1
|
Da Silva C, Wagner C, Bonnardel J, Gorvel JP, Lelouard H. The Peyer's Patch Mononuclear Phagocyte System at Steady State and during Infection. Front Immunol 2017; 8:1254. [PMID: 29038658 PMCID: PMC5630697 DOI: 10.3389/fimmu.2017.01254] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022] Open
Abstract
The gut represents a potential entry site for a wide range of pathogens including protozoa, bacteria, viruses, or fungi. Consequently, it is protected by one of the largest and most diversified population of immune cells of the body. Its surveillance requires the constant sampling of its encounters by dedicated sentinels composed of follicles and their associated epithelium located in specialized area. In the small intestine, Peyer’s patches (PPs) are the most important of these mucosal immune response inductive sites. Through several mechanisms including transcytosis by specialized epithelial cells called M-cells, access to the gut lumen is facilitated in PPs. Although antigen sampling is critical to the initiation of the mucosal immune response, pathogens have evolved strategies to take advantage of this permissive gateway to enter the host and disseminate. It is, therefore, critical to decipher the mechanisms that underlie both host defense and pathogen subversive strategies in order to develop new mucosal-based therapeutic approaches. Whereas penetration of pathogens through M cells has been well described, their fate once they have reached the subepithelial dome (SED) remains less well understood. Nevertheless, it is clear that the mononuclear phagocyte system (MPS) plays a critical role in handling these pathogens. MPS members, including both dendritic cells and macrophages, are indeed strongly enriched in the SED, interact with M cells, and are necessary for antigen presentation to immune effector cells. This review focuses on recent advances, which have allowed distinguishing the different PP mononuclear phagocyte subsets. It gives an overview of their diversity, specificity, location, and functions. Interaction of PP phagocytes with the microbiota and the follicle-associated epithelium as well as PP infection studies are described in the light of these new criteria of PP phagocyte identification. Finally, known alterations affecting the different phagocyte subsets during PP stimulation or infection are discussed.
Collapse
Affiliation(s)
| | - Camille Wagner
- Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Johnny Bonnardel
- Laboratory of Myeloid Cell Ontogeny and Functional Specialisation, VIB Inflammation Research Center, Ghent, Belgium
| | | | - Hugues Lelouard
- Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| |
Collapse
|
2
|
Wang M, Gao Z, Zhang Z, Pan L, Zhang Y. Roles of M cells in infection and mucosal vaccines. Hum Vaccin Immunother 2015; 10:3544-51. [PMID: 25483705 DOI: 10.4161/hv.36174] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mucosal immune system plays a crucial part in the control of infection. Exposure of humans and animals to potential pathogens generally occurs through mucosal surfaces, thus, strategies that target the mucosa seem rational and efficient vaccination measures. Vaccination through the mucosal immune system can induce effective systemic immune responses simultaneously with mucosal immunity compared with parenteral vaccination. M cells are capable of transporting luminal antigens to the underlying lymphoid tissues and can be exploited by pathogens as an entry portal to invade the host. Therefore, targeting M-cell-specific molecules might enhance antigen entry, initiate the immune response, and induce protection against mucosal pathogens. Here, we outline our understanding of the distribution and function of M cells, and summarize the advances in mucosal vaccine strategies that target M cells.
Collapse
Key Words
- ANX, Annexin; BALT, bronchus-associated lymphoid tissue
- C5aR, C5a receptor
- DCs, dendritic cells
- DENV, dengue virus
- EDIII, envelope domain III
- FAE, follicle-associated epithelium
- GALT, gut-associated lymphoid tissue
- GENALT, genital-associated lymphoid tissue
- GP2, Glycoprotein 2
- Hsp60, heat shock protein 60
- LPS, lipopolysaccharide
- M cells
- M cells, microfold cells
- MALT, mucosa-associated lymphoid tissue
- NALT, nasopharynx- or nose-associated lymphoid tissue
- OVA, ovalbumin
- OmpH, outer membrane protein H
- PP, Peyer's patches
- PRRs, pathogen recognition receptors
- PrPC, cellular prion protein
- SELEX, Systematic Evolution of Ligands by EXponential enrichment
- SIgA secretory IgA
- TLR-4, Toll-like receptor-4
- UEA-1,Ulex europaeus agglutinin-1
- antigen
- infection
- mucosal immunity
- pσ1, reovirus surface protein σ1
- vaccine
Collapse
Affiliation(s)
- Miao Wang
- a State Key Laboratory of Veterinary Etiological Biology; National Foot-and-Mouse Disease Reference Laboratory; Lanzhou Veterinary Research Institute; CAAS ; Lanzhou , Gansu , China
| | | | | | | | | |
Collapse
|
3
|
Gamazo C, Martín-Arbella N, Brotons A, Camacho AI, Irache JM. Mimicking microbial strategies for the design of mucus-permeating nanoparticles for oral immunization. Eur J Pharm Biopharm 2015; 96:454-63. [PMID: 25615880 PMCID: PMC7126451 DOI: 10.1016/j.ejpb.2015.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 02/06/2023]
Abstract
Dealing with mucosal delivery systems means dealing with mucus. The name mucosa comes from mucus, a dense fluid enriched in glycoproteins, such as mucin, which main function is to protect the delicate mucosal epithelium. Mucus provides a barrier against physiological chemical and physical aggressors (i.e., host secreted digestive products such as bile acids and enzymes, food particles) but also against the potentially noxious microbiota and their products. Intestinal mucosa covers 400m(2) in the human host, and, as a consequence, is the major portal of entry of the majority of known pathogens. But, in turn, some microorganisms have evolved many different approaches to circumvent this barrier, a direct consequence of natural co-evolution. The understanding of these mechanisms (known as virulence factors) used to interact and/or disrupt mucosal barriers should instruct us to a rational design of nanoparticulate delivery systems intended for oral vaccination and immunotherapy. This review deals with this mimetic approach to obtain nanocarriers capable to reach the epithelial cells after oral delivery and, in parallel, induce strong and long-lasting immune and protective responses.
Collapse
Affiliation(s)
- Carlos Gamazo
- Department of Microbiology, University of Navarra, Pamplona, Spain
| | - Nekane Martín-Arbella
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | - Ana Brotons
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | - Ana I Camacho
- Department of Microbiology, University of Navarra, Pamplona, Spain
| | - J M Irache
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain.
| |
Collapse
|
4
|
Ermund A, Gustafsson JK, Hansson GC, Keita ÅV. Mucus properties and goblet cell quantification in mouse, rat and human ileal Peyer's patches. PLoS One 2013; 8:e83688. [PMID: 24358305 PMCID: PMC3865249 DOI: 10.1371/journal.pone.0083688] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/15/2013] [Indexed: 02/08/2023] Open
Abstract
Peyer's patches (PPs) are collections of lymphoid follicles in the small intestine, responsible for scanning the intestinal content for foreign antigens such as soluble molecules, particulate matter as well as intact bacteria and viruses. The immune cells of the patch are separated from the intestinal lumen by a single layer of epithelial cells, the follicle-associated epithelium (FAE). This epithelium covers the dome of the follicle and contains enterocyte-like cells and M cells, which are particularly specialized in taking up antigens from the gut. However, the presence and number of goblet cells as well as the presence of mucus on top of the FAE is controversial. When mouse ileal PPs were mounted in a horizontal Ussing-type chamber, we could observe a continuous mucus layer at mounting and new, easily removable mucus was released from the villi on the patch upon stimulation. Confocal imaging using fluorescent beads revealed a penetrable mucus layer covering the domes. Furthermore, immunostaining of FAE from mice, rats and humans with a specific antibody against the main component of intestinal mucus, the MUC2 mucin, clearly identify mucin-containing goblet cells. Transmission electron micrographs further support the identification of mucus releasing goblet cells on the domes of PPs in these species.
Collapse
Affiliation(s)
- Anna Ermund
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Jenny K. Gustafsson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar C. Hansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Åsa V. Keita
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University and County Council of Östergötland, Linköping, Sweden
| |
Collapse
|
5
|
Casteleyn C, Van den Broeck W, Gebert A, Tambuyzer BR, Van Cruchten S, Van Ginneken C. M cell specific markers in man and domestic animals: Valuable tools in vaccine development. Comp Immunol Microbiol Infect Dis 2013; 36:353-64. [DOI: 10.1016/j.cimid.2013.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 03/01/2013] [Accepted: 03/21/2013] [Indexed: 12/13/2022]
|
6
|
Lelouard H, Fallet M, de Bovis B, Méresse S, Gorvel JP. Peyer's patch dendritic cells sample antigens by extending dendrites through M cell-specific transcellular pores. Gastroenterology 2012; 142:592-601.e3. [PMID: 22155637 DOI: 10.1053/j.gastro.2011.11.039] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 09/28/2011] [Accepted: 11/29/2011] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Peyer's patches (PPs) of the small intestine are antigen sampling and inductive sites that help establish mucosal immunity. Luminal antigens are transported from the mucosal surface of PPs to the subepithelial dome (SED), through the specialized epithelial M cells of the follicle-associated epithelium. Among the SED resident dendritic cells (DCs), which are situated ideally for taking up these antigens, some express high levels of lysozyme (LysoDC) and have strong phagocytic activity. We investigated the mechanisms by which LysoDCs capture luminal antigens in vivo. METHODS We performed 2-photon microscopy on explants of PPs from mice in which the enhanced green fluorescent protein gene was inserted into the lysozyme M locus (lys-EGFP mice), allowing fluorescence detection of LysoDC. RESULTS LysoDC extended dendrites through M-cell-specific transcellular pores to the gut lumen. The M-cell adhesion molecules junctional adhesion molecule-A and epithelial cell adhesion molecule were recruited to sites of transcellular migration. Transcellular dendrites scanned the M-cell apical surface and the gut luminal content; they were able to take pathogenic bacteria and inert particles in the lumen before retracting back to the SED. CONCLUSIONS We describe an antigen sampling mechanism that occurs in PPs and involves cooperation between M cells of the follicle-associated epithelium and DCs of the subepithelial dome. This process might be developed to target vaccines to the mucosa.
Collapse
Affiliation(s)
- Hugues Lelouard
- Aix-Marseille University, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | | | | | | | | |
Collapse
|
7
|
McGuckin MA, Lindén SK, Sutton P, Florin TH. Mucin dynamics and enteric pathogens. Nat Rev Microbiol 2011. [PMID: 21407243 DOI: 10.1038/nrm] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The extracellular secreted mucus and the cell surface glycocalyx prevent infection by the vast numbers of microorganisms that live in the healthy gut. Mucin glycoproteins are the major component of these barriers. In this Review, we describe the components of the secreted and cell surface mucosal barriers and the evidence that they form an effective barricade against potential pathogens. However, successful enteric pathogens have evolved strategies to circumvent these barriers. We discuss the interactions between enteric pathogens and mucins, and the mechanisms that these pathogens use to disrupt and avoid mucosal barriers. In addition, we describe dynamic alterations in the mucin barrier that are driven by host innate and adaptive immune responses to infection.
Collapse
Affiliation(s)
- Michael A McGuckin
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute and The University of Queensland School of Medicine, South Brisbane, Queensland 4101, Australia.
| | | | | | | |
Collapse
|
8
|
|
9
|
Kumar P, Timoney JF, Sheoran AS. M cells and associated lymphoid tissue of the equine nasopharyngeal tonsil. Equine Vet J 2010; 33:224-30. [PMID: 11352342 DOI: 10.2746/042516401776249697] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to characterise the morphological and histochemical features of equine nasopharyngeal tonsillar tissue. Nasal and oropharyngeal tonsillar tissue has been described as the gatekeeper to mucosal immunity because of its strategic location at the entrance to the respiratory and alimentary tracts. A combination of light, scanning and transmission electron microscopy has revealed the presence of follicle-associated epithelium (FAE) overlying lymphoid tissue of the equine nasopharyngeal tonsil caudal to the pharyngeal opening of the guttural pouch. Membranous microvillus (M) cells were identified in the FAE on the basis of short microvilli, an intimate association with lymphocytes, cytoplasmic vimentin filaments and epitopes on the apical surface reactive with lectin GS I-B4 specific for alpha-linked galactose. CD4-positive lymphocytes were scattered throughout the lamina propria mucosae as well as forming dense aggregates in the subepithelial part. The central follicular area was heavily populated with B lymphocytes and the dome and parafollicular areas contained both CD4- and CD8-positive lymphocytes. CD8-positive lymphocytes were also present in the epithelium and, together with B lymphocytes, in small numbers in the lamina propria mucosae. These observations indicate that the nasopharyngeal tonsil is potentially an important mucosal immune induction site in the horse and an appropriate target for intranasally administered vaccines.
Collapse
Affiliation(s)
- P Kumar
- Gluck Equine Research Centre, University of Kentucky, Lexington 40546, USA
| | | | | |
Collapse
|
10
|
Sağsöz H, Lıman N. Structure of the Oesophagus and Morphometric, Histochemical-Immunohistochemical Profiles of the Oesophageal Gland During the Post-hatching Period of Japanese Quails (Coturnix coturnix japonica). Anat Histol Embryol 2009; 38:330-40. [DOI: 10.1111/j.1439-0264.2009.00947.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Preliminary characterization of jejunocyte and colonocyte cell lines isolated by enzymatic digestion from adult and young cattle. Res Vet Sci 2009; 87:123-32. [DOI: 10.1016/j.rvsc.2008.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 11/18/2022]
|
12
|
Mantis NJ, Wagner J. Analysis of Adhesion Molecules Involved in Leukocyte Homing into the Basolateral Pockets of Mouse Peyer's Patch M Cells. J Drug Target 2008; 12:79-87. [PMID: 15203901 DOI: 10.1080/10611860410001693724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The basolateral membranes of intestinal M cells are invaginated to form large intraepithelial "pockets" that are populated by specific sub-sets of mucosal leukocytes, including CD4+ T cells, memory and naïve B cells, and occasional dendritic cells. The adhesion molecules involved in leukocyte trafficking and/or retention within this unique immunological niche are unknown. In this study, we used immunofluorescence microscopy and a battery of monoclonal antibodies to identify the adhesion molecules expressed by leukocytes situated within the intracellular pockets of mouse Peyer's patch (PP) M cells. M cell associated leukocytes (MAL) consistently stained positive for integrin alpha4beta7, and integrin LFA-1 (CD11a/CD18), but were rarely positive for L-selectin (CD62L) or the mucosal integrin alphaEbeta7. However, neither the alpha4beta7 ligands MadCAM-1 or VCAM-1, nor the LFA-1 ligand ICAM-1, were detected on M cell basolateral membranes. To determine whether integrins alpha4beta7 or LFA-1 play a functional role leukocyte homing to M cell pockets, we examined M cells in mice deficient in integrin beta7 or CD11a/CD18. Although PP from CD18 or integrin beta7 mice were reduced in number and size as compared to age-matched controls, we identified M cells in both strains of mice. However, mice lacking CD18 (but not integrin beta7) had significantly fewer leukocytes within M cell pockets as compared to control animals, suggesting LFA-1 (but not alpha4beta7) may contribute, in part, to leukocyte trafficking into and/or retention within this unique immunological niche.
Collapse
Affiliation(s)
- Nicholas J Mantis
- GI Cell Biology Laboratory, Children's Hospital Boston, 300 Longwood Avenue, 02115 Boston, MA, USA.
| | | |
Collapse
|
13
|
Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA. Mucins in the mucosal barrier to infection. Mucosal Immunol 2008; 1:183-97. [PMID: 19079178 PMCID: PMC7100821 DOI: 10.1038/mi.2008.5] [Citation(s) in RCA: 834] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mucosal tissues of the gastrointestinal, respiratory, reproductive, and urinary tracts, and the surface of the eye present an enormous surface area to the exterior environment. All of these tissues are covered with resident microbial flora, which vary considerably in composition and complexity. Mucosal tissues represent the site of infection or route of access for the majority of viruses, bacteria, yeast, protozoa, and multicellular parasites that cause human disease. Mucin glycoproteins are secreted in large quantities by mucosal epithelia, and cell surface mucins are a prominent feature of the apical glycocalyx of all mucosal epithelia. In this review, we highlight the central role played by mucins in accommodating the resident commensal flora and limiting infectious disease, interplay between underlying innate and adaptive immunity and mucins, and the strategies used by successful mucosal pathogens to subvert or avoid the mucin barrier, with a particular focus on bacteria.
Collapse
Affiliation(s)
- S K Linden
- grid.1003.20000 0000 9320 7537Mucosal Diseases Program, Mater Medical Research Institute and The University of Queensland, Level 3 Aubigny Place, Mater Hospitals, South Brisbane, Queensland Australia
| | - P Sutton
- grid.1008.90000 0001 2179 088XCentre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Melbourne, Victoria Australia
| | - N G Karlsson
- grid.6142.10000 0004 0488 0789Department of Chemistry, Centre for BioAnalytical Sciences, National University of Ireland, Galway, Ireland
| | - V Korolik
- grid.1022.10000 0004 0437 5432Institute for Glycomics, Griffith University, Gold Coast, Queensland Australia
| | - M A McGuckin
- grid.1003.20000 0000 9320 7537Mucosal Diseases Program, Mater Medical Research Institute and The University of Queensland, Level 3 Aubigny Place, Mater Hospitals, South Brisbane, Queensland Australia
| |
Collapse
|
14
|
Abstract
As early as 900 years ago, the Bedouins of the Negev desert were reported to kill a rabid dog, roast its liver and feed it to a dog-bitten person for three to five days according to the size and number of bites [1] . In sixteenth century China, physicians routinely prescribed pills made from the fleas collected from sick cows, which purportedly prevented smallpox. One may dismiss the wisdom of the Bedouins or Chinese but the Nobel laureate, Charles Richet, demonstrated in 1900 that feeding raw meat can cure tuberculous dogs - an approach he termed zomotherapy. Despite historical clues indicating the feasibility of oral vaccination, this particular field is notoriously infamous for the abundance of dead-end leads. Today, most commercial vaccines are delivered by injection, which has the principal limitation that recipients do not like needles. In the last few years, there has been a sharp increase in interest in needle-free vaccine delivery; new data emerges almost daily in the literature. So far, there are very few licensed oral vaccines, but many more vaccine candidates are in development. Vaccines delivered orally have the potential to take immunization to a fundamentally new level. In this review, the authors summarize the recent progress in the area of oral vaccines.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Oral
- Animals
- Chemistry, Pharmaceutical
- Drug Carriers
- Drug Compounding
- Gastrointestinal Tract/immunology
- Humans
- Immune Tolerance
- Immunity, Mucosal
- Vaccination/methods
- Vaccination/trends
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/chemistry
- Vaccines, Attenuated/immunology
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/chemistry
- Vaccines, Edible/immunology
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/chemistry
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Dmytro S Silin
- Queen's University Belfast, Laboratory of Molecular Virology, Medical and Biology Center, School of Biomedical Sciences, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | | | | | |
Collapse
|
15
|
Choi S, Kim W, Kim J. Surface Modification of Functional Nanoparticles for Controlled Drug Delivery. J DISPER SCI TECHNOL 2007. [DOI: 10.1081/dis-120021803] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sung‐Wook Choi
- a Nanosphere Process & Technology Laboratory , Department of Chemical Engineering and Biotechnology , Yonsei University , 134 Shinchon‐dong, Sudaemoon‐ku , Seoul , 120‐749 , Korea
| | - Woo‐Sik Kim
- a Nanosphere Process & Technology Laboratory , Department of Chemical Engineering and Biotechnology , Yonsei University , 134 Shinchon‐dong, Sudaemoon‐ku , Seoul , 120‐749 , Korea
| | - Jung‐Hyun Kim
- a Nanosphere Process & Technology Laboratory , Department of Chemical Engineering and Biotechnology , Yonsei University , 134 Shinchon‐dong, Sudaemoon‐ku , Seoul , 120‐749 , Korea
| |
Collapse
|
16
|
Rusu D, Loret S, Peulen O, Mainil J, Dandrifosse G. Immunochemical, biomolecular and biochemical characterization of bovine epithelial intestinal primocultures. BMC Cell Biol 2005; 6:42. [PMID: 16321165 PMCID: PMC1315322 DOI: 10.1186/1471-2121-6-42] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 12/01/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cultures of enterocytes and colonocytes represent valuable tools to study growth and differentiation of epithelial cells. In vitro models may be used to evaluate passage or toxicity of drugs, interactions of enteropathogenes bacteria strains with intestinal epithelium and other physiologic or pathologic phenomenon involving the digestive tract. RESULTS Cultures of bovine colonocytes and jejunocytes were obtained from organoid-enriched preparations, using a combination of enzymatic and mechanical disruption of the intestine epithelium, followed by an isopicnic centrifugation discarding most single cells. Confluent cell monolayers arising from plated organoids exhibited epithelium typical features, such as the pavement-like structure, the presence of apical microvilli and tight junctions. Accordingly, cells expressed several markers of enterocyte brush border (i.e. maltase, alkaline phosphatase and fatty acid binding protein) as well as an epithelial cytoskeleton component (cytokeratin 18). However, enterocyte primocultures were also positive for the vimentin immunostaining (mesenchyme marker). Vimentin expression studies showed that this gene is constitutively expressed in bovine enterocytes. Comparison of the vimentin expression profile with the pattern of brush border enzymes activities, suggested that the decrease of cell differentiation level observed during the enterocyte isolation procedure and early passages of the primoculture could result from a post-transcriptional de-repression of vimentin synthesis. The low differentiation level of bovine enterocytes in vitro could partly be counteracted adding butyrate (1-2 mM) or using a glucose-deprived culture medium. CONCLUSION The present study describes several complementary approaches to characterize bovine primary cultures of intestinal cells. Cultured cells kept their morphologic and functional characteristics during several generations.
Collapse
Affiliation(s)
- Dorina Rusu
- Department of Biochemistry and General Physiology, University of Liege, Institute of Chemistry B6C, B-4000 Liege (Sart-Tilman), Belgium
| | - Suzanne Loret
- Department of Biochemistry and General Physiology, University of Liege, Institute of Chemistry B6C, B-4000 Liege (Sart-Tilman), Belgium
- Department of Biology, University of Namur (FUNDP), Rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Olivier Peulen
- Department of Biochemistry and General Physiology, University of Liege, Institute of Chemistry B6C, B-4000 Liege (Sart-Tilman), Belgium
| | - Jacques Mainil
- Department of Infectious and Parasitic Diseases/Bacteriology, Faculty of Veterinary Medicine, University of Liege, Boulevard de Colonster B43, B-4000 Liege (Sart-Tilman), Belgium
| | - Guy Dandrifosse
- Department of Biochemistry and General Physiology, University of Liege, Institute of Chemistry B6C, B-4000 Liege (Sart-Tilman), Belgium
| |
Collapse
|
17
|
van Asten AJAM, Koninkx JFJG, van Dijk JE. Salmonella entry: M cells versus absorptive enterocytes. Vet Microbiol 2005; 108:149-52. [PMID: 15885932 DOI: 10.1016/j.vetmic.2005.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 04/03/2005] [Accepted: 04/04/2005] [Indexed: 01/17/2023]
|
18
|
Marchetti M, Sirard JC, Sansonetti P, Pringault E, Kernéis S. Interaction of pathogenic bacteria with rabbit appendix M cells: bacterial motility is a key feature in vivo. Microbes Infect 2005; 6:521-8. [PMID: 15158184 DOI: 10.1016/j.micinf.2004.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2003] [Accepted: 02/05/2004] [Indexed: 01/20/2023]
Abstract
Rabbit appendix consists mainly of lymphoid follicles (LF) covered by M cells, the specialized antigen-sampling cells of the mucosal immune system, and surrounded by glandular epithelium. Until now, these M cells have been characterized morphologically and histologically by using cellular markers. Here, the adhesion and transport of pathogenic bacteria were investigated to assess the function of M cells of the appendix. We used the enteroinvasive motile Salmonella typhimurium and the rabbit enteropathogenic non-motile Escherichia coli RDEC-1, which are known to target specifically rabbit M cells of Peyer's patches (PPs). We found that S. typhimurium efficiently attached and was transported through appendix M cells in vivo. In contrast to S. typhimurium, RDEC-1 targeted M cells only ex vivo, when bacteria were allowed to have direct contact with the surface of the follicle. The difference in interaction of the two bacteria with appendix M cells led us to investigate whether this could be correlated with the lack of motility of RDEC-1. We used an aflagellate mutant of S. typhimurium and found that it had the same infection phenotype as RDEC-1. Gene complementation restored the efficiency of infection to that of S. typhimurium wild-type strain. In conclusion, we show that M cells of the appendix display features of the canonical M cells of PP, since they efficiently sample luminal pathogenic bacteria. However, due to the morphology of the appendix, motile bacteria appear to be more potent in their interactions with appendix M cells.
Collapse
Affiliation(s)
- Marta Marchetti
- Laboratory of Lympho-epithelial Interactions, Department of Cell Biology and Infection, Pasteur Institute, 25-28, rue du Docteur Roux, 75724 Paris cedex 15, France.
| | | | | | | | | |
Collapse
|
19
|
Neutra MR, Kraehenbuhl JP. Cellular and Molecular Basis for Antigen Transport Across Epithelial Barriers. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50011-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
20
|
|
21
|
|
22
|
Jepson MA, Clark MA, Hirst BH. M cell targeting by lectins: a strategy for mucosal vaccination and drug delivery. Adv Drug Deliv Rev 2004; 56:511-25. [PMID: 14969756 DOI: 10.1016/j.addr.2003.10.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 10/14/2003] [Indexed: 12/11/2022]
Abstract
Bioadhesins are a recognised method of enhancing the absorption of drugs and vaccines at mucosal surfaces. Additionally, bioadhesins allow for cell specific targeting. Lectin-mediated targeting and delivery exploits unique surface carbohydrates on mucosal epithelial cells. The antigen-sampling M cells offer a portal for absorption of colloidal and particulate delivery vehicles, including bacteria, viruses and inert microparticles. We review work supporting the use of lectins to aid targeting to intestinal M cells. Consideration is also given to lectin-mediated targeting in non-intestinal sites and to the potential application of other bioadhesins to enhance M cell transport. While substantial hurdles must be overcome before mucosal bioadhesins can guarantee consistent, safe, effective mucosal delivery, this strategy offers novel opportunities for drug and vaccine formulation.
Collapse
Affiliation(s)
- Mark A Jepson
- Cell Imaging Facility and Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
23
|
Gebert A, Steinmetz I, Fassbender S, Wendlandt KH. Antigen transport into Peyer's patches: increased uptake by constant numbers of M cells. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:65-72. [PMID: 14695320 PMCID: PMC1602236 DOI: 10.1016/s0002-9440(10)63097-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Membranous (M) cells are specialized epithelial cells of the Peyer's patches that sample antigens from the gut lumen, thereby enabling the host to respond immunologically. Recent studies suggest that this transport can be up-regulated within hours by de novo formation of M cells from enterocytes. To test this hypothesis, we used an in vivo model and induced the transcytosis of tracers in Peyer's patches by application of Streptococcus pneumoniae R36a into the gut lumen. Using cell-type-specific markers, we quantified M cells in the Peyer's patch domes, lymphocytes associated with M cells, and the transport rate for experimentally applied microbeads after 3 hours of exposure to R36a. The transport of latex microbeads was significantly increased by +131% in the R36a-treated patches as compared to buffer controls (P < 0.001). While in controls, each M cell was associated with 2.05 +/- 0.64 lymphocytes, a significant increase (+55.1%; P < 0.001) was determined in the R36a-treated patches. However, no statistical difference was detected in the percentage of M cells in the dome epithelia (46.0 +/- 4.6% versus 45.5 +/- 3.8%). It is concluded that bacteria-induced up-regulation of particle transport in Peyer's patch domes is due to an increased transport rate of the M cells, but not to a de novo formation of M cells. The data support the hypothesis that M cells represent a separate cell lineage that does not derive from enterocytes on the domes.
Collapse
Affiliation(s)
- Andreas Gebert
- Institute of Anatomy, University of Lübeck, Lübeck, Germany.
| | | | | | | |
Collapse
|
24
|
Ramirez C, Gebert A. Vimentin-positive cells in the epithelium of rabbit ileal villi represent cup cells but not M-cells. J Histochem Cytochem 2003; 51:1533-44. [PMID: 14566025 PMCID: PMC3957562 DOI: 10.1177/002215540305101113] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Membranous (M)-cells are specialized epithelial cells of the Peyer's patch domes that transport antigens from the intestinal lumen to the lymphoid tissue. Vimentin is a reliable marker for M-cells in rabbits. Using immunohistochemistry (IHC), a subpopulation of epithelial cells has recently been identified in ordinary rabbit ileal villi, which are vimentin-positive and share morphological characteristics with the M-cells of the domes. To test the hypothesis that these cells represent M-cells outside the organized lymphoid tissue, lectin labeling and tracer uptake experiments were performed. Lectins specific for N-acetyl-glucosamine oligomers selectively bound to the vimentin-positive villous cells but not to M-cells in the domes. Microbeads instilled into the ileal lumen were taken up by M-cells within 45 min but not by the vimentin-positive cells in the villi. Lectin-gold labeling on ultrathin sections revealed that the lectin binding sites were located in the brush border and in vesicles in the apical cytoplasm. The vimentin/lectin-positive cells shared ultrastructural characteristics with the so-called "cup cells." We conclude (a) that the vimentin-positive cells in ordinary villi represent cup cells but not M-cells, (b) that they are readily detectable by (GlucNAc)(N)-specific lectins, and (c) that they do not transcytose experimental tracers. Although the specific function of cup cells is still obscure, they most probably represent a cell type distinct from M-cells of the domes with respect to both function and expression of the two new markers.
Collapse
Affiliation(s)
| | - Andreas Gebert
- Institute of Anatomy, University of Lübeck, Lübeck, Germany (CR,AG)
- Correspondence to: Prof. Dr. A. Gebert, Inst. of Anatomy, University of Lübeck, 23538 Lübeck, Germany. E-mail:
| |
Collapse
|
25
|
Abstract
M cells are located in the epithelia overlying mucosa-associated lymphoid tissues such as Peyer's patches where they function as the antigen sampling cells of the mucosal immune system. Paradoxically, some pathogens exploit M cells as a route of invasion. Here we review our current knowledge of intestinal M cells with particular emphasis on the mechanisms underlying bacterial infection of these atypical epithelial cells.
Collapse
Affiliation(s)
- M Ann Clark
- Department of Physiological Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | |
Collapse
|
26
|
Mantis NJ, Cheung MC, Chintalacharuvu KR, Rey J, Corthésy B, Neutra MR. Selective adherence of IgA to murine Peyer's patch M cells: evidence for a novel IgA receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:1844-51. [PMID: 12165508 DOI: 10.4049/jimmunol.169.4.1844] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
M cells represent the primary route by which mucosal Ags are transported across the intestinal epithelium and delivered to underlying gut-associated lymphoid tissues. In rodents and rabbits, Peyer's patch M cells selectively bind and endocytose secretory IgA (SIgA) Abs. Neither the nature of the M cell IgR nor the domains of SIgA involved in this interaction are known. Using a mouse ligated ileal loop assay, we found that monoclonal IgA Abs with or without secretory component, but not IgG or IgM Abs, bound to the apical surfaces of Peyer's patch M cells, indicating that the receptor is specific for the IgA isotype. Human serum IgA and colostral SIgA also bound to mouse M cells. The asialoglycoprotein receptor or other lectin-like receptors were not detected on the apical surfaces of M cells. We used recombinant human IgA1 and human IgA2 Abs and domain swapped IgA/IgG chimeras to determine that both domains Calpha1 and Calpha2 are required for IgA adherence to mouse Peyer's patch M cells. This distinguishes the M cell IgA receptor from CD89 (FcalphaI), which binds domains Calpha2-Calpha3. Finally, we observed by immunofluorescence microscopy that some M cells in the human ileum are coated with IgA. Together these data suggest that mouse, and possibly human, M cells express an IgA-specific receptor on their apical surfaces that mediates the transepithelial transport of SIgA from the intestinal lumen to underlying gut-associated organized lymphoid tissues.
Collapse
Affiliation(s)
- Nicholas J Mantis
- Department of Pediatrics, Harvard Medical School, and Gastrointestinal Cell Biology Laboratory, Children's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
27
|
El Bahi S, Caliot E, Bens M, Bogdanova A, Kernéis S, Kahn A, Vandewalle A, Pringault E. Lymphoepithelial interactions trigger specific regulation of gene expression in the M cell-containing follicle-associated epithelium of Peyer's patches. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3713-20. [PMID: 11937521 DOI: 10.4049/jimmunol.168.8.3713] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the intestine, the follicle-associated epithelium (FAE) of Peyer's patches (PP) performs Ag sampling as the first step in developing immune responses. Depending on the species, this epithelium contains 10-50% of M cells, which act as regulated gates in epithelial barriers that can be used opportunistically by pathogens to invade their host. However, the mechanisms involved in the differentiation and uptake processes of M cells are not known, in part because their limited number in the intestinal mucosa has hampered molecular and biochemical studies. In this work we provide evidence that PP lymphocytes can themselves modulate gene expression in PP in vivo and in an in vitro model of FAE. Transgenic mice carrying a reporter gene under the control of a modified L-pyruvate kinase promoter (SVPK) exhibit strong transgene expression in PP and FAE, but not in the adjacent villous cells. We used the mouse intestinal epithelial cell line m-IC(cl2) transfected with the SVPK promoter fused to beta-galactosidase to investigate the direct effect of PP lymphocytes on SVPK promoter activity. beta-Galactosidase expression was 4.4-fold higher in transfected m-IC(cl2) cells when they were cultured with PP lymphocytes. Conversely, green fluorescent protein expression was 1.8-fold lower in stably transfected differentiated intestinal Caco-2(cl1) cells with the sucrase isomaltase promoter fused to green fluorescent protein cDNA when they were cultured with PP lymphocytes, indicating that the in vivo FAE down-regulation of sucrase isomaltase promoter is transcriptionally regulated.
Collapse
Affiliation(s)
- Sophia El Bahi
- Laboratoire des Interactions Lympho-Epithéliales, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Neutra MR, Mantis NJ, Kraehenbuhl JP. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol 2001; 2:1004-9. [PMID: 11685223 DOI: 10.1038/ni1101-1004] [Citation(s) in RCA: 387] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Immune surveillance of mucosal surfaces requires the delivery of intact macromolecules and microorganisms across epithelial barriers to organized mucosal lymphoid tissues. Transport, processing and presentation of foreign antigens, as well as local induction and clonal expansion of antigen-specific effector lymphocytes, involves a close collaboration between organized lymphoid tissues and the specialized follicle-associated epithelium. M cells in the follicle-associated epithelium transport foreign macromolecules and microorganisms to antigen-presenting cells within and under the epithelial barrier. Determination of the earliest cellular interactions that occur in and under the follicle-associated epithelium could greatly facilitate the design of effective mucosal vaccines in the future.
Collapse
Affiliation(s)
- M R Neutra
- Children's Hospital and Harvard Medical School, Enders 1220, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
29
|
Abstract
Shigellosis is a worldwide endemic ulcerating disease of the large intestine caused by enteroinvasive bacteria. Shigella takes the route via M-cells and macrophages to access the basolateral pole of enterocytes. After invasion of and cell-to-cell spread within the epithelial cell layer, the bacterium multiplies within the cytoplasm of enterocytes. Induced by a limited number of bacterial effector proteins, Shigella makes use of established signaling pathways of the host cell to achieve internalization, transcytosis, apoptosis or cell-to-cell spread. This review addresses the host factors required for efficient infection focusing on Shigella-induced cytoskeletal rearrangements and associated signaling.
Collapse
Affiliation(s)
- T Adam
- Institut für Mikrobiologie und Hygiene, Medizinische Fakultät der Humboldt Universität, Charité, Berlin, Germany.
| |
Collapse
|
30
|
Abstract
Entrapment of antigens in biodegradable particles for mucosal immunisation has given successful outcomes in animals, but not as yet in man. Formulations using genuinely stable biocompatible nanoparticles with co-entrapped mucosal adjuvants and/or with surface-conjugated human M-cell-targeting ligands may lead to better uptake of intact antigen by Peyer's patch M cells and delivery to antigen-presenting cells.
Collapse
Affiliation(s)
- D J Brayden
- Elan Biotechnology Research, Biotechnology Building, Trinity College, 2, Dublin, Ireland.
| | | |
Collapse
|
31
|
Lelouard H, Sahuquet A, Reggio H, Montcourrier P. Rabbit M cells and dome enterocytes are distinct cell lineages. J Cell Sci 2001; 114:2077-83. [PMID: 11493643 DOI: 10.1242/jcs.114.11.2077] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have studied the M cell origin and differentiation pathway in rabbit gut-associated lymphoid tissues. Micro-dissected domes and epithelium isolated by ethylene diamine tetra acetic acid detachment allowed us to view the whole epithelial surface from the bottom of crypts to the top of domes. We used monoclonal antibodies specific to the apex of either M cells or dome enterocytes, lectins, and antibodies to vimentin in appendix, distal Peyer’s patches and caecal patches.
The earliest vimentin-labeled M cells were observed in the BrdU-positive proliferative zone of dome-associated crypts. Gradual differentiation of the M cell vimentin cytoskeleton started at this site to progressively give rise to the first pocket-forming M cells in the upper dome. Therefore, these mitotic cells of the crypts appear as the direct precursors of M cells. In addition to an early appearance of M cell markers, a regular mosaic-like relative distribution of M cells and dome enterocytes was already detected in the vicinity of crypts, similar to that observed on the lateral surface of domes where functional M cells lie. This constant distribution implies that there is no trans-differentiation of enterocytes to M cells along the crypt-dome axis. Together, these observations provide very strong evidence in favor of an early commitment in crypts of M cell and enterocyte distinct lineages.
Collapse
Affiliation(s)
- H Lelouard
- Laboratoire de Dynamique Moléculaire des Interactions Membranaires, CNRS UMR 5539, cc 107, Université Montpellier II, 34095 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
32
|
Abstract
M cells are distinctive epithelial cells that occur only in the follicle-associated epithelia that overlie organized mucosa-associated lymphoid tissues. They are structurally and functionally specialized for transepithelial transport, delivering foreign antigens and microorganisms to organized lymphoid tissues within the mucosae of the small and large intestines, tonsils and adenoids, and airways. M cell transport is a double-edged sword: Certain pathogens exploit the features of M cells that are intended to promote uptake for the purpose of immunological sampling. Eludication of the molecular architecture of M cell apical surfaces is important for understanding the strategies that pathogens use to exploit this pathway and for utilizing M cell transport for delivery of vaccines to the mucosal immune system. This article reviews the functional and biochemical features that distinguish M cells from other intestinal cell types. In addition it synthesizes the available information on development and differentiation of organized lymphoid tissues and the specialized epithelium associated with these immune inductive sites.
Collapse
Affiliation(s)
- J P Kraehenbuhl
- Swiss Institute for Experimental Cancer Research and Institute of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland.
| | | |
Collapse
|
33
|
Lelouard H, Reggio H, Roy C, Sahuquet A, Mangeat P, Montcourrier P. Glycocalyx on rabbit intestinal M cells displays carbohydrate epitopes from Muc2. Infect Immun 2001; 69:1061-71. [PMID: 11160003 PMCID: PMC97987 DOI: 10.1128/iai.69.2.1061-1071.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is essential to investigate the apical surface properties of both M cells and dome enterocytes to understand the mechanisms involved in the binding of pathogens to M cells. In rabbit appendix tissue, monoclonal antibodies (MAbs) highlight differences between M cells (MAb 58) and dome enterocytes (MAb 214). Such antibodies ultimately recognized intestinal mucin-related epitopes. To further characterize these differences, the labeling patterns obtained with these MAbs were compared to those obtained with other antibodies to intestinal mucins on dissected domes from all gut-associated lymphoid tissues. A glycoprotein recognized by MAb 58 was purified on a CsCl isopycnic density gradient and microsequenced, and its mRNA expression was localized by in situ hybridization. It was identified as the rabbit homologue of human Muc2, i.e., the major mucin secreted in intestine tissue. Two other Muc2 carbohydrate epitopes were also expressed on M cells, although Muc2 mRNA was not detected. All results indicated that M cells express, on their apical membrane, glycoconjugates bearing at least three glycosidic epitopes from Muc2. MAb 214 and MAb 6G2, which recognized a partially characterized mucin expressed on dome enterocytes, were negative markers for M cells in rabbit gut-associated lymphoid tissues. We propose that the presence, on the surface of M cells, of carbohydrates also expressed on Muc2, together with the absence of an enterocyte-associated mucin, could favor pathogen attachment and accessibility to the M-cell luminal membrane.
Collapse
Affiliation(s)
- H Lelouard
- Laboratoire de Dynamique Moléculaire des Interactions Membranaires, UMR CNRS 5539, Université de Montpellier II, 34095 Montpellier 5, France
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Absorption of drugs and vaccines at mucosal surfaces may be enhanced by conjugation to appropriate bioadhesins which bind to mucosal epithelia. Bioadhesins might also permit cell- and site-selective targeting. One approach is to exploit surface carbohydrates on mucosal epithelial cells for lectin-mediated delivery. We review work supporting the use of lectins as mucosal bioadhesins in the gastrointestinal and respiratory tracts, the oral cavity and the eye. The gastrointestinal tract is particularly favoured for mucosal delivery. Many studies have demonstrated that the antigen sampling intestinal M cells offer a portal for absorption of colloidal delivery vehicles. Evidence is presented that M cell targeting may be achieved using M cell-specific lectins, microbial adhesins or immunoglobulins. While many hurdles must be overcome before mucosal bioadhesins can guarantee consistent, safe, effective mucosal delivery, this is an exciting area of research that has important implications for future drug and vaccine formulation.
Collapse
Affiliation(s)
- M A Clark
- Department of Physiological Sciences, Medical School, University of Newcastle upon Tyne, NE2 4HH, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
35
|
Sierro F, Pringault E, Assman PS, Kraehenbuhl JP, Debard N. Transient expression of M-cell phenotype by enterocyte-like cells of the follicle-associated epithelium of mouse Peyer's patches. Gastroenterology 2000; 119:734-43. [PMID: 10982768 DOI: 10.1053/gast.2000.16481] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The follicle-associated epithelium (FAE) over mucosa-associated lymphoid tissues consists of distinct enterocytes and M cells concentrated at its periphery. The basement membrane composition was analyzed to test whether differences account for the distinct differentiation programs along the crypt-villus and crypt-FAE axes. To determine whether the decreased number of M cells in the FAE apex is caused by premature extrusion, we mapped the site where they undergo apoptosis. METHODS The FAE basal lamina of Peyer's patches from BALB/c mice was analyzed by immunochemistry. M cells were identified using the Ulex europaeus agglutinin lectin. The cell proliferation and apoptotic compartments were characterized using bromodeoxyuridine incorporation and the TUNEL assay. RESULTS The perlecan and laminin 2 stainings were different in FAE and villi. Myofibroblasts were absent beneath the FAE. The migration kinetics of cells along the FAE was similar to that along the villi. Apoptotic cells were detected exclusively at the apex of the FAE. CONCLUSIONS FAE and M-cell differentiation is associated with a distinct basal lamina composition. FAE enterocytes express transient M-cell features as they move from the crypts toward the apoptotic compartment. M cells have a highly plastic phenotype that raises interesting questions about the control of intestinal epithelial cell differentiation.
Collapse
Affiliation(s)
- F Sierro
- Swiss Institute for Experimental Cancer Research and Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | |
Collapse
|
36
|
Philpott DJ, Edgeworth JD, Sansonetti PJ. The pathogenesis of Shigella flexneri infection: lessons from in vitro and in vivo studies. Philos Trans R Soc Lond B Biol Sci 2000; 355:575-86. [PMID: 10874731 PMCID: PMC1692768 DOI: 10.1098/rstb.2000.0599] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Shigella flexneri is a Gram-negative facultatively intracellular pathogen responsible for bacillary dysentery in humans. More than one million deaths occur yearly due to infections with Shigella spp. and the victims are mostly children of the developing world. The pathogenesis of Shigella centres on the ability of this organism to invade the colonic epithelium where it induces severe mucosal inflammation. Much information that we have gained concerning the pathogenesis of Shigella has been derived from the study of in vitro models of infection. Using these techniques, a number of the molecular mechanisms by which Shigella invades epithelial cells and macrophages have been identified. In vivo models of shigellosis have been hampered since humans are the only natural hosts of Shigella. However, experimental infection of macaques as well as the murine lung and rabbit ligated ileal loop models have been important in defining some of the immune and inflammatory components of the disease. In particular, the murine lung model has shed light on the development of systemic and local immune protection against Shigella infection. It would be naive to believe that any one model of Shigella infection could adequately represent the complexity of the disease in humans, and more sophisticated in vivo models are now necessary. These models require the use of human cells and tissue, but at present such models remain in the developmental stage. Ultimately, however, it is with such studies that novel treatments and vaccine candidates for the treatment and prevention of shigellosis will be designed.
Collapse
Affiliation(s)
- D J Philpott
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
37
|
Abstract
The M cell is a remarkable cell type found in the epithelium that covers mucosa-associated lymphoid tissue in the digestive tract and the airways. M cells internalize macromolecules and microorganisms efficiently and deliver them to the underlying lymphoid tissue. In the gut, M cells, unlike the neighbouring absorptive enterocytes, lack a highly organized apical brush border and glycocalyx, and are poorly equipped with digestive enzymes. An insight into the role of immune cells in the differentiation of this unique cell type has been gained recently by using immunodeficient mice and an in vitro model of M cells. These and other recent findings suggest that M cells have a highly plastic phenotype and raise interesting questions about how cell differentiation is controlled in the gut.
Collapse
Affiliation(s)
- F Niedergang
- Swiss Institute for Experimental Cancer Research and Institute of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | | |
Collapse
|
38
|
Neutra MR, Mantis NJ, Frey A, Giannasca PJ. The composition and function of M cell apical membranes: implications for microbial pathogenesis. Semin Immunol 1999; 11:171-81. [PMID: 10381863 DOI: 10.1006/smim.1999.0173] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
M cells, an epithelial cell phenotype that occurs only over organized mucosal lymphoid follicles, deliver samples of foreign material by transepithelial transport from the lumen to organized lymphoid tissues within the mucosa of the small and large intestines. The apical membranes of M cells in the intestine are designed to facilitate adherence and uptake of antigens and microorganisms, a prerequisite for immunological sampling. The molecular features of M cell apical surfaces that promote adherence and transport are crucial for understanding the strategies that pathogens use to exploit this pathway.
Collapse
Affiliation(s)
- M R Neutra
- Department of Pediatrics, Harvard Medical School and GI Cell Biology Laboratory, Enders 1220, Children'sHospital, 300 Longwood Ave, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
39
|
Sansonetti PJ, Phalipon A. M cells as ports of entry for enteroinvasive pathogens: mechanisms of interaction, consequences for the disease process. Semin Immunol 1999; 11:193-203. [PMID: 10381865 DOI: 10.1006/smim.1999.0175] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
M cells are key sites of antigen sampling for the mucosal-associated lymphoid system (MALT) and consequently are essential components of the structures serving as inductive sites for mucosal immunity. In addition, they have recently been recognized as major sites of adherence and major ports of entry for enteric pathogens. In the case of enteroinvasive pathogens, such as Salmonella, Yersinia and Shigella, few clinical evidences, but lots of experimental data indicate that, at least at the early stage of infection, M cells of the follicular associated epithelium transport the pathogens. This has significantly altered our view on the pathogenesis of enteroinvasive infections. Crossing the epithelial barrier seems an achievable task for these bacteria which express adherence and invasion mechanisms which have often been well characterized in epithelial cell lines. These systems seem to be also used for entering and crossing M cells, although reproducible in vitro assays for M cell infection are now required. Having crossed the epithelial lining, the bacteria face phagocytic cells, particularly the macrophages that are present in the follicle dome. Depending on the capacity to survive in the presence of macrophages, and how this survival is achieved by a given invasive species, the outcome of infection can be dramatically affected. In consequence, M cells can be considered as pathogen translocators toward immunocompetent areas of the gut, thus opening the possibility to harness this property in order to design new mucosal vaccines or vaccine vectors.
Collapse
Affiliation(s)
- P J Sansonetti
- Uniteé de Pathogeénie Microbienne Moleéculaire, INSERM U 389, Institut Pasteur, 28 Rue du Docteur Roux, Paris, Cedex 15, 75724, France
| | | |
Collapse
|