an immune response or to carry a vaccine component is a new invention in vaccine development. The advantage of live bacterial vaccines is that they mimic natural infection, have intrinsic adjuvant properties and can be given orally. Components of pathogenic and nonpathogenic food-related microorganisms are currently being evaluated as candidates for oral vaccines.
Collapse
Affiliation(s)
- Sarika Amdekar
- Department of Microbiology, Barkatullah University, Bhopal, Madhya Pradesh, India
| | | | | | | | | |
Collapse
|
20
|
Abstract
Attenuated Salmonella Typhi vaccine strains hold great promise as live vectors for presentation of foreign antigens from unrelated bacterial, viral and parasitic pathogens to the immune system. Although this approach has proved quite successful in experimental animal models for eliciting antigen-specific mucosal, humoral and cellular responses, results have been disappointing for clinical trials carried out thus far. We hypothesize that the paucity of human responses to foreign antigens delivered by live vectors suggests that the strains and genetic approaches used to date have resulted in overattenuated vaccine strains with severely reduced immunogenicity. However, remarkable advances have now been made in the genetics of foreign antigen expression, understanding mechanisms of live vector immunity and refining immunization strategies. The time has now come for development of multivalent live vectors in which stable antigen expression and export is balanced with metabolic fitness to create highly immunogenic vaccines.
Collapse
|
21
|
Attenuated Salmonella typhimurium-mediated interleukin-10 delivery is beneficial for dextran sodium sulfate-induced murine colitis. Dis Colon Rectum 2009; 52:230-8. [PMID: 19279417 DOI: 10.1007/dcr.0b013e31819ad4c9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Interleukin-10 is a potent immunoregulatory agent that appears to play a role in inflammatory bowel disease. We hypothesized that interleukin-10 delivery to the distal gastrointestinal tract using a unique delivery vehicle may serve as a novel therapeutic for the treatment of experimental colitis. METHODS A murine interleukin-10 cDNA was subcloned and transformed into attenuated Salmonella typhimurium. In vitro interleukin-10 production and biofunction were evaluated. This construct was then used against dextran sodium sulfate-induced murine colitis. RESULTS A murine interleukin-10 producing S. typhimurium model was constructed. Enzyme linked immunosorbent assay and mast cell bioassay revealed interleukin-10 production. After single oral gavage feeding of 10 bacteria, persistence was noted within mesenteric lymph nodes at 6 weeks. Inoculation with/without the interleukin-10 plasmid (n = 7 per group) was performed before and after dextran sodium sulfate exposure. Postdextran sodium sulfate treatment revealed enhanced weight recovery in the S. typhimurium/interleukin-10 group compared to S. typhimurium/plasmid and phosphate buffered saline controls (P < 0.0001). The mean histology score for S. typhimurium/interleukin-10 was 0.86 compared to 3.14 and 3.17 for the S. typhimurium/plasmid and phosphate buffered saline controls respectively (P = 0.028). CONCLUSIONS Attenuated S. typhimurium producing interleukin-10 can be successfully delivered to the murine gastrointestinal tract by single oral dosing. This novel delivery method improved recovery of chemically-induced murine colitis.
Collapse
|
22
|
Abstract
Vaccines consisting of transgenic plant-derived antigens offer a new strategy for development of safe, inexpensive vaccines. The vaccine antigens can be eaten with the edible part of the plant or purified from plant material. In phase 1 clinical studies of prototype potato- and corn-based vaccines, these vaccines have been safe and immunogenic without the need for a buffer or vehicle other than the plant cell. Transgenic plant technology is attractive for vaccine development because these vaccines are needle-less, stable, and easy to administer. This chapter examines some early human studies of oral transgenic plant-derived vaccines against enterotoxigenic Escherichia coli infection, norovirus, and hepatitis B.
Collapse
Affiliation(s)
- Alexander V. Karasev
- grid.266456.50000000122849900Department of Plant, Soil & Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 USA
| |
Collapse
|
23
|
Intravaginal immunization of mice with recombinant Salmonella enterica serovar Typhimurium expressing human papillomavirus type 16 antigens as a potential route of vaccination against cervical cancer. Infect Immun 2008; 76:1940-51. [PMID: 18332214 DOI: 10.1128/iai.01484-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cervical cancer, the second leading cause of cancer deaths in women, is the consequence of high-risk human papillomavirus (HPV) infections. Toward the development of therapeutic vaccines that can induce both innate and adaptive mucosal immune responses, we analyzed intravaginal (ivag) vaccine delivery of live attenuated Salmonella enterica serovar Typhimurium expressing HPV16L1 as a model antigen. Innate immune responses were examined in cervicovaginal tissues by determining gene expression patterns by microarray analysis using nylon membranes imprinted with cDNA fragments coding for inflammation-associated genes. At 24 h, a wide range of genes, including those for chemokines and Th1- and Th2-type cytokine and chemokine receptors were up-regulated in mice ivag immunized with Salmonella compared to control mice. However, the majority of transcripts returned to their steady-state levels 1 week after immunization, suggesting a transient inflammatory response. Indeed, cervicovaginal histology of immunized mice showed a massive, but transient, infiltration of macrophages and neutrophils, while T cells were still increased after 7 days. Ivag immunization also induced humoral and antitumor immune responses, i.e., serum and vaginal anti-HPV16VLP antibody titers similar to those induced by oral immunization, and significant protection in tumor protection experiments using HPV16-expressing C3 tumor cells. These results show that ivag immunization with live attenuated Salmonella expressing HPV16 antigens modulates the local mucosal gene expression pattern into a transient proinflammatory profile, elicits strong systemic and mucosal immunity against HPV16, and confers protection against HPV16 tumor cells subcutaneously implanted in mice. Examination of the efficacy with which ivag HPV16E7E6 Salmonella induces regression of tumors located in cervicovaginal tissue is warranted.
Collapse
|
24
|
|
25
|
Abstract
Salmonella enterica is an important pathogen of animals and humans causing a variety of infectious diseases. The large number of cases of typhoid fever due to S. enterica serovar Typhi infections gives rise to the continuous need for improved vaccines against this life-threatening infection. However, S. enterica is also an interesting organism to act as a live attenuated carrier for the presentation of recombinant heterologous antigens. Comprehensive experimental studies have been performed and a detailed knowledge of the molecular mechanisms of important virulence factors is available. This allows the rationale design of improved Salmonella carrier strains and the development of novel strategies for the expression and presentation of recombinant antigens. Here, we review recent advances in generation of live attenuated Salmonella vaccines and discuss criteria for expression strategies of heterologous antigens by Salmonella carrier strains.
Collapse
|
26
|
Abstract
Regulatory T (T(reg)) cells show promise for treating autoimmune diseases, but their induction to elevated potency has been problematic when the most optimally derived cells are from diseased animals. To circumvent reliance on auto-antigen reactive T(reg) cells, stimulation to vaccine antigens (Ags) may offer a viable alternative while maintaining potency to protect against proinflammatory diseases. Our Salmonella vaccine expressing colonization factor Ag I (CFA/I) possesses anti-inflammatory properties, evident by elevated Th2 cell responses, reduced inflammatory cell infiltrates in the Peyer's patches, and an absence of proinflammatory cytokine production by infected macrophages. Given these findings, we hypothesized whether this vaccine would be protective against experimental autoimmune encephalomyelitis (EAE). As such, Salmonella-CFA/I protected in both prophylactic and therapeutic paradigms against proteolipid protein (PLP(139-151))-mediated EAE in SJL mice. The protected mice showed significantly reduced clinical disease and subsequent resolution when compared to PBS-treated controls. Histopathological studies showed reduced demyelination and no inflammation of spinal cords when compared to PBS- or Salmonella vector-treated mice. To ascertain whether the observed immune deviation was in part supported by T(reg) cells, analysis revealed involvement of FoxP3(+) CD25(+) CD4(+) T cells. Adoptive transfer of induced TGF-beta (+) T(reg) cells from vaccinated mice showed complete protection against PLP(139-151) challenge, but not by naive T(reg) cells. Partial protection to EAE was also achieved by the adoptive transfer of CD25(-) CD4(+) T cells, suggesting that Th2 cells also contributed. Thus, these data show that T(reg) cells are induced by oral vaccination with Salmonella-CFA/I contributing to the efficacious treatment of autoimmune disease.
Collapse
Affiliation(s)
- D W Pascual
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717-3610, USA.
| | | | | | | |
Collapse
|
27
|
Hoffelner H, Rieder G, Haas R. Helicobacter pylori vaccine development: optimisation of strategies and importance of challenging strain and animal model. Int J Med Microbiol 2007; 298:151-9. [PMID: 17714988 DOI: 10.1016/j.ijmm.2007.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gastric infection with the gram-negative bacterial pathogen Helicobacter pylori is widespread (approximately 50% of the human population is affected) and is associated with the induction of specific gastroduodenal disease. Although extensive studies in the H. pylori mouse model have demonstrated the feasibility of both therapeutic and prophylactic immunisations, the mechanism of vaccine-induced protection is still poorly understood. We report here on novel strategies to optimise the generation of H. pylori ghosts as vaccine candidates and highlight the need to concentrate on alternative animal models and the use of fully virulent H. pylori type I strains for vaccination. An effective vaccine strategy against H. pylori has the potential to significantly improve population health worldwide.
Collapse
Affiliation(s)
- Herbert Hoffelner
- Max von Pettenkofer Institut für Hygiene und Medizinische Mikrobiologie, LMU München, Pettenkoferstrasse 9a, D-80336 München, Germany
| | | | | |
Collapse
|
28
|
Fraillery D, Baud D, Pang SYY, Schiller J, Bobst M, Zosso N, Ponci F, Nardelli-Haefliger D. Salmonella enterica serovar Typhi Ty21a expressing human papillomavirus type 16 L1 as a potential live vaccine against cervical cancer and typhoid fever. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1285-95. [PMID: 17687110 PMCID: PMC2168124 DOI: 10.1128/cvi.00164-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human papillomavirus (HPV) vaccines based on L1 virus-like particles (VLPs) can prevent HPV-induced genital neoplasias, the precursors of cervical cancer. However, most cervical cancers occur in developing countries, where the implementation of expensive vaccines requiring multiple injections will be difficult. A live Salmonella-based vaccine could be a lower-cost alternative. We previously demonstrated that high HPV type 16 (HPV16)-neutralizing titers are induced after a single oral immunization of mice with attenuated Salmonella enterica serovar Typhimurium strains expressing a codon-optimized version of HPV16 L1 (L1S). To allow the testing of this type of vaccine in women, we constructed a new L1-expressing plasmid, kanL1S, and tested kanL1S recombinants of three Salmonella enterica serovar Typhi vaccine strains shown to be safe in humans, i.e., Ty21a, the actual licensed typhoid vaccine, and two highly immunogenic typhoid vaccine candidates, Ty800 and CVD908-htrA. In an intranasal mouse model of Salmonella serovar Typhi infection, Ty21a kanL1S was unique in inducing HPV16-neutralizing antibodies in serum and genital secretions, while anti-Salmonella responses were similar to those against the parental Ty21a vaccine. Electron microscopy examination of Ty21a kanL1S lysates showed that L1 assembled in capsomers and capsomer aggregates but not well-ordered VLPs. Comparison to the neutralizing antibody response induced by purified HPV16 L1 VLP immunizations in mice suggests that Ty21a kanL1S may be an effective prophylactic HPV vaccine. Ty21a has been widely used against typhoid fever in humans with a remarkable safety record. These finds encourage clinical testing of Ty21a kanL1S as a combined typhoid fever/cervical cancer vaccine with the potential for worldwide application.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Capsid Proteins/biosynthesis
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Cells, Cultured
- Female
- Genetic Vectors
- Human papillomavirus 16/immunology
- Humans
- Mice
- Mice, Inbred BALB C
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/immunology
- Papillomavirus Vaccines/administration & dosage
- Papillomavirus Vaccines/genetics
- Papillomavirus Vaccines/immunology
- Plasmids/genetics
- Plasmids/immunology
- Polysaccharides, Bacterial/administration & dosage
- Polysaccharides, Bacterial/genetics
- Polysaccharides, Bacterial/immunology
- Salmonella typhi/genetics
- Salmonella typhi/immunology
- Typhoid Fever/immunology
- Typhoid Fever/prevention & control
- Typhoid-Paratyphoid Vaccines/administration & dosage
- Typhoid-Paratyphoid Vaccines/genetics
- Typhoid-Paratyphoid Vaccines/immunology
- Uterine Cervical Neoplasms/immunology
- Uterine Cervical Neoplasms/prevention & control
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Combined/administration & dosage
- Vaccines, Combined/genetics
- Vaccines, Combined/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Dominique Fraillery
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Spreng S, Dietrich G, Weidinger G. Rational design of Salmonella-based vaccination strategies. Methods 2006; 38:133-43. [PMID: 16414270 DOI: 10.1016/j.ymeth.2005.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 09/16/2005] [Indexed: 11/30/2022] Open
Abstract
A permanently growing body of information is becoming available about the quality of protective immune responses induced by mucosal immunization. Attenuated live bacterial vaccines can be administered orally and induce long-lasting protective immunity in humans without causing major side effects. An attenuated Salmonella enterica serovar Typhi strain is registered as live oral vaccine against typhoid fever and has been in use for more than two decades. Recombinant attenuated Salmonella strains are also an attractive means of delivering heterologous antigens to the immune system, thereby, stimulating strong mucosal and systemic immune responses and consequently provide an efficient platform technology to design novel vaccination strategies. This includes the choice of heterologous protective antigens and their expression under the control of appropriate promoters within the carrier strain. The availability of well-characterized attenuated mutants of Salmonella concomitantly supports fine tuning of immune response triggered against heterologous antigens. Exploring different mucosal sites as a potential route of immunization has to be taken into account as an additional important way to modulate immune responses according to clinical requirements. This article focuses on the rational design of strategies to modulate appropriate immunological effector functions on the basis of selection of (i) attenuating mutations of the Salmonella strains, (ii) specific expression systems for the heterologous antigens, and (iii) route of mucosal administration.
Collapse
Affiliation(s)
- Simone Spreng
- Berna Biotech Ltd., Bacterial Vaccine Research, Rehhagstr. 79, CH-3018 Berne, Switzerland.
| | | | | |
Collapse
|
30
|
Ascón MA, Ochoa-Repáraz J, Walters N, Pascual DW. Partially assembled K99 fimbriae are required for protection. Infect Immun 2005; 73:7274-80. [PMID: 16239523 PMCID: PMC1273889 DOI: 10.1128/iai.73.11.7274-7280.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibodies to K99 fimbriae afford protection to F5+ bovine enterotoxigenic Escherichia coli (ETEC). Previous studies show that murine dams immunized with Salmonella vaccine vectors stably expressing K99 fimbriae confer protection to ETEC-challenged neonatal pups. To begin to address adaptation of the K99 scaffold to display heterologous B- and T-cell epitopes, studies were conducted to determine how much of the assembled K99 fimbria is required to maintain protective immunity. Sequential deletions in the K99 gene clusters were made, resulting in diminished localization of the K99 fimbrial subunit in the outer membrane. As placement of the K99 fimbrial subunit became progressively contained within the vaccine vector, diminished immunoglobulin A (IgA) and IgG1 antibody titers, as well as diminished Th2-type cytokine responses, were observed in orally immunized mice. Deletion of fanGH, which greatly reduced the export of the fimbrial subunit to the outer membrane, showed only partial reduction in protective immunity. By contrast, deletion of fanDEFGH, which also reduced the export of the fimbrial subunit to the outer membrane but retained more subunit in the cytoplasm, resulted in protective immunity being dramatically reduced. Thus, these studies showed that retention of K99 fimbrial subunit as native fimbriae or with the deletion of fanGH is sufficient to confer protection.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibodies, Bacterial/blood
- Antigens, Surface/chemistry
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Bacterial Toxins/chemistry
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Colostrum/immunology
- Feces
- Female
- Fimbriae Proteins/chemistry
- Fimbriae Proteins/genetics
- Fimbriae Proteins/immunology
- Fimbriae, Bacterial/chemistry
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/immunology
- Gene Expression Regulation, Bacterial
- Immunity, Mucosal/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Mutation
- Protein Transport
- Salmonella Infections/immunology
- Salmonella Infections/prevention & control
- Salmonella Vaccines/chemistry
- Salmonella Vaccines/immunology
- Th2 Cells/immunology
- Vaccination
Collapse
Affiliation(s)
- Miguel A Ascón
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717-3610, USA
| | | | | | | |
Collapse
|
31
|
Goñi F, Knudsen E, Schreiber F, Scholtzova H, Pankiewicz J, Carp R, Meeker HC, Rubenstein R, Brown DR, Sy MS, Chabalgoity JA, Sigurdsson EM, Wisniewski T. Mucosal vaccination delays or prevents prion infection via an oral route. Neuroscience 2005; 133:413-21. [PMID: 15878645 DOI: 10.1016/j.neuroscience.2005.02.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 01/13/2005] [Accepted: 02/20/2005] [Indexed: 10/25/2022]
Abstract
In recent years major outbreaks of prion disease linked to oral exposure of the prion agent have occurred in animal and human populations. These disorders are associated with a conformational change of a normal protein, PrP(C) (prion protein cellular), to a toxic and infectious form, PrP(Sc) (prion protein scrapie). None of the prionoses currently have an effective treatment. A limited number of active immunization approaches have been shown to slightly prolong the incubation period of prion infection. Active immunization in wild-type animals is hampered by auto-tolerance to PrP and potential toxicity. Here we report that mucosal vaccination with an attenuated Salmonella vaccine strain expressing the mouse PrP, is effective at overcoming tolerance to PrP and leads to a significant delay or prevention of prion disease in mice later exposed orally to the 139A scrapie strain. This mucosal vaccine induced gut anti-PrP immunoglobulin (Ig)A and systemic anti-PrP IgG. No toxicity was evident with this vaccination approach. This promising finding suggests that mucosal vaccination may be a useful method for overcoming tolerance to PrP and preventing prion infection among animal and potentially human populations at risk.
Collapse
Affiliation(s)
- F Goñi
- Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Developing efficient adjuvants for human vaccines, in order to elicit broad and sustained immune responses at systemic or mucosal levels, remains a challenge for the vaccine industry. Conventional approaches in the past have been largely empirical and partially successful. Selection was based on the balance between toxicity and adjuvanticity, first in an animal model, and then in clinical trials. The advent of improved biochemical techniques has allowed for the purification or construction of new and well characterised adjuvants. In addition, recent advances in our understanding of the immune system, most particularly with respect to early proinflammatory signals, have led to the identification of new biological targets for vaccine adjuvants. In particular, one can now choose adjuvants able to selectively induce T helper (Th)-1 and/or Th2 responses, according to the vaccine target and the desired immune response. As our knowledge of the cell types and cytokines interacting in the immune responses increases, so does our understanding of the mode of action of adjuvants, as well as the way in which they produce adverse effects.
Collapse
Affiliation(s)
- Bruno Guy
- Research Department, Aventis Pasteur, Marcy l'Etoile, France.
| | | |
Collapse
|
33
|
Mestecky J, Moldoveanu Z, Russell MW. Immunologic Uniqueness of the Genital Tract: Challenge for Vaccine Development. Am J Reprod Immunol 2005; 53:208-14. [PMID: 15833098 DOI: 10.1111/j.1600-0897.2005.00267.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Although the genital tract is considered to be a component of the mucosal immune system, it displays several distinct features not shared by other typical mucosal tissues and external secretions. Both male and female genital tract tissues lack inductive mucosal sites analogous to intestinal Peyer's patches. Consequently, local humoral and cellular immune responses stimulated by infections [with e.g. Neisseria gonorrhoeae, Chlamydia trachomatis, papilloma virus, and human immunodeficiency virus (HIV-1)] are weak or absent, and repeated local intravaginal immunizations result in minimal humoral responses. In contrast to typical external secretions such as intestinal fluid that contain secretory immunoglobulin A (S-IgA) as the dominant isotype, semen and cervico-vaginal fluid contain more IgG than IgA. Furthermore, irrespective of the route of infection, humoral immune responses to HIV-1 are dominated by specific IgG and low or absent IgA antibodies in all external secretions. Because a significant proportion of IgG in genital tract secretions is derived from the circulation, systemic immunization may provide protective IgG antibody-mediated immunity in the genital tract. Furthermore, combined systemic and mucosal (oral, rectal, and especially intranasal) immunization may induce protective humoral responses in both the systemic and mucosal compartments of the immune system.
Collapse
Affiliation(s)
- Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Box 1, 845 19th Street South, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
34
|
Nataro JP, Holmgren JR, Levine MM. Enteric Bacterial Vaccines: Salmonella, Shigella, Vibrio cholerae, Escherichia coli. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
|
36
|
Tristram DA. Maternal Genital Tract Infection and the Neonate. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Antigen Delivery Systems II: Development of Live Recombinant Attenuated Bacterial Antigen and DNA Vaccine Delivery Vector Vaccines. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50060-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Baud D, Ponci F, Bobst M, De Grandi P, Nardelli-Haefliger D. Improved efficiency of a Salmonella-based vaccine against human papillomavirus type 16 virus-like particles achieved by using a codon-optimized version of L1. J Virol 2004; 78:12901-9. [PMID: 15542642 PMCID: PMC524992 DOI: 10.1128/jvi.78.23.12901-12909.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cervical cancer results from cervical infection by human papillomaviruses (HPVs), especially HPV16. An effective vaccine against these HPVs is expected to have a dramatic impact on the incidence of this cancer and its precursor lesions. The leading candidate, a subunit prophylactic HPV virus-like particle (VLP) vaccine, can protect women from HPV infection. An alternative improved vaccine that avoids parenteral injection, that is efficient with a single dose, and that induces mucosal immunity might greatly facilitate vaccine implementation in different settings. In this study, we have constructed a new generation of recombinant Salmonella organisms that assemble HPV16 VLPs and induce high titers of neutralizing antibodies in mice after a single nasal or oral immunization with live bacteria. This was achieved through the expression of a HPV16 L1 capsid gene whose codon usage was optimized to fit with the most frequently used codons in Salmonella. Interestingly, the high immunogenicity of the new recombinant bacteria did not correlate with an increased expression of L1 VLPs but with a greater stability of the L1-expressing plasmid in vitro and in vivo in absence of antibiotic selection. Anti-HPV16 humoral and neutralizing responses were also observed with different Salmonella enterica serovar Typhimurium strains whose attenuating deletions have already been shown to be safe after oral vaccination of humans. Thus, our findings are a promising improvement toward a vaccine strain that could be tested in human volunteers.
Collapse
Affiliation(s)
- David Baud
- Département de Gynécologie, c/o Institut de Microbiologie, CHUV, Bugnon 48, 1011 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Camille N Kotton
- Infectious Diseases Division, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
40
|
Abstract
Developing efficient adjuvants for human vaccines that elicit broad and sustained immune responses at systemic or mucosal levels remains a formidable challenge for the vaccine industry. Conventional approaches in the past have been largely empirical and--at best--partially successful. Importantly, recent advances in our understanding of the immune system, most particularly with respect to early proinflammatory signals, are leading to the identification of new biological targets for vaccine adjuvants. This review covers both the current status of adjuvant testing in humans, the residual needs for vaccines in development, and the emerging immunological foundations for adjuvant design. A better understanding of the biology of toll-like receptors, non-conventional T cell subpopulations, T and B cell memory, regulatory T cells, and mucosal immunity has profound implications for a modern approach to adjuvant screening and development. The future lies in the high throughput screening of synthetic chemical entities targeting well-characterized biological molecules. Used alone or in combination, such synthetic adjuvants will allow stimulation or modulation in a safe and efficient manner of strong effector, regulatory and memory immune mechanisms.
Collapse
Affiliation(s)
- Nicolas Burdin
- Aventis Pasteur, Research and Development, Campus Mérieux, Marcy l'Etoile, France
| | | | | |
Collapse
|
41
|
Chen M, Chen J, Liao W, Zhu S, Yu J, Leung WK, Hu P, Sung JJY. Immunization with attenuated Salmonella typhimurium producing catalase in protection against gastric Helicobacter pylori infection in mice. Helicobacter 2003; 8:613-25. [PMID: 14632677 DOI: 10.1111/j.1523-5378.2003.00182.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
AIM To evaluate the protective effect of live attenuated Salmonella typhimurium expressing catalase against gastric Helicobacter pylori infection in mice, and to explore the underlying mechanisms of the protective immune reaction. MATERIALS AND METHODS The H. pylori catalase gene was introduced into attenuated S. typhimurium strain SL3261. C57BL/6 mice were orally immunized with the SL3261 vaccine strain expressing catalase or with SL3261 alone or phosphate-buffered saline (PBS). Mice were sacrificed 4 weeks after immunization and 5 weeks after H. pylori challenge, respectively. RESULTS All PBS control mice were infected. Eight of 13 (61.5%) mice immunized with the SL3261 vaccine strain and three of 14 (21%) mice immunized with SL3261 alone showed protection against H. pylori infection. Serum anti-H. pylori IgG2a levels of S. typhimurium-immunized mice were higher than those of PBS controls, both before and after H. pylori challenge, while there were no differences for IgG1 and IgA. Similarly, mRNA expression of interleukin (IL)-2, IL-12 and interferon-gamma in the gastric mucosa of S. typhimurium-immunized mice was significantly higher than that of PBS controls both before and after challenge. Moreover, S. typhimurium-immunized mice were characterized by marked infiltration of lymphocyte and mononuclear cells in the gastric mucosa after challenge. IL-4 and IL-10 were not detected in any of the three groups. IL-6 expression was increased in the PBS group compared with the S. typhimurium-immunized groups after challenge. CONCLUSIONS This study demonstrates that oral immunization of mice with catalase delivered by an attenuated S. typhimurium strain offers protection against H. pylori infection. This protective immunity was mediated through a predominantly Th1-type response and was associated with post-immunization gastritis.
Collapse
Affiliation(s)
- Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guang Zhou, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The demand for new and improved vaccines against human diseases has continued unabated over the past century. While the need continues for traditional vaccines in areas such as infectious diseases, there is an increasing demand for new therapies in nontraditional areas, such as cancer treatment, bioterrorism and food safety. Prompted by these changes, there has been a renewed interest in the application and development of live, attenuated bacteria expressing foreign antigens as vaccines. The application of bacterial vector vaccines to human maladies has been studied most extensively in attenuted strains of Salmonella. Live, attenuated strains of Shigella, Listeria monocytogenes, Mycobacterium bovis-BCG and Vibrio cholerae provide unique alternatives in terms of antigen delivery and immune presentation, however and also show promise as potentially useful bacterial vectors.
Collapse
Affiliation(s)
- Sims K Kochi
- Avant Immunotherapeutics, Inc., Needham, MA 02494, USA.
| | | | | |
Collapse
|
43
|
Khan SA, Stratford R, Wu T, Mckelvie N, Bellaby T, Hindle Z, Sinha KA, Eltze S, Mastroeni P, Pickard D, Dougan G, Chatfield SN, Brennan FR. Salmonella typhi and S typhimurium derivatives harbouring deletions in aromatic biosynthesis and Salmonella Pathogenicity Island-2 (SPI-2) genes as vaccines and vectors. Vaccine 2003; 21:538-48. [PMID: 12531654 DOI: 10.1016/s0264-410x(02)00410-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The S. typhimurium strain (TML deltaaroC deltassaV) WT05, harbouring defined deletions in genes involved in both the aromatic biosynthesis pathway (aroC) and the Salmonella Pathogenicity Island-2 (SPI-2) (ssaV) was shown to be significantly attenuated in C57 BL/6 interferon gamma knockout mice following oral inoculation. Similarly, the S. typhi strain (Ty2 deltaaroC deltassaV) ZH9 harbouring the aroC and ssaV mutations propagated less efficiently than wild type in human macrophages. These studies demonstrated the attractive safety profile of the aroC ssaV mutant combination. Strains S. typhimurium (TML deltaaroC deltassaV ) WT05 and S. typhi (Ty2 deltaaroC deltassaV) ZH9 were subsequently tested as vaccine vectors to deliver E. coli heat-labile toxin (LT-B) mucosally to mice. Mice inoculated orally with S. typhimurium (TML deltaaroC deltassaV) WT05 expressing LT-B (WT05/LT-B) elicited high titres of both LT-specific serum IgG and intestinal IgA, although no specific IgA was detected in the vagina. Similarly, intranasal inoculation of mice with S. typhi (Ty2 deltaaroC deltassaV) ZH9 expressing LT-B (ZH9/LT-B) elicited even higher titres of LT-specific serum antibody as well as LT-specific Ig in the vagina. We conclude that deltaaroC deltassaV strains of Salmonella are highly attenuated and are promising candidates both as human typhoid vaccines and as vaccine vectors for the delivery of heterologous antigens.
Collapse
Affiliation(s)
- Shahid A Khan
- Microscience Limited, 545 Eskdale Road, Winnersh Triangle, Wokingham, Berkshire RG41 5TU, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pasetti MF, Levine MM, Sztein MB. Animal models paving the way for clinical trials of attenuated Salmonella enterica serovar Typhi live oral vaccines and live vectors. Vaccine 2003; 21:401-18. [PMID: 12531639 DOI: 10.1016/s0264-410x(02)00472-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Attenuated Salmonella enterica serovar Typhi (S. Typhi) strains can serve as safe and effective oral vaccines to prevent typhoid fever and as live vectors to deliver foreign antigens to the immune system, either by the bacteria expressing antigens through prokaryotic expression plasmids or by delivering foreign genes carried on eukaryotic expression systems (DNA vaccines). The practical utility of such live vector vaccines relies on achieving a proper balance between minimizing the vaccine's reactogenicity and maximizing its immunogenicity. To advance to clinical trials, vaccine candidates need to be pre-clinically evaluated in relevant animal models that attempt to predict what their safety and immunogenicity profile will be when administered to humans. Since S. Typhi is a human-restricted pathogen, a major obstacle that has impeded the progress of vaccine development has been the shortcomings of the animal models available to assess vaccine candidates. In this review, we summarize the usefulness of animal models in the assessment of the degree of attenuation and immunogenicity of novel attenuated S. Typhi strains as vaccine candidates for the prevention of typhoid fever and as live vectors in humans.
Collapse
Affiliation(s)
- Marcela F Pasetti
- Center for Vaccine Development, University of Maryland School of Medicine, Room 480, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
45
|
Sougioultzis S, Lee CK, Alsahli M, Banerjee S, Cadoz M, Schrader R, Guy B, Bedford P, Monath TP, Kelly CP, Michetti P. Safety and efficacy of E coli enterotoxin adjuvant for urease-based rectal immunization against Helicobacter pylori. Vaccine 2002; 21:194-201. [PMID: 12450694 DOI: 10.1016/s0264-410x(02)00467-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low dose E. coli heat-labile enterotoxin (LT), delivered orally or enterically, has been used as an adjuvant for Helicobacter pylori (H. pylori) urease in healthy adults. In this study we aim to test the safety and adjuvant efficacy of LT delivered rectally together with recombinant H. pylori urease. Eighteen healthy adults without present or past H. pylori infection were enrolled in a double blind, randomized, ascending dose study to receive either urease (60 mg), or urease (60 mg) + LT (5 or 25 microg). The immunization preparation was administered per rectum on days 0, 14 and 28. Serum, stool and saliva anti-urease and anti-LT IgG and IgA antibodies (Abs) were measured and urease-specific and LT-specific antigen secreting cells (ASCs) were counted in peripheral blood at baseline and 7 (ASC counts) or 14 days (antibody levels) after each dosing. Peripheral blood lymphoproliferation assays were also performed at baseline and at the end of the study. Rectally delivered urease and LT were well tolerated. Among the 12 subjects assigned to urease+LT, 2 (16.7%) developed anti-urease IgG Abs, 1 (8.3%) developed anti-urease IgA Abs, and 3 (25%) showed urease-specific IgA(+) ASCs. Immune responses to LT were more vigorous, especially in subjects exposed to 5 microg LT. In the urease+ 5 microg LT group, anti-LT IgG and IgA Abs developed in 60 and 80% of the subjects, respectively, while LT-specific IgG(+) and IgA(+) ASCs were detected in all subjects. The magnitude of the anti-LT response was much higher than the response to urease. No IgA anti-urease or anti-LT Abs were detected in stool or saliva and lymphocyte proliferative responses to urease were unsatisfactory. In conclusion, rectal delivery of 5 microg LT is safe and induces vigorous systemic anti-LT immune responses. Further studies are needed to determine if LT can be an effective adjuvant for rectally delivered antigens.
Collapse
Affiliation(s)
- Stavros Sougioultzis
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Garmory HS, Brown KA, Titball RW. Salmonella vaccines for use in humans: present and future perspectives. FEMS Microbiol Rev 2002; 26:339-53. [PMID: 12413664 DOI: 10.1111/j.1574-6976.2002.tb00619.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In recent years there has been significant progress in the development of attenuated Salmonella enterica serovar Typhi strains as candidate typhoid fever vaccines. In clinical trials these vaccines have been shown to be well tolerated and immunogenic. For example, the attenuated S. enterica var. Typhi strains CVD 908-htrA (aroC aroD htrA), Ty800 (phoP phoQ) and chi4073 (cya crp cdt) are all promising candidate typhoid vaccines. In addition, clinical trials have demonstrated that S. enterica var. Typhi vaccines expressing heterologous antigens, such as the tetanus toxin fragment C, can induce immunity to the expressed antigens in human volunteers. In many cases, the problems associated with expression of antigens in Salmonella have been successfully addressed and the future of Salmonella vaccine development is very promising.
Collapse
Affiliation(s)
- Helen S Garmory
- Department of Biomedical Sciences, Dstl Chemical and Biological Sciences, Porton Down, Salisbury SP4 0JQ, UK.
| | | | | |
Collapse
|
47
|
|
48
|
Curtiss R. Bacterial infectious disease control by vaccine development. J Clin Invest 2002; 110:1061-6. [PMID: 12393839 PMCID: PMC150804 DOI: 10.1172/jci16941] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Roy Curtiss
- Department of Biology, Washington University, 1 Brookings Drive, Campus Box 1137, St. Louis, Missouri 63130-4899, USA.
| |
Collapse
|
49
|
Abstract
Human reproductive tracts represent components of the mucosal immune system with unique features. Although secretory IgA is present, IgG is more abundant, and typical mucosa-associated lymphoid tissue for generating common mucosal immune responses is absent. Antibody responses to genital infections or to locally applied vaccines are usually modest, but alternative strategies for eliciting genital tract antibodies are being developed.
Collapse
Affiliation(s)
- Michael W Russell
- Department of Microbiology, and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, NY 14214, USA.
| | | |
Collapse
|
50
|
Frey SE, Bollen W, Sizemore D, Campbell M, Curtiss R. Bacteremia associated with live attenuated chi8110 Salmonella enterica serovar Typhi ISP1820 in healthy adult volunteers. Clin Immunol 2001; 101:32-7. [PMID: 11580224 DOI: 10.1006/clim.2001.5088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Live attenuated chi8110 Salmonella enterica serovar Typhi ISP1820 vaccine was given in a dose-escalation trial to healthy, adult volunteers. Positive stool and blood cultures were noted, but limited, as were immune responses measured by ELISA and ELISPOT. Only volunteers with bacteremia developed immune responses; however, no symptoms were associated with bacteremia. The vaccine was insufficiently immunogenic for use as a vaccine. It is possible that reduced survival in the gut and reduced immunogenicity may have been due to the thawing of frozen inocula immediately prior to use.
Collapse
Affiliation(s)
- S E Frey
- Vaccine and Treatment Evaluation Unit, Saint Louis University Health Sciences Center, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|