1
|
Aykut MN, Erdoğan EN, Çelik MN, Gürbüz M. An Updated View of the Effect of Probiotic Supplement on Sports Performance: A Detailed Review. Curr Nutr Rep 2024; 13:251-263. [PMID: 38470560 PMCID: PMC11133216 DOI: 10.1007/s13668-024-00527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 03/14/2024]
Abstract
PURPOSE OF REVIEW Modulation of the host microbiota through probiotics has been shown to have beneficial effects on health in the growing body of research. Exercise increases the amount and diversity of beneficial microorganisms in the host microbiome. Although low- and moderate-intensity exercise has been shown to reduce physiological stress and improve immune function, high-intensity prolonged exercise can suppress immune function and reduce microbial diversity due to intestinal hypoperfusion. The effect of probiotic supplementation on sports performance is still being studied; however, questions remain regarding the mechanisms of action, strain used, and dose. In this review, the aim was to investigate the effects of probiotic supplements on exercise performance through modulation of gut microbiota and alleviation of GI symptoms, promotion of the immune system, bioavailability of nutrients, and aerobic metabolism. RECENT FINDINGS Probiotic supplementation may improve sports performance by reducing the adverse effects of prolonged high-intensity exercise. Although probiotics have been reported to have positive effects on sports performance, information about the microbiome and nutrition of athletes has not been considered in most current studies. This may have limited the evaluation of the effects of probiotic supplementation on sports performance.
Collapse
Affiliation(s)
- Miray Nur Aykut
- Department of Nutrition and Dietetics, Trakya University, Edirne, Turkey
| | - Esma Nur Erdoğan
- Department of Nutrition and Dietetics, Trakya University, Edirne, Turkey
| | - Menşure Nur Çelik
- Department of Nutrition and Dietetics, Ondokuz Mayıs University, Samsun, Turkey
| | - Murat Gürbüz
- Department of Nutrition and Dietetics, Trakya University, Edirne, Turkey.
| |
Collapse
|
2
|
Shi J, Zhao G, Huang X, Li X, Ma Y, Yang K. Effects of Lactobacillus rhamnosus Supplementation on Growth Performance, Immune Function, and Antioxidant Capacity of Newborn Foals. J Equine Vet Sci 2023; 129:104501. [DOI: doi.org/10.1016/j.jevs.2023.104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
|
3
|
Shi J, Zhao G, Huang X, Li X, Ma Y, Yang K. Effects of Lactobacillus rhamnosus Supplementation on Growth Performance, Immune Function, and Antioxidant Capacity of Newborn Foals. J Equine Vet Sci 2023; 129:104501. [PMID: 37737196 DOI: 10.1016/j.jevs.2023.104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 09/23/2023]
Abstract
This study aimed to explore the effects of Lactobacillus rhamnosus GG (LGG) supplementation on the growth performance, immune function, and antioxidant capacity of foals. Fifteen newborn foals with similar birth weight (51.67 ± 6.07 kg) and good health were randomly assigned to three groups: control group and test groups I and II, which were supplemented with 5.0 × 109 CFU/day and 1.0 × 1010 CFU/day LGG, respectively, for 150 days. LGG intake increased the daily body height (P < .01) and weight (P < .01) gain of foals aged 120 to 150 days. The foals' IgA (P < .05) and IgG (P < .01) plasma levels increased at 30 and 150 days, respectively, and IL-6 plasma level increased at 90 days (P < .01). Plasma total antioxidant capacity level was significantly higher in test group I than in the control and test group II at 30 days (P < .01), whereas glutathione peroxidase level was significantly higher in test group II than in the control and test group I at 30 days (P < .01). Both test groups had significantly higher superoxide dismutase level than the control group (P < .01) and significantly decreased malondialdehyde plasma level at 90 and 150 days (P < .05). Overall, our findings indicate that dietary supplementation of LGG can improve the growth performance, immune function, and antioxidant capacity of newborn foals.
Collapse
Affiliation(s)
- Jian Shi
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Guodong Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Xinxin Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Xiaobin Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Yuhui Ma
- Zhaosu animal Husbandry and Veterinary Development Center, Yili, China
| | - Kailun Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China.
| |
Collapse
|
4
|
Ma L, Wang L, Zhang Z, Xiao D. Research Progress of Biological Feed in Beef Cattle. Animals (Basel) 2023; 13:2662. [PMID: 37627453 PMCID: PMC10451282 DOI: 10.3390/ani13162662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Biological feed is a feed product developed through bioengineering technologies such as fermentation engineering, enzyme engineering, protein engineering, and genetic engineering. It possesses functional characteristics of high nutritional value and good palatability that can improve feed utilization, replace antibiotics, enhance the health level of livestock and poultry, improve the quality of livestock products, and promote a better breeding environment. A comprehensive review is provided on the types of biological feed, their mechanism of action, fermenting strains, fermenting raw material resources, and their current status in animal production to facilitate in-depth research and development of applications.
Collapse
Affiliation(s)
| | | | | | - Dingfu Xiao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.M.); (L.W.); (Z.Z.)
| |
Collapse
|
5
|
Yoon JH, Kim JY, Yoo JH, Lee SY. Development of a selective medium for the enumeration of lactic acid bacteria and bifidobacteria in food products. Food Sci Biotechnol 2023; 32:713-721. [PMID: 37009046 PMCID: PMC10050526 DOI: 10.1007/s10068-022-01202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022] Open
Abstract
This study was conducted to develop a selective medium for enumerating LAB and Bifidobacteria in food samples. Thirteen media were evaluated to determine their suitability for selectively enumerating LAB (17 bacilli and 7 cocci) and Bifidobacteria (12 strains) under aerobic and anaerobic conditions. When BL, BCP, and mMRS were supplemented with propionic acid (5 ml/l) and adjusted to pH 5, the growth of all indicator microorganisms was inhibited; however, these media also inhibited the growth of certain LAB and Bifidobacterial strains. Using propionic acid, the pH levels of BL, BCP, and mMRS were adjusted to pH 5.2, 6.0, and 6.0, respectively. These media inhibited the growth of all indicator microorganisms, whereas they did not inhibit any of the LAB and Bifidobacteria strains under anaerobic conditions. Overall, BLP (pH 5.8) lacking blood showed significantly higher bacterial counts compared with other media in food products. Further analyses indicated that BLP (pH 5.8) was the most suitable medium for enumerating LAB and Bifidobacteria in food. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01202-z.
Collapse
Affiliation(s)
- Jae-Hyun Yoon
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-Daero, Anseong-Si, Gyeonggi-Do Republic of Korea
| | - Ji-Yeon Kim
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-Daero, Anseong-Si, Gyeonggi-Do Republic of Korea
| | - Jin-Hee Yoo
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-Daero, Anseong-Si, Gyeonggi-Do Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-Daero, Anseong-Si, Gyeonggi-Do Republic of Korea
| |
Collapse
|
6
|
Kim JE, Li B, Fei L, Horne R, Lee D, Loe AK, Miyake H, Ayar E, Kim DK, Surette MG, Philpott DJ, Sherman P, Guo G, Pierro A, Kim TH. Gut microbiota promotes stem cell differentiation through macrophage and mesenchymal niches in early postnatal development. Immunity 2022; 55:2300-2317.e6. [PMID: 36473468 DOI: 10.1016/j.immuni.2022.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/15/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Intestinal stem cell maturation and development coincide with gut microbiota exposure after birth. Here, we investigated how early life microbial exposure, and disruption of this process, impacts the intestinal stem cell niche and development. Single-cell transcriptional analysis revealed impaired stem cell differentiation into Paneth cells and macrophage specification upon antibiotic treatment in early life. Mouse genetic and organoid co-culture experiments demonstrated that a CD206+ subset of intestinal macrophages secreted Wnt ligands, which maintained the mesenchymal niche cells important for Paneth cell differentiation. Antibiotics and reduced numbers of Paneth cells are associated with the deadly infant disease, necrotizing enterocolitis (NEC). We showed that colonization with Lactobacillus or transfer of CD206+ macrophages promoted Paneth cell differentiation and reduced NEC severity. Together, our work defines the gut microbiota-mediated regulation of stem cell niches during early postnatal development.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bo Li
- General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Lijiang Fei
- Center for Stem Cell and Regenerative Medicine, Zhejiang University of School of Medicine, Hangzhou 310058, China
| | - Rachael Horne
- Program in Cell Biology, Division of Gastroenterology, Hepatology & Nutrition, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dorothy Lee
- General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Adrian Kwan Loe
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hiromu Miyake
- General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Eda Ayar
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dae-Kyum Kim
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, Department of Medicine, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4L8, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Philip Sherman
- Program in Cell Biology, Division of Gastroenterology, Hepatology & Nutrition, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University of School of Medicine, Hangzhou 310058, China
| | - Agostino Pierro
- General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
7
|
Mujahid EH, Limoa E, Syamsuddin S, Bahar B, Renaldi R, Aminuddin A, Lisal ST. Effect of Probiotic Adjuvant Therapy on Improvement of Clinical Symptoms & Interleukin 6 Levels in Patients With Schizophrenia. Psychiatry Investig 2022; 19:898-908. [PMID: 36444153 PMCID: PMC9708868 DOI: 10.30773/pi.2022.0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/26/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE This study aims to examine the effect of giving probiotic adjuvant therapy on improving clinical symptoms & IL-6 levels in patients with schizophrenia. METHODS This research was a double-blind, placebo-controlled trial conducted at Dadi Psychiatric Hospital, South Sulawesi Province, Indonesia in November-December 2021. The sample of the research was patients with schizophrenia undergoing hospitalization who received therapeutic doses of risperidone with a total of 21 samples in each treatment and control group. Research subjects were measured with Positive and Negative Syndrome Scale (PANSS) at baseline, 2nd, 4th, and 6th weeks. The treatment group received one capsule/12 hours/oral of probiotics for six weeks and the control group received 1 capsule/12 hours/oral placebo for 6 weeks. In addition, two measurements of IL-6 using enzyme-linked immunosorbent assay were performed in both groups, namely at the beginning of week 0 and the end of the 6th week. RESULTS We found the decrease in the PANSS value which described the improvement in clinical symptoms of the schizophrenic group after receiving therapeutic doses of antipsychotics and probiotic capsules or the treatment group as well as the schizophrenia group receiving therapeutic doses of antipsychotics and placebo capsules or the control group. CONCLUSION Improvements in clinical symptoms and decreased levels of IL-6 in the group of patients with schizophrenia who received risperidone with probiotic adjuvant therapy were better than in the group of patients with schizophrenia who received risperidone without probiotics as adjuvant therapy.
Collapse
Affiliation(s)
- Edy Husnul Mujahid
- Department of Psychiatry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia.,Indonesia & Faculty of Medicine, Halu Oleo University, Kendari, Indonesia
| | - Erlyn Limoa
- Department of Psychiatry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Saidah Syamsuddin
- Department of Psychiatry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Burhanuddin Bahar
- Faculty of Public Health, Hasanuddin University, Makassar, Indonesia
| | - Rinvil Renaldi
- Department of Psychiatry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Aminuddin Aminuddin
- Department of Clinical Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Sonny T Lisal
- Department of Psychiatry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
8
|
Mazur-Kurach P, Frączek B, Klimek AT. Does Multi-Strain Probiotic Supplementation Impact the Effort Capacity of Competitive Road Cyclists? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12205. [PMID: 36231510 PMCID: PMC9566127 DOI: 10.3390/ijerph191912205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/11/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
(1) Background: The aim of this study was to assess the impact of multi-strain probiotic supplementation on the physical capacity and selected health indicators related to the exercise capacity of competitive road cyclists such as body composition, markers of intestinal permeability, pro- and anti-inflammatory markers, and anti-/pro-oxidant potential. (2) Methods: The group comprised 26 competitive road cyclists aged between 18 and 26. The study was a 4-month double-blind, random-assignment, parallel-group, and placebo-controlled trial. The measurements of physical capacity in the exercise tests of the anaerobic Wingate test (the level of total work volume, maximal anaerobic power, average power per revolution, mean time to achieve maximal anaerobic power, and time to maintain maximal anaerobic power) and the aerobic test using a cycle ergometer (maximum oxygen uptake, exercise duration, maximum load power, and maximal heart rate) were repeated after one, three, and four months. (3) Results: The probiotic supplementation resulted in increased levels of the relative magnitude of maximal oxygen uptake (65.28 vs. 69.18), the duration of training until failure (14.35 vs. 15.65), the load on the ergometer (5.11 vs. 5.36), and the degree of decrease in heart rate (193.3 vs. 188.6) together with a feeling of less discomfort during the exercise test (Borg scale) (19.38 vs. 18.43), confirming the beneficial effect of probiotics on the cyclists' aerobic capacity during exercise. The probiotic supplementation produces no effects on the anaerobic capacity and body composition of the athletes, except for an observed increase in muscle mass. The concentration of zonulin in the stool mass decreased as a result of the probiotic therapy (81.2 vs. 25.21), and α1-atitrypsin was maintained at a similar level during the experiment (0.95 vs. 1.05), indicating a sealing of the intestinal barrier and beneficial changes in the cyclists' intestinal function. The supplementation resulted in a reduction in the concentrations of: tumor necrosis factor TNF-α after the aerobic (13.88 vs. 9.75) and anaerobic tests (8.54 vs. 6.8), IL-6 before (1.2 vs. 0.86) and after the anaerobic test (1.47 vs. 0.97), IL-10 before the anaerobic test (0.70 vs. 0.44), and the total oxidative status (TOS) of the blood plasma before (663.7 vs. 484.6) and after the anaerobic test (643.1 vs. 435.9). (4) Conclusions: The probiotic supplementation resulted in increased levels of the cyclists' aerobic capacity and their maintenance of anaerobic capacity and positively affected selected health indicators related to the exercise capacity of competitive road cyclists.
Collapse
Affiliation(s)
- Paulina Mazur-Kurach
- Department of Physical Education and Sport, Institute of Biomedical Sciences, Faculty of Sports Medicine and Human Nutrition, University of Physical Education, Jana Pawła II 78, 31-571 Kraków, Poland
| | - Barbara Frączek
- Department of Physical Education and Sport, Institute of Biomedical Sciences, Faculty of Sports Medicine and Human Nutrition, University of Physical Education, Jana Pawła II 78, 31-571 Kraków, Poland
| | - Andrzej T. Klimek
- Department of Physical Education and Sport, Institute of Biomedical Sciences, Faculty of Physiology and Biochemistry, University of Physical Education, Jana Pawła II 78, 31-571 Kraków, Poland
| |
Collapse
|
9
|
Zielińska D, Karbowiak M, Brzezicka A. The Role of Psychobiotics to Ensure Mental Health during the COVID-19 Pandemic-A Current State of Knowledge. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11022. [PMID: 36078738 PMCID: PMC9518511 DOI: 10.3390/ijerph191711022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Psychobiotics are defined as probiotics, mainly of the genus Lactobacillus and Bifidobacterium, that confer mental health benefits to the host when consumed in a particular quantity through the interaction with commensal gut microbiota. The gut microbiota, which means a diverse and dynamic population of microorganisms harboring the gastrointestinal tract, communicates with the brain and vice versa through the brain-gut axis. The mechanisms of action of psychobiotics may be divided into four groups: synthesis of neurotransmitters and neurochemicals, regulation of the HPA axis, influence on the immune system, and synthesis of metabolites. Recent years showed that the COVID-19 pandemic affected not only physical, but also mental health. Social isolation, fear of infection, the lack of adequate vaccine, disinformation, increased number of deaths, financial loss, quarantine, and lockdown are all factors can cause psychiatric problems. The aim of this review was to discuss the potential role of psychobiotic in light of the current problems, based on in vitro and in vivo studies, meta-analyses, clinical trials evidence, and registered studies assessing probiotics' therapeutic administration in the prevention or treatment of symptoms or side effects of COVID-19.
Collapse
Affiliation(s)
- Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159C Str., (Building No. 32), 02-776 Warsaw, Poland
| | - Marcelina Karbowiak
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159C Str., (Building No. 32), 02-776 Warsaw, Poland
| | - Aneta Brzezicka
- Neurocognitive Research Center, SWPS University of Social Sciences and Humanities, Chodakowska Str. 19/31, 03-815 Warsaw, Poland
| |
Collapse
|
10
|
Li Z, Zhou Q, Qingsong Q, Liao Y, Yang F, Sheng M, Feng L, Shi X. Effect of Maifan Stone on the Growth of Probiotics and Regulation of Gut Microbiota. Lett Appl Microbiol 2022; 75:1423-1432. [PMID: 35975465 DOI: 10.1111/lam.13809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 11/29/2022]
Abstract
Maifan stone is a kind of mineral medicine in Chinese medicine, which has good adsorption, dissolution, mineralization, and biological activity. It has an excellent therapeutic effect on livestock, poultry, and aquatic animals suffering from intestinal diseases. This study explored the effect of Maifan stone on the growth ability of Lacticaseibacillus rhamnosus GG (L. rhamnosus GG) and the effect of Maifan stone-L. rhamnosus GG fermented product on the intestinal inflammation and gut microbiota. We find that Maifan stone can adsorb L. rhamnosus GG to form a carrier bacteria. Maifan stone has the characteristics of acid tolerance and bile salt tolerance and can also improve the activity of L. rhamnosus GG in artificial gastrointestinal juice. The fermented product can reduce the degree of diarrhea and colon pathology in rats to a certain extent and significantly improve intestinal inflammatory factors and gut microbiota. This study improves the application effect of L. rhamnosus GG in the prevention and treatment of diarrhea animals and provide a scientific basis for the rational development of Maifan stone resources.
Collapse
Affiliation(s)
- ZhiXun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qing Zhou
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qu Qingsong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuyao Liao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Fang Yang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mengke Sheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lei Feng
- Inner Mongolia Yougaoya Health Technology Co., Ltd., Inner Mongolia, 028399, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.,Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China
| |
Collapse
|
11
|
Jeon S, Kim H, Kim J, Seol D, Jo J, Choi Y, Cho S, Kim H. Positive Effect of Lactobacillus acidophilus EG004 on Cognitive Ability of Healthy Mice by Fecal Microbiome Analysis Using Full-Length 16S-23S rRNA Metagenome Sequencing. Microbiol Spectr 2022; 10:e0181521. [PMID: 35019699 PMCID: PMC8754107 DOI: 10.1128/spectrum.01815-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022] Open
Abstract
Evidence for the concept of the "gut-brain axis" (GBA) has risen. Many types of research demonstrated the mechanism of the GBA and the effect of probiotic intake. Although many studies have been reported, most were focused on neurodegenerative disease and, it is still not clear what type of bacterial strains have positive effects. We designed an experiment to discover a strain that positively affects brain function, which can be recognized through changes in cognitive processes using healthy mice. The experimental group consisted of a control group and three probiotic consumption groups, namely, Lactobacillus acidophilus, Lacticaseibacillus paracasei, and Lacticaseibacillus rhamnosus. Three experimental groups fed probiotics showed an improved cognitive ability by cognitive-behavioral tests, and the group fed on L. acidophilus showed the highest score. To provide an understanding of the altered microbial composition effect on the brain, we performed full 16S-23S rRNA sequencing using Nanopore, and operational taxonomic units (OTUs) were identified at species level. In the group fed on L. acidophilus, the intestinal bacterial ratio of Firmicutes and Proteobacteria phyla increased, and the bacterial proportions of 16 species were significantly different from those of the control group. We estimated that the positive results on the cognitive behavioral tests were due to the increased proportion of the L. acidophilus EG004 strain in the subjects' intestines since the strain can produce butyrate and therefore modulate neurotransmitters and neurotrophic factors. We expect that this strain expands the industrial field of L. acidophilus and helps understand the mechanism of the gut-brain axis. IMPORTANCE Recently, the concept of the "gut-brain axis" has risen and suggested that microbes in the GI tract affect the brain by modulating signal molecules. Although many pieces of research were reported in a short period, a signaling mechanism and the effects of a specific bacterial strain are still unclear. Besides, since most of the research was focused on neurodegenerative disease, the study with a healthy animal model is still insufficient. In this study, we show using a healthy animal model that a bacterial strain (Lactobacillus acidophilus EG004) has a positive effect on mouse cognitive ability. We experimentally verified an improved cognitive ability by cognitive behavioral tests. We performed full 16S-23S rRNA sequencing using a Nanopore MinION instrument and provided the gut microbiome composition at the species level. This microbiome composition consisted of candidate microbial groups as a biomarker that shows positive effects on cognitive ability. Therefore, our study suggests a new perspective for probiotic strain use applicable for various industrialization processes.
Collapse
Affiliation(s)
- Soomin Jeon
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyaekang Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jina Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Donghyeok Seol
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- eGnome, Inc., Seoul, Republic of Korea
| | - Jinchul Jo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Youngseok Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seoae Cho
- eGnome, Inc., Seoul, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- eGnome, Inc., Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Altaie AM, Venkatachalam T, Samaranayake LP, Soliman SSM, Hamoudi R. Comparative Metabolomics Reveals the Microenvironment of Common T-Helper Cells and Differential Immune Cells Linked to Unique Periapical Lesions. Front Immunol 2021; 12:707267. [PMID: 34539639 PMCID: PMC8446658 DOI: 10.3389/fimmu.2021.707267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Periapical abscesses, radicular cysts, and periapical granulomas are the most frequently identified pathological lesions in the alveolar bone. While little is known about the initiation and progression of these conditions, the metabolic environment and the related immunological behaviors were examined for the first time to model the development of each pathological condition. Metabolites were extracted from each lesion and profiled using gas chromatography-mass spectrometry in comparison with healthy pulp tissue. The metabolites were clustered and linked to their related immune cell fractions. Clusters I and J in the periapical abscess upregulated the expression of MMP-9, IL-8, CYP4F3, and VEGF, while clusters L and M were related to lipophagy and apoptosis in radicular cyst, and cluster P in periapical granuloma, which contains L-(+)-lactic acid and ethylene glycol, was related to granuloma formation. Oleic acid, 17-octadecynoic acid, 1-nonadecene, and L-(+)-lactic acid were significantly the highest unique metabolites in healthy pulp tissue, periapical abscess, radicular cyst, and periapical granuloma, respectively. The correlated enriched metabolic pathways were identified, and the related active genes were predicted. Glutamatergic synapse (16–20),-hydroxyeicosatetraenoic acids, lipophagy, and retinoid X receptor coupled with vitamin D receptor were the most significantly enriched pathways in healthy control, abscess, cyst, and granuloma, respectively. Compared with the healthy control, significant upregulation in the gene expression of CYP4F3, VEGF, IL-8, TLR2 (P < 0.0001), and MMP-9 (P < 0.001) was found in the abscesses. While IL-12A was significantly upregulated in cysts (P < 0.01), IL-17A represents the highest significantly upregulated gene in granulomas (P < 0.0001). From the predicted active genes, CIBERSORT suggested the presence of natural killer cells, dendritic cells, pro-inflammatory M1 macrophages, and anti-inflammatory M2 macrophages in different proportions. In addition, the single nucleotide polymorphisms related to IL-10, IL-12A, and IL-17D genes were shown to be associated with periapical lesions and other oral lesions. Collectively, the unique metabolism and related immune response shape up an environment that initiates and maintains the existence and progression of these oral lesions, suggesting an important role in diagnosis and effective targeted therapy.
Collapse
Affiliation(s)
- Alaa Muayad Altaie
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Lakshman P Samaranayake
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Oral Biosciences, Faculty of Dentistry, University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Division of Surgery and Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
13
|
Taghizadeh S, Falsafi T, Kermanshahi RK, Ramezani R. Antagonistic and Immunomodulant Effects of Two Probiotic Strains of Lactobacillus on Clinical Strains of Helicobacter pylori. Galen Med J 2021; 9:e1794. [PMID: 34466594 PMCID: PMC8343775 DOI: 10.31661/gmj.v9i0.1794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/05/2020] [Accepted: 01/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background:
The present study aimed to evaluate the in vitro and in situ antagonistic effects of Lactobacillus probiotic strains on clinical strains of Helicobacter pylori. Also to investigate their immunomodulation effects on a macrophage cell model.
Materials and Methods:
Anti-microbial effects of probiotic lactobacilli against H. pylori was assessed using the well and disk diffusion methods. Effects of lactobacilli probiotics strains, as well as their cell-free supernatant on adhesion of H. pylori to MKN-45 gastric epithelial cells, were examined in their presence and absence. Immunomodulation effects of probiotic lactobacilli were performed using the U937 macrophage cell model. Incubation of host cells with probiotics and their cell-free supernatants with cultured host cells was performed in different optimized conditions. The supernatant of host cells cultured in their presence and absence was used for cytokines measurement.
Results:
Two probiotics,Lactobacillus acidophilus ATCC4356, and Lactobacillus rhamnosus PTCC1607, could inhibit the growth of clinical H. pylori in vitro. They could also inhibit attachment of H. pylori to MKN-45 cells. Cell-free supernatant of L. acidophilus had a stimulating effect on the production of Interferon-gamma (IFN-γ) by U937 cells.
Conclusion:
The present study demonstrates that, L. acidophilus ATCC4356 and L. rhamnosus PTCC1607 probiotic strains can inhibit the growth of clinical H. pylori in vitro. Treatment of U937 with alive H. pylori plus cell-free supernatant of L. acidophilus, have a significantly higher capacity to stimulate IFN-γ production than H. pylori alone. So, the metabolite (s) of this probiotic may have an immunomodulatory effect in immune response versus H. pylori.
Collapse
Affiliation(s)
- Somayyeh Taghizadeh
- Microbiology Department, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Tahereh Falsafi
- Microbiology Department, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Correspondence to: Tahereh Falsafi, Microbiology Department, Faculty of Biological Sciences, Alzahra University, Tehran, Iran Telephone Number: +989127095294 Email Address:
| | | | - Reihaneh Ramezani
- Department of Biomedical Sciences, Woman Research Center, Alzahra University, Tehran, Iran
| |
Collapse
|
14
|
In vitro probiotic characterization of Lactobacillus strains from fermented tangerine vinegar and their cholesterol degradation activity. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100843] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Rossi G, Pengo G, Galosi L, Berardi S, Tambella AM, Attili AR, Gavazza A, Cerquetella M, Jergens AE, Guard BC, Lidbury JA, Stainer JM, Crovace AM, Suchodolski JS. Effects of the Probiotic Mixture Slab51® (SivoMixx®) as Food Supplement in Healthy Dogs: Evaluation of Fecal Microbiota, Clinical Parameters and Immune Function. Front Vet Sci 2020; 7:613. [PMID: 33102555 PMCID: PMC7499176 DOI: 10.3389/fvets.2020.00613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
The gut microbiota plays a crucial role in several physiologic functions of the host. In humans and animals, manipulation of the intestinal microbiota by oral administration of probiotic lactic acid bacteria plays a significant role in modulating the immune system. The aim of this study was to evaluate the safety of the probiotic mixture Slab51® and the capacity of this mixture to stimulate immune function in healthy dogs. Twenty dogs were divided in two groups and received a control diet or the same diet supplemented with a dose of 400 billion cfu of lyophilized bacteria for a period of 60 days. Body weight, food intake, body condition score (BCS), fecal score (FSS), fecal immunoglobulin IgA concentration, plasma IgG concentration, and fecal microbiota composition were monitored. Weight, food intake, BCS, FSS, and biochemical parameters remained unchanged during the treatment in both groups of animals. The fecal microbiota showed a significant decrease in the abundance of Clostridium perfringens and a significant increase in the abundance of beneficial Bifidobacterium and Lactobacillus organisms (p < 0.05). Fecal IgA and plasma IgG levels were significantly higher in the group receiving the probiotic compared to healthy controls. These data show that dietary supplementation with the probiotic mixture Slab51® is safe and well-tolerated, modulating the composition of the intestinal microbiota, and enhancing specific immune functions in healthy dogs.
Collapse
Affiliation(s)
- Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | | | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Sara Berardi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Adolfo Maria Tambella
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Anna Rita Attili
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Alessandra Gavazza
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Matteo Cerquetella
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Albert E Jergens
- College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Blake C Guard
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States
| | - Jonathan A Lidbury
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States
| | - Joerg M Stainer
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States
| | - Alberto Maria Crovace
- Department of Emergency and Organs Transplantation (DETO), Veterinary Clinic Section and Animal Production - Veterinary Hospital, University of Bari "Aldo Moro", Valenzano, Italy
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States
| |
Collapse
|
16
|
Zhao W, Liu Y, Kwok LY, Cai T, Zhang W. The immune regulatory role of Lactobacillus acidophilus: An updated meta-analysis of randomized controlled trials. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
İspirli H, Kaya Y, Dertli E. Bifidogenic effect and in vitro immunomodulatory roles of melibiose-derived oligosaccharides produced by the acceptor reaction of glucansucrase E81. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Jäger R, Mohr AE, Carpenter KC, Kerksick CM, Purpura M, Moussa A, Townsend JR, Lamprecht M, West NP, Black K, Gleeson M, Pyne DB, Wells SD, Arent SM, Smith-Ryan AE, Kreider RB, Campbell BI, Bannock L, Scheiman J, Wissent CJ, Pane M, Kalman DS, Pugh JN, ter Haar JA, Antonio J. International Society of Sports Nutrition Position Stand: Probiotics. J Int Soc Sports Nutr 2019; 16:62. [PMID: 31864419 PMCID: PMC6925426 DOI: 10.1186/s12970-019-0329-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: 1)Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO).2)Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications.3)Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent.4)Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown.5)The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components.6)Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes' exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections.7)Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes.8)Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise.9)The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product's shelf life, as measured by colony forming units (CFU) or live cells.10)Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population.
Collapse
Affiliation(s)
| | - Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ USA
| | | | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO USA
| | | | - Adel Moussa
- University of Münster, Department of Physics Education, Münster, Germany
| | - Jeremy R. Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN USA
| | - Manfred Lamprecht
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Nicholas P. West
- School of Medical Science and Menzies Health Institute of QLD, Griffith Health, Griffith University, Southport, Australia
| | - Katherine Black
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Michael Gleeson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - David B. Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2617 Australia
| | | | - Shawn M. Arent
- UofSC Sport Science Lab, Department of Exercise Science, University of South Carolina, Columbia, SC USA
| | - Abbie E. Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX USA
| | - Bill I. Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL USA
| | | | | | | | | | - Douglas S. Kalman
- Scientific Affairs. Nutrasource Diagnostics, Inc. Guelph, Guelph, Ontario Canada
| | - Jamie N. Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool, UK
| | | | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL USA
| |
Collapse
|
19
|
Chan CJ, Yong YS, Song AAL, Abdul Rahim R, In LLA, Lim RLH. Lactococcus lactis harbouring Ara h 2.02 alleviates allergen-specific Th2-associated responses in sensitized mice. J Appl Microbiol 2019; 128:862-874. [PMID: 31758869 DOI: 10.1111/jam.14524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/28/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
AIM To study the prophylactic effect of recombinant Lactococcus lactis (rLl) harbouring Ara h 2.02 peanut allergen, in sensitized and challenged mice. METHODS AND RESULTS Ara h 2.02 cDNA was cloned into pNZ8048 for heterologous expression in L. lactis. The purified recombinant allergen showed IgE binding comparable with native Ara h 2. Balb/c mice were fed with either recombinant (rLl), nonrecombinant L. lactis (Ll) or NaHCO3 (Sham) prior to sensitization and challenged with rAra h 2.02, whereas the baseline group was only fed with Ll. Allergen-specific immunoglobulin and splenocyte cytokines responses were determined for each mouse. Mice fed with either Ll or rLl showed significant alleviation of IgE and IgG1 compared to the Sham group. Despite no significant decrease in Th2 (IL-4, IL-13, IL-6) or increase in Th1 (IFN-γ) cytokines, both groups showed lower IL-10 level, while the IL-4 : IFN-γ ratio was significantly lower for rLl compared to Ll group. CONCLUSIONS Oral administration of rLl harbouring Ara h 2.02 demonstrated alleviation of Th2-associated responses in allergen-challenged mice and a possible added allergen-specific prophylactic effect. SIGNIFICANCE AND IMPACT OF THE STUDY Ara h 2.02 coupled with the intrinsic properties of probiotic L. lactis as a delivery vehicle can be explored for the development of a commercially scalable vaccine.
Collapse
Affiliation(s)
- C J Chan
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur, Malaysia
| | - Y S Yong
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur, Malaysia
| | - A A L Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - R Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - L L A In
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur, Malaysia
| | - R L H Lim
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Park HE, Do KH, Lee WK. The immune-modulating effects of viable Weissella cibaria JW15 on RAW 264.7 macrophage cells. J Biomed Res 2019; 34:36-43. [PMID: 35081681 PMCID: PMC7007729 DOI: 10.7555/jbr.33.20190095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/19/2019] [Indexed: 11/03/2022] Open
Abstract
The objective of this study is to investigate the immune-enhancing ability of viable and heat-killed Weissella cibaria JW15 (JW15) isolated from Kimchi in RAW 264.7 macrophages. The immune effects were evaluated by measuring the production of NO, cytokines, inflammatory enzyme, and activation of NF-κB. Viable JW15 executed higher activity on stimulating the release of TNF-α as well as activating NF-κB compared to that of heat-killed JW15. Additionally, viable and heat-killed JW15 significantly increased the production of NO, IL-6 and TNF-α more than that of Lactobacillus rhamnosus GG (LGG). Furthermore, viable JW15 induced higher production of iNOS compared with that of viable LGG. Collectively, our finding indicates that viable JW15 had similar, if not more, immune-enhancing activities as heat-killed JW15. In addition, viable JW15 had higher immune-enhancing activity than commercial strain LGG. Therefore, viable JW15 has the potential to be used as a functional food to improve the host immune response.
Collapse
Affiliation(s)
- Ho-Eun Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Kyung-Hyo Do
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Wan-Kyu Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
21
|
İspirli H, Colquhoun IJ, Şahin E, Sagdic O, Dertli E. Preparation of gentiobiose-derived oligosaccharides by glucansucrase E81 and determination of prebiotic and immune-modulatory functions. Carbohydr Res 2019; 486:107837. [PMID: 31655418 DOI: 10.1016/j.carres.2019.107837] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
Gentiobiose-derived oligosaccharides were synthesized by the acceptor reaction of glucansucrase E81 obtained from Lactobacillus reuteri E81 with sucrose and gentiobiose as donor-acceptor sugars, respectively. The reaction products were monitored by TLC analysis and gentiobiose-derived oligosaccharides up to DP 8 were formed during the acceptor reaction as determined by ESI-MS/MS analysis. The glycosylation of the gentiobiose with α-(1 → 6) linkages and α-(1 → 3) linkages was shown by 1H and 13C NMR analysis confirming the structure of these gentiobiose-derived oligosaccharides. The in vitro prebiotic function of the oligosaccharides was determined in which probiotic strains were stimulated whereas no growth was observed in pathogen strains. Gentiobiose-derived oligosaccharides showed immune-modulatory functions in vitro and triggered the production of IL-4, IL12 and TNF-α cytokines in HT29 cells in a dose dependent manner. This study showed the production and functional characterisation of gentiobiose-derived oligosaccharides establishing a promising avenue for future applications.
Collapse
Affiliation(s)
- Hümeyra İspirli
- Yıldız Technical University, Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Istanbul, 34000, Turkey
| | - Ian J Colquhoun
- Analytical Sciences Unit, Quadram Institute Bioscience, Norwich, UK
| | - Engin Şahin
- Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt, 69000, Turkey
| | - Osman Sagdic
- Yıldız Technical University, Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Istanbul, 34000, Turkey
| | - Enes Dertli
- Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt, 69000, Turkey.
| |
Collapse
|
22
|
Pain regulation by gut microbiota: molecular mechanisms and therapeutic potential. Br J Anaesth 2019; 123:637-654. [PMID: 31551115 DOI: 10.1016/j.bja.2019.07.026] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
The relationship between gut microbiota and neurological diseases, including chronic pain, has received increasing attention. The gut microbiome is a crucial modulator of visceral pain, whereas recent evidence suggests that gut microbiota may also play a critical role in many other types of chronic pain, including inflammatory pain, headache, neuropathic pain, and opioid tolerance. We present a narrative review of the current understanding on the role of gut microbiota in pain regulation and discuss the possibility of targeting gut microbiota for the management of chronic pain. Numerous signalling molecules derived from gut microbiota, such as by-products of microbiota, metabolites, neurotransmitters, and neuromodulators, act on their receptors and remarkably regulate the peripheral and central sensitisation, which in turn mediate the development of chronic pain. Gut microbiota-derived mediators serve as critical modulators for the induction of peripheral sensitisation, directly or indirectly regulating the excitability of primary nociceptive neurones. In the central nervous system, gut microbiota-derived mediators may regulate neuroinflammation, which involves the activation of cells in the blood-brain barrier, microglia, and infiltrating immune cells, to modulate induction and maintenance of central sensitisation. Thus, we propose that gut microbiota regulates pain in the peripheral and central nervous system, and targeting gut microbiota by diet and pharmabiotic intervention may represent a new therapeutic strategy for the management of chronic pain.
Collapse
|
23
|
Tamaki R, Takahashi M, Tai S, Makioka-Itaya Y, Ijich T, Inoue R. Exploratory investigation of the anti-inflammatory effects of RNase A-treated Enterococcus faecalis strain EC-12. Biosci Biotechnol Biochem 2019; 83:1343-1353. [PMID: 31038020 DOI: 10.1080/09168451.2019.1608805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We previously reported that the major component of Enterococcus faecalis strain EC-12 (EC-12) inducing production of Interleukin (IL)-12 in mouse/human immune cells was its own RNA. This study aimed to investigate if RNase A-treated EC-12 could also produce IL-10 and to evaluate the possible effects of IL-10 produced by RNase A-treated EC-12. Three experiments were conducted: (1) Assessment of the effect of RNase A-treated EC-12 on transcriptome profiles and biological pathways in human peripheral blood mononuclear cells; (2) Determination of cytokine concentration in its culture supernatants; and (3) Supplementation of RNase A-treated EC-12 (RN) to mice with dextran sodium sulfate-induced colitis. Treatment of EC-12 with RNase A inhibited inflammatory response including the potency to induce IL-12 production, while it did not affect IL-10 production (Experiment 1 and 2). Colitis symptoms were milder in RN than in PBS-supplemented controls (Experiment 3). RNase A-treated EC-12 likely became an anti-inflammatory agent primarily inducing IL-10 production.
Collapse
Affiliation(s)
- Ryuji Tamaki
- a Laboratory of Animal Science , Kyoto Prefectural University , Kyoto , Japan
| | - Mio Takahashi
- a Laboratory of Animal Science , Kyoto Prefectural University , Kyoto , Japan
| | - Shoya Tai
- a Laboratory of Animal Science , Kyoto Prefectural University , Kyoto , Japan
| | | | - Tetsuo Ijich
- b Life Science , Combi Corporation , Saitama , Japan
| | - Ryo Inoue
- a Laboratory of Animal Science , Kyoto Prefectural University , Kyoto , Japan
| |
Collapse
|
24
|
Ambros S, Hofer F, Kulozik U. Impact of protectants on drying kinetics and viability of microwave freeze-dried Lactobacillus paracaseissp. paracaseiF19. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- S. Ambros
- Chair of Food and Bioprocess Engineering; Technical University of Munich; Freising Germany
| | - F. Hofer
- Chair of Food and Bioprocess Engineering; Technical University of Munich; Freising Germany
| | - U. Kulozik
- Chair of Food and Bioprocess Engineering; Technical University of Munich; Freising Germany
| |
Collapse
|
25
|
Newton AMJ, Lakshmanan P. Comparative Efficacy of Chitosan, Pectin Based Mesalamine Colon Targeted Drug Delivery Systems on TNBS-induced IBD Model Rats. Antiinflamm Antiallergy Agents Med Chem 2019; 19:113-127. [PMID: 30657050 DOI: 10.2174/1871523018666190118112230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 01/03/2023]
Abstract
OBJECTIVE A number of natural polymer-based drug delivery systems targeting the colon are reported for different applications. Most of the research is based on the class of natural polymers such as polysaccharides. This study compares the anti-inflammatory effect of different polysaccharide based tablets on IBD when a drug carrier is targeted to the colon as matrix and coated systems. METHODS The TNBS induced IBD Wistar rats were used as a model for the study. The microscopic and macroscopic parameters were studied in detail. Almost all the important IBD parameters were reported in this work. RESULTS The results demonstrated that the polysaccharides are efficient in carrying the drugs to the colon. Reduction in the level of ulcer index (UI), Myeloperoxidase (MPO), and Malondialdehyde MDA, confirmed the inhibitory activity on the development of Reactive oxygen species (ROS). The increased level of Tumor necrosis factor (TNFα) an expression of colonic inducible nitric oxide synthase (iNOS) was lowered in treatments as compared to TNBS control. CONCLUSION The different polymer-based mesalamine (DPBM) confirmed the efficient anti- inflammatory activity on IBD induced rats. The increased level of glutathione (GSH), and superoxide dismutase (SOD) also confirmed the effective anti-inflammatory effect. A significant decrease in the ulcer score and ulcer area was reported. The investigation revealed that chitosan is superior to pectin in IBD treatment likewise polysaccharide-based matrix systems are superior to the coated system.
Collapse
Affiliation(s)
- Amaldoss M J Newton
- Jawaharlal Nehru Technological University, Hyderabad, India.,Swift School of Pharmacy, Rajpura, Punjab, India
| | | |
Collapse
|
26
|
İspirli H, Şimşek Ö, Skory C, Sağdıç O, Dertli E. Characterization of a 4,6‑α‑glucanotransferase from Lactobacillus reuteri E81 and production of malto-oligosaccharides with immune-modulatory roles. Int J Biol Macromol 2018; 124:1213-1219. [PMID: 30529203 DOI: 10.1016/j.ijbiomac.2018.12.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/22/2022]
Abstract
A wide number of Lactic Acid Bacteria (LAB) species produce α-glucans with their ability to synthesize glucansucrases (GS) which use sucrose as substrate for the glucan production. Recently another group of enzymes in LAB gained special interest for their ability to produce α-glucans targeting the substrates containing α1-4-linkages and synthesizing new (α1-6) or (α1-3)-linkages as α‑glucanotransferases. In this study, a putative 4,6‑α‑glucanotransferase (GTFB) from sourdough isolate Lactobacillus reuteri E81 was identified and expressed in Escherichia coli. The biochemical characterization of the GTFB-E81 confirmed its function as it cleaved the α1-4-linkages in different substrates and produced new gluco-oligomers/polymers containing α1-6 linkages together with the α1-4-linkages detected by NMR analysis. GTFB-E81 produced malto-oligosaccharides targeting maltose and maltoheptaose as substrates with up to DP 8 detected by TLC and ESI-MS/MS analysis. The functional roles of these malto-oligosaccharides were determined by testing their immune-modulatory functions in HT29 cells and they triggered the production of anti-inflammatory 1L-4 and pro-inflammatory IL-12 cytokines.
Collapse
Affiliation(s)
- Hümeyra İspirli
- Yıldız Technical University, Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Istanbul 34000, Turkey
| | - Ömer Şimşek
- Department of Food Engineering, Faculty of Engineering, Pamukkale University, Denizli 20000, Turkey
| | - Christopher Skory
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA
| | - Osman Sağdıç
- Yıldız Technical University, Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Istanbul 34000, Turkey
| | - Enes Dertli
- Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt 69000, Turkey.
| |
Collapse
|
27
|
Ambros S, Hofer F, Kulozik U. Protective effect of sugars on storage stability of microwave freeze-dried and freeze-dried Lactobacillus paracasei F19. J Appl Microbiol 2018; 125:1128-1136. [PMID: 29851297 DOI: 10.1111/jam.13935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/14/2018] [Accepted: 05/27/2018] [Indexed: 11/26/2022]
Abstract
AIMS Microwave freeze drying (MWFD) in comparison with conventional freeze drying allows for intensification of the preservation process of lactic acid bacteria without imposing additional processing stress. Viability as a function of storage time of microwave freeze-dried Lactobacillus paracasei ssp. paracasei F19 was investigated in comparison to conventionally lyophilized bacteria of the same strain. Furthermore, the impact of the protectants, sorbitol, trehalose and maltodextrin, on shelf life was analysed. METHODS AND RESULTS The highest inactivation rates of 0·035 and 0·045 day-1 , respectively, were found for cultures without protectants. Thus, all additives were found to exhibit a protective effect during storage with inactivation rates between 0·015 and 0·040 day-1 . Although trehalose and maltodextrin samples were in the glassy state during storage, in contrast to samples containing sorbitol as protectant, the best protective effect could be found for sorbitol with the lowest inactivation rate of 0·015 day-1 . CONCLUSIONS Due to its low molecular weight, it might protect cells owing to better adsorption to the cytoplasma membrane. Sorbitol additionally shows antioxidative properties. Storage behaviour of microwave freeze-dried cultures follows the typical behaviour of a product dried by conventional lyophilization. No significant influence of the drying technique on storage behaviour was detected. SIGNIFICANCE AND IMPACT OF THE STUDY General findings concerning storage behaviour in freeze drying are likely to be applicable in MWFD with only slight adjustments.
Collapse
Affiliation(s)
- S Ambros
- Chair of Food and Bioprocess Engineering, Technical University of Munich, Freising, Germany
| | - F Hofer
- Chair of Food and Bioprocess Engineering, Technical University of Munich, Freising, Germany
| | - U Kulozik
- Chair of Food and Bioprocess Engineering, Technical University of Munich, Freising, Germany
| |
Collapse
|
28
|
Milk Fermented by Specific Lactobacillus Strains Regulates the Serum Levels of IL-6, TNF-α and IL-10 Cytokines in a LPS-Stimulated Murine Model. Nutrients 2018; 10:nu10060691. [PMID: 29844254 PMCID: PMC6024734 DOI: 10.3390/nu10060691] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 01/10/2023] Open
Abstract
Studies report that metabolites, such as peptides, present in fermented milk with specific lactic acid bacteria, may regulate cytokine production and exert an anti-inflammatory effect. Hence, the cytokine regulatory effect of fermented milk by specific Lactobacillus strains was evaluated in a lipopolysaccharide (LPS)-stimulated murine model. From twelve strains, three (J20, J23 and J28) were selected for their high proteolytic and acidifying capacities in milk and used for the in vivo study. Three treatments (fermented milk, FM; pasteurized fermented milk, PFM; and its 0.05) reduced pro-inflammatory cytokine (IL-6 and TNF-α) concentrations and significantly increased anti-inflammatory (IL-10) cytokine concentrations in comparison to the control; also, pro-inflammatory cytokines were reduced for animals treated with PFM10 (p < 0.05). RP-HPLC-MS/MS analysis showed that water-soluble extracts (.
Collapse
|
29
|
Mohammadian T, Alishahi M, Tabandeh MR, Ghorbanpoor M, Gharibi D. Changes in Immunity, Expression of some Immune-Related Genes of Shabot Fish, Tor grypus, Following Experimental Infection with Aeromonas hydrophila: Effects of Autochthonous Probiotics. Probiotics Antimicrob Proteins 2017; 10:616-628. [DOI: 10.1007/s12602-017-9373-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
El Hage R, Hernandez-Sanabria E, Van de Wiele T. Emerging Trends in "Smart Probiotics": Functional Consideration for the Development of Novel Health and Industrial Applications. Front Microbiol 2017; 8:1889. [PMID: 29033923 PMCID: PMC5626839 DOI: 10.3389/fmicb.2017.01889] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022] Open
Abstract
The link between gut microbiota and human health is well-recognized and described. This ultimate impact on the host has contributed to explain the mutual dependence between humans and their gut bacteria. Gut microbiota can be manipulated through passive or active strategies. The former includes diet, lifestyle, and environment, while the latter comprise antibiotics, pre- and probiotics. Historically, conventional probiotic strategies included a phylogenetically limited diversity of bacteria and some yeast strains. However, biotherapeutic strategies evolved in the last years with the advent of fecal microbiota transplant (FMT), successfully applied for treating CDI, IBD, and other diseases. Despite the positive outcomes, long-term effects resulting from the uncharacterized nature of FMT are not sufficiently studied. Thus, developing strategies to simulate the FMT, using characterized gut colonizers with identified phylogenetic diversity, may be a promising alternative. As the definition of probiotics states that the microorganism should have beneficial effects on the host, several bacterial species with proven efficacy have been considered next generation probiotics. Non-conventional candidate strains include Akkermansia muciniphila, Faecalibacterium prausnitzii, Bacteroides fragilis, and members of the Clostridia clusters IV, XIVa, and XVIII. However, viable intestinal delivery is one of the current challenges, due to their stringent survival conditions. In this review, we will cover current perspectives on the development and assessment of next generation probiotics and the approaches that industry and stakeholders must consider for a successful outcome.
Collapse
Affiliation(s)
| | | | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
31
|
Fu L, Wang C, Wang Y. Seafood allergen-induced hypersensitivity at the microbiota-mucosal site: Implications for prospective probiotic use in allergic response regulation. Crit Rev Food Sci Nutr 2017; 58:1512-1525. [DOI: 10.1080/10408398.2016.1269719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Linglin Fu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Chong Wang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanbo Wang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
32
|
Zou Y, Wang Y, Deng Y, Cao Z, Li S, Wang J. Effects of feeding untreated, pasteurized and acidified waste milk and bunk tank milk on the performance, serum metabolic profiles, immunity, and intestinal development in Holstein calves. J Anim Sci Biotechnol 2017; 8:53. [PMID: 28630706 PMCID: PMC5471691 DOI: 10.1186/s40104-017-0182-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/17/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The present experiment was performed to assess the effects of different sources of milk on the growth performance, serum metabolism, immunity, and intestinal development of calves. Eighty-four Holstein male neonatal calves were assigned to one of the following four treatment groups: those that received bunk tank milk (BTM), untreated waste milk (UWM), pasteurized waste milk (PWM), and acidified waste milk (AWM) for 21 d. RESULTS Calves in the BTM and AWM groups consumed more starter (P < 0.05) than those in the UWM group. Average daily gain in the UWM group was the highest (P < 0.05). Calves exhibited the highest (P < 0.05) serum total protein, albumin, total cholesterol, high density lipoprotein, triglycerides, growth hormone, immunoglobulin (Ig) A and IgM concentrations in the UWM group, highest malondialdehyde and tumor necrosis factor-α in the PWM group (P < 0.05), and highest glutathione peroxidase and IgG in the BTM group (P < 0.05). The jejunum and ileum of the calves in all treatments presented a slight inflammatory response. The jejunal inflammation scores were higher (P < 0.05) in the UWM and AWM groups than the BTM group; the ileal inflammation scores increased more (P < 0.05) in the AWM group than the BTM group. Jejunal immunohistochemical scores (IHS) were higher (P < 0.05) in the PWM and AWM groups than the BTM group. Compared to the other three groups, calves feeding on BTM had lower (P < 0.05) ileal IHS. Jejunal interleukin(IL)-1β, IL-8, and IL-10 mRNA expression in the UWM group was the highest (P < 0.05). Calves fed AWM increased (P < 0.05) mRNA expression of IL-8 and toll like receptor 4 (TLR-4) in the jejunum and IL-8, IL-1β, IL-6, IL-8, and IL-10 in the mesenteric lymph nodes. CONCLUSIONS Overall, bunk tank milk is the best choice for calf raising compared to waste milk. The efficiency of feeding pasteurized and acidified waste milk are comparable, and the acidification of waste milk is an acceptable labor-saving and diarrhea-preventing feed for young calves.
Collapse
Affiliation(s)
- Yang Zou
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
- Beijing Dairy Cattle Center, Beijing, 100192 China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Youfei Deng
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
33
|
Sadeghzadeh J, Vakili A, Sameni HR, Shadnoush M, Bandegi AR, Zahedi Khorasani M. The Effect of Oral Consumption of Probiotics in Prevention of Heart Injury in a Rat Myocardial Infarction Model: a Histopathological, Hemodynamic and Biochemical Evaluation. IRANIAN BIOMEDICAL JOURNAL 2017; 21:174-81. [PMID: 27874107 PMCID: PMC5392220 DOI: 10.18869/acadpub.ibj.21.3.174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Despite the emerging evidence on beneficial effects of probiotics on the cardiovascular system, their impact on the management of ischemic heart diseases and the possible mechanism(s) have not been elucidated. Methods: Four viable probiotics bacterial strains, including Bifidobacterium breve, Lactobacillus casei, Lactobacillus bulgaricus, and Lactobacillus acidophilus, at the concentrations of 2×106 colony-forming units/ml, were orally administered to the rats daily for 14 days before the induction of infarct-like myocardial injury using isoproterenol. Subsequently, 24 h after myocardial injury, the right carotid artery and the left ventricle were catheterized for recording blood pressure and cardiac parameters. At the end of the experiment, the heart was removed for the evaluation of histopathological and biochemical parameters, as well as tumor necrosis factor-alpha (TNF-α) assay. Results: The induction of acute myocardial injury resulted in significant (P≤0.01) left ventricular (LV) dysfunction, as shown by an increase in LV end-diastolic pressure and a decrease in LV dp/dt max, LV dp/dt min, LV systolic pressure, and blood pressure, as compared with normal rats. Pretreatment with viable probiotics significantly reduced lipid peroxidation and TNF-α level and improved cardiac function (P<0.01). Conclusion: This study shows that viable probiotics have a cardioprotective effect on infarct-like myocardial injury through suppressing TNF-α and oxidative stress damage in a rat model. Probiotic supplements may be used as a new option for prophylaxis in patients at the risk of ischemic heart disease in future.
Collapse
Affiliation(s)
- Jafar Sadeghzadeh
- Students' Research Center, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Research Center and Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Abedin Vakili
- Research Center and Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Reza Sameni
- Research Center of Nervous System Stem Cells, Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahdi Shadnoush
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad-Reza Bandegi
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahdi Zahedi Khorasani
- Research Center and Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
34
|
Szatraj K, Szczepankowska AK, Chmielewska-Jeznach M. Lactic acid bacteria - promising vaccine vectors: possibilities, limitations, doubts. J Appl Microbiol 2017; 123:325-339. [PMID: 28295939 PMCID: PMC7166332 DOI: 10.1111/jam.13446] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/16/2017] [Accepted: 03/03/2017] [Indexed: 01/18/2023]
Abstract
Gram‐positive, nonpathogenic lactic acid bacteria (LAB) are considered to be promising candidates for the development of novel, safe production and delivery systems of heterologous proteins. Recombinant LAB strains were shown to elicit specific systemic and mucosal immune responses against selected antigens. For this reason, this group of bacteria is considered as a potential replacement of classical, often pathogenic, attenuated microbial carriers. Mucosal administration of recombinant LAB, especially via the best explored and universal oral route, offers many advantages in comparison to systemic inoculation, and is attractive from the immunological and practical point of view. Research aimed at designing efficient, mucosally applied vaccines in combination with improved immunization efficiency, monitoring of in vivo antigen production, determination of optimal dose for vaccination, strain selection and characterization is a priority in modern vaccinology. This paper summarizes and organizes the available knowledge on the application of LAB as live oral vaccine vectors. It constitutes a valuable source of general information for researchers interested in mucosal vaccine development and constructing LAB strains with vaccine potential.
Collapse
Affiliation(s)
- K Szatraj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - A K Szczepankowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - M Chmielewska-Jeznach
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
35
|
Effect of Dietary Bacillus Subtilis C14 and RX7 Strains on Growth Performance, Blood Parameter, and Intestinal Microbiota in Broiler Chickens Challenged with Salmonella Gallinarum. J Poult Sci 2017; 54:236-241. [PMID: 32908431 PMCID: PMC7477215 DOI: 10.2141/jpsa.0160078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Sixty broilers (initially 1.6 kg and 35 d-old) were used to determine the effect of Bacillus subtilis C14 and RX7 strains on growth performance, blood parameter, and intestinal microbiota in response to experimental challenge with Salmonell gallinarum. Broilers were distributed to 4 treatment groups include: C1 (control group; no challenge, no B. subtilis), C2 (Salmonella-challenged group; S. gallinarum 108 cfu/bird), T1 (C2+supplemented with of B. subtilis C14 (1.0×109 cfu/g) at 0.1% in diet) and T2 (C2+supplemented with of B. subtilis RX7 (1.0×109 cfu/g) at 0.1% in diet). Results indicated that inclusion of B. subtilis (T1, T2) in the diet increased (P<0.05) the weight gain and feed intake, and improved feed conversion of challenged broilers compared with no B. subtilis supplementation diet (C2). Improvements (P<0.05) in the immunoglobulin A concentration were observed by the addition of B. subtilis compared with C2 treatment, whereas tumor necrosis factor-α was decreased (P<0.05). Latobacillus number in small and large intestines was higher (P<0.05) by B. subtilis additon than C2 treatment but Salmonella numbers were lower (P<0.05). The results suggested that dietary supplementation of B. subtilis C14 and RX7 improved the growth performance, and affected the blood profiles and intestinal microbiota of broilers against S. gallinarum infection. Therefore, B. subtilis C14 and RX7 may have beneficial effects, in relieving the stress of broilers infected with S. gallinarum.
Collapse
|
36
|
Ménard S, Laharie D, Asensio C, Vidal-Martinez T, Candalh C, Rullier A, Zerbib F, Mégraud F, Matysiak-Budnik T, Heyman M. Bifidobacterium breve and Streptococcus thermophilus Secretion Products Enhance T Helper 1 Immune Response and Intestinal Barrier in Mice. Exp Biol Med (Maywood) 2016; 230:749-56. [PMID: 16246902 DOI: 10.1177/153537020523001008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lactic acid bacteria or their secretion products can modulate immune responses differently in normal and inflammatory conditions. This comparative study analyzes the effect of oral administration of living lactic acid bacteria, or their conditioned media, on the epithelial and immune functions of colitis-prone C57BL/6 IL-10-deficient mice. Mice were untreated (control) or infected with Helicobacter hepaticus with or without oral treatment with living bacteria, Bifidobacterium breve C50 and Streptococcus thermophilus 065 (LB), or their culture-conditioned media (CM). Histology, cytokine mRNA, electrical resistance, and barrier capacity of colonic samples as well as cytokine secretion by mesenteric lymph node (MLN) cells were studied. Helicobacter hepaticus mice developed only mild colitis, which was not modified in LB or CM groups. In the CM (but not the LB) group, the colonic barrier was reinforced as compared to the other groups, as evidenced by decreased horseradish peroxidase (HRP) transcytosis and mannitol fluxes and increased electrical resistance. In MLN, the percentage of CD4+ and CD8+ T cells secreting IFNγ was significantly higher in CM (2.06% and 1.98%, respectively) mice than in H. hepaticus (1–1% and 0.47%, P < 0.05) or control mice. In addition, the nonspecific stimulation of IFNγ, TNFΑ, and IL-12 secretion by MLN cells was significantly higher in the CM group as compared to the other groups. In the absence of severe colitis, Bifidobacterium breve C50- and Streptococcus thermophilus 065-conditioned media can reinforce intestinal barrier capacity and stimulate Th1 immune response, highlighting the involvement of lactic acid bacteria–derived components in host defense.
Collapse
Affiliation(s)
- Sandrine Ménard
- INSERM EMI 0212, Faculté Cochin Necker, 156 rue de Vaugirard, 75730 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Haza AI, Zabala A, Arranz N, Morales P. Protective Effect of a Lactobacillus salivarius Strain of Human Origin. FOOD SCI TECHNOL INT 2016. [DOI: 10.1177/1082013205056402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The protective effect of a Lactobacillus salivariusstrain from human faeces (HA8) was evaluated against the cytotoxicity of N-nitrosodimethylamine (NDMA), N-nitrosopyrrolidine (NPYR), N-nitrosodibutylamine (NDBA) and N-nitrosopiperidine (NPIP) by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. L. salivariusHA8 strain showed a moderate protective effect against NPYR and weak against NDBA and NPIP. No protective effect against cytotoxicity of NDMA was observed at the bacterial population used. To test the effect of L. salivariusHA8 on cytokine production (interleukin-1 ± (IL-1 ±), interleukin-8 (IL-8) and tumour necrosis factor alpha (TNF-≥)), the human macrophage cell line (THP-1) was cultured in the presence and absence of lipopolysaccharide (LPS). L. salivariusHA8 induced IL-1 ±, IL-8 and TNF-≥ releases when cells were stimulating with and without LPS.
Collapse
Affiliation(s)
| | | | - N. Arranz
- Departamento de NutriciÛn, BromatologÌa y TecnologÌa de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - P. Morales
- Departamento de NutriciÛn, BromatologÌa y TecnologÌa de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
38
|
Wang P, Tao JH, Pan HF. Probiotic bacteria: a viable adjuvant therapy for relieving symptoms of rheumatoid arthritis. Inflammopharmacology 2016; 24:189-196. [PMID: 27581587 DOI: 10.1007/s10787-016-0277-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/23/2016] [Indexed: 01/05/2023]
Abstract
The burgeoning use of probiotics has proliferated during the past two decades. However, the effect of probiotic administration for either the prevention or treatment of rheumatoid arthritis (RA) has been investigated in a limited number of studies. Randomized controlled clinical trials have provided evidences that specific probiotics supplementation exhibit anti-inflammatory effects, help to increase daily activities and alleviate symptoms in patients with RA. Therefore, using probiotic bacteria as an adjuvant therapy may be considered as a promising treatment option for RA. This review summarizes the available data about the therapeutic and preventive effect of probiotics in RA, together with probiotic supplement as a possible therapy in clinical treatment.
Collapse
Affiliation(s)
- Peng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Laboratory of Population Health & Major Disease Screening and Diagnosis, Hefei, Anhui, China
| | - Jin-Hui Tao
- Department of Rheumatology, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Laboratory of Population Health & Major Disease Screening and Diagnosis, Hefei, Anhui, China.
| |
Collapse
|
39
|
Jensen H, Drømtorp SM, Axelsson L, Grimmer S. Immunomodulation of monocytes by probiotic and selected lactic Acid bacteria. Probiotics Antimicrob Proteins 2016; 7:14-23. [PMID: 25331988 DOI: 10.1007/s12602-014-9174-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Some lactic acid bacteria (LAB), especially bacteria belonging to the genus Lactobacillus, are recognized as common inhabitants of the human gastrointestinal tract and have received considerable attention in the last decades due to their postulated health-promoting effects. LAB and probiotic bacteria can modulate the host immune response. However, much is unknown about the mediators and mechanisms responsible for their immunological effect. Here, we present a study using cytokine secretion from the monocytic cell line THP-1 and NF-κB activation in the monocytic cell line U937-3xkB-LUC to elucidate immune stimulating abilities of LAB in vitro. In this study, we investigate both commercially available and potential probiotic LAB strains, and the role of putative surface proteins of L. reuteri using mutants. L. reuteri strains induced the highest cytokine secretion and the highest NF-κB activation, whereas L. plantarum strains and L. rhamnosus GG were low inducers/activators. One of the putative L. reuteri surface proteins, Hmpref0536_10802, appeared to be of importance for the stimulation of THP-1 cells and the activation of NF-κB in U937-3xkB-LUC cells. Live and UV-inactivated preparations resulted in different responses for two of the strains investigated. Our results add to the complexity in the interaction between LAB and human cells and suggest the possible involvement of secreted pro- and anti-inflammatory mediators of LAB. It is likely that it is the sum of bacterial surface proteins and bacterial metabolites and/or secreted proteins that induce cytokine secretion in THP-1 cells and activate NF-κB in U937-3xkB-LUC cells in this study.
Collapse
Affiliation(s)
- Hanne Jensen
- Nofima, Norwegian Institute of Food, Fisheries, and Aquaculture Research, P.O. Box 210, 1431, Ås, Norway,
| | | | | | | |
Collapse
|
40
|
Birhanu BT, Lee JS, Lee SJ, Choi SH, Hossain MA, Park JY, Kim JC, Suh JW, Park SC. Immunomodulation of Lactobacillus pentosus PL11 against Edwardsiella tarda infection in the head kidney cells of the Japanese eel (Anguilla japonica). FISH & SHELLFISH IMMUNOLOGY 2016; 54:466-472. [PMID: 27108377 DOI: 10.1016/j.fsi.2016.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/23/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
Wild and farm-raised fish can be simultaneously exposed to different types of pathogens in their habitats. Hence, it is important to study their effects, whether isolated or in combination. Therefore, the aim of this study was to evaluate the effects of Lactobacillus pentosus PL11 on the transcription of specific cytokine genes related to immune response, using Japanese eel macrophages as an in vitro model. Head kidney leukocytes were isolated from Japanese eels and cell viability was determined using an MTT reagent. In addition, the Griess reagent was used to determine the nitric oxide (NO) production while, an enzyme-linked immunosobent assay (ELISA) and a quantitative polymerase chain reaction (qPCR) were utilized to quantify the level of proinflammatory cytokines. The results of the study indicated that infection by Edwardsiella tarda alone causes a higher rate of cell death and an increase in the production of proinflammatory cytokines, such as interleukin-1β (IL-1β, 822.67 ± 29.48 pg mL(-1)), interleukin-6 (IL-6, 13.57 ± 0.55 pg mL(-1)), and tumor necrosis factor-α (TNF-α, 2033.67 ± 84.68 pg mL(-1)). However, co-culture with L. pentosus PL11 downregulates the production of NO and the related IL-1β, IL-6, and TNF-α by 46%, 88.4%, 59%, and 77%, respectively. Quantification of the mRNA expression level revealed it to be consistent with the ELISA analysis. Hence, we infer that L. pentosus PL11 plays a significant role in the immunmodulation of the inflammatory responses that arise in fish owing to infection by pathogenic bacteria such as Edwardsiella tarda.
Collapse
Affiliation(s)
- Biruk Tesfaye Birhanu
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Joong-Su Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Seung-Jin Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Su-Hee Choi
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Md Akil Hossain
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Ji-Yong Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Jong-Choon Kim
- Department of Veterinary Toxicology, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Division of Bioscience and Bioinformatics, Science Campus, Myongji University, Yongin, South Korea.
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
41
|
Liu KF, Liu XR, Li GL, Lu SP, Jin L, Wu J. Oral administration of Lactococcus lactis-expressing heat shock protein 65 and tandemly repeated IA2P2 prevents type 1 diabetes in NOD mice. Immunol Lett 2016; 174:28-36. [DOI: 10.1016/j.imlet.2016.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/25/2016] [Accepted: 04/12/2016] [Indexed: 12/28/2022]
|
42
|
Cordero H, Morcillo P, Meseguer J, Cuesta A, Esteban MÁ. Effects of Shewanella putrefaciens on innate immunity and cytokine expression profile upon high stocking density of gilthead seabream specimens. FISH & SHELLFISH IMMUNOLOGY 2016; 51:33-40. [PMID: 26879495 DOI: 10.1016/j.fsi.2016.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
High stocking density increases the number of emerging diseases triggering economic losses worldwide. Probiotics provide an effective and natural solution for preventing some diseases through an improvement of innate immune system among others. In the present work dietary administration of the probiotic Shewanella putrefaciens (known as Pdp11) was evaluated under stress by high stocking density after 2 and 4 weeks of administration to gilthead seabream (Sparus aurata) specimens. Results showed an increase in cellular peroxidase and respiratory burst activity as well as a modulation of cytokine profile when Pdp11 was administered to fish reared at high stocking density. Overall, our results showed how Pdp11 is not only able to improve to some extent the cellular and humoral immunity but also to increase the gene expression profile of pro-inflammatory cytokines such as il1b or il6 in response to high stocking density in gilthead seabream. These findings may support the potential use of this probiotic as functional feed against stress in fish farms.
Collapse
Affiliation(s)
- Héctor Cordero
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Patricia Morcillo
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - José Meseguer
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
43
|
Lee W, Ahn G, Oh JY, Kim SM, Kang N, Kim EA, Kim KN, Jeong JB, Jeon YJ. A prebiotic effect of Ecklonia cava on the growth and mortality of olive flounder infected with pathogenic bacteria. FISH & SHELLFISH IMMUNOLOGY 2016; 51:313-320. [PMID: 26921543 DOI: 10.1016/j.fsi.2016.02.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/20/2016] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
Olive flounder (Paralichthys olivaceus), also known as the Japanese flounder in Japan, is one of the most important commercial marine finfish species cultured in Korea and Japan. The purpose of this study was to evaluate how a species of brown algae (Ecklonia cava, E. cava) affects the growth rate of olive flounder and its immune response to pathogenic bacteria. First, the experimental fish were divided into four groups: the control group was fed the diet containing only 1.0% Lactobacillus plantarum (L. plantarum), group I was fed 1.0% L. plantarum and 1.0% E. cava (EC), group II was fed 1.0% L. plantarum and 0.1% ethanol extract of EC (EE), and group III was fed 1.0% L. plantarum and 0.5% EE. The diets fed to the fish twice a day for 16 weeks. The results indicated that supplementation with 1.0% EC and 0.1% EE improved the growth and body weight of olive flounder, and decreased its mortality. This diet, however, did not significantly affect the biochemical profiles of the experimental flounder. The supplementation of 1.0% EC also enhanced the innate immune response of the fish, as evidenced by the high respiratory burst, and increased serum lysozyme and myeloperoxidase activity. The addition of 1.0% EC and either 0.1% or 0.5% EE also decreased the accumulative mortality of olive flounder infected by pathogenic bacteria (Edwardsiella tarda, Streptococcus iniae, and Vibrio harveyi). Overall, these results suggest that E. cava can act as a prebiotic by improving the innate immune response in fish infected with pathogenic bacteria as increased the growth of the probiotic.
Collapse
Affiliation(s)
- WonWoo Lee
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Ginnae Ahn
- Department of Marine Bio-food Science, College of Fisheries and Ocean Sciences, Chonnam National University, 500-749, Republic of Korea
| | - Jae Young Oh
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Seung Min Kim
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Nalae Kang
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Eun A Kim
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Kil-Nam Kim
- Marine Bio Research Team, Korea Basic Science Institute (KBSI), 690-140, Republic of Korea
| | - Joon Bum Jeong
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
44
|
Mikelsaar M, Sepp E, Štšepetova J, Songisepp E, Mändar R. Biodiversity of Intestinal Lactic Acid Bacteria in the Healthy Population. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 932:1-64. [DOI: 10.1007/5584_2016_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Quinteiro-Filho WM, Brisbin JT, Hodgins DC, Sharif S. Lactobacillus and Lactobacillus cell-free culture supernatants modulate chicken macrophage activities. Res Vet Sci 2015; 103:170-5. [PMID: 26679813 DOI: 10.1016/j.rvsc.2015.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/09/2015] [Accepted: 10/17/2015] [Indexed: 12/17/2022]
Abstract
Lactobacilli are commensal microbes that reside in the intestines of several species, including chickens. Structural constituents of lactobacilli are able to stimulate the host immune system. Macrophages are crucial players in both innate and adaptive immune systems. Here, we investigated the effects of Lactobacillus acidophilus, Lactobacillus reuteri, Lactobacillus salivarius and their cell-free culture supernatants on the pro-inflammatory gene expression profile, nitric oxide (NO) production and phagocytosis by chicken macrophages. Substantial differences were found among Lactobacillus strains in their capacity to induce pro-inflammatory cytokines. L. acidophilus only up-regulated interferon (IFN)-γ, while L. reuteri and L. salivarius up-regulated interleukin (IL)-1β, IL-6, IL-8 and IL-12 expression. Supernatant of L. salivarius up-regulated IL-1β, IL-8 and IFN-γ expression, while the other cell-free supernatants did not induce significant changes. Moreover, L. reuteri and L. salivarius increased macrophage phagocytosis, but all cell-free supernatants increased macrophage NO production and did not change phagocytosis activity.
Collapse
Affiliation(s)
- W M Quinteiro-Filho
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - J T Brisbin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - D C Hodgins
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - S Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
46
|
Lactobacillus rhamnosus GG Dosage Affects the Adjuvanticity and Protection Against Rotavirus Diarrhea in Gnotobiotic Pigs. J Pediatr Gastroenterol Nutr 2015; 60:834-43. [PMID: 25564808 DOI: 10.1097/mpg.0000000000000694] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVES The use of immunostimulatory strains of probiotics as adjuvants has been increasingly recognized as a promising approach in enhancing vaccine immunogenicity; however, dose effects of probiotic adjuvants are not well defined. In the present study, we examined dose effects of a commonly used probiotic strain, Lactobacillus rhamnosus GG (LGG), on immunomodulation with 2 different dosages. METHODS Neonatal gnotobiotic pigs were inoculated with 2 oral doses of attenuated human rotavirus (AttHRV) vaccines and fed with 5 doses (LGG5X; total 2.1 × 10(6) colony-forming units) or 9 doses (LGG9X; total 3.2 × 10(6) colony-forming units) of LGG, starting at 3 days of age. RESULTS Both LGG feeding regimens enhanced the protection rate of AttHRV vaccine against diarrhea on virulent human rotavirus challenge. LGG5X, but not LGG9X, significantly enhanced rotavirus-specific intestinal memory B-cell responses to AttHRV; LGG5X also significantly enhanced virus-specific intestinal immunoglobulin A (IgA) antibody-secreting cell responses. Both regimens significantly enhanced rotavirus-specific serum IgA antibody responses to AttHRV. They also enhanced rotavirus-specific interferon-γ-producing effector/memory T-cell responses to AttHRV vaccine, with LGG9X being more effective than LGG5X, and both regimens downregulated CD4+CD25-FoxP3+ regulatory T (Treg) cell responses in most lymphoid tissues examined prechallenge and postchallenge and maintained the CD4+CD25+FoxP3+ Treg population in the ileum and intraepithelial lymphocyte postchallenge. LGG9X, however, did not significantly reduce total CD4+CD25-FoxP3+ Treg frequencies in the intestine and transforming growth factor-β-producing and interleukin (IL)-10-producing Treg frequencies in the blood. CONCLUSIONS These results indicate that LGG at both dosages functioned as effective probiotic adjuvant for AttHRV vaccine, but different dosages differentially modulated immune responses to favor either the mucosal IgA response (LGG5X) or the T-cell response (LGG9X).
Collapse
|
47
|
Elawadli I, Brisbin JT, Mallard BA, Griffiths MW, Corredig M, Sharif S. Differential effects of lactobacilli on activation and maturation of mouse dendritic cells. Benef Microbes 2015; 5:323-34. [PMID: 24913839 DOI: 10.3920/bm2013.0066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lactic acid bacteria (LAB) are of interest because of their potential to modulate immune responses. The effects of LAB range from regulation to stimulation of the immune system. A series of studies were performed in vitro to study the effects of six lactic acid bacteria (LAB), Lactobacillus helveticus LH-2, Lactobacillus acidophilus La-5, La-115, La-116 and La-14, and Lactobacillus salivarius, on maturation and activation of mouse dendritic cells. Production of tumour necrosis factor (TNF)-?, interleukin (IL)-6 and IL-10 by dendritic cells (DCs) was determined after treating cells with live LAB. The expression of DC maturation markers, CD80 and CD40, was also measured using flow cytometry after stimulation with LAB. In addition, the expression of Toll-like receptors (TLRs) 2, 4 and 9 by DCs stimulated with LAB was measured. Our results revealed that LAB act differentially on pro-inflammatory and anti-inflammatory cytokine production and induction of co-stimulatory molecules by DCs. Specifically, L. salivarius was found to be the most effective LAB to induce pro-inflammatory cytokine production and expression of co-stimulatory molecules. Moreover, La-14, La-116 and La-5 induced moderate maturation and activation of DCs. On the other hand, LH-2 and La-115 were the least effective lactobacilli to induce DC responses. The present study also revealed that L. salivarius was able to induce the expression of TLR2, 4 and 9 by DCs. In conclusion, various strains and species of LAB can differentially regulate DC activation and maturation, providing further evidence that these bacteria may have the ability to influence and steer immune responses in vivo.
Collapse
Affiliation(s)
- I Elawadli
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 419 Gordon Street, Guelph, Ontario, N1G 2W1 Canada
| | - J T Brisbin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 419 Gordon Street, Guelph, Ontario, N1G 2W1 Canada
| | - B A Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 419 Gordon Street, Guelph, Ontario, N1G 2W1 Canada
| | - M W Griffiths
- Department of Food Science, Ontario Agricultural College, University of Guelph, 43 McGilvray Street, Guelph, Ontario, N1G 2W1 Canada
| | - M Corredig
- Department of Food Science, Ontario Agricultural College, University of Guelph, 43 McGilvray Street, Guelph, Ontario, N1G 2W1 Canada
| | - S Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 419 Gordon Street, Guelph, Ontario, N1G 2W1 Canada
| |
Collapse
|
48
|
Santiago-López L, Hernández-Mendoza A, Garcia HS, Mata-Haro V, Vallejo-Cordoba B, González-Córdova AF. The effects of consuming probiotic-fermented milk on the immune system: A review of scientific evidence. INT J DAIRY TECHNOL 2015. [DOI: 10.1111/1471-0307.12202] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lourdes Santiago-López
- Laboratorio de Química y Biotecnología de Productos Lácteos; Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD); Carretera a La Victoria Km. 0.6 Hermosillo Sonora 83304 Mexico
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos; Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD); Carretera a La Victoria Km. 0.6 Hermosillo Sonora 83304 Mexico
| | - Hugo S Garcia
- Instituto Tecnológico de Veracruz M. A. de Quevedo 2279; Unidad de Investigación y Desarrollo en Alimentos (UNIDA); Col. Formando Hogar Veracruz 91897 Mexico
| | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología; Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD); Carretera a La Victoria Km. 0.6 Hermosillo Sonora 83304 Mexico
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos; Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD); Carretera a La Victoria Km. 0.6 Hermosillo Sonora 83304 Mexico
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos; Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD); Carretera a La Victoria Km. 0.6 Hermosillo Sonora 83304 Mexico
| |
Collapse
|
49
|
Sim I, Koh JH, Kim DJ, Gu SH, Park A, Lim YH. In vitro assessment of the gastrointestinal tolerance and immunomodulatory function of Bacillus methylotrophicus isolated from a traditional Korean fermented soybean food. J Appl Microbiol 2015; 118:718-26. [PMID: 25494714 DOI: 10.1111/jam.12719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/08/2014] [Accepted: 12/08/2014] [Indexed: 12/12/2022]
Abstract
AIMS This study aimed to investigate the potential of Bacillus methylotrophicus as a probiotic. METHODS AND RESULTS A Bacillus isolate designated strain C14 was isolated from Korean traditional fermented soybean paste (doenjang). The strain was identified, and its physiological and biochemical properties were characterized. The gastrointestinal tolerance and immunomodulatory function of strain C14 were also investigated. Strain C14 was identified as B. methylotrophicus by analysis of its biochemical properties using the API 50CHB system and by phylogenetic analysis of the 16S rDNA sequence. Strain C14 showed >80% and >75% of survival for artificial gastric juices (pH 2.5 and 1% pepsin) and 0.5% (w/v) bile salt, respectively. Heat-killed B. methylotrophicus C14 inhibited the adhesion of various pathogens and enhanced the adhesion of probiotic bacteria to Caco-2 cells. The heat-killed cells also induced high levels of immune cell proliferation compared with the control and stimulated interleukin-6 and tumour necrosis factor-α production in mouse macrophages. CONCLUSIONS Bacillus methylotrophicus C14 could be used as a probiotic. SIGNIFICANCE AND IMPACT OF THE STUDY Recently identified B. methylotrophicus is a new potential probiotic with high gastrointestinal tolerance.
Collapse
Affiliation(s)
- I Sim
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
50
|
Mao L, Franke J. Symbiosis, dysbiosis, and rebiosis-The value of metaproteomics in human microbiome monitoring. Proteomics 2014; 15:1142-51. [DOI: 10.1002/pmic.201400329] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/02/2014] [Accepted: 10/08/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Lei Mao
- Department of Life Science Engineering; HTW Berlin - University of Applied Sciences; Germany
| | - Jacqueline Franke
- Department of Life Science Engineering; HTW Berlin - University of Applied Sciences; Germany
| |
Collapse
|