1
|
Marsh AC, Zhang Y, Wagley Y, Acevedo PK, Crimp MA, Hankenson K, Hammer ND, Roch A, Boccaccini AR, Chatzistavrou X. Advancements in reliability of mechanical performance of 3D PRINTED Ag-doped bioceramic antibacterial scaffolds for bone tissue engineering. BIOMATERIALS ADVANCES 2025; 166:214039. [PMID: 39326251 DOI: 10.1016/j.bioadv.2024.214039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024]
Abstract
The current gold-standard approach for addressing bone defects in load-bearing applications sees the use of either autographs or allographs. These solutions, however, have limitations as autographs and allographs carry the risk of additional trauma, the threat of disease transmission, and potential donor rejection. An attractive candidate for overcoming the challenges associated with the use of autographs and allographs is a 3D porous scaffold displaying the needed mechanical competency for use in load-bearing applications that can stimulate bone tissue regeneration and provide antibacterial capabilities. To date, no reports document a 3D porous scaffold that fully meets the criteria specified above. In this work, we show how the use of fused filament fabrication (FFF) 3D printing technology in combination with a bimodal distribution of Ag-doped bioactive glass-ceramic (Ag-BG) micro-sized particles can successfully deliver porous 3D scaffolds with attractive and reliable mechanical performance characteristics capable of stimulating bone tissue regeneration and the ability to provide inherent antibacterial properties. To characterize the reliability of the mechanical performance of the FFF-printed Ag-BG scaffolds, Weibull statistics were evaluated for both the compressive (N = 25; m = 13.6 ± 0.9) and flexural (N = 25; m = 7.3 ± 0.7) strengths. Methicillin-resistant Staphylococcus aureus (MRSA) was used both in planktonic and biofilm forms to highlight the advanced antibacterial characteristics of the FFF-printed Ag-BG scaffolds. Biological performance was evaluated in vitro through indirect exposure to human marrow stromal cells (hMSCs), where the FFF-printed Ag-BG scaffolds were found to provide an attractive environment for cell infiltration and mineralization. Our work demonstrates how fused filament fabrication technology can be used with bioactive and antibacterial materials such as Ag-BG to deliver mechanically competent porous 3D scaffolds capable of stimulating bone tissue regeneration while simultaneously providing antibacterial performance capabilities.
Collapse
Affiliation(s)
- Adam C Marsh
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA
| | - Yaozhong Zhang
- Department of Electrical & Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Yadav Wagley
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Parker K Acevedo
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin A Crimp
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA
| | - Kurt Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Aljoscha Roch
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA; Department of Electrical & Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA; Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
2
|
Stieglitz J. Contemporary small-scale subsistence populations offer unique insights into human musculoskeletal health and aging. SCIENCE ADVANCES 2024; 10:eadq1039. [PMID: 39514654 PMCID: PMC11804946 DOI: 10.1126/sciadv.adq1039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Human foragers avoid noncommunicable diseases that are leading causes of mortality, partly because physically active lifestyles promote healthy aging. High activity levels also promote tissue damage accumulation from wear-and-tear, increase risk of injury and disability which compromise productivity, and reduce energetic investments in somatic maintenance given constrained energy expenditure. Constraints intensify when nutrient supply is limited and surplus energy is directed toward pathogen defense and reproduction, as occurred throughout hominin evolution. This paper reviews evidence linking exposomes to musculoskeletal health in subsistence populations, focusing on effects of physical activity, pathogens, diet, and reproduction. Chronic musculoskeletal conditions are common for humans and possibly prehistoric hominins but rarer in quadrupedal apes. We propose that transition to bipedalism ~6 to 8 million years ago constituted an early "mismatch scenario," increasing hominin susceptibility to musculoskeletal conditions vis-à-vis quadrupedal apes due to changes in mechanical loading environments. Mismatched musculoskeletal traits were not targets of selection because of trade-offs favoring bipedal extractive foraging and higher fertility.
Collapse
Affiliation(s)
- Jonathan Stieglitz
- Department of Social and Behavioral Sciences, Toulouse School of Economics, Institute for Advanced Study in Toulouse, Université Toulouse Capitole, Toulouse, France
| |
Collapse
|
3
|
Cheng S, Wang KH, Zhou L, Sun ZJ, Zhang L. Tailoring Biomaterials Ameliorate Inflammatory Bone Loss. Adv Healthc Mater 2024; 13:e2304021. [PMID: 38288569 DOI: 10.1002/adhm.202304021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/08/2024] [Indexed: 05/08/2024]
Abstract
Inflammatory diseases, such as rheumatoid arthritis, periodontitis, chronic obstructive pulmonary disease, and celiac disease, disrupt the delicate balance between bone resorption and formation, leading to inflammatory bone loss. Conventional approaches to tackle this issue encompass pharmaceutical interventions and surgical procedures. Nevertheless, pharmaceutical interventions exhibit limited efficacy, while surgical treatments impose trauma and significant financial burden upon patients. Biomaterials show outstanding spatiotemporal controllability, possess a remarkable specific surface area, and demonstrate exceptional reactivity. In the present era, the advancement of emerging biomaterials has bestowed upon more efficacious solutions for combatting the detrimental consequences of inflammatory bone loss. In this review, the advances of biomaterials for ameliorating inflammatory bone loss are listed. Additionally, the advantages and disadvantages of various biomaterials-mediated strategies are summarized. Finally, the challenges and perspectives of biomaterials are analyzed. This review aims to provide new possibilities for developing more advanced biomaterials toward inflammatory bone loss.
Collapse
Affiliation(s)
- Shi Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Kong-Huai Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| |
Collapse
|
4
|
Han D, Wang W, Gong J, Ma Y, Li Y. Microbiota metabolites in bone: Shaping health and Confronting disease. Heliyon 2024; 10:e28435. [PMID: 38560225 PMCID: PMC10979239 DOI: 10.1016/j.heliyon.2024.e28435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
The intricate interplay between the gut microbiota and bone health has become increasingly recognized as a fundamental determinant of skeletal well-being. Microbiota-derived metabolites play a crucial role in dynamic interaction, specifically in bone homeostasis. In this sense, short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, indirectly promote bone formation by regulating insulin-like growth factor-1 (IGF-1). Trimethylamine N-oxide (TMAO) has been found to increase the expression of osteoblast genes, such as Runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein-2 (BMP2), thus enhancing osteogenic differentiation and bone quality through BMP/SMADs and Wnt signaling pathways. Remarkably, in the context of bone infections, the role of microbiota metabolites in immune modulation and host defense mechanisms potentially affects susceptibility to infections such as osteomyelitis. Furthermore, ongoing research elucidates the precise mechanisms through which microbiota-derived metabolites influence bone cells, such as osteoblasts and osteoclasts. Understanding the multifaceted influence of microbiota metabolites on bone, from regulating homeostasis to modulating susceptibility to infections, has the potential to revolutionize our approach to bone health and disease management. This review offers a comprehensive exploration of this evolving field, providing a holistic perspective on the impact of microbiota metabolites on bone health and diseases.
Collapse
Affiliation(s)
- Dong Han
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Weijiao Wang
- Department of Otolaryngology, Yantaishan Hospital, Yantai 264000, China
| | - Jinpeng Gong
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yupeng Ma
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yu Li
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| |
Collapse
|
5
|
Weian W, Yunxin Y, Ziyan W, Qianzhou J, Lvhua G. Gallic acid: design of a pyrogallol-containing hydrogel and its biomedical applications. Biomater Sci 2024; 12:1405-1424. [PMID: 38372381 DOI: 10.1039/d3bm01925j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Polyphenol hydrogels have garnered widespread attention due to their excellent adhesion, antioxidant, and antibacterial properties. Gallic acid (GA) is a typical derivative of pyrogallol that is used as a hydrogel crosslinker or bioactive additive and can be used to make multifunctional hydrogels with properties superior to those of widely studied catechol hydrogels. Furthermore, compared to polymeric tannic acid, gallic acid is more suitable for chemical modification, thus broadening its range of applications. This review focuses on multifunctional hydrogels containing GA, aiming to inspire researchers in future biomaterial design. We first revealed the interaction mechanisms between GA molecules and between GA and polymers, analyzed the characteristics GA imparts to hydrogels and compared GA hydrogels with hydrogels containing catechol. Subsequently, in this paper, various methods of integrating GA into hydrogels and the applications of GA in biomedicine are discussed, finally assessing the current limitations and future development potential of GA. In summary, GA, a natural small molecule polyphenol with excellent functionality and diverse interaction modes, has great potential in the field of biomedical hydrogels.
Collapse
Affiliation(s)
- Wu Weian
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Ye Yunxin
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Wang Ziyan
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Jiang Qianzhou
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Guo Lvhua
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| |
Collapse
|
6
|
Cheng Y, Jin W, Zheng L, Huang X, Luo S, Hong W, Liao J, Samruajbenjakun B, Leethanakul C. The role of autophagy in SIM mediated anti-inflammatory osteoclastogenesis through NLRP3 signaling pathway. Immun Inflamm Dis 2024; 12:e1145. [PMID: 38270300 PMCID: PMC10777745 DOI: 10.1002/iid3.1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/23/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Inflammatory bone resorption is a prominent risk factor for implantation failure. Simvastatin (SIM) has anti-inflammatory effects independent of cholesterol lowering and reduces osteoclastogenesis by decreasing both the number and activity of osteoclasts. However, the specific mechanism of inflammatory bone loss alleviation by SIM remains to be elucidated. We hypothesized that SIM relieves inflammatory bone loss by modulating autophagy and suppressing the NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) signaling pathway. METHODS AND RESULTS RAW264.7 cells were stimulated by lipopolysaccharide (LPS) after being pretreated with various concentrations of SIM. Osteoclast (OC) differentiation, formation and activity were evaluated by tartrate-resistant acid phosphatase staining, F-actin ring staining and bone resorption pit assays, respectively. We observed autophagosomes by transmission electron microscopy. Then NLRP3 inhibitor MCC950 was used to further explore the corresponding molecular mechanism underlying anti-inflammatory bone resorption, the expression of autophagy-related proteins and NLRP3 signaling pathway factors in pre-OCs were evaluated by western blot analysis, and the expression of OC-specific molecules was analyzed using reverse transcription-quantitative polymerase chain reaction. The results showed that SIM decreased the expression of tumor necrosis factor-α, whereas increased Interleukin-10. In addition, SIM inhibited LPS-induced OC differentiation, formation, bone resorption activity, the level of autophagosomes, and OC-specific markers. Furthermore, SIM significantly suppressed autophagy by downregulating LC3II, Beclin1, ATG7, and NLRP3-related proteins expression while upregulating P62 under inflammatory conditions. CONCLUSIONS SIM may reduce autophagy secretion to attenuate LPS-induced osteoclastogenesis and the NLRP3 signaling pathway participates in this process, thus providing theoretical basis for the application of this drug in peri-implantitis.
Collapse
Affiliation(s)
- Yuting Cheng
- Faculty of DentistryPrince of Songkla UniversityHat YaiThailand
- School/Hospital of StomatologyGuizhou Medical UniversityGuiyangChina
| | - Wenjun Jin
- School/Hospital of StomatologyGuizhou Medical UniversityGuiyangChina
| | - Lin Zheng
- School/Hospital of StomatologyGuizhou Medical UniversityGuiyangChina
| | | | - Shanshan Luo
- School/Hospital of StomatologyGuizhou Medical UniversityGuiyangChina
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of EducationGuizhou Medical UniversityGuiyangChina
| | - Jian Liao
- School/Hospital of StomatologyGuizhou Medical UniversityGuiyangChina
| | | | | |
Collapse
|
7
|
Han N, Li X, Du J, Xu J, Guo L, Liu Y. The impacts of oral and gut microbiota on alveolar bone loss in periodontitis. J Periodontal Res 2023; 58:1139-1147. [PMID: 37712722 DOI: 10.1111/jre.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 07/20/2023] [Indexed: 09/16/2023]
Abstract
Periodontitis, a chronic infectious disease, primarily arises from infections and the invasion of periodontal pathogens. This condition is typified by alveolar bone loss resulting from host immune responses and inflammatory reactions. Periodontal pathogens trigger aberrant inflammatory reactions within periodontal tissues, thereby exacerbating the progression of periodontitis. Simultaneously, these pathogens and metabolites stimulate osteoclast differentiation, which leads to alveolar bone resorption. Moreover, a range of systemic diseases, including diabetes, postmenopausal osteoporosis, obesity and inflammatory bowel disease, can contribute to the development and progression of periodontitis. Many studies have underscored the pivotal role of gut microbiota in bone health through the gut-alveolar bone axis. The circulation may facilitate the transfer of gut pathogens or metabolites to distant alveolar bone, which in turn regulates bone homeostasis. Additionally, gut pathogens can elicit gut immune responses and direct immune cells to remote organs, potentially exacerbating periodontitis. This review summarizes the influence of oral microbiota on the development of periodontitis as well as the association between gut microbiota and periodontitis. By uncovering potential mechanisms of the gut-bone axis, this analysis provides novel insights for the targeted treatment of pathogenic bacteria in periodontitis.
Collapse
Affiliation(s)
- Nannan Han
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Yang M, Shen Z, Zhang X, Song Z, Zhang Y, Lin Z, Chen L. Ferroptosis of macrophages facilitates bone loss in apical periodontitis via NRF2/FSP1/ROS pathway. Free Radic Biol Med 2023; 208:334-347. [PMID: 37619958 DOI: 10.1016/j.freeradbiomed.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Apical periodontitis (AP) is an infectious disease that causes periapical tissue inflammation and bone destruction. Ferroptosis, a novel type of regulated cell death, is closely associated with inflammatory diseases and the regulation of bone homeostasis. However, the exact involvement of ferroptosis in the bone loss of AP is not fully understood. In this study, human periapical tissues were collected, and a mouse model was established to investigate the role of ferroptosis in AP. Colocalization staining revealed that ferroptosis in macrophages contributes to the inflammatory bone loss associated with AP. A cell model was constructed using RAW 264.7 cells stimulated with LPS to further explore the mechanism underlying ferroptosis in macrophages upon inflammatory conditions, which exhibited ferroptotic characteristics. Moreover, downregulation of NRF2 was observed in ferroptotic macrophages, while overexpression of NRF2 upregulated the level of FSP1, leading to a reduction in reactive oxygen species (ROS) in macrophages. Additionally, ferroptotic macrophages released TNF-α, which activated the p38 MAPK signaling pathway and further increased ROS accumulation in macrophages. In vitro co-culture experiments demonstrated that the osteogenic ability of mouse bone marrow stromal cells (BMSCs) was suppressed with the stimulation of TNF-α from ferroptotic macrophages. These findings suggest that the TNF-α autocrine-paracrine loop in ferroptotic macrophages can inhibit osteogenesis in BMSCs through the NRF2/FSP1/ROS signaling pathway, leading to bone loss in AP. This study highlights the potential therapeutic value of targeting ferroptosis in the treatment of inflammatory bone diseases.
Collapse
Affiliation(s)
- Mingmei Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Zongshan Shen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Xinfang Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Zhi Song
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Yong Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Zhengmei Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China.
| | - Lingling Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Roato I, Pavone L, Pedraza R, Bosso I, Baima G, Erovigni F, Mussano F. Denosumab and Zoledronic Acid Differently Affect Circulating Immune Subsets: A Possible Role in the Onset of MRONJ. Cells 2023; 12:2430. [PMID: 37887274 PMCID: PMC10605172 DOI: 10.3390/cells12202430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
This work investigated whether the anti-resorptive drugs (ARDs) zoledronic acid (Zol) and denosumab (Dmab) affect differently the levels of circulating immune cell subsets, possibly predicting the risk of developing medication-related ONJ (MRONJ) during the first 18 months of treatment. Blood samples were collected from 10 bone metastatic breast cancer patients receiving cyclin inhibitors at 0, 6, 12, and 18 months from the beginning of Dmab or Zol treatment. Eight breast cancer patients already diagnosed with MRONJ and treated with cyclin inhibitors and ARDs were in the control group. PBMCs were isolated; the trend of circulating immune subsets during the ARD treatment was monitored, and 12 pro-inflammatory cytokines were analyzed in sera using flow cytometry. In Dmab-treated patients, activated T cells were stable or increased, as were the levels of IL-12, TNF-α, GM-CSF, IL-5, and IL-10, sustaining them. In Zol-treated patients, CD8+T cells decreased, and the level of IFN-γ was undetectable. γδT cells were not altered in Dmab-treated patients, while they dramatically decreased in Zol-treated patients. In the MRONJ control group, Zol-ONJ patients showed a reduction in activated T cells and γδT cells compared to Dmab-ONJ patients. Dmab was less immunosuppressive than Zol, not affecting γδT cells and increasing activated T cells.
Collapse
Affiliation(s)
- Ilaria Roato
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, Via Nizza 230, 10126 Turin, Italy; (L.P.); (R.P.); (G.B.); (F.M.)
| | - Lorenzo Pavone
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, Via Nizza 230, 10126 Turin, Italy; (L.P.); (R.P.); (G.B.); (F.M.)
| | - Riccardo Pedraza
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, Via Nizza 230, 10126 Turin, Italy; (L.P.); (R.P.); (G.B.); (F.M.)
- Institute of Sciences and Technologies for Sustainable Energy and Mobility, National Council of Research, 10135 Turin, Italy
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
| | - Ilaria Bosso
- CIR-Dental School, Città della Scienza e della Salute, 10126 Turin, Italy; (I.B.); (F.E.)
| | - Giacomo Baima
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, Via Nizza 230, 10126 Turin, Italy; (L.P.); (R.P.); (G.B.); (F.M.)
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
| | - Francesco Erovigni
- CIR-Dental School, Città della Scienza e della Salute, 10126 Turin, Italy; (I.B.); (F.E.)
| | - Federico Mussano
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, Via Nizza 230, 10126 Turin, Italy; (L.P.); (R.P.); (G.B.); (F.M.)
| |
Collapse
|
10
|
Xiao J, Huang X, Wang H, Peng Y, Liu H, Huang H, Ma L, Wang C, Wang X, Cao Z. CKIP-1 Promotes P. gingivalis-Induced Inflammation of Periodontal Soft Tissues by Inhibiting Autophagy. Inflammation 2023; 46:1997-2010. [PMID: 37351817 DOI: 10.1007/s10753-023-01856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
As a chronic inflammatory disease, periodontitis involves many biological processes including autophagy. At the same time, casein kinase 2 interacting protein-1 (CKIP-1) was reported to play a role in regulation of inflammation. But whether CKIP-1 and autophagy interact in periodontitis remains unclear. In this paper, our research team verified the levels of CKIP-1 expression and autophagy increase in the periodontal tissues of a ligature-induced periodontitis mouse model. And this result was also confirmed in Porphyromonas gingivalis (Pg)-induced human gingival fibroblasts (HGF) and human periodontal ligament cells (PDLC). We also showed the autophagy level in periodontal tissues is higher in Ckip-1 knockout (KO) mice than wild type (WT). At the same time, CKIP-1 knockdown lentivirus was used in PDLC and HGF, and it was found that silencing CKIP-1 significantly activated autophagy. Unfortunately, the regulatory role of autophagy in periodontitis is still unclear. Then, the autophagy agonist Rapamycin and inhibitor 3-MA were used in a periodontitis mouse model to investigate periodontal tissue destruction. We found the inflammation in periodontal tissue was reduced when autophagy activated. All these conclusions have been verified both in vivo and in vitro experiments. Finally, our research proved that silencing CKIP-1 reduces the expression of inflammatory cytokines in Pg-induced PDLC and HGF by regulating autophagy. Overall, a new role for CKIP-1 in regulating periodontal tissue inflammation was demonstrated in our study, and it is possible to treat periodontitis by targeting the CKIP-1 gene.
Collapse
Affiliation(s)
- Junhong Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xin Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Huiyi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yan Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Heyu Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Hantao Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Li Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Chuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xiaoxuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
11
|
Chen Y, Liu Y, Xia H, Xia G, Xu J, Lin S, Guo L, Liu Y. The effect of the Litcubanine A on the treatment of murine experimental periodontitis by inhibiting monocyte-macrophage chemotaxis and osteoclast differentiation. J Periodontal Res 2023; 58:948-958. [PMID: 37409514 DOI: 10.1111/jre.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Periodontal disease is an inflammatory disease of periodontal tissues that is closely connected with systemic diseases. During periodontitis, the inappropriate recruitment and activation of monocytes-macrophages causes an increase in osteoclast activity and disrupts bone homeostasis. Therefore, it is a promising therapeutic strategy to treat periodontitis by regulating the functions of monocytes-macrophages. Litcubanine A (LA) is an isoquinoline alkaloid extracted from the traditional Chinese medicine Litsea cubeba, which was proven to have reproducible anti-inflammatory effects, but its regulatory role on bone homeostasis in periodontitis is still not clear. METHODS In this study, zebrafish experiments and a mouse ligature-induced periodontitis model were performed, and histological analysis was used to investigate the effect of LA on macrophage chemotaxis under the inflammatory environment. Real-time PCR was used to detect the regulatory effect of LA (100 nM ~ 100 μM) on the chemotaxis function of macrophages induced by LPS. Apoptosis assay and flow cytometry were used to elucidate the influence of LA on macrophage apoptosis and proliferation. To further clarify the regulatory role of LA on macrophage osteoclast differentiation, real-time PCR, histological analysis, western blot, and micro-computed tomography (micro-CT) were performed in vivo and in vitro to verify the impact of LA on bone homeostasis. RESULTS Compared with the control group, the chemotaxis function of macrophage was significantly attenuated by LA in vivo. LA could significantly inhibit the expression of genes encoding the chemokine receptors Ccr1 and Cxcr4, and its ligand chemokine Cxcl12 in macrophages, and suppresses the differentiation of osteoclastic precursors to osteoclasts through the MAPK signaling pathway. There were significantly lower osteoclast differentiation and bone loss in the LA group compared with the control in the ligature-induced periodontitis model. CONCLUSION LA is a promising candidate for the treatment of periodontitis through its reproducible functions of inhibiting monocyte-macrophage chemotaxis and osteoclast differentiation.
Collapse
Affiliation(s)
- Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Yao H, Du Y, Jiang B, Liao Y, Zhao Y, Yin M, Li T, Sheng Y, Ji Y, Du M. Sulforaphene suppresses RANKL-induced osteoclastogenesis and LPS-induced bone erosion by activating Nrf2 signaling pathway. Free Radic Biol Med 2023; 207:48-62. [PMID: 37423561 DOI: 10.1016/j.freeradbiomed.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND AND PURPOSE Inflammatory disorders have been found to induce bone loss through sustained and persistent activation of osteoclast differentiation, leading to heightened bone resorption. The current pharmacological interventions for combating bone loss to harbor adverse effects or contraindications. There is a pressing need to identify drugs with fewer side effects. EXPERIMENTAL APPROACH The effect and underlying mechanism of sulforaphene (LFS) on osteoclast differentiation were illustrated in vitro and in vivo with RANKL-induced Raw264.7 cell line osteoclastogenesis and lipopolysaccharide (LPS)-induced bone erosion model. KEY RESULTS In this study, LFS has been shown to effectively impede the formation of mature osteoclasts induced from both Raw264.7 cell line and bone marrow macrophages (BMMs), mainly at the early stage. Further mechanistic investigations uncovered that LFS suppressed AKT phosphorylation. SC-79, a potent AKT activator, was found to reverse the inhibitory impact of LFS on osteoclast differentiation. Moreover, transcriptome sequencing analysis revealed that treatment with LFS led to a significant upregulation in the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant-related genes. Then it's validated that LFS could promote NRF2 expression and nuclear translocation, as well as effectively resist oxidative stress. NRF2 knockdown reversed the suppression effect of LFS on osteoclast differentiation. In vivo experiments provide convincing evidence that LFS is protective against LPS-induced inflammatory osteolysis. CONCLUSION AND IMPLICATIONS These well-grounded and promising findings suggest LFS as a promising agent to addressing oxidative-stress related diseases and bone loss disorders.
Collapse
Affiliation(s)
- Hantao Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yangge Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bulin Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yilin Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoyu Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mengjie Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ting Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yue Sheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
13
|
Roato I, Mauceri R, Notaro V, Genova T, Fusco V, Mussano F. Immune Dysfunction in Medication-Related Osteonecrosis of the Jaw. Int J Mol Sci 2023; 24:ijms24097948. [PMID: 37175652 PMCID: PMC10177780 DOI: 10.3390/ijms24097948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The pathogenesis of medication-related osteonecrosis of the jaw (MRONJ) is multifactorial and there is a substantial consensus on the role of antiresorptive drugs (ARDs), including bisphosphonates (BPs) and denosumab (Dmab), as one of the main determinants. The time exposure, cumulative dose and administration intensity of these drugs are critical parameters to be considered in the treatment of patients, as cancer patients show the highest incidence of MRONJ. BPs and Dmab have distinct mechanisms of action on bone, but they also exert different effects on immune subsets which interact with bone cells, thus contributing to the onset of MRONJ. Here, we summarized the main effects of ARDs on the different immune cell subsets, which consequently affect bone cells, particularly osteoclasts and osteoblasts. Data from animal models and MRONJ patients showed a deep interference of ARDs in modulating immune cells, even though a large part of the literature concerns the effects of BPs and there is a lack of data on Dmab, demonstrating the need to further studies.
Collapse
Affiliation(s)
- Ilaria Roato
- CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Rodolfo Mauceri
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90133 Palermo, Italy
| | - Vincenzo Notaro
- CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Vittorio Fusco
- Medical Oncology Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
- Department of Integrated Research Activity and Innovation (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Federico Mussano
- CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
14
|
Muneyama T, Hasegawa T, Yamamoto T, Hongo H, Haraguchi-Kitakamae M, Abe M, Maruoka H, Ishizu H, Shimizu T, Sasano Y, Li M, Amizuka N. Histochemical assessment on osteoclasts in long bones of toll-like receptor 2 (TLR2) deficient mice. J Oral Biosci 2023; 65:163-174. [PMID: 37088152 DOI: 10.1016/j.job.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023]
Abstract
OBJECTIVE Toll-like receptor 2 (TLR2), recognizes a wide variety of pathogen-associated molecular patterns such as lipopolysaccharides, peptidoglycans, and lipopeptides, and is generally believed to be present in monocytes, macrophages, dendritic cells, and vascular endothelial cells. However, no histological examination of osteoclasts, which differentiate from precursors common to macrophages/monocytes, has been performed in a non-infected state of TLR2 deficiency. The objective of this study was to examine the histological properties and function of osteoclasts in the long bones of 8-week-old male TLR2 deficient (TLR2-/-) mice to gain insight into TLR2 function in biological circumstances without microbial infection. METHODS Eight-week-old male wild-type and TLR2-/- mice were fixed with paraformaldehyde solution, and their tibiae and femora were used for micro-CT analysis, immunohistochemistry, transmission electron microscopy, and real-time PCR analysis. RESULTS TLR2-/- tibiae and femora exhibited increased bone volume of metaphyseal trabeculae and elevated numbers of TRAP-positive osteoclasts. However, the number of multinucleated TRAP-positive osteoclasts was reduced, whereas mononuclear TRAP-positive cells increased, despite the high expression levels of Dc-Stamp and Oc-Stamp. Although TRAP-positive multinucleated and mononuclear osteoclasts showed the immunoreactivity and elevated expression of RANK and siglec-15, they revealed weak cathepsin K-positivity and less incorporation of the mineralized bone matrix, and often missing ruffled borders. It seemed likely that, despite the increased numbers, TLR2-/- osteoclasts reduced cell fusion and bone resorption activity. CONCLUSION It seems likely that even without bacterial infection, TLR2 might participate in cell fusion and subsequent bone resorption of osteoclasts.
Collapse
Affiliation(s)
- Takafumi Muneyama
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan.
| | - Tomomaya Yamamoto
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan; Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces, Sapporo, Japan
| | - Hiromi Hongo
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Mai Haraguchi-Kitakamae
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan; Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Haruhi Maruoka
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hotaka Ishizu
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan; Orthopedics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Shimizu
- Orthopedics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Sasano
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, The School of Stomatology, Shandong University, Jinan, China
| | - Norio Amizuka
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Becker RC. Evaluating chest pain in patients with post COVID conditions permission to think outside of the box. J Thromb Thrombolysis 2023; 55:592-603. [PMID: 37052772 PMCID: PMC10098243 DOI: 10.1007/s11239-023-02808-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Chest pain is among the most common symptoms of post-COVID-19 Conditions (PCC) that prompts medical attention. Because the SARS-CoV-2 virus has proclivity for many organs and organ systems in the chest, ranging from the heart, lungs, great vessels, lymphatics, and peripheral nerves, clinicians evaluating patients with chest pain must consider a broad differential diagnosis and take a comprehensive approach to management.
Collapse
|
16
|
Ma C, Gao J, Liang J, Wang F, Xu L, Bu J, He B, Liu G, Niu R, Liu G. CCL12 induces trabecular bone loss by stimulating RANKL production in BMSCs during acute lung injury. Exp Mol Med 2023; 55:818-830. [PMID: 37009797 PMCID: PMC10167364 DOI: 10.1038/s12276-023-00970-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 04/04/2023] Open
Abstract
In the last three years, the capacity of health care systems and the public health policies of governments worldwide were challenged by the spread of SARS-CoV-2. Mortality due to SARS-CoV-2 mainly resulted from the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Moreover, millions of people who survived ALI/ARDS in SARS-CoV-2 infection suffer from multiple lung inflammation-induced complications that lead to disability and even death. The lung-bone axis refers to the relationship between lung inflammatory diseases (COPD, asthma, and cystic fibrosis) and bone diseases, including osteopenia/osteoporosis. Compared to chronic lung diseases, the influence of ALI on the skeleton has not been investigated until now. Therefore, we investigated the effect of ALI on bone phenotypes in mice to elucidate the underlying mechanisms. In vivo bone resorption enhancement and trabecular bone loss were observed in LPS-induced ALI mice. Moreover, chemokine (C-C motif) ligand 12 (CCL12) accumulated in the serum and bone marrow. In vivo global ablation of CCL12 or conditional ablation of CCR2 in bone marrow stromal cells (BMSCs) inhibited bone resorption and abrogated trabecular bone loss in ALI mice. Furthermore, we provided evidence that CCL12 promoted bone resorption by stimulating RANKL production in BMSCs, and the CCR2/Jak2/STAT4 axis played an essential role in this process. Our study provides information regarding the pathogenesis of ALI and lays the groundwork for future research to identify new targets to treat lung inflammation-induced bone loss.
Collapse
Affiliation(s)
- Chao Ma
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Juan Gao
- Department of Gynecology and Obstetrics, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Jun Liang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Feizhen Wang
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Long Xu
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Jinhui Bu
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Bo He
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Guangpu Liu
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Ru Niu
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Guangwang Liu
- Department of Orthopedic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, 199 Jiefang South Road, Xuzhou, 221009, China.
| |
Collapse
|
17
|
Aldahamsheh O, Burger LD, Evaniew N, Swamy G, Jacobs WB, Thomas KC, Nicholls F. Unexpected intraoperative positive culture (UIPC) in presumed aseptic revision spine surgery: a systematic review and meta-analysis. Spine J 2023; 23:492-503. [PMID: 36336255 DOI: 10.1016/j.spinee.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND CONTEXT Unexpected intraoperative positive culture (UIPC) has recently become increasingly common in revision spine surgery, being implicated as an etiological factor in revision spine surgery indications such as implant failure or pseudoarthrosis. PURPOSE Utilizing the available literature, this study aimed to investigate the prevalence of UIPC, and its clinical importance in patients following presumed aseptic revision spine surgery. STUDY DESIGN Meta-analysis and systematic review. METHODS Multiple databases and reference articles were searched until May 2022. The primary outcome was the pooled rate of UIPC, and the secondary outcomes were the microbiological profile of UIPC, the risk factors of UIPC, and the clinical fate of UIPC. RESULTS Twelve studies were eligible for meta-analysis, with a total of 1,108 patients. The pooled rate of UIPC was 24.3% (95% CI=15.8%-35.5%) in adult patients, and 43.2% (95% CI=32.9%-54.2%) in pediatric patients. The UIPC rate was higher when both conventional wound culture and sonication were used together compared to sonication alone or conventional wound culture alone. The rates were 28.9%, 23.6%, and 15.5 %, respectively. In adult and pediatric patients, the most commonly cultured organism was Cutibacterium acnes (42.5% vs 57.7%), followed by coagulase-negative Staphylococcus (39.9% vs 30.5%). Male patients had a higher rate of UIPC (OR= 2.6, 95% CI=1.84-3.72, p<.001), as did patients with a longer fusion construct (MD=0.76, 95% CI=0.27-1.25, p<.001). CONCLUSIONS The pooled rate of UIPC in aseptic spine revision surgery was 24.3% and 43.2% in adult and pediatric patients respectively. The most common organisms were C. acnes and coagulase-negative Staphylococcus. The impact of UIPC on patients` clinical outcomes is not fully understood. We are not able to recommend routine culture in revision spine surgery, however, adding sonication may aid in the diagnosis of UIPC. There is not enough evidence to recommend specific treatment strategies at this time, and further studies are warranted.
Collapse
Affiliation(s)
- Osama Aldahamsheh
- Division of Orthopedic Surgery-Spine Program, Department of Surgery, University of Calgary, 1403 - 29 St, NW Calgary, Alberta, Canada.
| | - Lukas D Burger
- Division of Orthopedic Surgery-Spine Program, Department of Surgery, University of Calgary, 1403 - 29 St, NW Calgary, Alberta, Canada
| | - Nathan Evaniew
- Division of Orthopedic Surgery-Spine Program, Department of Surgery, University of Calgary, 1403 - 29 St, NW Calgary, Alberta, Canada
| | - Ganesh Swamy
- Division of Orthopedic Surgery-Spine Program, Department of Surgery, University of Calgary, 1403 - 29 St, NW Calgary, Alberta, Canada
| | - W Bradley Jacobs
- Division of Orthopedic Surgery-Spine Program, Department of Surgery, University of Calgary, 1403 - 29 St, NW Calgary, Alberta, Canada
| | - Kenneth C Thomas
- Division of Orthopedic Surgery-Spine Program, Department of Surgery, University of Calgary, 1403 - 29 St, NW Calgary, Alberta, Canada
| | - Fred Nicholls
- Division of Orthopedic Surgery-Spine Program, Department of Surgery, University of Calgary, 1403 - 29 St, NW Calgary, Alberta, Canada
| |
Collapse
|
18
|
Molecular Basis beyond Interrelated Bone Resorption/Regeneration in Periodontal Diseases: A Concise Review. Int J Mol Sci 2023; 24:ijms24054599. [PMID: 36902030 PMCID: PMC10003253 DOI: 10.3390/ijms24054599] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Periodontitis is the sixth most common chronic inflammatory disease, destroying the tissues supporting the teeth. There are three distinct stages in periodontitis: infection, inflammation, and tissue destruction, where each stage has its own characteristics and hence its line of treatment. Illuminating the underlying mechanisms of alveolar bone loss is vital in the treatment of periodontitis to allow for subsequent reconstruction of the periodontium. Bone cells, including osteoclasts, osteoblasts, and bone marrow stromal cells, classically were thought to control bone destruction in periodontitis. Lately, osteocytes were found to assist in inflammation-related bone remodeling besides being able to initiate physiological bone remodeling. Furthermore, mesenchymal stem cells (MSCs) either transplanted or homed exhibit highly immunosuppressive properties, such as preventing monocytes/hematopoietic precursor differentiation and downregulating excessive release of inflammatory cytokines. In the early stages of bone regeneration, an acute inflammatory response is critical for the recruitment of MSCs, controlling their migration, and their differentiation. Later during bone remodeling, the interaction and balance between proinflammatory and anti-inflammatory cytokines could regulate MSC properties, resulting in either bone formation or bone resorption. This narrative review elaborates on the important interactions between inflammatory stimuli during periodontal diseases, bone cells, MSCs, and subsequent bone regeneration or bone resorption. Understanding these concepts will open up new possibilities for promoting bone regeneration and hindering bone loss caused by periodontal diseases.
Collapse
|
19
|
Alipour M, Sharifi S, Samiei M, Shahi S, Aghazadeh M, Dizaj SM. Synthesis, characterization, and evaluation of Hesperetin nanocrystals for regenerative dentistry. Sci Rep 2023; 13:2076. [PMID: 36746996 PMCID: PMC9902453 DOI: 10.1038/s41598-023-28267-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Hesperetin (HS), a metabolite of hesperidin, is a polyphenolic component of citrus fruits. This ingredient has a potential role in bone strength and the osteogenic differentiation. The bone loss in the orofacial region may occur due to the inflammation response of host tissues. Nanotechnology applications have been harshly entered the field of regenerative medicine to improve the efficacy of the materials and substances. In the current study, the hesperetin nanocrystals were synthesized and characterized. Then, the anti-inflammatory and antioxidative effects of these nanocrystals were evaluated on inflamed human Dental Pulp Stem Cells (hDPSCs) and monocytes (U937). Moreover, the osteoinduction capacity of these nanocrystals was assessed by gene and protein expression levels of osteogenic specific markers including RUNX2, ALP, OCN, Col1a1, and BSP in hDPSCs. The deposition of calcium nodules in the presence of hesperetin and hesperetin nanocrystals was also assessed. The results revealed the successful fabrication of hesperetin nanocrystals with an average size of 100 nm. The levels of TNF, IL6, and reactive oxygen species (ROS) in inflamed hDPSCs and U937 significantly decreased in the presence of hesperetin nanocrystals. Furthermore, these nanocrystals induced osteogenic differentiation in hDPSCs. These results demonstrated the positive and effective role of fabricated nanocrystal forms of this natural ingredient for regenerative medicine purposes.
Collapse
Affiliation(s)
- Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Daneshgah St, Golgasht St, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Daneshgah St, Golgasht St, Tabriz, Iran
| | - Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Daneshgah St, Golgasht St, Tabriz, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Daneshgah St, Golgasht St, Tabriz, Iran.
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Daneshgah St, Golgasht St, Tabriz, Iran.
| |
Collapse
|
20
|
Patel S, Baker L, Perez J, Vulcano E, Kaplan J, Aiyer A. Risk Factors for Nonunion Following Ankle Arthrodesis: A Systematic Review and Meta-analysis. Foot Ankle Spec 2023; 16:60-77. [PMID: 33660542 DOI: 10.1177/1938640021998493] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Nonunion is a postoperative complication after ankle arthrodesis (AA), which leads to increased morbidity and revision rates. Previous studies have identified risk factors for nonunion following AA, but no meta-analysis has been performed to stratify risk factors based on strength of evidence. METHODS Abstracts and full-text articles were screened by 2 independent reviewers. Relevant data were extracted from the included studies. Random effects meta-analyses were summarized as forest plots of individual study and pooled random effect results. RESULTS Database search yielded 13 studies involving 987 patients were included, and 37 potential risk factors for nonunion. Meta-analysis found 5 significant risk factors for nonunion post-AA. Strong evidence supports male gender (OR: 1.96; 95% CI: 1.13-3.41), smoking (OR: 2.89; 95% CI: 1.23-6.76), and history of operative site infection prior to arthrodesis (OR: 2.40; 95% CI: 1.13-5.09) as predictors for nonunion following AA. There was moderate evidence supporting history of open injury (OR: 5.95; 95% CI: 2.31-15.38) and limited evidence for preoperative avascular necrosis (OR: 13.16; 95% CI: 2.17-79.61) as possible risk factors for nonunion. CONCLUSION The results of our meta-analysis suggest that male gender, smoking, and history of operative site infection have strong evidence and that history of open injury and avascular necrosis also have evidence as risk factors for nonunion. Surgeons should be cognizant of these risks when performing AA and closely follow up with patients with the aforementioned risk factors to ensure postoperative success. LEVELS OF EVIDENCE Level V: Systematic review of cohort and case-control studies.
Collapse
Affiliation(s)
- Sumit Patel
- Department of Orthopaedics at Miller School of Medicine, University of Miami, Miami, Florida
| | - Lauren Baker
- Department of Orthopaedics at Miller School of Medicine, University of Miami, Miami, Florida
| | - Jose Perez
- Department of Orthopaedics at Miller School of Medicine, University of Miami, Miami, Florida
| | - Ettore Vulcano
- Leni & Peter W. May Department of Orthopaedic Surgery, Mount Sinai, New York City, New York
| | | | - Amiethab Aiyer
- Department of Orthopaedics at Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
21
|
Cleminson JR, Pasco JA, Bortolasci CC, Holloway-Kew KL, Hodge JM, Anderson KB, Kotowicz MA, Samarasinghe RM, Williams LJ. Lipopolysaccharide-binding protein and bone health: data from a population-based sample of men. Osteoporos Int 2023; 34:309-317. [PMID: 36409359 DOI: 10.1007/s00198-022-06602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
UNLABELLED We aimed to investigate the association between serum lipopolysaccharide-binding protein (LBP) and bone health in men. LBP was associated with lower bone density at the mid-forearm and the quantitative heel ultrasound measure, broadband ultrasound attenuation, for heavier participants. Data do not support clear associations between serum LBP and bone health. INTRODUCTION The objective of this study was to investigate the association between serum lipopolysaccharide-binding protein (LBP) and potential downstream effects on skeletal density, quality, and turnover in a population-based sample of men. METHODS This cross-sectional study utilised data from 1149 men (aged 20-96 year) enrolled in the Geelong Osteoporosis Study. Blood samples were obtained and lipopolysaccharide-binding protein (LBP), bone resorption marker, C-telopeptide (CTx), and formation marker, type 1 procollagen amino-terminal-propeptide (P1NP), were measured. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry. Stiffness Index (SI), broadband ultrasound attenuation (BUA), and speed of sound (SOS) were derived from quantitative heel ultrasound (QUS). Linear regression models were developed to test associations between log-transformed LBP (ln-LBP), BMD, QUS, and bone turnover, after adjusting for potential covariates. RESULTS Serum LBP ranged from 1.07-208.53 ng/mL (median 16.53 ng/mL). Those with higher levels were older, less mobile, and had lower BMD at the mid-forearm, otherwise, groups were similar. Before and after adjustment for age, ln-LBP was associated with lower BMD at the spine, total body, and mid-forearm. Further adjustment for weight attenuated associations at the spine and total body, yet the relationship at the mid-forearm was sustained (β - 0.014 ± 0.004, p = 0.001). SOS and SI were not associated with ln-LBP either before or after adjustment for age; however, weight was identified as an effect modifier in the relationship between ln-LBP and BUA. An association was observed for those weighing greater than 82.7 kg (β 3.366 ± 0.929, p < 0.001), after adjustment for potential covariates. Neither bone turnover marker was associated with ln-LBP. CONCLUSION Our data do not support a clear association between serum LBP and measures of bone health in this sample of men.
Collapse
Affiliation(s)
- Jasmine R Cleminson
- Deakin University, School of Medicine, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), PO Box 281, Geelong, Victoria, 3220, Australia.
| | - Julie A Pasco
- Deakin University, School of Medicine, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), PO Box 281, Geelong, Victoria, 3220, Australia
- Department of Medicine-Western Health, The University of Melbourne, St Albans, Victoria, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Barwon Health, University Hospital, Geelong, VIC, Australia
| | - Chiara C Bortolasci
- Deakin University, School of Medicine, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), PO Box 281, Geelong, Victoria, 3220, Australia
| | - Kara L Holloway-Kew
- Deakin University, School of Medicine, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), PO Box 281, Geelong, Victoria, 3220, Australia
| | - Jason M Hodge
- Deakin University, School of Medicine, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), PO Box 281, Geelong, Victoria, 3220, Australia
- Barwon Health, University Hospital, Geelong, VIC, Australia
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC, 3220, Australia
| | - Kara B Anderson
- Deakin University, School of Medicine, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), PO Box 281, Geelong, Victoria, 3220, Australia
| | - Mark A Kotowicz
- Deakin University, School of Medicine, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), PO Box 281, Geelong, Victoria, 3220, Australia
- Department of Medicine-Western Health, The University of Melbourne, St Albans, Victoria, Australia
- Barwon Health, University Hospital, Geelong, VIC, Australia
| | - Rasika M Samarasinghe
- Deakin University, School of Medicine, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), PO Box 281, Geelong, Victoria, 3220, Australia
| | - Lana J Williams
- Deakin University, School of Medicine, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), PO Box 281, Geelong, Victoria, 3220, Australia
| |
Collapse
|
22
|
Liu B, Li J, Chen B, Shuai Y, He X, Liu K, He M, Jin L. Dental pulp stem cells induce anti-inflammatory phenotypic transformation of macrophages to enhance osteogenic potential via IL-6/GP130/STAT3 signaling. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:90. [PMID: 36819570 PMCID: PMC9929758 DOI: 10.21037/atm-22-6390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023]
Abstract
Background Periodontitis is a major oral condition and current treatment outcomes can be unsatisfactory. Macrophages are essential to the regeneration process, so we investigated the influence of human dental pulp stem cells (hDPSCs) on macrophage differentiation and the microenvironment and the underlying mechanism. Methods hDPSCs were isolated from healthy third molars extracted from patients undergoing maxillofacial surgery. The surface antigens CD73, CD45, CD90 and CD11b of the hDPSCs were detected using flow cytometry. hDPSCs were induced for osteogenic and adipogenic differentiation, and the outcome was assessed by alizarin red staining or Oil Red O staining. The IL-6 level released by hDPSCs was measured by enzyme linked immunosorbent assay (ELISA). Tohoku Hospital Pediatrics-1 (THP-1) cells were cultured and induced into macrophages by phorbol-12-myristate-13-acetate. After coculture of THP-1-derived macrophages with hDPSCs, interleukin 6 (IL-6), Argininase-1 (Arg-1), Mannose receptor C-1 (Mrc-1), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF-α) levels in the medium were measured using ELISA and quantificational RT-PCR (qRT-PCR). The numbers of CD80+ and CD163+ macrophages were counted by immunofluorescence, and GP130/STAT3 signaling protein expression was detected. After coculturing the culture medium of hDPSCs with human bone marrow stem cells (BMSCs), scratch assays and transwell assays were performed to evaluate cell migration and invasion. Results Alkaline phosphatase (ALP) staining, alizarin red staining, and western blots were performed to assess osteoblast differentiation. The hDPSCs were positive for surface antigens CD73 and CD90 and negative for CD45 and CD11b expression. The level of IL-6 secreted by hDPSCs significantly increased the number of CD80+ cells as well as the levels of Arg-1 and Mrc-1. It also promoted M2 macrophage polarization and activated GP130/STAT3 signaling. However, the medium cocultured with THP-1-derived macrophages by hDPSCs facilitated the migration, invasion, and osteogenic abilities of human bone marrow-derived stem cells (hBMSCs). Conclusions hDPSCs can regulate the periodontal microenvironment through IL-6 by inducing phenotypic transformation of M2 macrophages and stimulating osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Bingyao Liu
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Junxia Li
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Bo Chen
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yi Shuai
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Xinyao He
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, China;,Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Liu
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Maodian He
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Lei Jin
- Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Pajares-Chamorro N, Lensmire JM, Hammer ND, Hardy JW, Chatzistavrou X. Unraveling the mechanisms of inhibition of silver-doped bioactive glass-ceramic particles. J Biomed Mater Res A 2022; 111:975-994. [PMID: 36583930 DOI: 10.1002/jbm.a.37482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
Infections are a major concern in orthopedics. Antibacterial agents such as silver ions are of great interest as broad-spectrum biocides and have been incorporated into bioactive glass-ceramic particles to control the release of ions within a therapeutic concentration and provide tissue regenerative properties. In this work, the antibacterial capabilities of silver-doped bioactive glass (Ag-BG) microparticles were explored to reveal the unedited mechanisms of inhibition against methicillin-resistant Staphylococcus aureus (MRSA). The antibacterial properties were not limited to the delivery of silver ions but rather a combination of antibacterial degradation by-products. For example, nano-sized debris punctured holes in bacteria membranes, osmotic effects, and reactive oxygen species causing oxidative stress and almost 40% of the inhibition. Upon successive Ag-BG treatments, MRSA underwent phenotypic and genomic mutations which were not only insufficient to develop resistance but instead, the clones became more sensitive as the treatment was re-delivered. Additionally, the unprecedented restorative functionality of Ag-BG allowed the effective use of antibiotics that MRSA resists. The synergy mechanism was mainly identified for combinations targeting cell-wall activity and their action was proven in biofilm-like and virulent conditions. Unraveling these mechanisms may offer new insights into how to tailor healthcare materials to prevent or debilitate infections and join the fight against antibiotic resistance in clinical cases.
Collapse
Affiliation(s)
- Natalia Pajares-Chamorro
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Josh M Lensmire
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Jonathan W Hardy
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA.,Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, USA
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, Michigan, USA.,Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
24
|
Ersahan S, Ozcelik F, Sirin DA, Hepsenoglu YE, Ozcelik IK, Topbas C. Is adrenomedullin upregulation due to apical periodontitis independent of periodontal disease? Odontology 2022:10.1007/s10266-022-00767-9. [DOI: 10.1007/s10266-022-00767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/12/2022] [Indexed: 11/23/2022]
|
25
|
Meng D, Wang Y, Liu T. Protective effects of silibinin on LPS-induced inflammation in human periodontal ligament cells. Front Chem 2022; 10:1019663. [PMID: 36300030 PMCID: PMC9591103 DOI: 10.3389/fchem.2022.1019663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/07/2022] [Indexed: 12/22/2023] Open
Abstract
Clinically, periodontitis is a chronic nonspecific inflammation that leads to damaged teeth and their supporting gum tissues. Although many studies on periodontitis have been conducted, therapy with natural products is still rare. Silibinin has been proven to have anti-inflammatory and antioxidant activities. However, the effects of silibinin on lipopolyssacharide (LPS)-induced inflammation in periodontal ligaments (PDLs) have not yet been investigated. In this study, the PDLs were treated with silibinin (10, 20, and 40 μM) in the presence of LPS. The results showed that silibinin treatment reduced the levels of NO, PGE2, IL-6, TNF-α, MMP-1, and MMP-3 and enhanced the activities of superoxide dismutase (SOD) and glutathione (GSH). Moreover, silibinin treatment downregulated RANKL levels and upregulated OPG and ALP levels. In summary, silibinin protected PDLs against LPS-induced inflammation, oxidative stress, and osteogenic differentiation.
Collapse
Affiliation(s)
- Di Meng
- Department of Stomatology, The Central Hospital Affilliated to Shandong First Medical University, Jinan, China
| | - Yuling Wang
- Department of Stomatology, The Central Hospital Affilliated to Shandong First Medical University, Jinan, China
- Department of Stomatology, Shandong Qianfoshan Hospital, Jinan, China
| | - Tongjun Liu
- Department of Stomatology, The Central Hospital Affilliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
26
|
Wang Y, Zhang L, Wang K, Zhou H, Li G, Xu L, Hu Z, Cao X, Shi F, Zhang S. Circulating Exosomes from Mice with LPS-Induced Bone Loss Inhibit Osteoblast Differentiation. Calcif Tissue Int 2022; 111:185-195. [PMID: 35435443 PMCID: PMC9300544 DOI: 10.1007/s00223-022-00977-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Abstract
Osteoimmunology focuses on the intermodulation between bone and the immune system. Lipopolysaccharide (LPS)-induced bone loss models are commonly used to investigate the interface between inflammation and osteoporosis. Circulating exosomes can regulate physiological and pathological processes through exosomal microRNAs and proteins. In this study, we observed reduced osteoblast number and bone formation in LPS-induced bone loss mice (LPS mice). Levels of circulating exosomes were increased by ~ twofold in LPS mice, and the expression of exosomal miRNAs was significantly changed. miRNAs (miRNA-125b-5p, miRNA-132-3p, and miRNA-214-3p) that were reported to inhibit osteoblast activity were significantly increased in the serum exosomes and bone tissues of LPS mice. Additionally, LPS-induced increases in exosomes significantly inhibited the osteogenic differentiation of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Yixuan Wang
- The 940Th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, 730050, Gansu, China
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Ke Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Hua Zhou
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Gaozhi Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Liqun Xu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
27
|
Bastos YVP, Carlos R, Oliveira PTD, Pires BC, Cangussu MCT, Xavier FCA, Koga-Ito CY, Manieri PR, Souza AS, Júnior BC, Ramalho LMP, Cury PR, Santos JND. Florid cemento-osseous dysplasia-related osteonecrosis: A series of cases. Ann Diagn Pathol 2022; 60:152009. [PMID: 35868115 DOI: 10.1016/j.anndiagpath.2022.152009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The aim of this study was to assess the clinicopathological features of florid cemento-osseous dysplasia (FCOD)-related osteonecrosis highlighting their histopathological aspects and bone structure. METHODS Twenty-two FCOD-related osteonecrosis cases were evaluated retrospectively. Osteonecrosis, osteomyelitis, bacterial colonization, bone resorption, reactive bone, osteon-like structure, lamellar bone, and basophilic lines were analyzed. Specific staining and fluorescence and polarized light microscopy analyses were also performed. RESULTS The mandible was more affected by FCOD-related osteonecrosis. There was a predominance of African-Brazilian women in the fifth and seventh decades of life. Osteomyelitis was present in 82 % of cases whereas bone resorption and bacterial colonization were present in 100 % of FCOD-related osteonecrosis cases. Thick basophilic lines were seen in all cases (100 %). Actinomycosis and osteoclasts were not often. CONCLUSIONS This study showed female adult preference, mandibular location, and some findings such as osteomyelitis, bone resorption, and bacterial colonization were histopathological features more frequent in FCOD-related osteonecrosis. In the absence of a close clinical and radiographic correlation, the morphology of the necrotized bone similar to cementum could help to recognize FCOD.
Collapse
Affiliation(s)
- Yann Victor Paiva Bastos
- Dentistry and Health Postgraduate Program, School of Dentistry, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Roman Carlos
- Department of Pathology, Hospital Herrera-Llerandi, Guatemala City, Guatemala
| | - Paulo Tambasco De Oliveira
- Cell Culture Laboratory, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Flávia Caló Aquino Xavier
- Dentistry and Health Postgraduate Program, School of Dentistry, Federal University of Bahia, Salvador, Bahia, Brazil; Laboratory of Oral and Maxillofacial Pathology, School of Dentistry, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Cristiane Yumi Koga-Ito
- Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, São Paulo, Brazil
| | - Patricia Rubia Manieri
- Laboratory of Oral and Maxillofacial Pathology, School of Dentistry, Federal University of Bahia, Salvador, Bahia, Brazil
| | - André Sampaio Souza
- Department of Oral and Maxillofacial Surgery, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Braúlio Carneiro Júnior
- Department of Oral and Maxillofacial Surgery, Southwest University of Bahia, Salvador, Bahia, Brazil
| | | | - Patrícia Ramos Cury
- Department of Periodontology, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Jean Nunes Dos Santos
- Dentistry and Health Postgraduate Program, School of Dentistry, Federal University of Bahia, Salvador, Bahia, Brazil; Department of Oral and Maxillofacial Surgery, Federal University of Bahia, Salvador, Bahia, Brazil.
| |
Collapse
|
28
|
Engineering the surfaces of orthopedic implants with osteogenesis and antioxidants to enhance bone formation in vitro and in vivo. Colloids Surf B Biointerfaces 2022; 212:112319. [PMID: 35051792 DOI: 10.1016/j.colsurfb.2022.112319] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022]
Abstract
Limited osteointegration of orthopedic implants with surrounding tissues has been the leading issue until the failure of orthopedic implants in the long term, which could be induced by multiple factors, including infection, limited abilities for bone formation and remodeling, and an overstressed reactive oxygen species (ROS) environment around implants. To address this challenge, a multifunctional coating composed of tannic acid (TA), nanohydroxyapatite (nHA) and gelatin (Gel) was fabricated by a layer-by-layer (LBL) technique, into which TA, nHA, and Gel were integrated, and their respective functions were utilized to synergistically promote osteogenesis. The fabrication process of (TA@nHA/Gel)n coatings and related bio-multifunctionalities were thoroughly investigated by various techniques. We found that the (TA@nHA/Gel)n coatings showed strong antioxidant activity and accelerated cellular attachment in the early stage and proliferation in the long term, largely enhancing osteogenesis in vitro and promoting bone formation in vivo. We believe our findings will guide the design of orthopedic implants in the future, and the strategy developed here could pave the way for multifunctional orthopedic implant coating and protein-related coatings with various potential applications, including biosensors, catalysis, tissue engineering, and life science.
Collapse
|
29
|
Dethier F, Bacevic M, Lecloux G, Seidel L, Rompen E, Lambert F. The Effects of Abutment Materials on Peri-Implant Soft Tissue Integration: A Study in Minipigs. J Prosthodont 2022; 31:585-592. [PMID: 35258144 DOI: 10.1111/jopr.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/02/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To evaluate, in a minipig model, the soft tissue integration of four different transmucosal materials, as well as the peri-implant bone remodeling. MATERIALS AND METHODS A total of 40 implants were placed in five minipigs in a single stage surgery, and two of each of the following abutment materials were used in each animal: (1) titanium (Ti; control), (2) polymethylmethacrylate (PMMA), (3) zirconia (Zi), and (4) veneering ceramic (VC). After a healing period of 3 months, the samples were collected and subjected to non-decalcified histology. The soft tissue dimensions (sulcus, junctional epithelium, and connective tissue attachment) were assessed on each abutment and the distance from the implant margin to first bone-to-implant contact (BIC) was measured. RESULTS The mean biological width-characterized by the sum of junctional epithelium and connective tissue measurements-was 3.8 (0.6) mm and no statistically significant difference was found between the four groups (P = 0.41). However, a long junctional epithelium (3.3-3.8 mm) and a very short connective tissue attachment (0.1-0.2 mm) were observed with all abutments. The measured peri-implant bone remodeling was similar in all four groups (P = 0.88). CONCLUSIONS Within its limitations, the present study showed that all tested materials allowed soft tissue integration, consisting of a long junctional epithelium, extending close to the bone level, and a rather short portion of connective tissue. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Frédéric Dethier
- Resident, Department of Periodontology, Oral and Implant Surgery, Faculty of Medicine, University of Liège, Liège, Belgium
| | - Miljana Bacevic
- Postdoctoral Researcher, Dental Biomaterials Research Unit (d-BRU), Faculty of Medicine, University of Liège, Liège, Belgium
| | - Geoffrey Lecloux
- Head of Clinic, Department of Periodontology, Oral and Implant Surgery, Faculty of Medicine, University of Liège, Liège, Belgium
| | - Laurence Seidel
- Statistician, Department of Biostatistics, Faculty of Medicine, University of Liège, Liège, Belgium
| | - Eric Rompen
- Professor, Department of Periodontology, Oral and Implant Surgery, Faculty of Medicine, University of Liège, Liège, Belgium
| | - France Lambert
- Head of Department, Department of Periodontology, Oral and Implant Surgery, Faculty of Medicine, University of Liège, Liège, Belgium.,Professor, Dental Biomaterials Research Unit (d-BRU), Faculty of Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
30
|
Liu R, Zhong Y, Chen R, Chen S, Huang Y, Liu H. Bacterial infections exacerbate myeloma bone disease. J Transl Med 2022; 20:16. [PMID: 34991592 PMCID: PMC8734283 DOI: 10.1186/s12967-021-03187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022] Open
Abstract
Multiple myeloma is characterized by osteolytic lesions caused by reduced bone formation and activated bone resorption. An important feature of myeloma is a failure of bone healing after successful treatment. In this work, clinical studies indicated a highly positive correlation between bone marrow bacteria abundance and bone lesion numbers of myeloma patients in complete remission. Coculture experiments demonstrated that marrow Escherichia coli (E. coli) promotes osteoclast differentiation and inhibits osteoblast differentiation. Mechanism studies showed that E. coli lipopolysaccharides (LPS) activated NF-κB p65 signaling and reduced phosphorylated smad1/5/9 binding ability with RUNX2 promoter, leading to decreased RUNX2 expression in osteoblast progenitors. Additionally, LPS enhanced phosphorylated NF-κB p65 binding ability with NFATc1 promoter, leading to increased NFATc1 expression in osteoclast progenitors. In vivo studies revealed E. coli contributes to osteolytic bone lesion, and elimination of E. coli infection assists healing of bone lesion in mouse model of myeloma in complete remission. These findings establish a heretofore unrecognized effect for E. coli in the genesis of myeloma bone disease and suggest a new treatment strategy.
Collapse
Affiliation(s)
- Rui Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yuping Zhong
- Department of Hematology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266011, China
| | - Rui Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Shiyi Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yazhu Huang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Huan Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
31
|
Pesce Viglietti AI, Sviercz FA, López CAM, Freiberger RN, Quarleri J, Delpino MV. Proinflammatory Microenvironment During Kingella kingae Infection Modulates Osteoclastogenesis. Front Immunol 2021; 12:757827. [PMID: 34925328 PMCID: PMC8674944 DOI: 10.3389/fimmu.2021.757827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/12/2021] [Indexed: 01/18/2023] Open
Abstract
Kingella kingae is an emerging pathogen that causes septic arthritis, osteomyelitis, and bacteremia in children from 6 to 48 months of age. The presence of bacteria within or near the bone is associated with an inflammatory process that results in osteolysis, but the underlying pathogenic mechanisms involved are largely unknown. To determine the link between K. kingae and bone loss, we have assessed whether infection per se or through the genesis of a pro-inflammatory microenvironment can promote osteoclastogenesis. For that purpose, we examined both the direct effect of K. kingae and the immune-mediated mechanism involved in K. kingae-infected macrophage-induced osteoclastogenesis. Our results indicate that osteoclastogenesis is stimulated by K. kingae infection directly and indirectly by fueling a potent pro-inflammatory response that drives macrophages to undergo functional osteoclasts via TNF-α and IL-1β induction. Such osteoclastogenic capability of K. kingae is counteracted by their outer membrane vesicles (OMV) in a concentration-dependent manner. In conclusion, this model allowed elucidating the interplay between the K. kingae and their OMV to modulate osteoclastogenesis from exposed macrophages, thus contributing to the modulation in joint and bone damage.
Collapse
Affiliation(s)
- Ayelén Ivana Pesce Viglietti
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Franco Agustín Sviercz
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cinthya Alicia Marcela López
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rosa Nicole Freiberger
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
32
|
Romero-Sánchez C, Giraldo S, Heredia-P AM, De Avila J, Chila-Moreno L, Londoño J, Valle-Oñate R, Bello-Gualtero JM, Bautista-Molano W. Association of Serum and Crevicular Fluid Dickkopf-1 Levels with Disease Activity and Periodontitis in Patients with Early Rheumatoid Arthritis. Curr Rheumatol Rev 2021; 18:124-135. [PMID: 34784873 DOI: 10.2174/1573397117666211116105118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/30/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The aim of this study was to assess DKK-1 levels, in Gingival Crevicular Fluid (GCF) and serum, as a biomarker for bone loss and disease activity in periodontitis and early RA (eRA). METHODS In this cross-sectional study, we obtained serum and GCF from 10 interproximal sites (Distal Buccal I/S, Mesio Buccal I/S, Distal Palatal/Lingual, Mesio Palatal/Lingual) according to the highest degree of inflammation by a patient for 240 sites from eRA patients. Patients received a periodontal assessment, a radiographic evaluation, tomography of interproximal sites, and DKK1 levels were determined by ELISA. Comparisons were performed by the Mann-Whitney U test and analysis by Chi2 test, and a logistic regression model was applied. RESULTS The mean age was 46.33 ± 12.0 years, the Disease Activity Score (DAS-28-ESR) was 4.08 ± 1.4. Periodontitis was present in 65.2% of the patients, and 59.6% of these patients had bone loss in interproximal sites. Higher GCF-DKK1 levels were associated with serum-DKK1 (OR:2.41 IC95% 1.14-5.09, p=0.021) and were related with DAS28-ESR (p=0.001), Routine Assessment of Patient Index Data 3 (RAPID 3) (p=0.001), and tender joints (p=0.040). Foot bone erosion and juxta-articular osteopenia were associated with high levels of serum-DKK1 (p=0.009 and 0.001, respectively). Serum-DKK1 were associated with SDAI (OR: 2.38 IC95% 1.03-5.52, p=0.043), RAPID 3 (p=0.001), and rheumatoid factor (p=0.018). The GCF-DKK1 levels were associated with periodontal bone loss (p=0.011), periodontitis (p=0.070) and its severity (OR: 2.58 IC95% 2.28-7.28, p=0.001). Bone loss was more frequent in buccal sites (73.5%) and was associated with increased levels of DKK1 (p=0.033). CONCLUSION In the early stages of the eRA disease, serum and GCF-DKK1 could be a biomarker for clinical disease activity and periodontal and articular bone erosion.
Collapse
Affiliation(s)
- Consuelo Romero-Sánchez
- Cellular and Molecular Immunology Group/ INMUBO, School of Dentistry, Universidad El Bosque, Bogotá. Colombia
| | - Sebastián Giraldo
- Clinical Immunology Group, Rheumatology and Immunology Department Hospital Militar Central/School of Medicine, Universidad Militar Nueva Granada/, Bogotá. Colombia
| | - Ana María Heredia-P
- Cellular and Molecular Immunology Group/ INMUBO, School of Dentistry, Universidad El Bosque, Bogotá. Colombia
| | - Juliette De Avila
- Cellular and Molecular Immunology Group/ INMUBO, School of Dentistry, Universidad El Bosque, Bogotá. Colombia
| | - Lorena Chila-Moreno
- Cellular and Molecular Immunology Group/ INMUBO, School of Dentistry, Universidad El Bosque, Bogotá. Colombia
| | - John Londoño
- Spondyloarthropathy Group, Rheumatology Department, Hospital Militar Central/Universidad de La Sabana, Bogotá. Colombia
| | - Rafael Valle-Oñate
- Clinical Immunology Group, Rheumatology and Immunology Department Hospital Militar Central/School of Medicine, Universidad Militar Nueva Granada/, Bogotá. Colombia
| | - Juan Manuel Bello-Gualtero
- Clinical Immunology Group, Rheumatology and Immunology Department Hospital Militar Central/School of Medicine, Universidad Militar Nueva Granada/, Bogotá. Colombia
| | - Wilson Bautista-Molano
- Cellular and Molecular Immunology Group/ INMUBO, School of Dentistry, Universidad El Bosque, Bogotá. Colombia
| |
Collapse
|
33
|
Ramser A, Greene E, Wideman R, Dridi S. Local and Systemic Cytokine, Chemokine, and FGF Profile in Bacterial Chondronecrosis with Osteomyelitis (BCO)-Affected Broilers. Cells 2021; 10:3174. [PMID: 34831397 PMCID: PMC8620240 DOI: 10.3390/cells10113174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Complex disease states, like bacterial chondronecrosis with osteomyelitis (BCO), not only result in physiological symptoms, such as lameness, but also a complex systemic reaction involving immune and growth factor responses. For the modern broiler (meat-type) chickens, BCO is an animal welfare, production, and economic concern involving bacterial infection, inflammation, and bone attrition with a poorly defined etiology. It is, therefore, critical to define the key inflammatory and bone-related factors involved in BCO. In this study, the local bone and systemic blood profile of inflammatory modulators, cytokines, and chemokines was elucidated along with inflammasome and key FGF genes. BCO-affected bone showed increased expression of cytokines IL-1β, while BCO-affected blood expressed upregulated TNFα and IL-12. The chemokine profile revealed increased IL-8 expression in both BCO-affected bone and blood in addition to inflammasome NLRC5 being upregulated in circulation. The key FGF receptor, FGFR1, was significantly downregulated in BCO-affected bone. The exposure of two different bone cell types, hFOB and chicken primary chondrocytes, to plasma from BCO-affected birds, as well as recombinant TNFα, resulted in significantly decreased cell viability. These results demonstrate an expression of proinflammatory and bone-resorptive factors and their potential contribution to BCO etiology through their impact on bone cell viability. This unique profile could be used for improved non-invasive detection of BCO and provides potential targets for treatments.
Collapse
Affiliation(s)
- Alison Ramser
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (E.G.); (R.W.)
- Department of Poultry Science, Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (E.G.); (R.W.)
| | - Robert Wideman
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (E.G.); (R.W.)
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (E.G.); (R.W.)
- Department of Poultry Science, Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
34
|
Usui M, Onizuka S, Sato T, Kokabu S, Ariyoshi W, Nakashima K. Mechanism of alveolar bone destruction in periodontitis - Periodontal bacteria and inflammation. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:201-208. [PMID: 34703508 PMCID: PMC8524191 DOI: 10.1016/j.jdsr.2021.09.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
Periodontal disease is an inflammatory disease caused by periodontopathogenic bacteria, which eventually leads to bone tissue (alveolar bone) destruction as inflammation persists. Periodontal tissues have an immune system against the invasion of these bacteria, however, due to the persistent infection by periodontopathogenic bacteria, the host innate and acquired immunity is impaired, and tissue destruction, including bone tissue destruction, occurs. Osteoclasts are essential for bone destruction. Osteoclast progenitor cells derived from hematopoietic stem cells differentiate into osteoclasts. In addition, bone loss occurs when bone resorption by osteoclasts exceeds bone formation by osteoblasts. In inflammatory bone disease, inflammatory cytokines act on osteoblasts and receptor activator of nuclear factor-κB ligand (RANKL)-producing cells, resulting in osteoclast differentiation and activation. In addition to this mechanism, pathogenic factors of periodontal bacteria and mechanical stress activate osteoclasts and destruct alveolar bone in periodontitis. In this review, we focused on the mechanism of osteoclast activation in periodontitis and provide an overview based on the latest findings.
Collapse
Affiliation(s)
- Michihiko Usui
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Satoru Onizuka
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Tsuyoshi Sato
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, 38 Moro-hongou, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Wataru Ariyoshi
- Division of Infection and Molecular Biology, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| | - Keisuke Nakashima
- Division of Periodontology, Department of Oral Function, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580, Japan
| |
Collapse
|
35
|
Review of Myeloma Therapies and Their Potential for Oral and Maxillofacial Side Effects. Cancers (Basel) 2021; 13:cancers13174479. [PMID: 34503289 PMCID: PMC8431464 DOI: 10.3390/cancers13174479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Myeloma is a common cancer involving the bone marrow. Some of the medications used in the treatment of myeloma, including those that reduce the risk of bone fractures, can increase the chance of side effects occurring in the jawbone. The most serious complication in the jawbone is called medication-related osteonecrosis, meaning part of the jawbone dies. The aim of this review is to highlight some of the medications that are implicated and other risk factors that can contribute to osteonecrosis. Suggestions to prevent this complication from occurring are described. Conventional methods of treating established medication-related osteonecrosis of the jawbone are outlined as well as emerging new treatments. Abstract Myeloma is a common haematological malignancy in which adverse skeletal related events are frequently seen. Over recent years, treatment for myeloma has evolved leading to improved survival. Antiresorptive therapy is an important adjunct therapy to reduce the risk of bone fractures and to improve the quality of life for myeloma patients; however, this has the potential for unwanted side effects in the oral cavity and maxillofacial region. Osteonecrosis of the jaw related to antiresorptive medications and other myeloma therapies is not uncommon. This review serves to highlight the risk of osteonecrosis of the jaw for myeloma patients, with some suggestions for prevention and management.
Collapse
|
36
|
Tomomura A, Bandow K, Tomomura M. Purification and Biological Function of Caldecrin. MEDICINES (BASEL, SWITZERLAND) 2021; 8:41. [PMID: 34436220 PMCID: PMC8398347 DOI: 10.3390/medicines8080041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Blood calcium homeostasis is critical for biological function. Caldecrin, or chymotrypsin-like elastase, was originally identified in the pancreas as a serum calcium-decreasing factor. The serum calcium-decreasing activity of caldecrin requires the trypsin-mediated activation of the protein. Protease activity-deficient mature caldecrin can also reduce serum calcium concentration, indicating that structural processing is necessary for serum calcium-decreasing activity. Caldecrin suppresses the differentiation of bone-resorbing osteoclasts from bone marrow macrophages (BMMs) by inhibiting receptor activator of NF-κB ligand (RANKL)-induced nuclear factor of activated T-cell cytoplasmic 1 expression via the Syk-PLCγ-Ca2+ oscillation-calcineurin signaling pathway. It also suppresses mature osteoclastic bone resorption by RANKL-stimulated TRAF6-c-Src-Syk-calcium entry and actin ring formation. Caldecrin inhibits lipopolysaccharide (LPS)-induced osteoclast formation in RANKL-primed BMMs by inducing the NF-κB negative regulator A20. In addition, caldecrin suppresses LPS-mediated M1 macrophage polarization through the immunoreceptor triggering receptor expressed on myeloid cells (TREM) 2, suggesting that caldecrin may function as an anti-osteoclastogenic and anti-inflammatory factor via TREM2. The ectopic intramuscular expression of caldecrin cDNA prevents bone resorption in ovariectomized mice, and the administration of caldecrin protein also prevents skeletal muscle destruction in dystrophic mice. In vivo and in vitro studies have indicated that caldecrin is a unique multifunctional protease and a possible therapeutic target for skeletal and inflammatory diseases.
Collapse
Affiliation(s)
- Akito Tomomura
- Division of Biochemistry, Department of Oral Biology & Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan;
| | - Kenjiro Bandow
- Division of Biochemistry, Department of Oral Biology & Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan;
| | - Mineko Tomomura
- Department of Oral Health Sciences, Meikai University School of Health Sciences, 1-1 Akemi, Urayasu, Chiba 279-8550, Japan;
| |
Collapse
|
37
|
Liu Y, Mosenthin R, Zhao L, Zhang J, Ji C, Ma Q. Vitamin K alleviates bone calcium loss caused by Salmonella Enteritidis through carboxylation of osteocalcin. J Anim Sci Biotechnol 2021; 12:80. [PMID: 34253252 PMCID: PMC8276384 DOI: 10.1186/s40104-021-00604-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/13/2021] [Indexed: 11/18/2022] Open
Abstract
Background The present study aimed at evaluating the effect of vitamin K (VK) supplementation on bone health of laying hens challenged by Salmonella Enteritidis. Methods A total of 80 32-week-old double negative salmonella-free brown-egg laying hens were randomly assigned to 4 treatments with 20 replicates each (1 bird per replicate) according to a 2 × 2 factorial design with 2 dietary VK supplementation levels [0 mg/kg (VK0) vs 2 mg/kg VK (VK2) and 2 challenge treatments [Salmonella Enteritidis (SE) vs physiological saline solution (PS)]. During the last 3 days of week 43 of age, birds of both VK treatments were either orally challenged with 1.0 mL suspension of 109 cfu/mL S. Enteritidis daily or received the same volume of PS. Results The laying rate, daily egg mass, tibia strength, CT, cOC and cOC/(cOC + ucOC) of VK2 treatment increased (P < 0.05) in contrast to VK0, however, the medullary area and ucOC of VK2 treatment decreased (P < 0.05) in contrast to VK0. Mortality, medullary area, serum Ca content of SE treatments increased (P < 0.05) in contrast to PS treatments. In both SE treatments, the decrease (P < 0.05) in birds’ tibia strength was associated with higher (P < 0.05) Ca levels in serum. There is an interaction (P < 0.05) between SE challenge and VK levels with regard to tibia strength and serum Ca levels. At week 42, serum CT was positively correlated with cOC (R = 0.99, P = 0.009); at week 44, tibia strength was positively correlated with BMD (R = 0.95, P = 0.045), but negatively correlated with medullary area (R = − 0.98, P = 0.018). Conclusions VK (2 mg/kg) supplementation to diets of laying hens can enhance bone strength under challenge situations with Salmonella Enteritidis. Medullary area has proven to be a sensitive biomarker for bone calcium loss caused by SE infection.
Collapse
Affiliation(s)
- Yaojun Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Rainer Mosenthin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,Institute of Animal Science, University of Hohenheim, 70593, Stuttgart, Germany
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianyun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
38
|
Schubert L, Russmueller G, Lagler H, Tobudic S, Heindel E, Kundi M, Steininger C. Bone turnover markers can predict healing time in medication-related osteonecrosis of the jaw. Support Care Cancer 2021; 29:7895-7902. [PMID: 34189608 PMCID: PMC8550071 DOI: 10.1007/s00520-021-06361-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/09/2021] [Indexed: 11/28/2022]
Abstract
Objectives Medication-related osteonecrosis of the jaw (MRONJ) is a severe and difficult-to-treat adverse event of bone-modifying agents. Therefore predictive strategies determining patients at risk for a prolonged healing duration are needed to optimize treatment. Thus, the present study evaluates whether or not bone turnover markers can be used to predict the healing duration in MRONJ patients. Materials and methods The present study is a retrospective data analysis of patients suffering from MRONJ and positive histology for Actinomyces spp., who were identified at the General Hospital Vienna from 2014 to 2018. During the first visit, the patients’ demographics and levels of bone formation parameters were compiled. Healing times were analysed by Cox regression in dependence on these factors. Results A total of 52 patients were identified who fulfilled the inclusion criteria. The indication for bone-modifying agents was breast cancer (n = 21), prostate cancer (n = 14), multiple myeloma (n = 6) and other malignant diseases (n = 11). In 43 (82.7%) of our patients, we were able to document complete mucosal healing. Furthermore, patients who responded faster to therapy showed higher levels of C-telopeptide (P < 0.05), osteocalcin (P < 0.05) and bone-specific alkaline phosphatase (P < 0.05), but lower levels of 1.25-dihydroxyvitamin D (P < 0.05) than slower responding patients. No correlation was found regarding parathyroid hormone or calcitonin levels. Interestingly, patients who had a slower response were less likely to report dental procedures, but more likely to report a history of chemotherapy. Conclusion CTX and osteocalcin levels may be used for predicting healing duration for MRONJ.
Collapse
Affiliation(s)
- Lorenz Schubert
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Guenter Russmueller
- Department of Oral and Maxillofacial Surgery, Medical University Vienna, Vienna, Austria
| | - Heimo Lagler
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Selma Tobudic
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Elisabeth Heindel
- Department of Oral and Maxillofacial Surgery, Medical University Vienna, Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Medical University Vienna, Vienna, Austria
| | - Christoph Steininger
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
39
|
Nakane S, Imamura K, Hisanaga R, Ishihara K, Saito A. Systemic administration of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4)-Ig abrogates alveolar bone resorption in induced periodontitis through inhibition of osteoclast differentiation and activation: An experimental investigation. J Periodontal Res 2021; 56:972-981. [PMID: 34129238 DOI: 10.1111/jre.12909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/06/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND/OBJECTIVES Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is a critical immunoregulatory molecule expressed on T cells. CTLA-4 also binds to the surfaces of monocytes and macrophages, precursors of osteoclasts. Research on rheumatoid arthritis demonstrated that CTLA-4 suppresses inflammation and bone resorption. However, its effects on alveolar bone have yet to be understood. The purpose of this study was to investigate the role and potential mechanism of CTLA-4 in bone resorption in periodontitis. MATERIALS AND METHODS In vivo, the effects of systemic administration of CTLA-4 immunoglobulin fusion protein (CTLA-4-Ig) on alveolar bone resorption were investigated using a periodontitis mouse model. A total of 20 C57BL/6J mice were randomly assigned to two groups according to the administration modes. Periodontitis was induced by placing a ligature around the left maxillary second molar. The contralateral tooth was left un-ligated. In the CTLA-4-Ig (+) group, CTLA-4-Ig was administered by intraperitoneal injection at 1 and 3 days after ligature placement. Animals in the CTLA-4-Ig (-) group were given only phosphate-buffered saline each time. At 5 days after ligature placement, bone resorption was assessed by micro-computed tomography and histological examination, and the prevalence of osteoclast-like cells was assessed by tartrate-resistant acid phosphatase (TRAP) staining. In vitro, the effects of CTLA-4-Ig on osteoclasts were evaluated. Viability of RAW 264.7 cells treated with receptor activator of nuclear factor-κB ligand (RANKL) and CTLA-4-Ig was tested by WST-1 assay. Osteoclast-like cells were enumerated by TRAP staining, and osteoclast activity was evaluated by resorption pit assay. Gene expression levels of osteoclast differentiation markers (macrophage-colony stimulating factor receptor, carbonic anhydrase II, cathepsin K, and Trap) and protein phosphatase 2A (PP2A), a major serine-threonine phosphatase, were assessed by quantitative real-time polymerase chain reaction. The effect of CTLA-4-Ig on the nuclear factor-κB (NF-κB) activation was assessed by enzyme-linked immunosorbent assay. RESULTS In vivo, ligature-induced bone resorption and the numbers of osteoclast-like cells were significantly decreased by the administration of CTLA-4-Ig. In vitro, treatment with RANKL and CTLA-4-Ig had no significant effect on cell viability. CTLA-4-Ig significantly reduced the prevalence and activation of osteoclast-like cells and decreased the expressions of osteoclast differentiation markers, compared with the RANKL-treated control. CTLA-4-Ig significantly suppressed RANKL-induced phosphorylation of NF-κB p65 but increased PP2A expression. CONCLUSION These results suggest that CTLA-4-Ig abrogates bone resorption in induced periodontitis, possibly via inhibition of osteoclast differentiation and activation. The regulation of the NF-κB pathway and PP2A expression may be one mechanism by which CTLA-4-Ig suppresses osteoclast behavior.
Collapse
Affiliation(s)
- Saki Nakane
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Rio Hisanaga
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Kazuyuki Ishihara
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan.,Department of Microbiology, Tokyo Dental College, Tokyo, Japan
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
40
|
Yao S, Jiang C, Zhang H, Gao X, Guo Y, Cao Z. Visfatin regulates Pg LPS-induced proinflammatory/prodegradative effects in healthy and inflammatory periodontal cells partially via NF-κB pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119042. [PMID: 33901513 DOI: 10.1016/j.bbamcr.2021.119042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/17/2022]
Abstract
Periodontitis is a widespread chronic infectious-inflammatory disease associated with multiple systemic diseases. Visfatin is an adipokine-enzyme that can be locally produced by human periodontal ligament cells (hPDLCs) and human gingival fibroblasts (hGFs). It can upregulate proinflammatory cytokines and matrix metalloproteinases (MMPs) in various types of cells. However, the effects of visfatin on healthy and inflammatory human periodontal cells as well as the underlying molecular mechanisms remain unclear. This study firstly demonstrated visfatin expression was highly elevated in inflamed human gingiva and Pg LPS-treated hPDLCs. Moreover, recombinant visfatin significantly upregulated the expression of proinflammatory cytokines (TNF-α, IL-1β and IL-6) and prodegradative factors (EMPPRIN, MMP1, MMP3 and MMP13) in hPDLCs. Next, we found the levels of proinflammatory and prodegradative cytokines were significantly increased in visfatin-overexpressing hPDLCs, and decreased in visfatin-silencing inflammatory hGFs (iGFs) when treated with Pg LPS. In the absence of Pg LPS, visfatin silencing failed to affect the expression of these factors in iGFs, and overexpression of visfatin upregulated MMPs but no other factors in hPDLCs. Furthermore, marked NF-κB pathway activation with increased phosphorylation of p65 was observed in visfatin-overexpressing hPDLCs. BAY11-7082, a specific inhibitor of NF-κB, partially reversed the upregulation proinflammatory and prodegradative factors induced by visfatin overexpression. Taken together, this study showed that visfatin critically regulates Pg LPS-induced proinflammatory/prodegradative effects in healthy and inflammatory periodontal cells partially via NF-κB pathway. The findings suggest that visfatin is closely involved in the development of periodontitis, and may serve as a promising novel biomarker and therapeutic target for periodontitis management.
Collapse
Affiliation(s)
- Siqi Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chenxi Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huihui Zhang
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xudong Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
41
|
Huang H, Jiang W, Hong K, Cai J, He Y, Ma X, Wu P, Lang J, Ma Y, Huang C, Yuan J. Protocatechualdehyde inhibits receptor activator of nuclear factor kappa-B ligand-induced osteoclastogenesis and attenuates lipopolysaccharide-induced inflammatory osteolysis. Phytother Res 2021; 35:3821-3835. [PMID: 33778997 DOI: 10.1002/ptr.7088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022]
Abstract
Inflammatory osteolysis as a consequence of chronic bacterial infection underlies several lytic bone conditions, such as otitis media, osteomyelitis, septic arthritis, periodontitis, periprosthetic infection, and aseptic loosening of orthopedic implants. In consideration of the lack of effective preventive or treatments options against infectious osteolysis, the exploitation of novel pharmacological compounds/agents is critically required. The present study assessed the effect of protocatechualdehyde (PCA), a natural occurring polyphenolic compound with diverse biological activities including but not limited to antibacterial and antiinflammatory properties, on nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in vitro and lipopolysaccharide (LPS)-induced bone loss in vivo. In the present study, it was found that PCA potently inhibited RANKL-induced osteoclast formation, fusion, and activation toward bone resorption in a dose-dependent manner via the suppression of the ERK/c-Fos/nuclear factor of activated T-cells, cytoplasmic 1 signaling axis. It was further demonstrated that the in vivo administration of PCA could effectively protect mice against the deleterious effects of LPS-induced calvarial bone destruction by attenuating osteoclast formation and activity in a dose-dependent manner. Collectively, these findings provided evidence for the potential therapeutic application of PCA in the prevention and treatment of infectious osteolytic conditions, and potentially other osteoclast-mediated bone diseases.
Collapse
Affiliation(s)
- Hao Huang
- Department of Orthopedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Wenli Jiang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Navy Medical University, Shanghai, China
| | - Kehua Hong
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Cai
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongchao He
- Department of Orthopedics, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuming Ma
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng Wu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junzhe Lang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuegang Ma
- Department of Orthopedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Caiguo Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Navy Medical University, Shanghai, China
| | - Jiandong Yuan
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
42
|
Ali M, Yang F, Plachokova AS, Jansen JA, Walboomers XF. Application of specialized pro-resolving mediators in periodontitis and peri-implantitis: a review. Eur J Oral Sci 2021; 129:e12759. [PMID: 33565133 PMCID: PMC7986752 DOI: 10.1111/eos.12759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Scaling and root planning is a key element in the mechanical therapy used for the eradication of biofilm, which is the major etiological factor for periodontitis and peri‐implantitis. However, periodontitis is also a host mediated disease, therefore, removal of the biofilm without adjunctive therapy may not achieve the desired clinical outcome due to persistent activation of the innate and adaptive immune cells. Most recently, even the resident cells of the periodontium, including periodontal ligament fibroblasts, have been shown to produce several inflammatory factors in response to bacterial challenge. With increased understanding of the pathophysiology of periodontitis, more research is focusing on opposing excessive inflammation with specialized pro‐resolving mediators (SPMs). This review article covers the major limitations of current standards of care for periodontitis and peri‐implantitis, and it highlights recent advances and prospects of SPMs in the context of tissue reconstruction and regeneration. Here, we focus primarily on the role of SPMs in restoring tissue homeostasis after periodontal infection.
Collapse
Affiliation(s)
- Muhanad Ali
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fang Yang
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Adelina S Plachokova
- Department of Dentistry, Implantology and Periodontology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John A Jansen
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
43
|
Bagegni A, Zabler S, Nelson K, Rack A, Spies BC, Vach K, Kohal R. Synchrotron-based micro computed tomography investigation of the implant-abutment fatigue-induced microgap changes. J Mech Behav Biomed Mater 2021; 116:104330. [PMID: 33516129 DOI: 10.1016/j.jmbbm.2021.104330] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This study evaluates the effect of dynamic-loading on the microgap of the IAC when different supratructure heights are applied. MATERIALS AND METHODS Forty-eight dental implants (24 each of butt-joint (H) and internal-conical connections (C)) were tested in this study. Each group was further divided into three groups (n = 8) according to the applied suprastructure height (H1, C1: 10 mm, H2, C2: 14 mm and H3, C3: 18 mm). All specimens were subjected to cyclic loading in a chewing-simulator with a load of 98 N for 5 × 106 chewing cycles. The microgap at the IAC was inspected before and after loading, using synchrotron-based micro computed tomography (SRμCT) and light microscopy (LM). RESULTS SRμCT revealed an internal microgap range between 0.26 μm and 0.5 μm in the group C, whereas the group H exhibited a microgap range between 0.26 μm and 0.47 μm prior to loading. After chewing simulation, a smaller microgap size in all groups was detected ranging from 0.11 μm to 0.26 μm (group C: 0.11μm-0.26 μm; group H: 0.21μm-0.25 μm). The LM investigation showed mean microgap values at the outer IAC junction before loading from 5.8 μm to 11.3 μm and from 3.9 μm to 7.2 μm after loading. All specimens exhibited a vertical intrusion displacement of the abutment. CONCLUSION Regardless of the crown height, the microgap between the abutment and implant systematically decreased after loading in both butt-joint and internal-conical connections.
Collapse
Affiliation(s)
- Aimen Bagegni
- Medical Center - University of Freiburg, Center for Dental Medicine, Department of Prosthetic Dentistry, Faculty of Medicine - University of Freiburg, Freiburg, Germany.
| | - Simon Zabler
- Lehrstuhl für Röntgenmikroskopie der Universität Würzburg, Josef-Martin-Weg 63 Hubland Nord, 97074 Würzburg, Germany
| | - Katja Nelson
- Medical Center - University of Freiburg, Center for Dental Medicine, Department of Oral and Craniomaxillofacial Surgery, Faculty of Medicine - University of Freiburg, Freiburg, Germany
| | - Alexander Rack
- ESRF-The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Benedikt C Spies
- Medical Center - University of Freiburg, Center for Dental Medicine, Department of Prosthetic Dentistry, Faculty of Medicine - University of Freiburg, Freiburg, Germany
| | - Kirstin Vach
- Medical Center - University of Freiburg, Institute of Medical Biometry and Statistics, Faculty of Medicine - University of Freiburg, Freiburg, Germany
| | - Ralf Kohal
- Medical Center - University of Freiburg, Center for Dental Medicine, Department of Prosthetic Dentistry, Faculty of Medicine - University of Freiburg, Freiburg, Germany
| |
Collapse
|
44
|
Place DE, Malireddi RKS, Kim J, Vogel P, Yamamoto M, Kanneganti TD. Osteoclast fusion and bone loss are restricted by interferon inducible guanylate binding proteins. Nat Commun 2021; 12:496. [PMID: 33479228 PMCID: PMC7820603 DOI: 10.1038/s41467-020-20807-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation during many diseases is associated with bone loss. While interferons (IFNs) are often inhibitory to osteoclast formation, the complex role that IFN and interferon-stimulated genes (ISGs) play in osteoimmunology during inflammatory diseases is still poorly understood. We show that mice deficient in IFN signaling components including IFN alpha and beta receptor 1 (IFNAR1), interferon regulatory factor 1 (IRF1), IRF9, and STAT1 each have reduced bone density and increased osteoclastogenesis compared to wild type mice. The IFN-inducible guanylate-binding proteins (GBPs) on mouse chromosome 3 (GBP1, GBP2, GBP3, GBP5, GBP7) are required to negatively regulate age-associated bone loss and osteoclastogenesis. Mechanistically, GBP2 and GBP5 both negatively regulate in vitro osteoclast differentiation, and loss of GBP5, but not GBP2, results in greater age-associated bone loss in mice. Moreover, mice deficient in GBP5 or chromosome 3 GBPs have greater LPS-mediated inflammatory bone loss compared to wild type mice. Overall, we find that GBP5 contributes to restricting age-associated and inflammation-induced bone loss by negatively regulating osteoclastogenesis.
Collapse
Affiliation(s)
- David E Place
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jieun Kim
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | |
Collapse
|
45
|
Pajares-Chamorro N, Wagley Y, Maduka CV, Youngstrom DW, Yeger A, Badylak SF, Hammer ND, Hankenson K, Chatzistavrou X. Silver-doped bioactive glass particles for in vivo bone tissue regeneration and enhanced methicillin-resistant Staphylococcus aureus (MRSA) inhibition. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111693. [PMID: 33545854 PMCID: PMC8168684 DOI: 10.1016/j.msec.2020.111693] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 11/18/2022]
Abstract
Infection is a significant risk factor for failed healing of bone and other tissues. We have developed a sol-gel (solution-gelation) derived bioactive glass doped with silver ions (Ag-BG), tailored to provide non-cytotoxic antibacterial activity while significantly enhancing osteoblast-lineage cell growth in vitro and bone regeneration in vivo. Our objective was to engineer a biomaterial that combats bacterial infection while maintaining the capability to promote bone growth. We observed that Ag-BG inhibits bacterial growth and potentiates the efficacy of conventional antibiotic treatment. Ag-BG microparticles enhance cell proliferation and osteogenic differentiation in human bone marrow stromal cells (hBMSC) in vitro. Moreover, in vivo tests using a calvarial defect model in mice demonstrated that Ag-BG microparticles induce bone regeneration. This novel system with dual biological and advanced antibacterial properties is a promising therapeutic for combating resistant bacteria while triggering new bone formation.
Collapse
Affiliation(s)
- Natalia Pajares-Chamorro
- Department of Chemical Engineering and Materials Science, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Yadav Wagley
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Chima V Maduka
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA; Institute for Quantitative Health Sciences and Technology, Michigan State University, East Lansing, MI 48824, USA; Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Alyssa Yeger
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Kurt Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Materials Science, College of Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
46
|
Zoller SD, Hegde V, Burke ZDC, Park HY, Ishmael CR, Blumstein GW, Sheppard W, Hamad C, Loftin AH, Johansen DO, Smith RA, Sprague MM, Hori KR, Clarkson SJ, Borthwell R, Simon SI, Miller JF, Nelson SD, Bernthal NM. Evading the host response: Staphylococcus "hiding" in cortical bone canalicular system causes increased bacterial burden. Bone Res 2020; 8:43. [PMID: 33303744 PMCID: PMC7728749 DOI: 10.1038/s41413-020-00118-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/22/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Extremity reconstruction surgery is increasingly performed rather than amputation for patients with large-segment pathologic bone loss. Debate persists as to the optimal void filler for this "limb salvage" surgery, whether metal or allograft bone. Clinicians focus on optimizing important functional gains for patients, and the risk of devastating implant infection has been thought to be similar regardless of implant material. Recent insights into infection pathophysiology are challenging this equipoise, however, with both basic science data suggesting a novel mechanism of infection of Staphylococcus aureus (the most common infecting agent) into the host lacunar-canaliculi network, and also clinical data revealing a higher rate of infection of allograft over metal. The current translational study was therefore developed to bridge the gap between these insights in a longitudinal murine model of infection of allograft bone and metal. Real-time Staphylococci infection characteristics were quantified in cortical bone vs metal, and both microarchitecture of host implant and presence of host immune response were assessed. An orders-of-magnitude higher bacterial burden was established in cortical allograft bone over both metal and cancellous bone. The establishment of immune-evading microabscesses was confirmed in both cortical allograft haversian canal and the submicron canaliculi network in an additional model of mouse femur bone infection. These study results reveal a mechanism by which Staphylococci evasion of host immunity is possible, contributing to elevated risks of infection in cortical bone. The presence of this local infection reservoir imparts massive clinical implications that may alter the current paradigm of osteomyelitis and bulk allograft infection treatment.
Collapse
Affiliation(s)
- Stephen D Zoller
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
| | - Vishal Hegde
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
| | - Zachary D C Burke
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
| | - Howard Y Park
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
| | - Chad R Ishmael
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
| | - Gideon W Blumstein
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
| | - William Sheppard
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
| | - Christopher Hamad
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
| | - Amanda H Loftin
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
| | - Daniel O Johansen
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
| | - Ryan A Smith
- David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Marina M Sprague
- Department of Internal Medicine, University of California, Los Angeles, 757 Westwood Plaza, Suite 7501, Los Angeles, CA, 90095, USA
| | - Kellyn R Hori
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA
- David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Samuel J Clarkson
- David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Rachel Borthwell
- David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA
| | - Jeff F Miller
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA
| | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, 1250 16th St Suite 3450, Santa Monica, CA, 90404, USA
| | - Nicholas M Bernthal
- Department of Orthopedic Surgery, University of California, Los Angeles, 1250 16th St Suite 2100, Santa Monica, CA, 90404, USA.
| |
Collapse
|
47
|
Ozaki Y, Kishimoto T, Yamashita Y, Kaneko T, Higuchi K, Mae M, Oohira M, Mohammad AI, Yanagiguchi K, Yoshimura A. Expression of osteoclastogenic and anti-osteoclastogenic cytokines differs in mouse gingiva injected with lipopolysaccharide, peptidoglycan, or both. Arch Oral Biol 2020; 122:104990. [PMID: 33259988 DOI: 10.1016/j.archoralbio.2020.104990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Bacterial substances in subgingival biofilm evoke alveolar bone resorption. We previously reported that gingival injection of bacterial lipopolysaccharide (LPS) and peptidoglycan (PGN) induced alveolar bone resorption in mice. However, the mechanism by which LPS and PGN induce osteoclast formation has not been investigated. The aim of this study is to clarify the role of osteoclastogenic and anti-osteoclastogenic cytokines in the alveolar bone resorption induced by LPS and PGN. MATERIALS LPS from Escherichia coli, PGN from Staphylococcus aureus, or both were injected into the gingiva of mice every 48 h for a total of 13 times. Alveolar bone resorption was assessed histochemically by tartrate-resistant acid phosphatase staining. Expression of the receptor activator of nuclear factor-κB ligand (RANKL), tumor necrosis factor (TNF)-α, interleukin (IL)-17, and IL-10 were analyzed by immunostaining. To analyze the role of these cytokines, RANKL-pretreated mouse bone marrow macrophages were stimulated with LPS, PGN, or LPS + PGN with or without anti-TNF-α antibody, IL-17, or IL-10. RESULTS Alveolar bone resorption was induced by both LPS and PGN and exacerbated by LPS + PGN. LPS induced higher RANKL expression than PGN. Expression of TNF-α and IL-10 was correlated with bone resorption. PGN injections induced the strongest expression of IL-17, followed by LPS + PGN and LPS. In an in vitro osteoclastogenesis assay, anti-TNF-α antibody and IL-10 inhibited osteoclast formation, but IL-17 promoted it. CONCLUSION LPS, PGN, or LPS + PGN injections induce distinctive expression of TNF-α, IL-10, and IL-17, suggesting that the composition of these bacterial ligands in dental plaque is critical for alveolar bone resorption.
Collapse
Affiliation(s)
- Yukio Ozaki
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Takaaki Kishimoto
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Kishimoto Dental Office, Oita, Japan
| | - Yasunori Yamashita
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Kaneko
- Center for Oral Diseases, Fukuoka Dental College, Fukuoka, Japan
| | - Kanako Higuchi
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Megumi Mae
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masayuki Oohira
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Alam Ibtehaz Mohammad
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kajiro Yanagiguchi
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsutoshi Yoshimura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
48
|
Gao H, Sun T, Yang F, Yuan J, Yang M, Kang W, Tang D, Zhang J, Feng Q. The Pathogenic Effects of Fusobacterium nucleatum on the Proliferation, Osteogenic Differentiation, and Transcriptome of Osteoblasts. Front Cell Dev Biol 2020; 8:807. [PMID: 33042984 PMCID: PMC7517582 DOI: 10.3389/fcell.2020.00807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
As one of the most common oral diseases, periodontitis is closely correlated with tooth loss in middle-aged and elderly people. Fusobacterium nucleatum (F. nucleatum) contributes to periodontitis, but the evidence in alveolar bone loss is still unclear. In this study, cytological experiments and transcriptome analyses were performed to characterize the biological process abnormalities and the molecular changes of F. nucleatum-stimulated osteoblasts. F. nucleatum could inhibit cell proliferation, promote cell apoptosis, and elevate pro-inflammatory cytokine production of osteoblasts, and it also inhibited osteoblast differentiation and mineralized nodule formation and decreased the expression of osteogenetic genes and proteins. Whole-transcriptome analyses identified a total of 235 transcripts that were differentially expressed in all six time points, most of which were inflammation-related genes. The genes, Ccl2, Ccl20, Csf1, Cx3cl1, Cxcl1, Cxcl3, Il6, Birc3, Map3k8, Nos2, Nfkb2, Tnfrsf1b, and Vcam1, played core roles in a PPI network, and interacted closely with other ones in the infection. In addition, 133 osteogenesis-related differential expression genes (DEGs) were time-serially dynamically changed in a short time-series expression miner (STEM) analysis, which were enriched in multiple cancer-related pathways. The core dynamic DEGs (Mnda, Cyp1b1, Comp, Phex, Mmp3, Tnfrsf1b, Fbln5, and Nfkb2) had been reported to be closely related to the development and metastasis in tumor and cancer progress. This study is the first to evaluate the long-term interaction of F. nucleatum on osteoblasts, which might increase the risk of cell carcinogenesis of normal osteoblasts, and provides new insight into the pathogenesis of bacterial-induced bone destruction.
Collapse
Affiliation(s)
- Hui Gao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Department of Stomatology, Weifang People's Hospital, Weifang, China
| | - Tianyong Sun
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Fanghong Yang
- Department of Stomatology, Weifang People's Hospital, Weifang, China
| | - Jiakan Yuan
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Department of Stomatology, Heze Municipal Hospital, Heze, China
| | - Mei Yang
- Department of General Dentistry, Qingdao Stomatological Hospital, Qingdao, China
| | - Wenyan Kang
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Department of Periodontology, School of Stomatology, Shandong University, Jinan, China
| | - Di Tang
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
49
|
Bourebaba L, Michalak I, Baouche M, Kucharczyk K, Fal AM, Marycz K. Cladophora glomerata enriched by biosorption with Mn(II) ions alleviates lipopolysaccharide-induced osteomyelitis-like model in MC3T3-E1, and 4B12 osteoclastogenesis. J Cell Mol Med 2020; 24:7282-7300. [PMID: 32497406 PMCID: PMC7339214 DOI: 10.1111/jcmm.15294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/20/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic osteomyelitis, a bone infectious disease, is characterized by dysregulation of bone homeostasis, which results in excessive bone resorption. Lipopolysaccharide (LPS) which is a gram‐negative endotoxin was shown to inhibit osteoblast differentiation and to induce apoptosis and osteoclasts formation in vitro. While effective therapy against bacteria‐induced bone destruction is quite limited, the investigation of potential drugs that restore down‐regulated osteoblast function remains a major goal in the prevention of bone destruction in infective bone diseases. This investigation aimed to rescue LPS‐induced MC3T3‐E1 pre‐osteoblastic cell line using the methanolic extract of Cladophora glomerata enriched with Mn(II) ions by biosorption. LPS‐induced MC3T3‐E1 cultures supplemented with C. glomerata methanolic extract were tested for expression of the main genes and microRNAs involved in the osteogenesis pathway using RT‐PCR. Moreover, osteoclastogenesis of 4B12 cells was also investigated by tartrate‐resistant acid phosphatase (TRAP) assay. Treatment with algal extract significantly restored LPS‐suppressed bone mineralization and the mRNA expression levels of osteoblast‐specific genes such as runt‐related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and osteocalcin (OCN), osteopontin (OPN), miR‐27a and miR‐29b. The extract also inhibited osteoblast apoptosis, significantly restored the down‐regulated expression of Bcl‐2, and decreased the loss of MMP and reactive oxygen spices (ROS) production in MC3T3‐E1 cells induced by LPS. Furthermore, pre‐treatment with algal extract strongly decreased the activation of osteoclast in MC3T3‐E1‐4B12 coculture system stimulated by LPS. Our findings suggest that C. glomerata enriched with Mn(II) ions may be a potential raw material for the development of drug for preventing abnormal bone loss induced by LPS in bacteria‐induced bone osteomyelitis.
Collapse
Affiliation(s)
- Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.,International Institute of Translational Medicine, Wisznia Mała, Poland
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Meriem Baouche
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.,International Institute of Translational Medicine, Wisznia Mała, Poland
| | - Katarzyna Kucharczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Andrzej M Fal
- Collegium Medicum, Institute of Medical Science, Cardinal Stefan Wyszyński University (UKSW), Warsaw, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.,International Institute of Translational Medicine, Wisznia Mała, Poland.,Collegium Medicum, Institute of Medical Science, Cardinal Stefan Wyszyński University (UKSW), Warsaw, Poland
| |
Collapse
|
50
|
Shang N, Wu J. Egg-Derived Tripeptide IRW Attenuates LPS-Induced Osteoclastogenesis in RAW 264.7 Macrophages via Inhibition of Inflammatory Responses and NF-κB/MAPK Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6132-6141. [PMID: 32383875 DOI: 10.1021/acs.jafc.0c01159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Excessive bone resorption, because of increased osteoclastic activity, is a key underlying cause of osteolytic disorders. Lipopolysaccharide (LPS) is a potent factor to stimulate osteoclastic activity by inducing inflammatory stress. An egg-derived tripeptide IRW (Ile-Arg-Trp) was previously shown to exert anti-inflammatory activity. The overall objective of this study was to investigate the effect of IRW on inhibiting LPS-induced osteoclastogenesis and inflammatory bone resorption in the mouse macrophage RAW 264.7 cells. IRW (25 and 50 μM) significantly inhibited the LPS-induced osteoclast formation and resorptive activity. Meanwhile, IRW significantly suppressed the LPS-induced expression of TNF-α, IL-6, iNOS, COXII, NO, and PGE2. Furthermore, IRW regulated a group of osteoclastogenesis-associated factors (TRAF6, c-Fos, NFATc1, and cathepsin K) because of the inhibition of LPS-activated NF-κB and MAPK pathways. In conclusion, our study suggested the ability of IRW to prevent LPS-induced inflammatory bone resorption activity via the inhibition of inflammatory responses and the activation of osteoclastogenesis-associated signaling pathways.
Collapse
Affiliation(s)
- Nan Shang
- Dept. of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Dept. of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|