1
|
Stewart New J, Glenn King R, Foote JB, Kearney JF. Microbiota and B-1 B cell repertoire development in mice. Curr Opin Immunol 2024; 89:102452. [PMID: 39180941 PMCID: PMC11365744 DOI: 10.1016/j.coi.2024.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Microbiota-derived antigens play a critical role in the development of both the mucosal and systemic B cell repertoires; however, how glycan epitopes promote B cell repertoire selection is only recently being understood. The production of glycan-derived antigens by individual microbes within a host can be dynamic and influenced by interactions within other members of microbial communities, the composition of diet, and host-derived contents, including those of the mucosal immune system. The size and complexity of the emerging neonatal B cell repertoire are paralleled by the acquisition of a diverse microbiota from maternal and environmental sources, which is now appreciated to exert long-lasting influences on the nascent B cell repertoire.
Collapse
Affiliation(s)
| | | | - Jeremy B Foote
- Microbiology Department, University of Alabama at Birmingham, USA
| | - John F Kearney
- Microbiology Department, University of Alabama at Birmingham, USA.
| |
Collapse
|
2
|
Lingasamy P, Modhukur V, Mändar R, Salumets A. Exploring Immunome and Microbiome Interplay in Reproductive Health: Current Knowledge, Challenges, and Novel Diagnostic Tools. Semin Reprod Med 2023; 41:172-189. [PMID: 38262441 PMCID: PMC10846929 DOI: 10.1055/s-0043-1778017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The dynamic interplay between the immunome and microbiome in reproductive health is a complex and rapidly advancing research field, holding tremendously vast possibilities for the development of reproductive medicine. This immunome-microbiome relationship influences the innate and adaptive immune responses, thereby affecting the onset and progression of reproductive disorders. However, the mechanisms governing these interactions remain elusive and require innovative approaches to gather more understanding. This comprehensive review examines the current knowledge on reproductive microbiomes across various parts of female reproductive tract, with special consideration of bidirectional interactions between microbiomes and the immune system. Additionally, it explores innate and adaptive immunity, focusing on immunoglobulin (Ig) A and IgM antibodies, their regulation, self-antigen tolerance mechanisms, and their roles in immune homeostasis. This review also highlights ongoing technological innovations in microbiota research, emphasizing the need for standardized detection and analysis methods. For instance, we evaluate the clinical utility of innovative technologies such as Phage ImmunoPrecipitation Sequencing (PhIP-Seq) and Microbial Flow Cytometry coupled to Next-Generation Sequencing (mFLOW-Seq). Despite ongoing advancements, we emphasize the need for further exploration in this field, as a deeper understanding of immunome-microbiome interactions holds promise for innovative diagnostic and therapeutic strategies for reproductive health, like infertility treatment and management of pregnancy.
Collapse
Affiliation(s)
| | - Vijayachitra Modhukur
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Reet Mändar
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Wang R, Cui W, Yang H. The interplay between innate lymphoid cells and microbiota. mBio 2023; 14:e0039923. [PMID: 37318214 PMCID: PMC10470585 DOI: 10.1128/mbio.00399-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/21/2023] [Indexed: 06/16/2023] Open
Abstract
Innate lymphoid cells (ILCs) are mainly resident in mucosal tissues such as gastrointestinal tract and respiratory tract, so they are closely linked to the microbiota. ILCs can protect commensals to maintain homeostasis and increase resistance to pathogens. Moreover, ILCs also play an early role in defense against a variety of pathogenic microorganisms including pathogenic bacteria, viruses, fungi and parasites, before the intervention of adaptive immune system. Due to the lack of adaptive antigen receptors expressed on T cells and B cells, ILCs need to use other means to sense the signals of microbiota and play a role in corresponding regulation. In this review, we focus on and summarize three major mechanisms used in the interaction between ILCs and microbiota: the mediation of accessory cells represented by dendritic cells; the metabolic pathways of microbiota or diet; the participation of adaptive immune cells.
Collapse
Affiliation(s)
- Rui Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Wenwen Cui
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Wang B, Shen J. NF-κB Inducing Kinase Regulates Intestinal Immunity and Homeostasis. Front Immunol 2022; 13:895636. [PMID: 35833111 PMCID: PMC9271571 DOI: 10.3389/fimmu.2022.895636] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
Intestinal immunity and homeostasis are maintained through the regulation of cytokine trafficking, microbiota, necrosis and apoptosis. Intestinal immunity and homeostasis participate in host defenses and inflammatory responses locally or systemically through the gut-organ axis. NF-κB functions as a crucial transcription factor mediating the expression of proteins related to the immune responses. The activation of NF-κB involves two major pathways: canonical and non-canonical. The canonical pathway has been extensively studied and reviewed. Here, we present the current knowledge of NIK, a pivotal mediator of the non-canonical NF-κB pathway and its role in intestinal immunity and homeostasis. This review also discusses the novel role of NIK signaling in the pathogenesis and treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Bingran Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
- Ottawa-Shanghai Joint School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
- Ottawa-Shanghai Joint School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jun Shen,
| |
Collapse
|
5
|
Silverman MA, Green JL. Insight Into Host-Microbe Interactions Using Microbial Flow Cytometry Coupled to Next-Generation Sequencing. J Pediatric Infect Dis Soc 2021; 10:S106-S111. [PMID: 34951471 PMCID: PMC8703255 DOI: 10.1093/jpids/piab092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Antibody-based assays have been a cornerstone of infectious disease diagnostics for over 100 years [1]. These assays rely on the exquisite sensitivity and specificity of humoral response to almost all infections. While next-generation sequencing (NGS) has tremendous potential to improve diagnostics and uncover host-microbial relationships by directly identifying nucleic acids from infectious microbes, challenges and opportunities for new approaches remain. Here, we review a group of cutting-edge techniques that couple antibody responses with flow cytometry of antibody tagged microbes and NGS. These studies are bringing into focus the dynamic relationship between our immune systems and endogenous microbial communities, which are an important source of pathogens. For simplicity, we use the umbrella term mFLOW-Seq (microbial flow cytometry coupled to NGS) to describe these approaches.
Collapse
Affiliation(s)
- Michael A Silverman
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Corresponding Author: Michael A. Silverman, MD, PhD, Department of Pediatrics, The Children’s Hospital of Philadelphia, 3615 Civic Center Blvd. Abramson Research Center, 12th floor, Room 1202, Philadelphia, PA 19104, USA. E-mail:
| | - Jamal L Green
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Biomedical Graduate Studies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Cascalho M, Platt JL. TNFRSF13B Diversification Fueled by B Cell Responses to Environmental Challenges-A Hypothesis. Front Immunol 2021; 12:634544. [PMID: 33679786 PMCID: PMC7925820 DOI: 10.3389/fimmu.2021.634544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/21/2021] [Indexed: 12/30/2022] Open
Abstract
B cell differentiation and memory are controlled by the transmembrane activator and CAML interactor (TACI), a receptor encoded by TNFRSF13B. TNFRSF13B mutations are frequently found in common variable immunodeficiency (CVID) and in IgA -deficiency; yet, ~98% of those with mutant TNFRSF13B are healthy. Indeed, TNFRSF13B is among the 5% most polymorphic genes in man. Other mammals evidence polymorphism at comparable loci. We hypothesize that TNFRSF13B diversity might promote rather than detract from well-being by controlling key elements of innate immunity. We shall discuss how extraordinary diversity of TNFRSF13B could have evolved and persisted across diverse species of mammals by controlling innate and adaptive B cell responses in apparently paradoxical ways.
Collapse
Affiliation(s)
- Marilia Cascalho
- Department of Surgery and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Jeffrey L Platt
- Department of Surgery and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Kreuk LSM, Koch MA, Slayden LC, Lind NA, Chu S, Savage HP, Kantor AB, Baumgarth N, Barton GM. B cell receptor and Toll-like receptor signaling coordinate to control distinct B-1 responses to both self and the microbiota. eLife 2019; 8:e47015. [PMID: 31433298 PMCID: PMC6703855 DOI: 10.7554/elife.47015] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/16/2019] [Indexed: 01/19/2023] Open
Abstract
B-1a cells play an important role in mediating tissue homeostasis and protecting against infections. They are the main producers of 'natural' IgM, spontaneously secreted serum antibodies predominately reactive to self antigens, like phosphatidylcholine (PtC), or antigens expressed by the intestinal microbiota. The mechanisms that regulate the B-1a immunoglobulin (Ig) repertoire and their antibody secretion remain poorly understood. Here, we use a novel reporter mouse to demonstrate that production of self- and microbiota-reactive antibodies is linked to BCR signaling in B-1a cells. Moreover, we show that Toll-like receptors (TLRs) are critical for shaping the Ig repertoire of B-1a cells as well as regulating their antibody production. Strikingly, we find that both the colonization of a microbiota as well as microbial-sensing TLRs are required for anti-microbiota B-1a responses, whereas nucleic-acid sensing TLRs are required for anti-PtC responses, demonstrating that linked activation of BCR and TLRs controls steady state B-1a responses to both self and microbiota-derived antigens.
Collapse
Affiliation(s)
- Lieselotte SM Kreuk
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Meghan A Koch
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Leianna C Slayden
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Nicholas A Lind
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Sophia Chu
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Hannah P Savage
- Center for Comparative MedicineUniversity of California, DavisDavisUnited States
| | - Aaron B Kantor
- Department of GeneticsStanford UniversityStanfordUnited States
| | - Nicole Baumgarth
- Center for Comparative MedicineUniversity of California, DavisDavisUnited States
| | - Gregory M Barton
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
8
|
Neumann L, Moos V, Giesecke-Thiel C, Dörner T, Allers K, Aebischer T, Schneider T. T Cell-Dependent Maturation of Pathogen-Specific Igs in the Antrum of Chronically Helicobacter pylori-Infected Patients. THE JOURNAL OF IMMUNOLOGY 2019; 203:208-215. [PMID: 31101665 DOI: 10.4049/jimmunol.1900074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/20/2019] [Indexed: 11/19/2022]
Abstract
Mucosal plasma cells (PC) and Ig production are essential to fend pathogens and to maintain mucosal homeostasis. In human Helicobacter pylori infection, mucosal PC express inducible NO synthase (iNOS), which positively correlates with clearance of experimental human infection. To characterize Ig genes and specificities of antral mucosal iNOS+ and iNOS- PC in H. pylori infection, we sequenced rearranged Ig genes from single cell-sorted PC from biopsy specimens of chronically infected patients and analyzed them with respect to their molecular features. The binding specificity of individual PC's Ig was determined following recombinant expression. We identified high rates of somatic hypermutations, especially targeting RGYW/WRCY hotspot motifs in the individual Ig genes, indicating T cell-dependent maturation. For seven of 14 recombinantly expressed Ig, Ag specificity could be determined. Two clones reacted to H. pylori proteins, and five were found to be polyreactive against LPSs, dsDNA, and ssDNA. All specific Ig originated from iNOS+ PC. H. pylori-specific Ig are encoded by V and J family genes previously shown to be also used in rearranged Ig loci of MALT B cell lymphomas. In summary, mucosal iNOS+ PC producing H. pylori-specific Ig accumulate in infection and appear to be a product of T cell-dependent B cell maturation. Moreover, the Ig's molecular features partly resembled that of MALT B cell lymphoma Ig genes, suggestive of a mechanism in which a progressive molecular evolution of pathogen-specific B cells to MALT B cell lymphoma occurs.
Collapse
Affiliation(s)
- Laura Neumann
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Verena Moos
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany;
| | - Claudia Giesecke-Thiel
- Abteilung für Medizin, Rheumatologie und Klinische Immunology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; and
| | - Thomas Dörner
- Abteilung für Medizin, Rheumatologie und Klinische Immunology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; and
| | - Kristina Allers
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | | | - Thomas Schneider
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| |
Collapse
|
9
|
Hayakawa K, Formica AM, Nakao Y, Ichikawa D, Shinton SA, Brill-Dashoff J, Smith MR, Morse HC, Hardy RR. Early Generated B-1-Derived B Cells Have the Capacity To Progress To Become Mantle Cell Lymphoma-like Neoplasia in Aged Mice. THE JOURNAL OF IMMUNOLOGY 2018; 201:804-813. [PMID: 29898964 DOI: 10.4049/jimmunol.1800400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/16/2018] [Indexed: 11/19/2022]
Abstract
In mice, fetal/neonatal B-1 cell development generates murine CD5+ B cells (B1a) with autoreactivity. We analyzed B1a cells at the neonatal stage in a VH11/D/JH knock-in mouse line (VH11t) that generates an autoreactive antiphosphatidylcholine BCR. Our study revealed that antiphosphatidylcholine B1a cells develop in liver, mature in spleen, and distribute in intestine/colon, mesenteric lymph node (mLN), and body cavity as the outcome of B-1 cell development before B-2 cell development. Throughout life, self-renewing B-1 B1a cells circulate through intestine, mesenteric vessel, and blood. The body cavity-deposited B1a cells also remigrate. In old age, some B1a cells proceed to monoclonal B cell lymphocytosis. When neonatal B-1 B1a cells express an antithymocyte/Thy-1 autoreactivity (ATA) BCR transgene in the C.B17 mouse background, ATA B cells increase in PBL and strongly develop lymphomas in aging mice that feature splenomegaly and mLN hyperplasia with heightened expression of CD11b, IL-10, and activated Stat3. At the adult stage, ATA B cells were normally present in the mantle zone area, including in intestine. Furthermore, frequent association with mLN hyperplasia suggests the influence by intestinal microenvironment on lymphoma development. When cyclin D1 was overexpressed by the Eμ-cyclin D1 transgene, ATA B cells progressed to further diffused lymphoma in aged mice, including in various lymph nodes with accumulation of IgMhiIgDloCD5+CD23-CD43+ cells, resembling aggressive human mantle cell lymphoma. Thus, our findings reveal that early generated B cells, as an outcome of B-1 cell development, can progress to become lymphocytosis, lymphoma, and mantle cell lymphoma-like neoplasia in aged mice.
Collapse
Affiliation(s)
| | | | - Yuka Nakao
- Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Daiju Ichikawa
- Fox Chase Cancer Center, Philadelphia, PA 19111.,Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo 105-8512, Japan
| | | | | | - Mitchell R Smith
- Fox Chase Cancer Center, Philadelphia, PA 19111.,George Washington University Cancer Center, Washington, DC 20052; and
| | - Herbert C Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | | |
Collapse
|
10
|
Tsuji R, Ikado K, Fujiwara D. Modulation of Innate Immunity by lignin-Carbohydrate, a Novel TLR4 Ligand, Results in Augmentation of Mucosal IgA and Systemic IgG Production. Int J Mol Sci 2017; 19:ijms19010064. [PMID: 29278400 PMCID: PMC5796014 DOI: 10.3390/ijms19010064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/22/2017] [Accepted: 12/25/2017] [Indexed: 12/18/2022] Open
Abstract
Previous study revealed that a specific lignin-carbohydrate preparation, named as lignin-rich enzyme lignin (LREL) derived from plant husk, is a novel toll-like receptor 4 ligand and shows a potent immune-stimulatory activity against dendritic cells (DCs) in vitro. In this report, we investigated immune-stimulatory activity of LREL in vivo. Single intraperitoneal (i.p.) or oral treatment of LREL elicited activation of systemic and mucosal DCs, which were accompanied by significant elevation of cell surface activation markers and ratio of IL-12p40 producing cells. In addition, LREL-fed mice showed not only mucosal DCs activation but also significant increase of IFN-γ+ CD4+ T cells in mesenteric lymph node (MLN), respectively. We further examined the effect of LREL oral immunization in combination with ovalbumin (OVA) on the activation of acquired immune system. In LREL administered group, total mucosal IgA concentration was significantly increased, while antigen-specific immunoglobulin A (IgA) concentration was not changed between groups. On the other hand, both total and antigen-specific IgG concentrations in plasma were significantly increased in the LREL administered group. Taken together, oral treatment of LREL is able to affect mucosal and systemic antibodies induction and might be useful for effective immune-stimulatory functional foods and mucosal vaccine adjuvant.
Collapse
Affiliation(s)
- Ryohei Tsuji
- Central Laboratories For Key Technologies, Kirin Co., Ltd., Fukuura 1-13-5, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Kumiko Ikado
- Central Laboratories For Key Technologies, Kirin Co., Ltd., Fukuura 1-13-5, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Daisuke Fujiwara
- Central Laboratories For Key Technologies, Kirin Co., Ltd., Fukuura 1-13-5, Kanazawa-ku, Yokohama 236-0004, Japan.
| |
Collapse
|
11
|
Constantinides MG. Interactions between the microbiota and innate and innate-like lymphocytes. J Leukoc Biol 2017; 103:409-419. [PMID: 29345366 DOI: 10.1002/jlb.3ri0917-378r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022] Open
Abstract
The microbiota, which consists of commensal bacteria, fungi, and viruses, limits the colonization of pathogens at barrier tissues and promotes immune homeostasis. The latter is accomplished through the induction and regulation of both innate and adaptive immune responses. Innate lymphocytes, which include the type-1 innate lymphoid cell (ILC1), NK cell, type-2 innate lymphoid cell (ILC2), type-3 innate lymphoid cell (ILC3), and lymphoid tissue inducer (LTi) cell populations, and innate-like lymphocytes, such as NKT cells, mucosal-associated invariant T (MAIT) cells, and γδ T cells, are uniquely capable of responding to the microbiota due to their tissue localization and rapid primary responses. In turn, through their effector functions, these lymphocyte populations modulate the composition of the microbiota and maintain the segregation of commensals. This review will focus on how innate and innate-like lymphocytes mediate the crosstalk with the microbiome.
Collapse
Affiliation(s)
- Michael G Constantinides
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Berkowska MA, Schickel JN, Grosserichter-Wagener C, de Ridder D, Ng YS, van Dongen JJM, Meffre E, van Zelm MC. Circulating Human CD27-IgA+ Memory B Cells Recognize Bacteria with Polyreactive Igs. THE JOURNAL OF IMMUNOLOGY 2015; 195:1417-26. [PMID: 26150533 DOI: 10.4049/jimmunol.1402708] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 06/08/2015] [Indexed: 01/01/2023]
Abstract
The vast majority of IgA production occurs in mucosal tissue following T cell-dependent and T cell-independent Ag responses. To study the nature of each of these responses, we analyzed the gene-expression and Ig-reactivity profiles of T cell-dependent CD27(+)IgA(+) and T cell-independent CD27(-)IgA(+) circulating memory B cells. Gene-expression profiles of IgA(+) subsets were highly similar to each other and to IgG(+) memory B cell subsets, with typical upregulation of activation markers and downregulation of inhibitory receptors. However, we identified the mucosa-associated CCR9 and RUNX2 genes to be specifically upregulated in CD27(-)IgA(+) B cells. We also found that CD27(-)IgA(+) B cells expressed Abs with distinct Ig repertoire and reactivity compared with those from CD27(+)IgA(+) B cells. Indeed, Abs from CD27(-)IgA(+) B cells were weakly mutated, often used Igλ chain, and were enriched in polyreactive clones recognizing various bacterial species. Hence, T cell-independent IgA responses are likely involved in the maintenance of gut homeostasis through the production of polyreactive mutated IgA Abs with cross-reactive anti-commensal reactivity.
Collapse
Affiliation(s)
- Magdalena A Berkowska
- Department of Immunology, Erasmus MC, University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Jean-Nicolas Schickel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511; and
| | | | - Dick de Ridder
- The Delft Bioinformatics Lab, Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, 2628 CD Delft, the Netherlands
| | - Yen Shing Ng
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511; and
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511; and
| | - Menno C van Zelm
- Department of Immunology, Erasmus MC, University Medical Center, 3015 CN Rotterdam, the Netherlands;
| |
Collapse
|
13
|
Naradikian MS, Perate AR, Cancro MP. BAFF receptors and ligands create independent homeostatic niches for B cell subsets. Curr Opin Immunol 2015; 34:126-9. [PMID: 25836418 DOI: 10.1016/j.coi.2015.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/26/2022]
Abstract
The BAFF family of receptors and ligands controls B cell homeostasis and selection. Recent studies reveal distinct sources and roles for systemic versus locally produced BAFF. Moreover, the notion that differential BAFF receptor expression patterns establish independent homeostatic and selective niches has been strengthened. Finally, unique roles for BAFF family members in the regulation of antigen experienced and innate B cell subsets have been revealed. Herein, we overview current knowledge in these areas, emphasizing recent findings that inform these ideas.
Collapse
Affiliation(s)
- Martin S Naradikian
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.
| | - Alison R Perate
- Department of Anesthesiology and Critical Care, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
14
|
Kang SH, Jin BR, Kim HJ, Seo GY, Jang YS, Kim SJ, An SJ, Park SR, Kim WS, Kim PH. Lactoferrin Combined with Retinoic Acid Stimulates B1 Cells to Express IgA Isotype and Gut-homing Molecules. Immune Netw 2015; 15:37-43. [PMID: 25713507 PMCID: PMC4338266 DOI: 10.4110/in.2015.15.1.37] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 12/03/2022] Open
Abstract
It is well established that TGF-β1 and retinoic acid (RA) cause IgA isotype switching in mice. We recently found that lactoferrin (LF) also has an activity of IgA isotype switching in spleen B cells. The present study explored the effect of LF on the Ig production by mouse peritoneal B cells. LF, like TGF-β1, substantially increased IgA production in peritoneal B1 cells but little in peritoneal B2 cells. In contrast, LF increased IgG2b production in peritoneal B2 cells much more strongly than in peritoneal B1 cells. LF in combination with RA further enhanced the IgA production and, interestingly, this enhancement was restricted to IgA isotype and B1 cells. Similarly, the combination of the two molecules also led to expression of gut homing molecules α4β7 and CCR9 on peritoneal B1 cells, but not on peritoneal B2 cells. Thus, these results indicate that LF and RA can contribute to gut IgA response through stimulating IgA isotype switching and expression of gut-homing molecules in peritoneal B1 cells.
Collapse
Affiliation(s)
- Seong-Ho Kang
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Bo-Ra Jin
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Hyeon-Jin Kim
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Goo-Young Seo
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Young-Saeng Jang
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Sun-Jin Kim
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Sun-Jin An
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Seok-Rae Park
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | - Woan-Sub Kim
- Department of Animal Life and Environmental Science, College of Agriculture and Life Science, Hankyong National University, Anseong 456-749, Korea
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
15
|
|
16
|
Castro CD, Flajnik MF. Putting J chain back on the map: how might its expression define plasma cell development? THE JOURNAL OF IMMUNOLOGY 2014; 193:3248-55. [PMID: 25240020 DOI: 10.4049/jimmunol.1400531] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Joining chain (J chain) is a small polypeptide that regulates multimerization of secretory IgM and IgA, the only two mammalian Igs capable of forming multimers. J chain also is required for poly-Ig receptor-mediated transport of these Ig classes across the mucosal epithelium. It is generally assumed that all plasma cells express J chain regardless of expressed isotype, despite the documented presence of J chain(-) plasma cells in mammals, specifically in all monomeric IgA-secreting cells and some IgG-secreting cells. Compared with most other immune molecules, J chain has not been studied extensively, in part because of technical limitations. Even the reported phenotype of the J chain-knockout mouse is often misunderstood or underappreciated. In this short review, we discuss J chain in light of the various proposed models of its expression and regulation, with an added focus on its evolutionary significance, as well as its expression in different B cell lineages/differentiation states.
Collapse
Affiliation(s)
- Caitlin D Castro
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
17
|
Wilson HL, Obradovic MR. Evidence for a common mucosal immune system in the pig. Mol Immunol 2014; 66:22-34. [PMID: 25242212 PMCID: PMC7132386 DOI: 10.1016/j.molimm.2014.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/15/2014] [Accepted: 09/01/2014] [Indexed: 12/03/2022]
Abstract
There is evidence that the common mucosal immune system exists in pigs. Vaccination at an easily accessible mucosal site may assist in providing protection at other mucosal sites. Local and distal mucosal sites should be sampled after vaccinations to define the optimal dose and formulation which promotes the common mucosal immune system in pigs.
The majority of lymphocytes activated at mucosal sites receive instructions to home back to the local mucosa, but a portion also seed distal mucosa sites. By seeding distal sites with antigen-specific effector or memory lymphocytes, the foundation is laid for the animal's mucosal immune system to respond with a secondary response should to this antigen be encountered at this site in the future. The common mucosal immune system has been studied quite extensively in rodent models but less so in large animal models such as the pig. Reasons for this paucity of reported induction of the common mucosal immune system in this species may be that distal mucosal sites were examined but no induction was observed and therefore it was not reported. However, we suspect that the majority of investigators simply did not sample distal mucosal sites and therefore there is little evidence of immune response induction in the literature. It is our hope that more pig immunologists and infectious disease experts who perform mucosal immunizations or inoculations on pigs will sample distal mucosal sites and report their findings, whether results are positive or negative. In this review, we highlight papers that show that immunization/inoculation using one route triggers mucosal immune system induction locally, systemically, and within at least one distal mucosal site. Only by understanding whether immunizations at one site triggers immunity throughout the common mucosal immune system can we rationally develop vaccines for the pig, and through these works we can gather evidence about the mucosal immune system that may be extrapolated to other livestock species or humans.
Collapse
Affiliation(s)
- Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), 120 Veterinary Road, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada.
| | - Milan R Obradovic
- Vaccine and Infectious Disease Organization (VIDO), Home of the International Vaccine Centre (InterVac), 120 Veterinary Road, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada.
| |
Collapse
|
18
|
Abstract
In mammals, the gastrointestinal tract is colonized by extremely dense and diverse bacterial communities that are beneficial for health. Maintenance of the complexity and the proper localization and distribution of gut bacteria is of prime importance because when disrupted, the microbial community attacks the host's tissues and causes inflammatory reactions. Our immune system provides the necessary mechanisms to maintain the homeostatic balance between microbial communities and the host. IgA plays crucial roles in regulation of host-bacteria interactions in the gut. IgA is the most abundant immunoglobulin isotype in our body, mostly produced by the IgA plasma cells residing in the lamina propria of the small and large intestine. Although it was well known that IgA provides protection against pathogens, only recently has it become clear that IgA plays critical roles in regulation of bacterial communities in the gut in steady-state conditions. Here, we summarize recent progress in our understanding of the various mechanisms of IgA synthesis in multiple anatomical sites and discuss how IgA limits bacterial access to the internal milieu of the host.
Collapse
Affiliation(s)
- Keiichiro Suzuki
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akira Nakajima
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
19
|
Sindhava VJ, Scholz JL, Stohl W, Cancro MP. APRIL mediates peritoneal B-1 cell homeostasis. Immunol Lett 2014; 160:120-7. [PMID: 24512739 DOI: 10.1016/j.imlet.2014.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/31/2014] [Indexed: 01/13/2023]
Abstract
BLyS (B lymphocyte stimulator) family cytokines and receptors play key roles in B-2 cell maturation and survival, but their importance for B-1 cells remains less clear. Here we use knockout mice to show that APRIL (A proliferation-inducing ligand), but not BLyS, plays a role in peritoneal B-1 cell maintenance. APRIL likely exerts its effects on peritoneal B-1 cells through binding to HSPG (heparan sulfate proteoglycans) rather than to the TACI (transmembrane activator and cyclophilin ligand interactor) receptor. Finally, we show that peritoneal macrophages express high levels of APRIL message, and are a likely local source of the cytokine in this anatomic locale.
Collapse
Affiliation(s)
- Vishal J Sindhava
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, United States
| | - Jean L Scholz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, United States
| | - William Stohl
- Division of Rheumatology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, United States
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, United States.
| |
Collapse
|
20
|
Provenzano D, Kovác P, Wade WF. The ABCs (Antibody, B Cells, and Carbohydrate Epitopes) of Cholera Immunity: Considerations for an Improved Vaccine. Microbiol Immunol 2013; 50:899-927. [PMID: 17179659 DOI: 10.1111/j.1348-0421.2006.tb03866.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholera, a diarrheal disease, is known for explosive epidemics that can quickly kill thousands. Endemic cholera is a seasonal torment that also has a significant mortality. Not all nations with extensive rural communities can achieve the required infrastructure or behavioral changes to prevent epidemic or endemic cholera. For some communities, a single-dose cholera vaccine that protects those at risk is the most efficacious means to reduce morbidity and mortality. It is clear that our understanding of what a protective cholera immune response is has not progressed at the rate our understanding of the pathogenesis and molecular biology of cholera infection has. This review addresses V. cholerae lipopolysaccharide (LPS)-based immunogens because LPS is the only immunogen proven to induce protective antibody in humans. We discuss the role of anti-LPS antibodies in protection from cholera, the importance and the potential role of B cell subsets in protection that is based on their anatomical location and the intrinsic antigen-receptor specificity of various subsets is introduced.
Collapse
Affiliation(s)
- Daniele Provenzano
- Department of Biological Sciences, University of Texas-Brownsville, Brownsville, TX 78520, USA
| | | | | |
Collapse
|
21
|
Brandtzaeg P. Secretory IgA: Designed for Anti-Microbial Defense. Front Immunol 2013; 4:222. [PMID: 23964273 PMCID: PMC3734371 DOI: 10.3389/fimmu.2013.00222] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/16/2013] [Indexed: 01/30/2023] Open
Abstract
Prevention of infections by vaccination remains a compelling goal to improve public health. Mucosal vaccines would make immunization procedures easier, be better suited for mass administration, and most efficiently induce immune exclusion - a term coined for non-inflammatory antibody shielding of internal body surfaces, mediated principally by secretory immunoglobulin A (SIgA). The exported antibodies are polymeric, mainly IgA dimers (pIgA), produced by local plasma cells (PCs) stimulated by antigens that target the mucose. SIgA was early shown to be complexed with an epithelial glycoprotein - the secretory component (SC). A common SC-dependent transport mechanism for pIgA and pentameric IgM was then proposed, implying that membrane SC acts as a receptor, now usually called the polymeric Ig receptor (pIgR). From the basolateral surface, pIg-pIgR complexes are taken up by endocytosis and then extruded into the lumen after apical cleavage of the receptor - bound SC having stabilizing and innate functions in the secretory antibodies. Mice deficient for pIgR show that this is the only receptor responsible for epithelial export of IgA and IgM. These knockout mice show a variety of defects in their mucosal defense and changes in their intestinal microbiota. In the gut, induction of B-cells occurs in gut-associated lymphoid tissue, particularly the Peyer's patches and isolated lymphoid follicles, but also in mesenteric lymph nodes. PC differentiation is accomplished in the lamina propria to which the activated memory/effector B-cells home. The airways also receive such cells from nasopharynx-associated lymphoid tissue but by different homing receptors. This compartmentalization is a challenge for mucosal vaccination, as are the mechanisms used by the mucosal immune system to discriminate between commensal symbionts (mutualism), pathobionts, and overt pathogens (elimination).
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Centre for Immune Regulation (CIR), University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
22
|
Roy B, Agarwal S, Brennecke AM, Krey M, Pabst O, Düber S, Weiss S. B-1-cell subpopulations contribute differently to gut immunity. Eur J Immunol 2013; 43:2023-32. [PMID: 23677546 DOI: 10.1002/eji.201243070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 04/03/2013] [Accepted: 05/10/2013] [Indexed: 01/15/2023]
Abstract
In mice, B-1 (B1a/B1b) cells are mainly located in the peritoneal cavity. B-1 cells are well known for their role in the early stages of Ab-mediated immune responses against pathogenic invasion as well as for the production of natural IgM antibodies. Although such B cells have been claimed to give rise to intestinal plasma cells producing IgA, a clear role of B-1 cells in IgA production in the gut-associated tissues is still not defined. Here, we employed the transgenic L2 mouse model characterized by the lack of B-2 cells and presence of B-1 cells as major B-cell subpopulation. The oligoclonality of the Ab repertoire in this mouse allowed us to take typical B1a cell VH sequences as indicators of the presence of IgM-producing B-1a cells in Peyer's patches as well as in lamina propria. However, amongst the IgAVH sequences recovered from the same tissues, none of the sequences showed B1a-cell specificity. Interestingly, all IgAVH sequences derived from the lamina propria of L2 mice displayed extensive numbers of nucleotide exchanges, indicating somatic hypermutation, and affinity maturation. This suggests that the contribution of natural unmutated IgA by B-1a cells to intestinal immunity is negligible.
Collapse
Affiliation(s)
- Bishnudeo Roy
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The intestinal mucosa contains the largest population of antibody-secreting plasma cells in the body, and in humans several grams of secretory immunoglobulin A (SIgA) are released into the intestine each day. In the gut lumen, SIgA serves as a first-line barrier that protects the epithelium from pathogens and toxins. Recently, next-generation sequencing has revolutionized our understanding of the nature of the intestinal microbiota and has also shed new light on the important roles of SIgA in the regulation of host-commensal homeostasis. Here, I discuss pathways of IgA induction in the context of SIgA specificity and function.
Collapse
Affiliation(s)
- Oliver Pabst
- Institute of Immunology, Hannover Medical School, Carl-Neuberg Strae 1, 30625 Hannover, Germany.
| |
Collapse
|
24
|
Rol N, Favre L, Benyacoub J, Corthésy B. The role of secretory immunoglobulin A in the natural sensing of commensal bacteria by mouse Peyer's patch dendritic cells. J Biol Chem 2012; 287:40074-82. [PMID: 23027876 DOI: 10.1074/jbc.m112.405001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mammalian gastrointestinal (GI) tract harbors a diverse population of commensal species collectively known as the microbiota, which interact continuously with the host. From very early in life, secretory IgA (SIgA) is found in association with intestinal bacteria. It is considered that this helps to ensure self-limiting growth of the microbiota and hence participates in symbiosis. However, the importance of this association in contributing to the mechanisms ensuring natural host-microorganism communication is in need of further investigation. In the present work, we examined the possible role of SIgA in the transport of commensal bacteria across the GI epithelium. Using an intestinal loop mouse model and fluorescently labeled bacteria, we found that entry of commensal bacteria in Peyer's patches (PP) via the M cell pathway was mediated by their association with SIgA. Preassociation of bacteria with nonspecific SIgA increased their dynamics of entry and restored the reduced transport observed in germ-free mice known to have a marked reduction in intestinal SIgA production. Selective SIgA-mediated targeting of bacteria is restricted to the tolerogenic CD11c(+)CD11b(+)CD8(-) dendritic cell subset located in the subepithelial dome region of PPs, confirming that the host is not ignorant of its resident commensals. In conclusion, our work supports the concept that SIgA-mediated monitoring of commensal bacteria targeting dendritic cells in the subepithelial dome region of PPs represents a mechanism whereby the host mucosal immune system controls the continuous dialogue between the host and commensal bacteria.
Collapse
Affiliation(s)
- Nicolas Rol
- Research and Development Laboratory, Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | | | | | | |
Collapse
|
25
|
Slack E, Balmer ML, Fritz JH, Hapfelmeier S. Functional flexibility of intestinal IgA - broadening the fine line. Front Immunol 2012; 3:100. [PMID: 22563329 PMCID: PMC3342566 DOI: 10.3389/fimmu.2012.00100] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/15/2012] [Indexed: 01/04/2023] Open
Abstract
Intestinal bacteria outnumber our own human cells in conditions of both health and disease. It has long been recognized that secretory antibody, particularly IgA, is produced in response to these microbes and hypothesized that this must play an important role in defining the relationship between a host and its intestinal microbes. However, the exact role of IgA and the mechanisms by which IgA can act are only beginning to be understood. In this review we attempt to unravel the complex interaction between so-called “natural,” “primitive” (T-cell-independent), and “classical” IgA responses, the nature of the intestinal microbiota/intestinal pathogens and the highly flexible dynamic homeostasis of the mucosal immune system. Such an analysis reveals that low-affinity IgA is sufficient to protect the host from excess mucosal immune activation induced by harmless commensal microbes. However, affinity-maturation of “classical” IgA is essential to provide protection from more invasive commensal species such as segmented filamentous bacteria and from true pathogens such as Salmonellatyphimurium. Thus a correlation is revealed between “sophistication” of the IgA response and aggressiveness of the challenge. A second emerging theme is that more-invasive species take advantage of host inflammatory mechanisms to more successfully compete with the resident microbiota. In many cases, the function of IgA may be to limit such inflammatory responses, either directly by coagulating or inhibiting virulence of bacteria before they can interact with the host or by modulating immune signaling induced by host recognition. Therefore IgA appears to provide an added layer of robustness in the intestinal ecosystem, promoting “commensal-like” behavior of its residents.
Collapse
Affiliation(s)
- Emma Slack
- Institute for Microbiology, Eidgenössische Technische Hochschule Zurich Zurich, Switzerland
| | | | | | | |
Collapse
|
26
|
Henderson AJ, Kumar A, Barnett B, Dow SW, Ryan EP. Consumption of rice bran increases mucosal immunoglobulin A concentrations and numbers of intestinal Lactobacillus spp. J Med Food 2012; 15:469-75. [PMID: 22248178 PMCID: PMC3338111 DOI: 10.1089/jmf.2011.0213] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/18/2011] [Indexed: 12/17/2022] Open
Abstract
Gut-associated lymphoid tissue maintains mucosal homeostasis by combating pathogens and inducing a state of hyporesponsiveness to food antigens and commensal bacteria. Dietary modulation of the intestinal immune environment represents a novel approach for enhancing protective responses against pathogens and inflammatory diseases. Dietary rice bran consists of bioactive components with disease-fighting properties. Therefore, we conducted a study to determine the effects of whole dietary rice bran intake on mucosal immune responses and beneficial gut microbes. Mice were fed a 10% rice bran diet for 28 days. Serum and fecal samples were collected throughout the study to assess total immunoglobulin A (IgA) concentrations. Tissue samples were collected for cellular immune phenotype analysis, and concentrations of native gut Lactobacillus spp. were enumerated in the fecal samples. We found that dietary rice bran induced an increase in total IgA locally and systemically. In addition, B lymphocytes in the Peyer's patches of mice fed rice bran displayed increased surface IgA expression compared with lymphocytes from control mice. Antigen-presenting cells were also influenced by rice bran, with a significant increase in myeloid dendritic cells residing in the lamina propria and mesenteric lymph nodes. Increased colonization of native Lactobacillus was observed in rice bran-fed mice compared with control mice. These findings suggest that rice bran-induced microbial changes may contribute to enhanced mucosal IgA responses, and we conclude that increased rice bran consumption represents a promising dietary intervention to modulate mucosal immunity for protection against enteric infections and induction of beneficial gut bacteria.
Collapse
Affiliation(s)
- Angela J. Henderson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Ajay Kumar
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Brittany Barnett
- Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Steven W. Dow
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth P. Ryan
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
27
|
Benckert J, Schmolka N, Kreschel C, Zoller MJ, Sturm A, Wiedenmann B, Wardemann H. The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen-specific. J Clin Invest 2011; 121:1946-55. [PMID: 21490392 DOI: 10.1172/jci44447] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 01/26/2011] [Indexed: 02/06/2023] Open
Abstract
Mucosal antibody responses play a major role in mediating homeostasis with the intestinal flora. It has been suggested that imbalance in the IgA+ and IgG+ intestinal B cell repertoire may be associated with the development of diseases such as inflammatory bowel disease. Despite this, little is known about the antibody specificity of human intestinal plasmablasts. Here, we have determined the reactivity profile of single isolated IgA+ and IgG+ plasmablasts from human terminal ileum using antibody cloning and in vitro expression. We found that approximately 25% of intestinal IgA and IgG plasmablast antibodies were polyreactive; the majority were antigen-specific. Antigen specificity was not only directed against enteropathogenic microbes but also against commensal microbes and self antigens. Regardless of their reactivity, all intestinal antibodies were somatically mutated and showed signs of antigen-mediated selection, suggesting that they developed from antigen-specific B cell responses. Together, our data indicate that antigen-specific immune responses to intestinal microbes are largely responsible for the maintenance of intestinal homeostasis and thus provide a basis for understanding the deregulated immune responses observed in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Julia Benckert
- Max Planck Research Group Molecular Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Tezuka H, Abe Y, Asano J, Sato T, Liu J, Iwata M, Ohteki T. Prominent role for plasmacytoid dendritic cells in mucosal T cell-independent IgA induction. Immunity 2011; 34:247-57. [PMID: 21333555 DOI: 10.1016/j.immuni.2011.02.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 11/19/2010] [Accepted: 12/10/2010] [Indexed: 02/06/2023]
Abstract
Although both conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs) are present in the gut-associated lymphoid tissues (GALT), the roles of pDCs in the gut remain largely unknown. Here we show a critical role for pDCs in T cell-independent (TI) IgA production by B cells in the GALT. When pDCs of the mesenteric lymph nodes (MLNs) and Peyer's patches (PPs) (which are representative GALT) were cultured with naive B cells to induce TI IgA class switch recombination (CSR), IgA production was substantially higher than in cocultures of these cells with cDCs. IgA production was dependent on APRIL and BAFF production by pDCs. Importantly, pDC expression of APRIL and BAFF was dependent on stromal cell-derived type I IFN signaling under steady-state conditions. Our findings provide insight into the molecular basis of pDC conditioning to induce mucosal TI IgA production, which may lead to improvements in vaccination strategies and treatment for mucosal-related disorders.
Collapse
Affiliation(s)
- Hiroyuki Tezuka
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Corthësy B. Secretory immunoglobulin A: well beyond immune exclusion at mucosal surfaces. Immunopharmacol Immunotoxicol 2010; 31:174-9. [PMID: 19514992 DOI: 10.1080/08923970802438441] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
At mucosal surfaces, secretory IgA (SIgA) antibodies serve as the first line of defense against microorganisms through a mechanism called immune exclusion that prevents interaction of neutralized antigens with the epithelium. In addition, SIgA plays a role in the immune balance of the epithelial barrier through selective adhesion to M cells in intestinal Peyer's patches. This mediates the transepithelial retro-transport of the antibody and associated antigens from the intestinal lumen to underlying gut-associated organized lymphoid tissue. In Peyer's patches, SIgA-based immune complexes are internalized by underlying antigen-presenting cells, leaving the antigen with masked epitopes, a form that limits the risk of overwhelming the local immune protection system with danger signals. This translates into the onset of mucosal and systemic responses associated with production of anti-inflammatory cytokines and limited activation of antigen-presenting cells. In the gastrointestinal tract, SIgA exhibits thus properties of a neutralizing agent (immune exclusion) and of an immunopotentiator inducing effector immune responses in a noninflammatory context favorable to preserve local homeostasis.
Collapse
Affiliation(s)
- Blaise Corthësy
- R & D Laboratory, Division of Immunology and Allergy, University State Hospital (CHUV), Lausanne, Switzerland.
| |
Collapse
|
30
|
Abstract
Abundant evidence supports the notion that human intestinal plasma cells are largely derived from B cells initially activated in gut-associated lymphoid tissue (GALT). Nevertheless, insufficient knowledge exists about the uptake, processing, and presentation of luminal antigens occurring in GALT to accomplish priming and sustained expansion of mucosal B cells. Also, it is unclear how the germinal center reaction so strikingly promotes class switch to IgA and expression of J chain, although the commensal microbiota appears to contribute to both diversification and memory. B-cell migration from GALT to the intestinal lamina propria is guided by rather well-defined adhesion molecules and chemokines/chemokine receptors, but the cues directing homing to secretory effector sites beyond the gut require better definition. In this respect, the role of human Waldeyer's ring (including adenoids and the palatine tonsils) as a regional mucosa-associated lymphoid tissue must be better defined, although the balance of evidence suggests that it functions as nasopharynx-associated lymphoid tissue (NALT) like the characteristic NALT structures in rodents. Altogether, data suggest a remarkable compartmentalization of the mucosal immune system that must be taken into account in the development of effective local vaccines to protect specifically the airways, small and large intestines, and the female genital tract.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Centre for Immune Regulation, University of Oslo, Department and Institute of Pathology, Oslo University Hospital, Rikshospitalet, N-0027 Oslo, Norway.
| |
Collapse
|
31
|
Strugnell RA, Wijburg OLC. The role of secretory antibodies in infection immunity. Nat Rev Microbiol 2010; 8:656-67. [PMID: 20694027 DOI: 10.1038/nrmicro2384] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mucosal secretory immune system provides an important primary defence against disease, as studies of humans with mucosal humoral immunodeficiencies suggest that the absence of secretory immunoglobulin A leads to an increase in mucosal infections. However, the infection risks posed do not seem to provide the evolutionary drive to retain constitutive secretion of often 'hard won' protein, suggesting that secretory antibodies may have some other important function (or functions). This Review examines the evidence that secretory antibodies provide an important defence against infection in specific animal models and explores complementary explanations for the evolution of the secretory immune system.
Collapse
Affiliation(s)
- Richard A Strugnell
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, VIC 3010 Australia.
| | | |
Collapse
|
32
|
Corthésy B. Role of secretory immunoglobulin A and secretory component in the protection of mucosal surfaces. Future Microbiol 2010; 5:817-29. [PMID: 20441552 DOI: 10.2217/fmb.10.39] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The contribution of secretory immunoglobulin A (SIgA) antibodies in the defense of mucosal epithelia plays an important role in preventing pathogen adhesion to host cells, therefore blocking dissemination and further infection. This mechanism, referred to as immune exclusion, represents the dominant mode of action of the antibody. However, SIgA antibodies combine multiple facets, which together confer properties extending from intracellular and serosal neutralization of antigens, activation of non-inflammatory pathways and homeostatic control of the endogenous microbiota. The sum of these features suggests that future opportunities for translational application from research-based knowledge to clinics include the mucosal delivery of bioactive antibodies capable of preserving immunoreactivity in the lung, gastrointestinal tract, the genito-urinary tract for the treatment of infections. This article covers topics dealing with the structure of SIgA, the dissection of its mode of action in epithelia lining different mucosal surfaces and its potential in immunotherapy against infectious pathogens.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory of the Department of Immunology & Allergy, University State Hospital (CHUV), Rue du Bugnon 46, 1011 Lausanne, Switzerland.
| |
Collapse
|
33
|
Mestecky J, Russell MW. Specific antibody activity, glycan heterogeneity and polyreactivity contribute to the protective activity of S-IgA at mucosal surfaces. Immunol Lett 2009; 124:57-62. [PMID: 19524784 PMCID: PMC2697127 DOI: 10.1016/j.imlet.2009.03.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 03/26/2009] [Indexed: 01/19/2023]
Abstract
An explanation of the principles and mechanisms involved in peaceful co-existence between animals and the huge, diverse, and ever-changing microbiota that resides on their mucosal surfaces represents a challenging puzzle that is fundamental in everyday survival. In addition to mechanical barriers and a variety of innate defense factors, mucosal immunoglobulins (Igs) provide protection by two complementary mechanisms: specific antibody activity and innate, Ig glycan-mediated binding, both of which serve to contain the mucosal microbiota in its physiological niche. Thus, the interaction of bacterial ligands with IgA glycans constitutes a discrete mechanism that is independent of antibody specificity and operates primarily in the intestinal tract. This mucosal site is by far the most heavily colonized with an enormously diverse bacterial population, as well as the most abundant production site for antibodies, predominantly of the IgA isotype, in the entire immune system. In embodying both adaptive and innate immune mechanisms within a single molecule, S-IgA maintains comprehensive protection of mucosal surfaces with economy of structure and function.
Collapse
Affiliation(s)
- Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35295-2170, USA.
| | | |
Collapse
|
34
|
Roy B, Shukla S, Łyszkiewicz M, Krey M, Viegas N, Düber S, Weiss S. Somatic hypermutation in peritoneal B1b cells. Mol Immunol 2009; 46:1613-9. [PMID: 19327839 DOI: 10.1016/j.molimm.2009.02.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/17/2009] [Accepted: 02/24/2009] [Indexed: 12/12/2022]
Abstract
Murine B1 cells have been shown to be able to switch to IgA in vitro. In agreement, we could demonstrate in the peritoneum of mice the presence of IgA producing B1 cells. Interestingly, enzyme-linked immunospot assays of lipopolysaccharide stimulated cultures revealed that only the B1b cell subpopulation contained high numbers of such cells while IgA producing B cells were rare amongst the B2 and B1a cell populations. This was confirmed by RT-PCR on sorted peritoneal B cell subpopulations. In addition, the variable regions associated with IgA of peritoneal B1b cells displayed extensive variation due to somatic hypermutation. In contrast, mutations were found only at low frequencies in VH regions associated with IgM of both B1 cell populations. Thus, peritoneal B1b cells display many similarities to B2 cells. This finding is consistent with the idea of a layered immune system in which peritoneal B1a and splenic follicular B2 cells appear at the two extremes and peritoneal B1b and B2 cells represent intermediates.
Collapse
Affiliation(s)
- Bishnudeo Roy
- Molecular Immunology, HZI, Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany.
| | | | | | | | | | | | | |
Collapse
|
35
|
Spencer J, Barone F, Dunn-Walters D. Generation of Immunoglobulin diversity in human gut-associated lymphoid tissue. Semin Immunol 2009; 21:139-46. [PMID: 19233686 DOI: 10.1016/j.smim.2009.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 01/20/2009] [Indexed: 02/05/2023]
Abstract
The organised gut associated lymphoid tissue (GALT) exists adjacent to an extensive and diverse luminal flora. The follicle associated epithelium and associated dendritic cells and lymphocytes form a tightly fortified gateway between the flora and the host that permits connectivity between them and chronic activation of the lymphoid compartment. As a consequence, plasma cell precursors are generated continuously, and in abundance, in GALT by clonal proliferation. Clonal proliferation alone on this scale would reduce the spectrum of B cell specificity. To compensate, GALT also houses molecular machinery that diversifies the receptor repertoire by somatic hypermutation, class switch recombination and receptor revision. These three processes of enhancing the diversity of mature B cells ensure that although clonally related plasma cells may secrete immunoglobulin side by side in the mucosa they rarely have identical antigen binding sites.
Collapse
Affiliation(s)
- Jo Spencer
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital Campus, St Thomas' St, London SE1 9RT, United Kingdom
| | | | | |
Collapse
|
36
|
Kadaoui KA, Corthésy B. Secretory IgA mediates bacterial translocation to dendritic cells in mouse Peyer's patches with restriction to mucosal compartment. THE JOURNAL OF IMMUNOLOGY 2008; 179:7751-7. [PMID: 18025221 DOI: 10.4049/jimmunol.179.11.7751] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In addition to fulfilling its function of immune exclusion at mucosal surfaces, secretory IgA (SIgA) Ab exhibits the striking feature to adhere selectively to M cells in the mouse and human intestinal Peyer's patches (PPs). Subsequent uptake drives the SIgA Ab to dendritic cells (DCs), which become partially activated. Using freshly isolated mouse DCs, we found that the interaction with SIgA was tissue and DC subtype dependent. Only DCs isolated from PPs and mesenteric lymph nodes interacted with the Ab. CD11c(+)CD11b(+) DCs internalized SIgA, while CD11c(+)CD19(+) DCs only bound SIgA on their surface, and no interaction occurred with CD11c(+)CD8alpha(+) DCs. We next examined whether SIgA could deliver a sizeable cargo to PP DCs in vivo by administering SIgA-Shigella flexneri immune complexes into a mouse ligated intestinal loop containing a PP. We found that such immune complexes entered the PPs and were internalized by subepithelial dome PP DCs, in contrast to S. flexneri alone that did not penetrate the intestinal epithelium in mice. Dissemination of intraepithelial S. flexneri delivered as immune complexes was limited to PPs and mesenteric lymph nodes. We propose that preexisting SIgA Abs associated with microbes contribute to mucosal defense by eliciting responses that prevent overreaction while maintaining productive immunity.
Collapse
Affiliation(s)
- Khalil A Kadaoui
- R&D Laboratory of the Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon, Switzerland
| | | |
Collapse
|
37
|
Abstract
The production of immunoglobulin A (IgA) in mammals exceeds all other isotypes, and it is mostly exported across mucous membranes. The discovery of IgA and the realization that it dominates humoral mucosal immunity, in contrast to the IgG dominance of the systemic immune system, was early evidence for the distinct nature of mucosal immunology. It is now clear that IgA can function in high-affinity modes for neutralization of toxins and pathogenic microbes, and as a low-affinity system to contain the dense commensal microbiota within the intestinal lumen. The basic map of induction of IgA B cells in the Peyer's patches, which then circulate through the lymph and bloodstream to seed the mucosa with precursors of plasma cells that produce dimeric IgA for export through the intestinal epithelium, has been known for more than 30 years. In this review, we discuss the mechanisms underlying selective IgA induction of mucosal B cells for IgA production and the immune geography of their homing characteristics. We also review the functionality of secretory IgA directed against both commensal organisms and pathogens.
Collapse
|
38
|
Brandtzaeg P. Induction of secretory immunity and memory at mucosal surfaces. Vaccine 2007; 25:5467-84. [PMID: 17227687 DOI: 10.1016/j.vaccine.2006.12.001] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 11/08/2006] [Accepted: 12/01/2006] [Indexed: 11/27/2022]
Abstract
Mucosal epithelia comprise an extensive vulnerable barrier which is reinforced by numerous innate defence mechanisms cooperating intimately with adaptive immunity. Local generation of secretory IgA (SIgA) constitutes the largest humoral immune system of the body. Secretory antibodies function both by performing antigen exclusion at mucosal surfaces and by virus and endotoxin neutralization within epithelial cells without causing tissue damage. SIgA is thus persistently containing commensal bacteria outside the epithelial barrier but can also target invasion of pathogens and penetration of harmful antigens. Resistance to toxin-producing bacteria such as Vibrio cholerae and enterotoxigenic Escherichia coli appears to depend largely on SIgA, and so does herd protection against horizontal faecal-oral spread of enteric pathogens under naïve or immunized conditions--with a substantial innate impact both on cross-reactivity and memory. Like natural infections, live mucosal vaccines or adequate combinations of non-replicating vaccines and mucosal adjuvants, give rise not only to SIgA antibodies but also to longstanding serum IgG and IgA responses. However, there is considerably disparity with regard to migration of memory/effector cells from mucosal inductive sites to secretory effector sites and systemic immune organs. Also, although immunological memory is generated after mucosal priming, this may be masked by a self-limiting response protecting the inductive lymphoid tissue in the gut. The intranasal route of vaccine application targeting nasopharynx-associated lymphoid tissue may be more advantageous for certain infections, but only if successful stimulation is achieved without the use of toxic adjuvants that might reach the central nervous system. The degree of protection obtained after mucosal vaccination ranges from reduction of symptoms to complete inhibition of re-infection. In this scenario, it is often difficult to determine the relative importance of SIgA versus serum antibodies, but infection models in knockout mice strongly support the notion that SIgA exerts a decisive role in protection and cross-protection against a variety of infectious agents. Nevertheless, relatively few mucosal vaccines have been approved for human use, and more basic work is needed in vaccine and adjuvant design, including particulate or live-vectored combinations.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology, Institute and Department of Pathology, University of Oslo, Rikshospitalet-Radiumhospitalet Medical Centre, N-0027 Oslo, Norway.
| |
Collapse
|
39
|
Corthésy B. Roundtrip ticket for secretory IgA: role in mucosal homeostasis? THE JOURNAL OF IMMUNOLOGY 2007; 178:27-32. [PMID: 17182536 DOI: 10.4049/jimmunol.178.1.27] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An important activity of mucosal surfaces is the production of Ab referred to as secretory IgA (SIgA). SIgA serves as the first line of defense against microorganisms through a mechanism called immune exclusion. In addition, SIgA adheres selectively to M cells in intestinal Peyer's patches, thus mediating the transepithelial transport of the Ab molecule from the intestinal lumen to underlying gut-associated organized lymphoid tissue. In Peyer's patches, SIgA binds and is internalized by dendritic cells in the subepithelial dome region. When used as carrier for Ags in oral immunization, SIgA induces mucosal and systemic responses associated with production of anti-inflammatory cytokines and limits activation of dendritic cells. In terms of humoral immunity at mucosal surfaces, SIgA appears thus to combine properties of a neutralizing agent (immune exclusion) and of a mucosal immunopotentiator inducing effector immune responses in a noninflammatory context favorable to preserve local homeostasis of the gastrointestinal tract.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory of the Division of Immunology and Allergy, State University Hospital (Centré Hospitalìer Universitaire Vandois), Rue du Bugnon, BH 19-650, 1011 Lausanne, Switzerland.
| |
Collapse
|
40
|
Casola S, Rajewsky K. B cell recruitment and selection in mouse GALT germinal centers. Curr Top Microbiol Immunol 2006; 308:155-71. [PMID: 16922090 DOI: 10.1007/3-540-30657-9_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In conventionally reared mice germinal centers (GCs) are chronically induced in Peyer's patches (PP), mesenteric lymph node (MLN), and isolated lymphoid follicles (ILF) of gut-associated lymphoid tissues (GALT), as a result of continuous B cell stimulation by commensal bacteria. It is generally thought that BCR-mediated antigen recognition controls the recruitment and thus selection of B cells within GALT GCs. However, recent results challenge this view and suggest that engagement of innate immune receptors by microbial antigens promotes B cell recruitment to, and maintenance within, the GC, irrespective of BCR specificity. We propose a scenario in which microbial determinants presented by follicular dendritic cells (FDCs) to innate receptors on B cells within the GC support the survival and concomitant expansion of somatically mutated, IgA-class-switched B cell clones expressing a variety of BCR specificities. From this pool, B cell mutants recognizing gut-derived antigens through their BCR are either, in GCs, drawn into the process of affinity maturation, or, in the lamina propria (LP) of the gut, locally selected to differentiate into plasmablasts, thus contributing to the continuous production of IgA antibodies required for an efficient protection against commensal and pathogenic microorganisms.
Collapse
Affiliation(s)
- S Casola
- The CBR Institute for Biomedical Research, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
41
|
Wijburg OLC, Uren TK, Simpfendorfer K, Johansen FE, Brandtzaeg P, Strugnell RA. Innate secretory antibodies protect against natural Salmonella typhimurium infection. ACTA ACUST UNITED AC 2006; 203:21-6. [PMID: 16390940 PMCID: PMC2118088 DOI: 10.1084/jem.20052093] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The production of IgA is induced in an antigen-unspecific manner by commensal flora. These secretory antibodies (SAbs) may bind multiple antigens and are thought to eliminate commensal bacteria and self-antigens to avoid systemic recognition. In this study, we addressed the role of "innate" SAbs, i.e., those that are continuously produced in normal individuals, in protection against infection of the gastrointestinal tract. We used polymeric immunoglobulin receptor (pIgR-/-) knock-out mice, which are unable to bind and actively transport dimeric IgA and pentameric IgM to the mucosae, and examined the role of innate SAbs in protection against the invasive pathogen Salmonella typhimurium. In vitro experiments suggested that innate IgA in pIgR-/- serum bound S. typhimurium in a cross-reactive manner which inhibited epithelial cell invasion. Using a "natural" infection model, we demonstrated that pIgR-/- mice are profoundly sensitive to infection with S. typhimurium via the fecal-oral route and, moreover, shed more bacteria that readily infected other animals. These results imply an important evolutionary role for innate SAbs in protecting both the individual and the herd against infections, and suggest that the major role of SAbs may be to prevent the spread of microbial pathogens throughout the population, rather than protection of local mucosal surfaces.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/immunology
- Cell Line
- Colony Count, Microbial
- Dogs
- Feces/microbiology
- Immunity, Innate
- Immunoglobulin A/blood
- Intestine, Small/immunology
- Intestine, Small/microbiology
- Lethal Dose 50
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Peyer's Patches/immunology
- Peyer's Patches/microbiology
- Receptors, Polymeric Immunoglobulin/blood
- Receptors, Polymeric Immunoglobulin/deficiency
- Receptors, Polymeric Immunoglobulin/genetics
- Salmonella Infections, Animal/immunology
- Salmonella Infections, Animal/mortality
- Salmonella Infections, Animal/transmission
- Salmonella typhimurium/pathogenicity
Collapse
Affiliation(s)
- Odilia L C Wijburg
- Department of Microbiology and Immunology, The University of Melbourne, VIC 3010, Australia
| | | | | | | | | | | |
Collapse
|
42
|
Brandtzaeg P, Johansen FE. Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties. Immunol Rev 2005; 206:32-63. [PMID: 16048541 DOI: 10.1111/j.0105-2896.2005.00283.x] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mucosal antibody defense depends on a complex cooperation between local B cells and secretory epithelia. Mucosa-associated lymphoid tissue gives rise to B cells with striking J-chain expression that are seeded to secretory effector sites. Such preferential homing constitutes the biological basis for local production of polymeric immunoglobulin A (pIgA) and pentameric IgM with high affinity to the epithelial pIg receptor that readily can export these antibodies to the mucosal surface. This ultimate functional goal of mucosal B-cell differentiation appears to explain why the J chain is also expressed by IgG- and IgD-producing plasma cells (PCs) occurring at secretory tissue sites; these immunocytes may be considered as 'spin-offs' from early effector clones that through class switch are on their way to pIgA production. Abundant evidence supports the notion that intestinal PCs are largely derived from B cells initially activated in gut-associated lymphoid tissue (GALT). Nevertheless, insufficient knowledge exists concerning the relative importance of M cells, major histocompatibility complex class II-expressing epithelial cells, and professional antigen-presenting cells for the uptake, processing, and presentation of luminal antigens in GALT to accomplish the extensive and sustained priming and expansion of mucosal B cells. Likewise, it is unclear how the germinal center reaction in GALT so strikingly can promote class switch to IgA and expression of J chain. Although B-cell migration from GALT to the intestinal lamina propria is guided by rather well-defined adhesion molecules and chemokines/chemokine receptors, the cues directing preferential homing to different segments of the gut require better definition. This is even more so for the molecules involved in homing of mucosal B cells to secretory effector sites beyond the gut, and in this respect, the role of Waldever's ring (including the palatine tonsils and adenoids) as a regional inductive tissue needs further characterization. Data suggest a remarkable compartmentalization of the mucosal immune system that must be taken into account in the development of effective local vaccines to protect specifically the airways, eyes, oral cavity, small and large intestines, and urogenital tract.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Institute and Department of Pathology, University of Oslo, Rikshospitalet University Hospital, Oslo, Norway.
| | | |
Collapse
|
43
|
Bluth MH, Norowitz KB, Chice S, Shah VN, Nowakowski M, Durkin HG, Smith-Norowitz TA. IgE, CD8(+)CD60+ T cells and IFN-alpha in human immunity to parvovirus B19 in selective IgA deficiency. Hum Immunol 2005; 66:1029-38. [PMID: 16386644 DOI: 10.1016/j.humimm.2005.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/20/2005] [Accepted: 07/22/2005] [Indexed: 11/22/2022]
Abstract
Although IgE is implicated in viral immunity, its role in parvovirus B19 immunity and its relationship to other immunological states has not been studied. Total serum immunoglobulin levels, IgG and IgE anti-parvovirus B19, blood lymphocyte numbers, and epsilon and cytokine specific mRNA were determined in pediatric patients with normal serum IgA levels (IgA+) and selective IgA deficiency (IgA-) on days 0 (initial diagnosis) and 14, and 3 years after recovery (nephelometry, Western blot test, flow cytometry, reverse transcriptase-polymerase chain reaction). We found that both patients had serum IgM, IgG, IgE, and IgA levels within normal ranges on day 0 to 3 years, excluding IgG(1) and IgA in the IgA- patient, which were elevated and negative, respectively, and IgE in the IgA+ patient, which was elevated (>100 IU/ml). The serum IgA+ and IgA- patients made IgE (and IgG) anti-parvovirus B19 at all time points. Excluding CD8(+)CD60+ T cells, determinations of T, B, and NK lymphocyte subsets always were within normal ranges. In both patients, CD8(+)CD60+ T-cell numbers were within normal ranges on day 0, but dramatically increased on day 14 (more than fivefold). At 3 years, they had returned to normal in the IgA+ patient, but remained high in the IgA- patient. On day 0 to 3 years, peripheral blood mononuclear cells of both patients expressed epsilon- and interferon (IFN)-alpha-specific mRNA. On day 0, the IgA+ patient expressed interleukin (IL)-4 and IL-10, but not IL-2, IFN-gamma, or IL-6 mRNA; the IgA- patient expressed IL-6 and IL-10 mRNA, but not IL-4, IL-2, or IFN-gamma mRNA. At 3 years, the IgA+ patient expressed mRNA for all cytokines, but the IgA- patient did not express mRNA for any of these cytokines. Our results suggest that IgE is important in parvovirus B19 immunity, and that IFN-alpha and CD8(+)CD60+ T cells may regulate IgE memory responses and isotype switching.
Collapse
Affiliation(s)
- Martin H Bluth
- Department of Surgery, Center for Allergy and Asthma Research, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Akadegawa K, Ishikawa S, Sato T, Suzuki J, Yurino H, Kitabatake M, Ito T, Kuriyama T, Matsushima K. Breakdown of mucosal immunity in the gut and resultant systemic sensitization by oral antigens in a murine model for systemic lupus erythematosus. THE JOURNAL OF IMMUNOLOGY 2005; 174:5499-506. [PMID: 15843548 DOI: 10.4049/jimmunol.174.9.5499] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Secreted IgA plays a pivotal role in the mucosal immunity to maintain the front line of body defense. We found that the level of fecal IgA was dramatically decreased in aged (NZB x NZW)F(1) (BWF(1)) mice developing lupus nephritis, whereas levels in similarly aged New Zealand Black (NZB) and New Zealand White (NZW) mice remained unchanged compared with young mice. The number of cells obtained from Peyer's patches was markedly decreased in aged BWF(1) mice. Aged BWF(1) mice showed increased susceptibility to pathogenic bacterial infection. Furthermore, oral administration of OVA failed to inhibit secondary IgG response induced by systemic immunization, suggesting defective oral tolerance in aged BWF(1) mice. A significant amount of orally administered OVA was incorporated directly into the intestinal lamina propria in aged BWF(1) mice whereas it was mainly localized in subepithelial domes and interfollicular region in Peyer's patches in young mice. T cells obtained from renal and pulmonary lymph nodes of aged BWF(1) mice that had been orally administered with OVA showed an Ag-specific T cell proliferation, whereas those from young BWF(1), aged NZB, and aged NZW mice did not. Interestingly, aerosol exposure to OVA of aged BWF(1) mice, which had been orally administered with the same Ag, provoked an eosinophil infiltration in the lung. These results demonstrate that mucosal immunity in the gut is impaired and oral Ags induce systemic sensitization instead of oral tolerance in the development of murine lupus.
Collapse
Affiliation(s)
- Kenji Akadegawa
- Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Macpherson AJ, Geuking MB, McCoy KD. Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology 2005; 115:153-62. [PMID: 15885120 PMCID: PMC1782138 DOI: 10.1111/j.1365-2567.2005.02159.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 02/11/2005] [Accepted: 02/15/2005] [Indexed: 12/30/2022] Open
Abstract
Animals contain an enormous load of non-pathogenic bacteria in the lower intestine, which exploit an environment with a stable temperature and abundant carbon sources. Our load of bacteria outnumbers our own cells. In order to survive with such a high number of organisms in very close proximity to host tissues the intestinal mucosa and its immune system is highly adapted. Mucosal immune responses are induced by small numbers of live commensal organisms penetrating the Peyer's patches and persisting in dendritic cells (DC). These DC can induce immunoglobulin A+ (IgA+) B cells, which recirculate through the lymph and bloodstream to populate the lamina propria and secrete protective IgA. Because DC loaded with commensal bacteria do not penetrate further than the mesenteric lymph nodes, immune induction to commensals is confined to the mucosa, allowing strong mucosal immune responses to be induced whilst the systemic immune system remains relatively ignorant of these organisms.
Collapse
Affiliation(s)
- Andrew J Macpherson
- Institute of Experimental Immunology, Universitätsspital, Zürich, Switzerland.
| | | | | |
Collapse
|
46
|
Koganei S, Ito M, Yamamoto K, Matsumoto N. B-1a cell origin of the murine B lymphoma line BCL1 characterized by surface markers and bacterial reactivity of its surface IgM. Immunol Lett 2005; 98:232-44. [PMID: 15860223 DOI: 10.1016/j.imlet.2004.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 11/19/2004] [Accepted: 11/20/2004] [Indexed: 10/26/2022]
Abstract
B cells are divided into two categories: conventional or B-2B cells and B-1B cells, the latter of which are distinguished by their different ontogeny. B cell lymphoma 1 (BCL1), the first-reported case of a spontaneously developed mouse B-lymphoma, expresses CD5, surface IgM, Mac-1, CD43 and low level of B220, and is likely to have B-1a cell origin. However, antigens recognized by IgM produced by the BCL1 cells (BCL1-IgM) have not been identified. Here, we demonstrate that BCL1-IgM reacts with Escherichia coli (E. coli). Our initial finding that several recombinant proteins expressed in E. coli bound to BCL1-B20 prompted us to examine the possibility that BCL1 cells may bind E. coli. Indeed, BCL1 cells bound fluorescein-labeled E. coli. To elucidate the structure on the BCL1 cells responsible for E. coli-binding, we produced a monoclonal antibody capable of inhibiting BCL1 binding to E. coli. The antibody recognizes an idiotypic epitope on the BCL1-IgM. Moreover, polyclonal antibody against IgM and secreted BCL1-IgM purified from the supernatants inhibited BCL1 binding to E. coli. Finally, transfection of non-lymphoid cells with cDNA of heavy and light chains of BCL1-IgM conferred the cells ability to bind E. coli. These results clearly indicate that BCL1-IgM bind E. coli and suggest that BCL1 lymphoma is a typical B-1 cell-derived lymphoma, characterized not only by the surface phenotype, but also by the reactivity of its IgM with commensal bacteria.
Collapse
Affiliation(s)
- Satoru Koganei
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Building, Suite 602, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | |
Collapse
|
47
|
Macpherson AJ, Uhr T. Compartmentalization of the mucosal immune responses to commensal intestinal bacteria. Ann N Y Acad Sci 2005; 1029:36-43. [PMID: 15681741 DOI: 10.1196/annals.1309.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mammals coexist with a luxuriant load of bacteria in the lower intestine (up to 10(12) organisms/g of intestinal contents). Although these bacteria do not cause disease if they remain within the intestinal lumen, they contain abundant immunostimulatory molecules that trigger immunopathology if the bacteria penetrate the body in large numbers. The physical barrier consists only of a single epithelial cell layer with overlying mucus, but comparisons between animals kept in germ-free conditions and those colonized with bacteria show that bacteria induce both mucosal B cells and some T cell subsets; these adaptations are assumed to function as an immune barrier against bacterial penetration, but the mechanisms are poorly understood. In mice with normal intestinal flora, but no pathogens, there is a secretory IgA response against bacterial membrane proteins and other cell wall components. Whereas induction of IgA against cholera toxin is highly T help dependent, secretory IgA against commensal bacteria is induced by both T independent and T dependent pathways. When animals are kept in clean conditions and free of pathogens, there is still a profound intestinal secretory IgA response against the commensal intestinal flora. However, T dependent serum IgG responses against commensal bacteria do not occur in immunocompetent animals unless they are deliberately injected intravenously with 10(4) to 10(6) organisms. In other words, unmanipulated pathogen-free mice are systemically ignorant but not tolerant of their commensal flora despite the mucosal immune response to these organisms. In mice that are challenged with intestinal doses of commensal bacteria, small numbers of commensals penetrate the epithelial cell layer and survive within dendritic cells (DC). These commensal-loaded DC induce IgA, but because they are confined within the mucosal immune system by the mesenteric lymph nodes, they do not induce systemic immune responses. In this way the mucosal immune responses to commensals are geographically and functionally separated from systemic immunity.
Collapse
Affiliation(s)
- Andrew J Macpherson
- Institut für Experimentelle Immunologie, Universitätsspital Zürich, Schmelzbergstrasse, 12, CH8091 Zürich, Switzerland.
| | | |
Collapse
|
48
|
Stoel M, Jiang HQ, van Diemen CC, Bun JCAM, Dammers PM, Thurnheer MC, Kroese FGM, Cebra JJ, Bos NA. Restricted IgA repertoire in both B-1 and B-2 cell-derived gut plasmablasts. THE JOURNAL OF IMMUNOLOGY 2005; 174:1046-54. [PMID: 15634929 DOI: 10.4049/jimmunol.174.2.1046] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mucosal IgA is the most abundantly produced Ig upon colonization of the intestinal tract with commensal organisms in the majority of mammals. The repertoire of these IgA molecules is still largely unknown; a large amount of the mucosal IgA cannot be shown to react with the inducing microorganisms. Analysis of the repertoire of used H chain Ig (V(H)) genes by H-CDR3 spectrotyping, cloning, and sequencing of V(H) genes from murine intestinal IgA-producing plasma cells reveals a very restricted usage of V(H) genes and multiple clonally related sequences. The restricted usage of V(H) genes is a very consistent observation, and is observed for IgA plasma cells derived from B-1 or conventional B-2 cells from different mouse strains. Clonal patterns from all analyzed V(H) gene sequences show mainly independently acquired somatic mutations in contrast to the clonal evolution patterns often observed as a consequence of affinity maturation in germinal center reactions in peripheral lymphoid organs and Peyer's patches. Our data suggest a model of clonal expansion in which many mucosal IgA-producing B cells develop in the absence of affinity maturation. The affinity of most produced IgA might not be the most critical factor for its possible function to control the commensal organisms, but simply the abundance of large amounts of IgA that can bind with relatively unselected affinity to redundant epitopes on such organisms.
Collapse
Affiliation(s)
- Maaike Stoel
- Department of Cell Biology, Section Histology and Immunology, University of Groningen, Faculty Medical Sciences, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Arnold JN, Royle L, Dwek RA, Rudd PM, Sim RB. Human immunoglobulin glycosylation and the lectin pathway of complement activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 564:27-43. [PMID: 16400805 DOI: 10.1007/0-387-25515-x_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- James N Arnold
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | |
Collapse
|
50
|
Cebra JJ, Jiang HQ, Boiko N, Tlaskalova-Hogenova H. The Role of Mucosal Microbiota in the Development, Maintenance, and Pathologies of the Mucosal Immune System. Mucosal Immunol 2005. [PMCID: PMC7150267 DOI: 10.1016/b978-012491543-5/50022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|