1
|
Walker E, van Niekerk S, Hanning K, Kelton W, Hicks J. Mechanisms of host manipulation by Neisseria gonorrhoeae. Front Microbiol 2023; 14:1119834. [PMID: 36819065 PMCID: PMC9935845 DOI: 10.3389/fmicb.2023.1119834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Neisseria gonorrhoeae (also known as gonococcus) has been causing gonorrhoea in humans since ancient Egyptian times. Today, global gonorrhoea infections are rising at an alarming rate, in concert with an increasing number of antimicrobial-resistant strains. The gonococcus has concurrently evolved several intricate mechanisms that promote pathogenesis by evading both host immunity and defeating common therapeutic interventions. Central to these adaptations is the ability of the gonococcus to manipulate various host microenvironments upon infection. For example, the gonococcus can survive within neutrophils through direct regulation of both the oxidative burst response and maturation of the phagosome; a concerning trait given the important role neutrophils have in defending against invading pathogens. Hence, a detailed understanding of how N. gonorrhoeae exploits the human host to establish and maintain infection is crucial for combating this pathogen. This review summarizes the mechanisms behind host manipulation, with a central focus on the exploitation of host epithelial cell signaling to promote colonization and invasion of the epithelial lining, the modulation of the host immune response to evade both innate and adaptive defenses, and the manipulation of host cell death pathways to both assist colonization and combat antimicrobial activities of innate immune cells. Collectively, these pathways act in concert to enable N. gonorrhoeae to colonize and invade a wide array of host tissues, both establishing and disseminating gonococcal infection.
Collapse
Affiliation(s)
- Emma Walker
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Stacy van Niekerk
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Kyrin Hanning
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - William Kelton
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand
| | - Joanna Hicks
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
2
|
Heydarian M, Rühl E, Rawal R, Kozjak-Pavlovic V. Tissue Models for Neisseria gonorrhoeae Research—From 2D to 3D. Front Cell Infect Microbiol 2022; 12:840122. [PMID: 35223556 PMCID: PMC8873371 DOI: 10.3389/fcimb.2022.840122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/02/2022] Open
Abstract
Neisseria gonorrhoeae is a human-specific pathogen that causes gonorrhea, the second most common sexually transmitted infection worldwide. Disease progression, drug discovery, and basic host-pathogen interactions are studied using different approaches, which rely on models ranging from 2D cell culture to complex 3D tissues and animals. In this review, we discuss the models used in N. gonorrhoeae research. We address both in vivo (animal) and in vitro cell culture models, discussing the pros and cons of each and outlining the recent advancements in the field of three-dimensional tissue models. From simple 2D monoculture to complex advanced 3D tissue models, we provide an overview of the relevant methodology and its application. Finally, we discuss future directions in the exciting field of 3D tissue models and how they can be applied for studying the interaction of N. gonorrhoeae with host cells under conditions closely resembling those found at the native sites of infection.
Collapse
|
3
|
Lim KYL, Mullally CA, Haese EC, Kibble EA, McCluskey NR, Mikucki EC, Thai VC, Stubbs KA, Sarkar-Tyson M, Kahler CM. Anti-Virulence Therapeutic Approaches for Neisseria gonorrhoeae. Antibiotics (Basel) 2021; 10:antibiotics10020103. [PMID: 33494538 PMCID: PMC7911339 DOI: 10.3390/antibiotics10020103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/15/2023] Open
Abstract
While antimicrobial resistance (AMR) is seen in both Neisseria gonorrhoeae and Neisseria meningitidis, the former has become resistant to commonly available over-the-counter antibiotic treatments. It is imperative then to develop new therapies that combat current AMR isolates whilst also circumventing the pathways leading to the development of AMR. This review highlights the growing research interest in developing anti-virulence therapies (AVTs) which are directed towards inhibiting virulence factors to prevent infection. By targeting virulence factors that are not essential for gonococcal survival, it is hypothesized that this will impart a smaller selective pressure for the emergence of resistance in the pathogen and in the microbiome, thus avoiding AMR development to the anti-infective. This review summates the current basis of numerous anti-virulence strategies being explored for N. gonorrhoeae.
Collapse
Affiliation(s)
- Katherine Y. L. Lim
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Christopher A. Mullally
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Ethan C. Haese
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Emily A. Kibble
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Edward C. Mikucki
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Van C. Thai
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Keith A. Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Charlene M. Kahler
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- Correspondence:
| |
Collapse
|
4
|
Mendes AC, Ciccone M, Gazolla B, Bahia D. Epithelial Haven and Autophagy Breakout in Gonococci Infection. Front Cell Dev Biol 2020; 8:439. [PMID: 32582714 PMCID: PMC7295977 DOI: 10.3389/fcell.2020.00439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
The World Health Organization (WHO) has estimated that in 2016, there were 87 million new cases of gonorrhea. Gonorrhea is caused by the sexually transmitted human-exclusive agent Neisseria gonorrhoeae, a Gram-negative diplococcus that causes cervicitis in females and urethritis in males and may lead to more severe complications. Currently, there is no vaccine against N. gonorrhoeae. Its resistance to antibiotics has been increasing in the past few years, reducing the range of treatment options. N. gonorrhoeae requires a surface protein/receptor (Opa proteins, porin, Type IV pili, LOS) to adhere to and invade epithelial cells. During invasion and transcytosis, N. gonorrhoeae is targeted by the autophagy pathway, a cellular maintenance process which balances sources of energy at critical times by degrading damaged organelles and macromolecules in the lysosome. Autophagy is an important host defense mechanism which targets invading pathogens. Based on transmission electron microscopy (TEM) analysis, the intracellular bacteria occupy the autophagosome, a double-membraned vesicle that is formed around molecules or microorganisms during macroautophagy and fuses with lysosomes for degradation. Most of the gonococci end up in autolysosomes for degradation, but a subpopulation of the intracellular bacteria inhibits the maturation of the autophagosome and its fusion with lysosomes by activating mTORC1 (a known suppressor of the autophagy signaling), thus escaping autophagic elimination. This mini review focuses on the cellular features of N. gonorrhoeae during epithelial cell invasion, with a particular focus on how N. gonorrhoeae evades the autophagy pathway.
Collapse
Affiliation(s)
- Ana Clara Mendes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcone Ciccone
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruna Gazolla
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Diana Bahia
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Guvenc F, Kaul R, Gray-Owen SD. Intimate Relations: Molecular and Immunologic Interactions Between Neisseria gonorrhoeae and HIV-1. Front Microbiol 2020; 11:1299. [PMID: 32582133 PMCID: PMC7284112 DOI: 10.3389/fmicb.2020.01299] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022] Open
Abstract
While the global incidence of human immunodeficiency virus (HIV-1) remains well above UNAIDS targets, sexual transmission HIV is surprisingly inefficient. A variety of host, viral and environmental factors can either increase HIV-1 shedding in the infected partner and/or increase mucosal susceptibility of the HIV-1 uninfected partner. Clinical and epidemiological studies have clearly established that Neisseria gonorrhoeae substantially enhances HIV-1 transmission, despite it not being an ulcerative infection. This review will consider findings from molecular, immunologic and clinical studies that have focused on each of these two human-restricted pathogens, in order to develop an integrative model that describes how gonococci can both increase mucosal shedding of HIV-1 from a co-infected person and facilitate virus establishment in a susceptible host.
Collapse
Affiliation(s)
- Furkan Guvenc
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Division of Infectious Diseases, University Health Network, Toronto, ON, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Jayasundara P, Regan DG, Seib KL, Jayasundara D, Wood JG. Modelling the in-host dynamics of Neisseria gonorrhoeae infection. Pathog Dis 2019; 77:5320890. [PMID: 30770529 DOI: 10.1093/femspd/ftz008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
The bacterial species Neisseria gonorrhoeae (NG) has evolved to replicate effectively and exclusively in human epithelia, with its survival dependent on complex interactions between bacteria, host cells and antimicrobial agents. A better understanding of these interactions is needed to inform development of new approaches to gonorrhoea treatment and prevention but empirical studies have proven difficult, suggesting a role for mathematical modelling. Here, we describe an in-host model of progression of untreated male symptomatic urethral infection, including NG growth and interactions with epithelial cells and neutrophils, informed by in vivo and in vitro studies. The model reproduces key observations on bacterial load and clearance and we use multivariate sensitivity analysis to refine plausible ranges for model parameters. Model variants are also shown to describe mouse infection dynamics with altered parameter ranges that correspond to observed differences between human and mouse infection. Our results highlight the importance of NG internalisation, particularly within neutrophils, in sustaining infection in the human model, with ∼80% of the total NG population internalised from day 25 on. This new mechanistic model of in-host NG infection dynamics should also provide a platform for future studies relating to antimicrobial treatment and resistance and infection at other anatomical sites.
Collapse
Affiliation(s)
- Pavithra Jayasundara
- Faculty of Medicine, School of Public Health and Community Medicine, UNSW Sydney, Samuels Avenue, Kensington, NSW 2052, Australia
| | - David G Regan
- The Kirby Institute, UNSW Sydney, High Street, Kensington, NSW 2052, Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast campus, Parklands Dr, Southport, QLD 4222, Australia
| | - Duleepa Jayasundara
- Faculty of Medicine, School of Public Health and Community Medicine, UNSW Sydney, Samuels Avenue, Kensington, NSW 2052, Australia
| | - James G Wood
- Faculty of Medicine, School of Public Health and Community Medicine, UNSW Sydney, Samuels Avenue, Kensington, NSW 2052, Australia
| |
Collapse
|
7
|
Muenzner P, Kengmo Tchoupa A, Klauser B, Brunner T, Putze J, Dobrindt U, Hauck CR. Uropathogenic E. coli Exploit CEA to Promote Colonization of the Urogenital Tract Mucosa. PLoS Pathog 2016; 12:e1005608. [PMID: 27171273 PMCID: PMC4865239 DOI: 10.1371/journal.ppat.1005608] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 04/11/2016] [Indexed: 11/18/2022] Open
Abstract
Attachment to the host mucosa is a key step in bacterial pathogenesis. On the apical surface of epithelial cells, members of the human carcinoembryonic antigen (CEA) family are abundant glycoproteins involved in cell-cell adhesion and modulation of cell signaling. Interestingly, several gram-negative bacterial pathogens target these receptors by specialized adhesins. The prototype of a CEACAM-binding pathogen, Neisseria gonorrhoeae, utilizes colony opacity associated (Opa) proteins to engage CEA, as well as the CEA-related cell adhesion molecules CEACAM1 and CEACAM6 on human epithelial cells. By heterologous expression of neisserial Opa proteins in non-pathogenic E. coli we find that the Opa protein-CEA interaction is sufficient to alter gene expression, to increase integrin activity and to promote matrix adhesion of infected cervical carcinoma cells and immortalized vaginal epithelial cells in vitro. These CEA-triggered events translate in suppression of exfoliation and improved colonization of the urogenital tract by Opa protein-expressing E. coli in CEA-transgenic compared to wildtype mice. Interestingly, uropathogenic E. coli expressing an unrelated CEACAM-binding protein of the Afa/Dr adhesin family recapitulate the in vitro and in vivo phenotype. In contrast, an isogenic strain lacking the CEACAM-binding adhesin shows reduced colonization and does not suppress epithelial exfoliation. These results demonstrate that engagement of human CEACAMs by distinct bacterial adhesins is sufficient to blunt exfoliation and to promote host infection. Our findings provide novel insight into mucosal colonization by a common UPEC pathotype and help to explain why human CEACAMs are a preferred epithelial target structure for diverse gram-negative bacteria to establish a foothold on the human mucosa. Mucous surfaces are a hallmark of the nasal cavity and the throat as well as the intestinal and urogenital tracts. These surfaces serve as primary entry portals for a large number of pathogenic bacteria. To get a foothold on the mucosa, bacteria not only need to tightly attach to this tissue, but also need to overcome an intrinsic defence mechanism called exfoliation. During the exfoliation process, the outermost cell layer, together with attached bacteria, is released from the tissue surface reducing the microbial burden. A comprehensive understanding of the molecular strategies, which bacteria utilize to undermine this host defence, is currently lacking. Our results suggest that different bacterial pathogens have found a surprisingly similar answer to this problem by targeting a common set of proteins on the tissue surface. Accordingly, these bacteria express unrelated proteins that engage the same host receptors called CEA-related cell adhesion molecules (CEACAMs). Binding of microbes to CEACAMs triggers, via intracellular signaling pathways, an increased stickiness of the infected cells. Thereby, the pathogens suppress the release of superficial host cells from the tissue and effectively block exfoliation. Detailed mechanistic insight into this process and the ability to manipulate exfoliation might help to prevent or treat bacterial infections.
Collapse
Affiliation(s)
- Petra Muenzner
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Arnaud Kengmo Tchoupa
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Benedikt Klauser
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Thomas Brunner
- Lehrstuhl Biochemische Pharmakologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Johannes Putze
- Institut für Hygiene, Universität Münster, Münster, Germany
| | | | - Christof R. Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
- * E-mail:
| |
Collapse
|
8
|
Stein DC, LeVan A, Hardy B, Wang LC, Zimmerman L, Song W. Expression of Opacity Proteins Interferes with the Transmigration of Neisseria gonorrhoeae across Polarized Epithelial Cells. PLoS One 2015; 10:e0134342. [PMID: 26244560 PMCID: PMC4526573 DOI: 10.1371/journal.pone.0134342] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 07/08/2015] [Indexed: 11/18/2022] Open
Abstract
Neisseria gonorrhoeae (GC) establishes infection at the mucosal surface of the human genital tract, most of which is lined with polarized epithelial cells. GC can cause localized as well as disseminated infections, leading to various complications. GC constantly change their surface structures via phase and antigenic variation, which has been implicated as a means for GC to establish infection at various anatomic locations of male and female genital tracks. However, the exact contribution of each surface molecule to bacterial infectivity remains elusive due to their phase variation. Using a GC derivative that is genetically devoid of all opa genes (MS11∆Opa), this study shows that Opa expression interferes with GC transmigration across polarized human epithelial cells. MS11∆Opa transmigrates across polarized epithelial cells much faster and to a greater extent than MS11Opa+, while adhering at a similar level as MS11Opa+. When MS11Opa+, able to phase vary Opa expression, was inoculated, only those bacteria that turn off Opa expression transmigrate across the polarized epithelial monolayer. Similar to bacteria alone or co-cultured with non-polarized epithelial cells, MS11∆Opa fails to form large microcolonies at the apical surface of polarized epithelial cells. Apical inoculation of MS11Opa+, but not MS11∆Opa, induces the recruitment of the Opa host-cell receptor carcinoembryonic antigen–related cell adhesion molecules (CEACAMs) to the apical junction and the vicinity of bacterial adherent sites. Our results suggest that Opa expression limits gonococcal ability to invade into subepithelial tissues by forming tight interactions with neighboring bacteria and by inducing CEACAM redistribution to cell junctions.
Collapse
Affiliation(s)
- Daniel C. Stein
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (DCS); (WS)
| | - Adriana LeVan
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Britney Hardy
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Liang-Chun Wang
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Lindsey Zimmerman
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (DCS); (WS)
| |
Collapse
|
9
|
Tossetta G, Paolinelli F, Avellini C, Salvolini E, Ciarmela P, Lorenzi T, Emanuelli M, Toti P, Giuliante R, Gesuita R, Crescimanno C, Voltolini C, Di Primio R, Petraglia F, Castellucci M, Marzioni D. IL-1β and TGF-β weaken the placental barrier through destruction of tight junctions: an in vivo and in vitro study. Placenta 2014; 35:509-16. [PMID: 24768095 DOI: 10.1016/j.placenta.2014.03.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 03/19/2014] [Accepted: 03/24/2014] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Chorioamnionitis is a gestational pathological condition characterized by acute inflammation of the amniochorionic membranes and placentas leading to high concentrations of IL-1β, Il-6, Il-8 and TGF-β in the amniotic fluid. In normal conditions, the permeability of foeto-maternal barrier is due to the assembly and maintenance of different cellular junctional domains. METHODS In the present study, first we aimed to evaluate the protein expression (by immunohistochemistry and western blotting) and mRNA (by real time PCR) levels of the molecular components of tight junctions (Zonula occludens-1 and occludin), and of adherent junctions (VE-cadherin and β-catenin) in placentas from chorioamnionitis compared to that in normal pregnancies. RESULTS Western blotting results showed a significant down-regulation of occludin in placentas affected with chorioamnionitis. No differences were detected for the other proteins analysed. We evaluated whether occludin expression was regulated by IL-1β, IL-6, IL-8 and TGF-β by means of in vitro studies using HUVEC cultures and demonstrated a key role of IL-1β and TGF-β in the disappearance of occludin at cellular border. CONCLUSIONS We conclude by suggesting a pivotal role of these two cytokines in facilitating intra-placental infection via para-cellular way due to the disassembly of tight junctions at trophoblastic and endothelial cells in placental tissues.
Collapse
Affiliation(s)
- G Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60020 Ancona, Italy.
| | - F Paolinelli
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60020 Ancona, Italy.
| | - C Avellini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60020 Ancona, Italy.
| | - E Salvolini
- Department of Molecular and Clinical Sciences-Histology, Università Politecnica delle Marche, 60020 Ancona, Italy.
| | - P Ciarmela
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60020 Ancona, Italy.
| | - T Lorenzi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60020 Ancona, Italy.
| | - M Emanuelli
- Department of Clinical Sciences, Section of Biochemistry, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - P Toti
- Department of Medical Biotechnologies, Pathology Unit, University of Siena, Siena, Italy.
| | - R Giuliante
- Department of Clinical Sciences, Section of Biochemistry, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - R Gesuita
- Department of Biomedical Sciences and Public Health, Epidemiological and Bio-statistic Centre, Università Politecnica delle Marche, 60020 Ancona, Italy.
| | - C Crescimanno
- Faculty of Engineering, Architecture and Physical Education, Università Kore, 94100 Enna, Italy.
| | - C Voltolini
- Department of Molecular and Developmental Medicine-Obstetrics and Gynecology, University of Siena, 53100 Siena, Italy.
| | - R Di Primio
- Department of Molecular and Clinical Sciences-Histology, Università Politecnica delle Marche, 60020 Ancona, Italy.
| | - F Petraglia
- Department of Molecular and Developmental Medicine-Obstetrics and Gynecology, University of Siena, 53100 Siena, Italy.
| | - M Castellucci
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60020 Ancona, Italy.
| | - D Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60020 Ancona, Italy.
| |
Collapse
|
10
|
Abstract
Niche-restricted pathogens are evolutionarily linked with the specific biological fluids that are encountered during infection. Neisseria gonorrhoeae causes the genital infection gonorrhea and is exposed to seminal fluid during sexual transmission. Treatment of N. gonorrhoeae with seminal plasma or purified semen proteins lactoferrin, serum albumin, and prostate-specific antigen each facilitated type IV pilus-mediated twitching motility of the bacterium. Motility in the presence of seminal plasma was characterized by high velocity and low directional persistence. In addition, infection of epithelial cells with N. gonorrhoeae in the presence of seminal plasma resulted in enhanced microcolony formation. Close association of multiple pili in the form of bundles was also disrupted after seminal plasma treatment leading to an increase in the number of single pilus filaments on the bacterial surface. Thus, exposure of N. gonorrhoeae to seminal plasma is proposed to alter bacterial motility and aggregation characteristics to influence the processes of transmission and colonization. There are greater than 100 million estimated new cases of gonorrhea annually worldwide. Research characterizing the mechanisms of pathogenesis and transmission of Neisseria gonorrhoeae is important for developing new prevention strategies, since antibiotic resistance of the organism is becoming increasingly prevalent. Our work identifies seminal plasma as a mediator of N. gonorrhoeae twitching motility and microcolony formation through functional modification of the type IV pilus. These findings provide insight into motility dynamics and epithelial cell colonization under conditions that are relevant to sexual transmission. Type IV pili are common virulence factors with diverse functions among bacterial pathogens, and this work identifies interactions between type IV pili and the host environment. Finally, this work illustrates the importance of the host environment and niche-specific fluids on microbial pathogenesis.
Collapse
|
11
|
Edwards VL, Wang LC, Dawson V, Stein DC, Song W. Neisseria gonorrhoeae breaches the apical junction of polarized epithelial cells for transmigration by activating EGFR. Cell Microbiol 2013; 15:1042-57. [PMID: 23279089 PMCID: PMC5584544 DOI: 10.1111/cmi.12099] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 12/24/2022]
Abstract
Neisseria gonorrhoeae initiates infection at the apical surface of columnar endocervical epithelial cells in the female reproductive tract. These cells provide a physical barrier against pathogens by forming continuous apical junctional complexes between neighbouring cells. This study examines the interaction of gonococci (GC) with polarized epithelial cells. We show that viable GC preferentially localize at the apical side of the cell-cell junction in polarized endometrial and colonic epithelial cells, HEC-1-B and T84. In GC-infected cells, continuous apical junctional complexes are disrupted, and the junction-associated protein β-catenin is redistributed from the apical junction to the cytoplasm and to GC adherent sites; however, overall cellular levels remain unchanged. This redistribution of junctional proteins is associated with a decrease in the 'fence' function of the apical junction but not its 'gate' function. Disruption of the apical junction by removing calcium increases GC transmigration across the epithelial monolayer. GC inoculation induces the phosphorylation of both epidermal growth factor receptor (EGFR) and β-catenin, while inhibition of EGFR kinase activity significantly reduces both GC-induced β-catenin redistribution and GC transmigration. Therefore, the gonococcus is capable of weakening the apical junction and polarity of epithelial cells by activating EGFR, which facilitates GC transmigration across the epithelium.
Collapse
Affiliation(s)
- Vonetta L. Edwards
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Liang-Chun Wang
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Valerie Dawson
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Daniel C. Stein
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
12
|
Calton CM, Wade LK, So M. Upregulation of ATF3 inhibits expression of the pro-inflammatory cytokine IL-6 during Neisseria gonorrhoeae infection. Cell Microbiol 2013; 15:1837-50. [PMID: 23648135 DOI: 10.1111/cmi.12153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 04/12/2013] [Accepted: 03/28/2013] [Indexed: 12/16/2022]
Abstract
Neisseria gonorrhoeae regulates the expression of epithelial cell genes, activates cytoprotective pathways in the infected cell and protects it from apoptosis. Many of these responses are enhanced by the Type IV pilus (Tfp). We tested the hypothesis that N. gonorrhoeae modulates the innate immune response by inducing expression of ATF3, a transcription factor that negatively regulates the expression of many cytokine genes. We further determined whether Tfp are involved in these events. We found that N. gonorrhoeae induces ATF3 expression in mucosal epithelial cells through activation of mitogen-activated protein kinases. Maximal ATF3 expression requires Tfp retraction. Knocking down endogenous levels of ATF3 results in higher levels of IL-6 transcript. Our findings strongly suggest that ATF3 is involved in suppressing cytokine expression during gonococcal infection. We propose a model for the role of ATF3 in the context of N. gonorrhoeae infection.
Collapse
Affiliation(s)
- Christine M Calton
- Department of Molecular Microbiology and Immunology, L220, Oregon Health and Science University, Portland, OR, 97239, USA; The BIO5 Institute, University of Arizona, Tucson, AZ, 85721, USA; Department of Immunobiology, University of Arizona, Tucson, AZ, 85721, USA
| | | | | |
Collapse
|
13
|
Neisseria gonorrhoeae pilus attenuates cytokine response of human fallopian tube explants. J Biomed Biotechnol 2012; 2012:491298. [PMID: 22318778 PMCID: PMC3270410 DOI: 10.1155/2012/491298] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/10/2011] [Accepted: 10/16/2011] [Indexed: 11/17/2022] Open
Abstract
Background. A role for pilus during attachment of Neisseria gonorrhoeae to epithelia of the female reproductive tract is currently assumed. However, Pil− gonococci have been observed during infection of the reproductive tract, which prompted us to examine the effect of pili on the dynamics of infection and the inflammatory responses of mucosal explants of the human Fallopian tube. Methods. Mucosal explants were infected in vitro with Opa negative Pil− and Pil+N. gonorrhoeae strains. Results. Piliation enhanced gonococcal adherence to the epithelium within 3 h of infection (P < 0.05) but thereafter did not offer advantage to gonococci to colonize the epithelial cell surface (P > 0.05). No differences were found between the strains in numbers of gonococci inside epithelial cells. Pil− bacteria induced higher levels (P < 0.05) of IL-1β, TNF-α, GM-CSF, MCP-1, and MIP-1β than Pil+ bacteria. There were no differences between both strains in LOS pattern, and Pil expression did not change after coincubation with mucosal strips. Conclusions. Results show that gonococcal invasion of the human Fallopian tube can occur independently of pilus or Opa expression, and suggest that pilus, by inhibition of several key elements of the initial inflammatory response, facilitates sustained infection of this organ.
Collapse
|
14
|
Muenzner P, Bachmann V, Zimmermann W, Hentschel J, Hauck CR. Human-restricted bacterial pathogens block shedding of epithelial cells by stimulating integrin activation. Science 2010; 329:1197-201. [PMID: 20813953 DOI: 10.1126/science.1190892] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Colonization of mucosal surfaces is the key initial step in most bacterial infections. One mechanism protecting the mucosa is the rapid shedding of epithelial cells, also termed exfoliation, but it is unclear how pathogens counteract this process. We found that carcinoembryonic antigen (CEA)-binding bacteria colonized the urogenital tract of CEA transgenic mice, but not of wild-type mice, by suppressing exfoliation of mucosal cells. CEA binding triggered de novo expression of the transforming growth factor receptor CD105, changing focal adhesion composition and activating beta1 integrins. This manipulation of integrin inside-out signaling promotes efficient mucosal colonization and represents a potential target to prevent or cure bacterial infections.
Collapse
Affiliation(s)
- Petra Muenzner
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
15
|
Higashi DL, Zhang GH, Biais N, Myers LR, Weyand NJ, Elliott DA, So M. Influence of type IV pilus retraction on the architecture of the Neisseria gonorrhoeae-infected cell cortex. MICROBIOLOGY-SGM 2009; 155:4084-4092. [PMID: 19762436 DOI: 10.1099/mic.0.032656-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Early in infection, Neisseria gonorrhoeae can be observed to attach to the epithelial cell surface as microcolonies and induce dramatic changes to the host cell cortex. We tested the hypothesis that type IV pili (Tfp) retraction plays a role in the ultrastructure of both the host cell cortex and the bacterial microcolony. Using serial ultrathin sectioning, transmission electron microscopy and 3D reconstruction of serial 2D images, we have obtained what we believe to be the first 3D reconstructions of the N. gonorrhoeae-host cell interface, and determined the architecture of infected cell microvilli as well as the attached microcolony. Tfp connect both wild-type (wt) and Tfp retraction-deficient bacteria with each other, and with the host cell membrane. Tfp fibres and microvilli form a lattice in the wt microcolony and at its periphery. Wt microcolonies induce microvilli formation and increases of surface area, leading to an approximately ninefold increase in the surface area of the host cell membrane at the site of attachment. In contrast, Tfp retraction-deficient microcolonies do not affect these parameters. Wt microcolonies had a symmetrical, dome-shaped structure with a circular 'footprint', while Tfp retraction-deficient microcolonies were notably less symmetrical. These findings support a major role for Tfp retraction in microvilli and microcolony architecture. They are consistent with the biophysical attributes of Tfp and the effects of Tfp retraction on epithelial cell signalling.
Collapse
Affiliation(s)
- Dustin L Higashi
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Gina H Zhang
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Nicolas Biais
- Department of Biological Sciences, Columbia University, New York, USA
| | - Lauren R Myers
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Nathan J Weyand
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - David A Elliott
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Magdalene So
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
16
|
Plant L, Jonsson AB. Contacting the Host: Insights and Implications of Pathogenic Neisseria Cell Interactions. ACTA ACUST UNITED AC 2009; 35:608-13. [PMID: 14620143 DOI: 10.1080/00365540310016349] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neisseria is a highly adapted human specific pathogen that initiates infection at the mucosal epithelia by using multiple adhesins to interact with host cell receptors. Colonization begins at the apical cell surface with a multi-step adhesion cascade, followed by invasion and persistence within the cell and finally transcytosis at the basolateral surface. The type IV pill are implicated in mediating the initial attachment of both meningococci and gonococci, and this association has been shown to involve contact with the cellular receptor CD46. In this review we describe the initial events in the adhesion, invasion and signaling of pathogenic Neisseria focusing on the initial attachment and signaling induced by the interaction of the type IV pili with CD46.
Collapse
Affiliation(s)
- Laura Plant
- Microbiology and Tumor Biology Center, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
17
|
Kepp O, Gottschalk K, Churin Y, Rajalingam K, Brinkmann V, Machuy N, Kroemer G, Rudel T. Bim and Bmf synergize to induce apoptosis in Neisseria gonorrhoeae infection. PLoS Pathog 2009; 5:e1000348. [PMID: 19300516 PMCID: PMC2654407 DOI: 10.1371/journal.ppat.1000348] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 02/25/2009] [Indexed: 11/18/2022] Open
Abstract
Bcl-2 family proteins including the pro-apoptotic BH3-only proteins are central regulators of apoptotic cell death. Here we show by a focused siRNA miniscreen that the synergistic action of the BH3-only proteins Bim and Bmf is required for apoptosis induced by infection with Neisseria gonorrhoeae (Ngo). While Bim and Bmf were associated with the cytoskeleton of healthy cells, they both were released upon Ngo infection. Loss of Bim and Bmf from the cytoskeleton fraction required the activation of Jun-N-terminal kinase-1 (JNK-1), which in turn depended on Rac-1. Depletion and inhibition of Rac-1, JNK-1, Bim, or Bmf prevented the activation of Bak and Bax and the subsequent activation of caspases. Apoptosis could be reconstituted in Bim-depleted and Bmf-depleted cells by additional silencing of antiapoptotic Mcl-1 and Bcl-XL, respectively. Our data indicate a synergistic role for both cytoskeletal-associated BH3-only proteins, Bim, and Bmf, in an apoptotic pathway leading to the clearance of Ngo-infected cells. A variety of physiological death signals, as well as pathological insults, trigger apoptosis, a genetically programmed form of cell death. Pathogens often induce host cell apoptosis to establish a successful infection. Neisseria gonorrhoeae (Ngo), the etiological agent of the sexually transmitted disease gonorrhoea, is a highly adapted obligate human-specific pathogen and has been shown to induce apoptosis in infected cells. Here we unveil the molecular mechanisms leading to apoptosis of infected cells. We show that Ngo-mediated apoptosis requires a special subset of proapoptotic proteins from the group of BH3-only proteins. BH3-only proteins act as stress sensors to translate toxic environmental signals to the initiation of apoptosis. In a siRNA-based miniscreen, we found Bim and Bmf, BH3-only proteins associated with the cytoskeleton, necessary to induce host cell apoptosis upon infection. Bim and Bmf inactivated different inhibitors of apoptosis and thereby induced cell death in response to infection. Our data unveil a novel pathway of infection-induced apoptosis that enhances our understanding of the mechanism by which BH3-only proteins control apoptotic cell death.
Collapse
Affiliation(s)
- Oliver Kepp
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kathleen Gottschalk
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Yuri Churin
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Krishnaraj Rajalingam
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Volker Brinkmann
- Core Facility for Microscopy, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Nikolaus Machuy
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Guido Kroemer
- INSERM, U848, Institute Gustave Roussy, Université Paris Sud, Paris, France
| | - Thomas Rudel
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Biozentrum, University of Würzburg, Department of Microbiology, Würzburg, Germany
- * E-mail:
| |
Collapse
|
18
|
Bish SE, Song W, Stein DC. Quantification of bacterial internalization by host cells using a beta-lactamase reporter strain: Neisseria gonorrhoeae invasion into cervical epithelial cells requires bacterial viability. Microbes Infect 2008; 10:1182-91. [PMID: 18678271 DOI: 10.1016/j.micinf.2008.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 06/17/2008] [Accepted: 06/22/2008] [Indexed: 10/21/2022]
Abstract
Neisseria gonorrhoeae can invade into cervical epithelial cells to overcome this host defense barrier. We developed a beta-lactamase reporter system that allowed us to quantify at the single cell level if a host cell internalized a viable or nonviable microorganism. We autodisplayed beta-lactamase on the surface of FA1090 [FA1090Phi(bla-iga')] and demonstrated by confocal fluorescence microscopy and flow cytometry that FA1090Phi(bla-iga') cleaved the beta-lactamase substrate CCF2-AM loaded into host cells only when gonococci were internalized by these host cells. While FA1090Phi(bla-iga') adhered to almost all ME180 cells, viable N. gonorrhoeae were internalized by only a subset of cells during infection. Nonviable gonococci adhered to, but were not internalized by ME180 cells, and failed to recruit F-actin to sites of adherent bacteria. Overall, we show that epithelial cell invasion is a dynamic process that requires viable N. gonorrhoeae. We demonstrate the advantages of the beta-lactamase reporter system over the gentamicin protection assay in quantifying bacterial invasion. The reporter system that we have developed can be adapted to studying the internalization of any bacterial species into any host cell.
Collapse
Affiliation(s)
- Samuel E Bish
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
19
|
Higashi DL, Lee SW, Snyder A, Weyand NJ, Bakke A, So M. Dynamics of Neisseria gonorrhoeae attachment: microcolony development, cortical plaque formation, and cytoprotection. Infect Immun 2007; 75:4743-53. [PMID: 17682045 PMCID: PMC2044525 DOI: 10.1128/iai.00687-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neisseria gonorrhoeae is the bacterium that causes gonorrhea, a major sexually transmitted disease and a significant cofactor for human immunodeficiency virus transmission. The retactile N. gonorrhoeae type IV pilus (Tfp) mediates twitching motility and attachment. Using live-cell microscopy, we reveal for the first time the dynamics of twitching motility by N. gonorrhoeae in its natural environment, human epithelial cells. Bacteria aggregate into microcolonies on the cell surface and induce a massive remodeling of the microvillus architecture. Surprisingly, the microcolonies are motile, and they fuse to form progressively larger structures that undergo rapid reorganization, suggesting that bacteria communicate with each other during infection. As reported, actin plaques form beneath microcolonies. Here, we show that cortical plaques comigrate with motile microcolonies. These activities are dependent on pilT, the Tfp retraction locus. Cultures infected with a pilT mutant have significantly higher numbers of apoptotic cells than cultures infected with the wild-type strain. Inducing pilT expression with isopropyl-beta-D-thiogalactopyranoside partially rescues cells from infection-induced apoptosis, demonstrating that Tfp retraction is intrinsically cytoprotective for the host. Tfp-mediated attachment is therefore a continuum of microcolony motility and force stimulation of host cell signaling, leading to a cytoprotective effect.
Collapse
Affiliation(s)
- Dustin L Higashi
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
20
|
Wang JA, Meyer TF, Rudel T. Cytoskeleton and motor proteins are required for the transcytosis of Neisseria gonorrhoeae through polarized epithelial cells. Int J Med Microbiol 2007; 298:209-21. [PMID: 17683982 DOI: 10.1016/j.ijmm.2007.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 04/27/2007] [Accepted: 05/08/2007] [Indexed: 10/23/2022] Open
Abstract
Neisseria gonorrhoeae interact with polarized T84 epithelial cells by engaging carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) receptors. Adherent bacteria that are taken up by the cells are able to traverse the epithelial layer from the apical to the basal side. Herein, we demonstrate that the actin cytoskeleton of the cells is not required for the initial adherence of the bacteria, however, it is essential for invasion into and traversal through T84 cells. Furthermore, microtubule inhibitors blocked the traversal, but not the adherence and invasion of the bacteria. Inhibition of the motor activity of myosins reduced invasion and traversal, but not bacterial adherence. Immunofluorescence confocal laser scanning microscopy revealed the colocalization of the microtubule-based kinesin and dynein motors, and the actin-based motor myosin with adherent and intracellular gonococci. Transcytosis was reduced by blocking kinesin and myosin with specific antibodies. This underlines the importance of these motor proteins for the transcytosis of epithelial monolayers by N. gonorrhoeae.
Collapse
Affiliation(s)
- Jun A Wang
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | |
Collapse
|
21
|
Hauck CR, Agerer F, Muenzner P, Schmitter T. Cellular adhesion molecules as targets for bacterial infection. Eur J Cell Biol 2006; 85:235-42. [PMID: 16546567 DOI: 10.1016/j.ejcb.2005.08.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A large number of bacterial pathogens targets cell adhesion molecules to establish an intimate contact with host cells and tissues. Members of the integrin, cadherin and immunoglobulin-related cell adhesion molecule (IgCAM) families are frequently recognized by specific bacterial surface proteins. Binding can trigger bacterial internalization following cytoskeletal rearrangements that are initiated upon receptor clustering. Moreover, signals emanating from the occupied receptors can result in cellular responses such as gene expression events that influence the phenotype of the infected cell. This review will address recent advances in our understanding of bacterial engagement of cellular adhesion molecules by discussing the binding of integrins by Staphylococcus aureus as well as the exploitation of IgCAMs by pathogenic Neisseria species.
Collapse
Affiliation(s)
- Christof R Hauck
- Zentrum für Infektionsforschung, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany.
| | | | | | | |
Collapse
|
22
|
Muenzner P, Rohde M, Kneitz S, Hauck CR. CEACAM engagement by human pathogens enhances cell adhesion and counteracts bacteria-induced detachment of epithelial cells. ACTA ACUST UNITED AC 2005; 170:825-36. [PMID: 16115956 PMCID: PMC2171332 DOI: 10.1083/jcb.200412151] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Exfoliation, which is the detachment of infected epithelial cells, is an innate defense mechanism to prevent bacterial colonization. Indeed, infection with Neisseria gonorrhoeae induced epithelial detachment from an extracellular matrix (ECM) substrate in vitro. Surprisingly, variants of N. gonorrhoeae that bind to human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) failed to induce detachment and, instead, promoted enhanced host cell adhesion to the ECM. Microarray analysis revealed that CEACAM engagement by several human pathogens triggers expression of CD105. Blockage of CD105 expression by antisense oligonucleotides abolished infection-induced cell adhesion. The expression of full-length CD105 promoted cell adhesion to the ECM and was sufficient to prevent infection-induced detachment. The CD105-mediated increase in cell adhesion was dependent on the presence and function of integrin β1. CD105 expression did not elevate cellular integrin levels but caused a dramatic increase in the ECM-binding capacity of the cells, suggesting that CD105 affects integrin activity. The exploitation of CEACAMs to trigger CD105 expression and to counteract infection-induced cell detachment represents an intriguing adaptation of pathogens that are specialized to colonize the human mucosa.
Collapse
Affiliation(s)
- Petra Muenzner
- Zentrum für Infektionsforschung, Universität Würzburg, 97070 Würzburg, Germany
| | | | | | | |
Collapse
|
23
|
|
24
|
Zhou H, Hickford JG. Dichelobacter nodosus serotype M fimbrial subunit gene: implications for serological classification. Vet Microbiol 2001; 79:367-74. [PMID: 11267795 DOI: 10.1016/s0378-1135(00)00385-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dichelobacter nodosus fimbrial subunit gene (fimA) from a serotype M strain (M-SPAHL) was investigated in this study. A primer set targeting the relatively conserved fimA regions and based on the published sequence from Nepalese serogroup M isolates (Nepalese M), failed to amplify the fimA of M-SPAHL. However, when the downstream primer was substituted with a primer that is specific for other serogroups of D. nodosus, the fimA was successfully amplified. Cloning followed by DNA sequencing, revealed that the M-SPAHL fimA was different to the Nepalese M fimA. The predicted amino acid sequence of the M-SPAHL fimA did not show homology to any known serogroups or serotypes. The most similar sequence was from serotype F1, and not Nepalese M. The consequences of serological relatedness and sequence dissimilarity are discussed.
Collapse
Affiliation(s)
- H Zhou
- Animal and Food Sciences Division, Lincoln University, Canterbury, New Zealand
| | | |
Collapse
|
25
|
Abstract
The closely related bacterial pathogens Neisseria gonorrhoeae (gonococci, GC) and N. meningitidis (meningococci, MC) initiate infection at human mucosal epithelia. Colonization begins at apical epithelial surfaces with a multistep adhesion cascade, followed by invasion of the host cell, intracellular persistence, transcytosis, and exit. These activities are modulated by the interaction of a panoply of virulence factors with their cognate host cell receptors, and signals are sent from pathogen to host and host to pathogen at multiple stages of the adhesion cascade. Recent advances place us on the verge of understanding the colonization process at a molecular level of detail. In this review we describe the Neisseria virulence factors in the context of epithelial cell biology, placing special emphasis on the signaling functions of type IV pili, pilus-based twitching motility, and the Opa and Opc outermembrane adhesin/invasin proteins. We also summarize what is known about bacterial intracellular trafficking and growth. With the accelerated integration of tools from cell biology, biochemistry, biophysics, and genomics, experimentation in the next few years should bring unprecedented insights into the interactions of Neisseriae with their host.
Collapse
Affiliation(s)
- A J Merz
- Department of Molecular Microbiology & Immunology, L220, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | |
Collapse
|
26
|
Long CD, Hayes SF, van Putten JP, Harvey HA, Apicella MA, Seifert HS. Modulation of gonococcal piliation by regulatable transcription of pilE. J Bacteriol 2001; 183:1600-9. [PMID: 11160091 PMCID: PMC95045 DOI: 10.1128/jb.183.5.1600-1609.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gonococcal pilus, a member of the type IV family of pili, is composed of numerous monomers of the pilin protein and plays an important role in the initiation of disease by providing the primary attachment of the bacterial cell to human mucosal tissues. Piliation also correlates with efficient DNA transformation. To investigate the relationships between these pilus-related functions, the piliation state, and the availability of pilin, we constructed a derivative of MS11-C9 (DeltapilE1) in which the lacIOP regulatory sequences control pilE transcription. In this strain, MS11-C9.10, the steady-state levels of pilin mRNA and protein directly correlate with the concentration of IPTG (isopropyl-beta-D-thiogalactopyranoside) in the growth medium and can reach near-wild-type levels of expression. Transmission electron microscopy (TEM) demonstrated that the number of pili per cell correlated with the steady-state expression levels: at a low level of transcription, single long pili were observed; at a moderate expression level, many singular and bundled pili were expressed; and upon full gene expression, increased lateral association between pili was observed. Analysis of pilus assembly by TEM and epithelial cell adherence over a time course of induction demonstrated that pili were expressed as early as 1 h postinduction. Analysis at different steady-state levels of transcription demonstrated that DNA transformation efficiency and adherence of MS11-C9.10 to transformed and primary epithelial cells also correlated with the level of piliation. These data show that modulation of the level of pilE transcription, without a change in pilE sequence, can alter the number of pili expressed per cell, pilus bundling, DNA transformation competence, and epithelial cell adherence of the gonococcus.
Collapse
Affiliation(s)
- C D Long
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
27
|
Minor SY, Banerjee A, Gotschlich EC. Effect of alpha-oligosaccharide phenotype of Neisseria gonorrhoeae strain MS11 on invasion of Chang conjunctival, HEC-1-B endometrial, and ME-180 cervical cells. Infect Immun 2000; 68:6526-34. [PMID: 11083761 PMCID: PMC97746 DOI: 10.1128/iai.68.12.6526-6534.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes encoding the glycosyltransferases responsible for the addition of the five sugars in the alpha-oligosaccharide (alpha-OS) moiety of lipooligosaccharide (LOS) have been identified. Disruption of these glycosyltransferase genes singly or in combination results in corresponding truncations in LOS. In the present work we show that sequential deletion of the terminal four sugar residues of gonococcal alpha-OS had no discernible effect on the invasion of human conjunctival, endometrial, and cervical cell lines. However, deletion of the proximal glucose, which resulted in the complete deletion of alpha-OS, significantly impaired invasion of the gonococci into all three cell lines. The effect of deleting alpha-OS on invasion was independent of and additive to the known invasion-promoting factor OpaA. These data suggest that the proximal glucose residue of the alpha-OS chain of LOS is required for efficient invasion of gonococci into host mucosa.
Collapse
Affiliation(s)
- S Y Minor
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
28
|
Abstract
As outlined in this review, various experimental techniques have been employed in an attempt to understand neisserial pathogenesis. In vitro genetic analysis has been used to study the genetic basis for the structural variability of cell surface components. Transformed or primary epithelial cell cultures have provided the simplest model to analyze bacterial adherence and invasion, while the infection of polarized epithelial monolayers, fallopian tube and nasopharyngeal organ cultures, and ureteral tissue have each been used to more closely represent the events which occur in vivo. Finally, the in vivo infection of human volunteers with N. gonorrhoeae has provided a powerful means to confirm and expand the results obtained in vitro. By these various approaches, a number of neisserial adhesins (i.e. pilli, Opa, Opc and P36) and additional putative virulence determinants which affect bacterial adherence and invasion into host cells (i.e. LOS, capsule, PorB) have been identified. Clearly, neisserial surface variation serves as an adaptive mechanism which can modulate tissue tropism, immune evasion and survival in the changing host environment. Important progress has been made in recent years with respect to the host cellular receptors and subsequent signal transduction processes which are involved in neisserial adherence, invasion and transcytosis. This has led to the identification of (i) CD46 as a receptor for pilus which allows adherence to epithelial and endothelial cells, (ii) HSPGs, in cooperation with vitronectin and fibronectin, as receptors for a particular subset of Opa proteins and Opc, which may both mediate invasion into most epithelial and endothelial cells, and (iii) CD66 as the receptors for most Opa variants, potentially being involved in cellular interactions including adherence, invasion and transcytosis with epithelial, endothelial and phagocytic cells. As most of these data have been obtained using transformed cell lines growing in vitro, attempts must be made to translate these basic observations into a more natural situation. It can be expected that the successful ongoing integration of laboratory findings from the various infection models with human volunteer studies will further increase our understanding of the biology of neisserial infection. Perhaps the most difficult but also most rewarding challenge for the future will be to use volunteer studies to identify and understand the role of host factors which are important for the infectious process. Hopefully, insights gained from each of these studies will reveal new and useful strategies for the preventive and/or therapeutic intervention into infection and disease by these fascinating microbes.
Collapse
Affiliation(s)
- C Dehio
- Dept. Infektionsbiologie, Max-Planck-Institut für Biologie, Tübingen, Germany
| | | | | |
Collapse
|
29
|
Song W, Ma L, Chen R, Stein DC. Role of lipooligosaccharide in Opa-independent invasion of Neisseria gonorrhoeae into human epithelial cells. J Exp Med 2000; 191:949-60. [PMID: 10727457 PMCID: PMC2193109 DOI: 10.1084/jem.191.6.949] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1999] [Accepted: 01/27/2000] [Indexed: 11/04/2022] Open
Abstract
Lipooligosaccharide (LOS) has been implicated in the adhesion and invasion of host epithelial cells. We examined the adhesive and invasive abilities of isogenic gonococcal opacity-associated outer membrane protein-negative, pilus-positive (Opa-Pil+) Neisseria gonorrhoeae strains expressing genetically defined LOS. Strain F62 (Opa-Pil+), expressing the lacto-N-neotetraose and the galNac-lacto-N-neotetraose LOS, and its isogenic derivative that expressed only the lacto-N-neotetraose LOS (F62 Delta lgtD), adhered to, and invaded, to the same extent the human cervical epidermoid carcinoma cell line, ME180. While the adhesive abilities of Opa-Pil+ isogenic strains that express LOS molecules lacking the lacto-N-neotetraose structure were similar to that seen for F62, their invasive abilities were much lower than the strains expressing lacto-N-neotetraose. Fluorescence microscopy studies showed that the adherence of F62, but not the strains lacking lacto-N-neotetraose, induced the rearrangement of actin filaments under the adherent sites. Electron microscopy studies demonstrated that F62, but not the strains lacking lacto-N-neotetraose, formed extensive and intimate associations with epithelial cell membranes. Thus, in the absence of detectable Opa protein, the lacto-N-neotetraose LOS promotes gonococcal invasion into ME180 cells. The data also suggest that LOS is involved in the mobilization of actin filaments in host cells, and in the formation of a direct interaction between the bacterial outer membrane and the plasma membrane of ME180 cells.
Collapse
Affiliation(s)
- W Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA.
| | | | | | | |
Collapse
|
30
|
Zenni MK, Giardina PC, Harvey HA, Shao J, Ketterer MR, Lubaroff DM, Williams RD, Apicella MA. Macropinocytosis as a mechanism of entry into primary human urethral epithelial cells by Neisseria gonorrhoeae. Infect Immun 2000; 68:1696-9. [PMID: 10678991 PMCID: PMC97332 DOI: 10.1128/iai.68.3.1696-1699.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gonococcal entry into primary human urethral epithelial cells (HUEC) can occur by macropinocytosis. Scanning and transmission electron microscopy revealed lamellipodia surrounding gonococci, and confocal laser scanning microscopy analysis showed organisms colocalized with M(r) 70,000 fluorescein isothiocyanate-labeled dextran within the cells. Phosphoinositide 3-kinase inhibitors and an actin polymerization inhibitor prevented macropinocytic entry of gonococci into HUEC.
Collapse
Affiliation(s)
- M K Zenni
- Department of Urology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Christodoulides M, Everson JS, Liu BL, Lambden PR, Watt PJ, Thomas EJ, Heckels JE. Interaction of primary human endometrial cells with Neisseria gonorrhoeae expressing green fluorescent protein. Mol Microbiol 2000; 35:32-43. [PMID: 10632875 DOI: 10.1046/j.1365-2958.2000.01694.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Infection of the endometrium by Neisseria gonorrhoeae is a pivotal stage in the development of pelvic inflammatory disease in women. An ex vivo model of cultures of primary human endometrial cells was developed to study gonococcal-host cell interactions. To facilitate these studies, gonococci were transformed with a hybrid shuttle vector containing the gfp gene from Aequoria victoria, encoding the green fluorescent protein (GFP), to produce intrinsically fluorescent bacteria. The model demonstrated that both pili and Opa proteins were important for both mediating gonococcal interactions with endometrial cells and inducing the secretion of pro-inflammatory cytokines and chemokines. Pil+ gonococci showed high levels of adherence and invasion, regardless of Opa expression, which was associated with increased secretion of IL-8 chemokine and reduced secretion of IL-6 cytokine. Gonococcal challenge also caused increased secretion of TNF-alpha cytokine, but this did not correlate with expression of pili or Opa, suggesting that release of components from non-adherent bacteria may be involved in TNF-alpha induction. Thus, the use of cultured primary endometrial cells, together with gonococci expressing green fluorescent protein, has the potential to extend significantly our knowledge, at the molecular level, of the role of this important human pathogen in the immunobiology of pelvic inflammatory disease.
Collapse
Affiliation(s)
- M Christodoulides
- Molecular Microbiology Group, University of Southampton Medical School, UK.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Two key steps control immune responses in mucosal tissues: the sampling and transepithelial transport of antigens, and their targeting into professional antigen-presenting cells in mucosa-associated lymphoid tissue. Live Salmonella bacteria use strategies that allow them to cross the epithelial barrier of the gut, to survive in antigen-presenting cells where bacterial antigens are processed and presented to the immune cells, and to express adjuvant activity that prevents induction of oral tolerance. Two Salmonella serovars have been used as vaccines or vectors, S. typhimurium in mice and S. typhi in humans. S. typhimurium causes gastroenteritis in a broad host range, including humans, while S. typhi infection is restricted to humans. Attenuated S. typhimurium has been used successfully in mice to induce systemic and mucosal responses against more than 60 heterologous antigens. This review aims to revisit S. typhimurium-based vaccination, as an alternative to S. typhi, with special emphasis on the molecular pathogenesis of S. typhimurium and the host response. We then discuss how such knowledge constitutes the basis for the rational design of novel live mucosal vaccines.
Collapse
Affiliation(s)
- J C Sirard
- Swiss Institute for Experimental Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | | | | |
Collapse
|
33
|
Grant T, Bennett-Wood V, Robins-Browne RM. Characterization of the interaction between Yersinia enterocolitica biotype 1A and phagocytes and epithelial cells in vitro. Infect Immun 1999; 67:4367-75. [PMID: 10456876 PMCID: PMC96754 DOI: 10.1128/iai.67.9.4367-4375.1999] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Yersinia enterocolitica strains of biotype 1A are increasingly being recognized as etiological agents of gastroenteritis. However, the mechanisms by which these bacteria cause disease differ from those of highly invasive, virulence plasmid-bearing Y. enterocolitica strains and are poorly understood. We have investigated several biotype 1A strains of diverse origin for their ability to resist killing by professional phagocytes. All strains were rapidly killed by polymorphonuclear leukocytes but persisted within macrophages (activated with gamma interferon) to a significantly greater extent (survival = 40.5% +/- 17.4%) than did Escherichia coli HB101 (9.3% +/- 0.7%; P = 0.0001). Strains isolated from symptomatic patients were significantly more resistant to killing by macrophages (survival = 48.9% +/- 19.5%) than were strains obtained from food or the environment (survival = 32.1% +/- 10.3%; P = 0.04). Some strains which had been ingested by macrophages or HEp-2 epithelial cells showed a tendency to reemerge into the tissue culture medium over a period lasting several hours. This phenomenon, which we termed "escape," was observed in 14 of 15 strains of clinical origin but in only 3 of 12 nonclinical isolates (P = 0.001). The capacity of bacteria to escape from cells was not directly related to their invasive ability. To determine if escape was due to host cell lysis, we used a variety of techniques, including lactate dehydrogenase release, trypan blue exclusion, and examination of infected cells by light and electron microscopy, to measure cell viability and lysis. These studies established that biotype 1A Y. enterocolitica strains were able to escape from macrophages or epithelial cells without causing detectable cytolysis, suggesting that escape was achieved by a process resembling exocytosis. The observations that biotype 1A Y. enterocolitica strains of clinical origin are significantly more resistant to killing by macrophages and significantly more likely to escape from host cells than are strains of nonclinical origin suggest that these properties may account for the virulence of these bacteria.
Collapse
Affiliation(s)
- T Grant
- Microbiological Research Unit, Department of Microbiology and Infectious Diseases, Royal Children's Hospital, and Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
34
|
Griffiss JM, Lammel CJ, Wang J, Dekker NP, Brooks GF. Neisseria gonorrhoeae coordinately uses Pili and Opa to activate HEC-1-B cell microvilli, which causes engulfment of the gonococci. Infect Immun 1999; 67:3469-80. [PMID: 10377128 PMCID: PMC116533 DOI: 10.1128/iai.67.7.3469-3480.1999] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was undertaken to examine concomitant roles of pili and colony opacity-associated proteins (Opa) in promoting Neisseria gonorrhoeae adherence to and invasion of human endometrial HEC-1-B cells. Adherence of N. gonorrhoeae to cultured HEC-1-B cells was saturable, even though organisms adhered to <50% of the cells. During 4 to 6 h of incubation, adherent mono- and diplococci formed microcolonies on the surfaces of the cells. Microvilli of the HEC-1-B cells adhered by their distal ends to individual cocci within the microcolonies. When the microcolonies grew from isogenic pilus-negative (P-) Opa-, P- Opa+, or P+ Opa- gonococci, microvilli did not elongate, and the colonies were not engulfed. In contrast, the microvilli markedly elongated during exposure to P+ Opa+ gonococci. The microvilli adhered to the organisms along their full lengths and appeared to actively participate in the engulfment of the microcolonies. Internalized microcolonies, with P+ Opa+ gonococci, contained dividing cocci and appeared to be surrounded by cell membrane but were not clearly within vacuoles. In contrast, degenerate individual organisms were within vacuoles. Low doses of chloramphenicol, which inhibits protein synthesis by both prokaryotes and eukaryotes, prevented the microvillar response to and internalization of the P+ Opa+ gonococci; higher doses caused internalization without microvillus activation. Cycloheximide and anisomycin, which inhibit only eukaryotic protein synthesis, caused dose-dependent enhancement of uptake. Cytochalasins reduced engulfment; colchicine had no effect. These results show that gonococci must express both pili and Opa to be engulfed efficiently by HEC-1-B cells.
Collapse
Affiliation(s)
- J M Griffiss
- Centre for Immunochemistry, University of California, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
35
|
Müller A, Günther D, Düx F, Naumann M, Meyer TF, Rudel T. Neisserial porin (PorB) causes rapid calcium influx in target cells and induces apoptosis by the activation of cysteine proteases. EMBO J 1999; 18:339-52. [PMID: 9889191 PMCID: PMC1171129 DOI: 10.1093/emboj/18.2.339] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The porin (PorB) of Neisseria gonorrhoeae is an intriguing bacterial factor owing to its ability to translocate from the outer bacterial membrane into host cell membranes where it modulates the infection process. Here we report on the induction of programmed cell death after prolonged infection of epithelial cells with pathogenic Neisseria species. The underlying mechanism we propose includes translocation of the porin, a transient increase in cytosolic Ca2+ and subsequent activation of the Ca2+ dependent protease calpain as well as proteases of the caspase family. Blocking the porin channel by ATP eliminates the Ca2+ signal and also abolishes its pro-apoptotic function. The neisserial porins share structural and functional homologies with the mitochondrial voltage-dependent anion channels (VDAC). The neisserial porin may be an analogue or precursor of the ancient permeability transition pore, the putative central regulator of apoptosis.
Collapse
Affiliation(s)
- A Müller
- Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, Monbijoustrasse 2, 10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Wang J, Gray-Owen SD, Knorre A, Meyer TF, Dehio C. Opa binding to cellular CD66 receptors mediates the transcellular traversal of Neisseria gonorrhoeae across polarized T84 epithelial cell monolayers. Mol Microbiol 1998; 30:657-71. [PMID: 9822830 DOI: 10.1046/j.1365-2958.1998.01102.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have analysed the capacity of the 11 phase-variable, opacity-associated (Opa) proteins encoded by Neisseria gonorrhoeae MS11 to mediate traversal across polarized monolayers of the human colonic carcinoma T84 cell line. Gonococci expressing either the heparan sulphate proteoglycan (HSPG) binding Opa protein (Opa50) or no Opa protein (Opa-) did not interact with the apical pole of T84 monolayers, whereas the 10 variant Opa proteins previously shown to bind CD66 receptors were found to mediate efficient gonococcal adherence and transepithelial traversal. Consistent with this, T84 cells were shown by reverse transcriptase-polymerase chain reaction (RT-PCR) and immunoblotting to co-express CD66a (BGP), CD66c (NCA) and CD66e (CEA). The recruitment of CD66 receptors by Opa-expressing gonococci indicates their involvement in mediating adherence to the surface of T84 cells, and these bacterial interactions could be inhibited completely using polyclonal antibodies cross-reacting with all of the CD66 proteins co-expressed on T84 cells. Consistent results were obtained when Opa proteins were expressed in Escherichia coli, suggesting that the Opa-CD66 interaction is sufficient to mediate bacterial traversal. Transcytosis of Opa-expressing N. gonorrhoeae or E. coli did not disrupt the barrier function of infected monolayers, as indicated by a sustained transepithelial electrical resistance (TEER) throughout the course of infection, and confocal laser scanning and electron microscopy both suggest a transcellular rather than a paracellular route of traversal across the monolayers. Parallels between the results seen here and previous work done with organ cultures confirm that T84 monolayers provide a valid model for studying neisserial interactions with the mucosal surface, and suggest that CD66 receptors contribute to this process in vivo.
Collapse
MESH Headings
- Antibodies/pharmacology
- Antigens, Bacterial/metabolism
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation/immunology
- Antigens, Differentiation/metabolism
- Bacterial Adhesion/physiology
- Bacterial Infections/microbiology
- Cell Adhesion Molecules
- Cell Membrane/ultrastructure
- Endocytosis/physiology
- Escherichia coli/genetics
- Fluorescent Antibody Technique
- Gene Expression Regulation, Bacterial/genetics
- Humans
- Microscopy, Confocal
- Microscopy, Electron
- Neisseria gonorrhoeae/metabolism
- Neisseria gonorrhoeae/pathogenicity
- RNA, Messenger/genetics
- Receptors, Cell Surface/metabolism
- Time Factors
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- J Wang
- Max-Planck-Institut für Biologie, Abteilung Infektionsbiologie, Spemannstrasse 34, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
37
|
Abstract
Porphyromonas gingivalis can induce its uptake by host epithelial cells; however, the nature and role of the P. gingivalis molecules involved in this invasion process have yet to be determined. In this study, modulation of secreted P. gingivalis proteins following association with gingival epithelial cells was investigated. Western immunoblot analysis showed that contact with epithelial cells or epithelial cell growth media induces P. gingivalis 33277 to secrete several proteins with molecular masses between 35 and 95 kDa. Secretion of the Arg-gingipain and Lys-gingipain proteases was repressed under these conditions. The contact-induced secreted protein profile was altered in Arg-gingipain-deficient and Lys-gingipain-deficient mutants, indicating a possible role for these proteases in the secretion pathway. The P. gingivalis contact-dependent protein secretion pathway differs to some extent from type III protein secretion pathways in enteric pathogens, as a gene homologous to the invA family genes was not detected in P. gingivalis. The secreted proteins of P. gingivalis may play a role in the interactions of the organism with host cells.
Collapse
Affiliation(s)
- Y Park
- Department of Oral Biology, School of Dentistry, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
38
|
Abstract
The pathogenic Neisseria species constitute a multi-faceted infection model of a highly adapted pathogen-host relationship. Several bacterial and host-cell factors involved in the cellular cross-talk have been recently unraveled. Using Neisseria gonorrhoeae as a prototype, several structurally variable surface proteins, including pili and Opa proteins, have been revealed as adhesins recognizing distinct host-cell receptors. The Opa proteins, in particular, are important in facilitating interaction with heparan sulfate proteoglycan receptors and members of the CD66 and integrin receptor families. These interactions not only enable the pathogens' anchoring, and penetration into, the human mucosa but also stimulate cellular signaling cascades involving the phosphatidylcholine-dependent phospholipase C, acidic sphingomyelinase and protein kinase C in epithelial cells, and Src-related kinases, Rac1, p21-activated kinase and Jun N-terminal kinase in phagocytic cells. Activation of these pathways is essential for the entry and intracellular accommodation of the pathogens but also leads to an early induction of cytokine release, thus priming the immune response. It is believed that detailed knowledge of cellular signaling cascades activated by infection will aid us in applying known and novel interfering drugs, in addition to classical antibiotic therapy, to the therapeutic and prophylactic treatment of persistent or otherwise difficult-to-treat bacterial infections.
Collapse
Affiliation(s)
- T F Meyer
- Max-Planck-Institut für Biologie, Tübingen, Germany
| |
Collapse
|