1
|
Guo X, Dang H, Huang W, Hassan Z, Yun S, Lu Y, Liu Y, Wang J, Zou J. IL-20 is produced by CD3γδ T cells and induced in the mucosal tissues of grass carp during infection with Aeromonas hydrophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 158:105210. [PMID: 38844187 DOI: 10.1016/j.dci.2024.105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/12/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Interleukin (IL) 20 is a multifunctional cytokine and plays a vital role in regulating autoimmune diseases, inflammation, and immune responses. IL-20 homologs have been described in fish. However, due to the lack of antibodies, cellular sources and immunological functions of fish IL-20 in response to infections have not been fully characterized. In this study, a monoclonal antibody (mAb) was generated against the recombinant grass carp (Ctenopharyngodon idella) IL-20 protein and characterized by immunoblotting, immunofluorescent microscopy and flow cytometry. It was shown that the IL-20 mAb specifically recognized recombinant IL-20 proteins expressed in the E. coli cells and HEK293 cells. Using confocal microscopy, the IL-20+ cells were identified in the head kidney, gills and intestine of grass carp, and induced after infection with Aeromonas hydrophila. Moreover, the IL-20 protein was found to be secreted mainly by CD3γδ T cells which were located predominantly in the gill filaments and intestinal mucosa. Taken together, our results suggest that IL-20 producing T cells are required for the mucosal immunity against bacterial infection in fish.
Collapse
Affiliation(s)
- Xu Guo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenji Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zeinab Hassan
- Department of Fish Diseases, Faculty of Veterinary Medicine, Aswan University, Egypt
| | - Shengran Yun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanan Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yifan Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266200, China.
| |
Collapse
|
2
|
Macias L, Mercado V, Olmos J. Assessment of Bacillus species capacity to protect Nile tilapia from A. hydrophila infection and improve growth performance. Front Cell Infect Microbiol 2024; 14:1354736. [PMID: 39045133 PMCID: PMC11263102 DOI: 10.3389/fcimb.2024.1354736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 07/25/2024] Open
Abstract
The present study evaluated the capacity of three Bacillus species to improve health status and growth performance of Nile Tilapia fed with high levels of soybean meal and challenged with Aeromonas hydrophila. In vitro experiments showed that β-hemolysin and metalloprotease enzymes were produced by A. hydrophila throughout the exponential growth phase. In vivo experiments showed that 107 colony-forming units (CFUs)/ml of this pathogen killed 50% of control group fishes in 13 days. To evaluate the influence of Bacillus strains on health status and growth performance in Nile Tilapia, 180 fishes (33.44 + 0.05 g) were distributed in 12 tanks of 200 L each, and animals were fed twice per day until satiety. 1) Control group without Bacillus, 2) Bacillus sp1, 3) Bacillus sp2, and 4) Bacillus sp3 groups were formulated containing 106 CFU/g. After 40 days of feeding, the fishes were intraperitoneally injected with 1 ml of A. hydrophila at 2 × 107 CFU/ml, and mortality was recorded. The results showed that cumulative mortality rate was significantly (p< 0.05) lower in the Bacillus sp1 (25%), sp2 (5%), and sp3 (15%) groups, than the control group (50%). Weight gain was also significantly better (p< 0.05) in the Bacillus sp1 (36%), sp2 (67%), and sp3 (55%) groups with respect to the control group (30%). In conclusion, functional diet formulated with high levels of soybean meal and supplemented with Bacillus sp2 could be an alternative to protect Nile tilapia cultures from A. hydrophila infections and improve fish growth performance.
Collapse
|
3
|
Neil B, Cheney GL, Rosenzweig JA, Sha J, Chopra AK. Antimicrobial resistance in aeromonads and new therapies targeting quorum sensing. Appl Microbiol Biotechnol 2024; 108:205. [PMID: 38349402 PMCID: PMC10864486 DOI: 10.1007/s00253-024-13055-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Aeromonas species (spp.) are well-known fish pathogens, several of which have been recognized as emerging human pathogens. The organism is capable of causing a wide spectrum of diseases in humans, ranging from gastroenteritis, wound infections, and septicemia to devastating necrotizing fasciitis. The systemic form of infection is often fatal, particularly in patients with underlying chronic diseases. Indeed, recent trends demonstrate rising numbers of hospital-acquired Aeromonas infections, especially in immuno-compromised individuals. Additionally, Aeromonas-associated antibiotic resistance is an increasing challenge in combating both fish and human infections. The acquisition of antibiotic resistance is related to Aeromonas' innate transformative properties including its ability to share plasmids and integron-related gene cassettes between species and with the environment. As a result, alternatives to antibiotic treatments are desperately needed. In that vein, many treatments have been proposed and studied extensively in the fish-farming industry, including treatments that target Aeromonas quorum sensing. In this review, we discuss current strategies targeting quorum sensing inhibition and propose that such studies empower the development of novel chemotherapeutic approaches to combat drug-resistant Aeromonas spp. infections in humans. KEY POINTS: • Aeromonas notoriously acquires and maintains antimicrobial resistance, making treatment options limited. • Quorum sensing is an essential virulence mechanism in Aeromonas infections. • Inhibiting quorum sensing can be an effective strategy in combating Aeromonas infections in animals and humans.
Collapse
Affiliation(s)
- Blake Neil
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Gabrielle L Cheney
- John Sealy School of Medicine, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Jason A Rosenzweig
- Department of Biology, Texas Southern University, Houston, TX, 77004, USA
| | - Jian Sha
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA.
| |
Collapse
|
4
|
Lu J, Xiong C, Wei J, Xiong C, Long R, Yu Y, Ye H, Ozdemir E, Li Y, Wu R. The role and molecular mechanism of flgK gene in biological properties, pathogenicity and virulence genes expression of Aeromonas hydrophila. Int J Biol Macromol 2024; 258:129082. [PMID: 38161026 DOI: 10.1016/j.ijbiomac.2023.129082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Aeromonas hydrophila is a highly pathogenic aquatic resident bacterium that can cause co-morbidity in aquatic animals, waterfowl, poultry, and humans. Flagellum is the motility organ of bacteria important for bacterium tissue colonization and invasion. The flgK gene encodes a flagellar hook protein essential for normal flagellar formation. In order to explore the role of flgK in A. hydrophila, a flgK gene mutant strain of A. hydrophila (∆flgK-AH) was constructed using an efficient suicide plasmid-mediated homologous recombination method, and gene sequencing confirmed successful mutation of the flgK gene. The biological properties, pathogenicity and virulence genes expression were compared. The results showed that there was no significant difference in the growth, hemolytic, and swarming abilities, but the swimming and biofilm formation abilities of ∆flgK-AH were significantly reduced and the transmission electron microscope (TEM) results showed that the ∆flgK-AH strain did not have a flagellar structure. The median lethal dose (LD50) value of the ∆flgK-AH in Carassius auratus was 1.47-fold higher than that of the wild-type strain (WT-AH). The quantitative real-time PCR results showed that only the expression level of the lapA gene was up-regulated by 1.47 times compared with the WT-AH, while the expression levels of other genes were significantly down-regulated. In conclusion, flgK gene mutant led to a decline in the pathogenicity possibly by reducing swimming and biofilm formation abilities, these biological properties might result from the down-regulated expression of flagellate and pilus-related genes.
Collapse
Affiliation(s)
- Jiahui Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Chuanyu Xiong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Jinming Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Caijiang Xiong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Rui Long
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yongxiang Yu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Hua Ye
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Eda Ozdemir
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Yun Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Ronghua Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Ali S, Ullah W, Kamarulzaman AFS, Hassan M, Rauf M, Khattak MNK, Dawar FU. Proteomic profile of epidermal mucus from Labeo rohita reveals differentially abundant proteins after Aeromonas hydrophila infection. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 5:100115. [PMID: 37771818 PMCID: PMC10523009 DOI: 10.1016/j.fsirep.2023.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
We report the proteomic profile of Epidermal Mucus (EM) from Labeo rohita and identified the differentially abundant proteins (DAPs) against Aeromonas hydrophila infection through label-free liquid chromatography-mass spectrometry (LC-MS/MS). Using discovery-based proteomics, a total of 2039 proteins were quantified in nontreated group and 1,328 proteins in the treated group, of which 114 were identified as DAPs in both the groups. Of the 114 DAPs, 68 proteins were upregulated and 46 proteins were downregulated in the treated group compared to nontreated group. Functional annotations of these DAPs shows their association with metabolism, cellular process, molecular process, cytoskeletal, stress, and particularly immune system. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Fisher's exact test between the two groups shows that most of the proteins were immune-related, which were significantly associated with the proteasome, phagosome, and Salmonella infection pathways. Overall, this study shows a basic and primary way for further functional research of the involvement of vitellogenin 2, alpha-2-macroglobulin-like protein, toll-like receptors (TLR-13), calpain, keratin-like proteins, and heat shock proteins against bacterial infection. Nonetheless, this first-ever comprehensive report of a proteomic sketch of EM from L. rohita after A. hydrophila infection provides systematic protein information to broadly understand the biological role of fish EM against bacterial infection.
Collapse
Affiliation(s)
- Shandana Ali
- Laboratory of Fisheries and Aquaculture, Department of Zoology, Kohat University of Science and Technology Kohat, 26000 Khyber Pakhtunkhwa, Pakistan
| | - Waheed Ullah
- Department of Microbiology, Kohat University of Science and Technology Kohat, 26000 Khyber Pakhtunkhwa, Pakistan
| | | | - Maizom Hassan
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Muhammad Rauf
- Laboratory of Fisheries and Aquaculture, Department of Zoology, Kohat University of Science and Technology Kohat, 26000 Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Nasir Khan Khattak
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Farman Ullah Dawar
- Laboratory of Fisheries and Aquaculture, Department of Zoology, Kohat University of Science and Technology Kohat, 26000 Khyber Pakhtunkhwa, Pakistan
- Laboratory of Marine Biotechnology, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| |
Collapse
|
6
|
Behera BK, Parida SN, Kumar V, Swain HS, Parida PK, Bisai K, Dhar S, Das BK. Aeromonas veronii Is a Lethal Pathogen Isolated from Gut of Infected Labeo rohita: Molecular Insight to Understand the Bacterial Virulence and Its Induced Host Immunity. Pathogens 2023; 12:pathogens12040598. [PMID: 37111485 PMCID: PMC10143776 DOI: 10.3390/pathogens12040598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
A case of severe mortality in farmed Labeo rohita was investigated to characterize the causative agent. We identified the bacterial strain as Aeromonas veronii isolated from the gut of infected L. rohita by biochemical assay, scanning electron microscopy and 16S rRNA gene sequence analysis. The in vivo challenge experiment showed that the LD50 of A. veronii was 2.2 × 104 CFU/fish. Virulence gene investigation revealed that the isolated A. veronii possesses Aerolysin, Cytotoxic enterotoxin, Serine protease, Dnase and Type III secretion system genes. The isolated strain was resistant to two antibiotics (ampicillin and dicloxacillin) while susceptible to 22 other antibiotics. The study further revealed that A. veronii induced both stresses along with non-specific and specific immune responses marked by elevated cortisol HSP70, HSP90 and IgM levels in the treated L. rohita fingerlings. Although the bacterial pathogen enhances the immune response, the negative effect on fish, including stress, and high mortality, create concern and a need for A. veronii management in L. rohita farms. The knowledge gained from this study would facilitate future research aimed at assessing the pathogenicity of A. veronii, with an emphasis on microbial disease management in other farmed fish species.
Collapse
Affiliation(s)
- Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Satya Narayan Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Vikash Kumar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Himanshu Sekhar Swain
- Aquaculture Production and Environment Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Orissa, India
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Kampan Bisai
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Souvik Dhar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| |
Collapse
|
7
|
Jia Z, Feng J, Yuan G, Xiao H, Dang H, Zhang Y, Chen K, Zou J, Wang J. The Meteorin-like cytokine is upregulated in grass carp after infection with Aeromonas hydrophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104632. [PMID: 36608897 DOI: 10.1016/j.dci.2023.104632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Meteorin-like (Metrnl) is a novel immune regulatory factor or adipokine which is mainly produced by activated macrophages. In teleost fish, two homologs are present. In this study, monoclonal antibodies were prepared against recombinant grass carp (Ctenopharyngodon idella, Ci) Metrnl-a in mice and characterized by Western blotting, flow cytometry and immunofluorescent microscopy. In grass carp infected with Aeromonus hydrophila (A. hydrophila), the cells expressing CiMetrnl-a markedly increased in the gills, head kidney and intestine. In the inflamed intestine caused by A. hydrophila infection, the CiMetrnl-a producing cells were detected mainly in the mucosal layer of anterior, middle and posterior segments. Consistently, qRT-PCR analysis showed that the mRNA expression of CiMetrnl-a was markedly induced. Our results suggest that CiMetrnl-a is involved in regulating intestine inflammation caused by bacterial infection.
Collapse
Affiliation(s)
- Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianhua Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Gaoliang Yuan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hehe Xiao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanwei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Kangyong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
8
|
Chen K, Qin T, Pan L, Bing X, Xi B, Xie J. Effects of glycyrrhetinic acid β on growth and virulence of Aeromonas hydrophila. Front Microbiol 2023; 14:1043838. [PMID: 36846766 PMCID: PMC9950564 DOI: 10.3389/fmicb.2023.1043838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Aeromonas hydrophila is a significant pathogen to freshwater farmed animals, and antibiotics are usually used to control the bacterial septicemia caused by A. hydrophila. Due to the severe situation of development and spread of antibiotic resistance, there are stricter restrictions on antibiotics used in aquaculture. To evaluate the feasibility of glycyrrhetinic acid β (GA) as an alternative therapy against bacterial infection, in this study, an A. hydrophila isolated from diseased fish is used to test the antibacterial, anti-virulence activity and therapeutic effect of GA in vitro and in vivo, respectively. Results showed that GA did not affect the growth of A. hydrophila in vitro, while it could down-regulate (p < 0.05) the mRNA expression of the hemolysis-related genes hly and aerA, and significantly inhibited (p < 0.05) hemolytic activity of A. hydrophila. In addition, in vivo test showed that oral administration of GA was ineffective in controlling acute infections caused by A. hydrophila. In conclusion, these findings suggested that GA was a potential anti-virulence candidate against A. hydrophila, but the application of GA for the prevention and treatment of A. hydrophila-related diseases was still a long way.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Ting Qin
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Liangkun Pan
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xuwen Bing
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | | | | |
Collapse
|
9
|
Roshni PS, Alexpandi R, Abirami G, Durgadevi R, Cai Y, Kumar P, Ravi AV. Hesperidin methyl chalcone, a citrus flavonoid, inhibits Aeromonas hydrophila infection mediated by quorum sensing. Microb Pathog 2023; 177:106029. [PMID: 36775212 DOI: 10.1016/j.micpath.2023.106029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/10/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Plant-derived phytocompounds are effective in treating a variety of ailments and disorders, the most common of which are bacterial infections in humans, which are a major public health concern. Flavonoids, one of the groups of phytocompounds, are known to have significant antimicrobial and anti-infective properties. Hence, the current study investigates the efficacy of the citrus flavonoid hesperidin methylchalcone (HMC) in addressing this major issue. The results of this study indicate that the anti-quorum sensing (anti-QS) action against Aeromonas hydrophila infections is exhibited with a decrease in biofilm development and virulence factors production through in vitro and in silico analyses. In addition, the qPCR findings indicate that HMC has antivirulence action on A. hydrophila by reducing the expression of QS-related virulence genes, including ahyR, ahyB, ahh1, aerA, and lip. Interestingly, HMC significantly rescued the A. hydrophila-infected zebrafish by reducing the internal colonization, demonstrating the in vivo anti-infective potential of HMC against A. hydrophila infection. Based on these results, this study recommends that HMC could be employed as a possible therapeutic agent to treat A. hydrophila-related infections in humans.
Collapse
Affiliation(s)
- Prithiviraj Swasthikka Roshni
- Lab in Microbiology & Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, 630 003, India
| | - Rajaiah Alexpandi
- Lab in Microbiology & Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, 630 003, India
| | - Gurusamy Abirami
- Lab in Microbiology & Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, 630 003, India
| | - Ravindran Durgadevi
- Lab in Microbiology & Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, 630 003, India; Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, Tamil Nadu, 600117, India
| | - Yurong Cai
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ponnuchamy Kumar
- Lab in Food Chemistry and Molecular Cancer Biology, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, India
| | - Arumugam Veera Ravi
- Lab in Microbiology & Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, 630 003, India.
| |
Collapse
|
10
|
Zhu X, Chen WJ, Bhatt K, Zhou Z, Huang Y, Zhang LH, Chen S, Wang J. Innovative microbial disease biocontrol strategies mediated by quorum quenching and their multifaceted applications: A review. FRONTIERS IN PLANT SCIENCE 2023; 13:1063393. [PMID: 36714722 PMCID: PMC9878147 DOI: 10.3389/fpls.2022.1063393] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 06/12/2023]
Abstract
With the increasing resistance exhibited by undesirable bacteria to traditional antibiotics, the need to discover alternative (or, at least, supplementary) treatments to combat chemically resistant bacteria is becoming urgent. Quorum sensing (QS) refers to a novel bacterial communication system for monitoring cell density and regulation of a network of gene expression that is mediated by a group of signaling molecules called autoinducers (AIs). QS-regulated multicellular behaviors include biofilm formation, horizontal gene transfer, and antibiotic synthesis, which are demonstrating increasing pathogenicity to plants and aquacultural animals as well as contamination of wastewater treatment devices. To inhibit QS-regulated microbial behaviors, the strategy of quorum quenching (QQ) has been developed. Different quorum quenchers interfere with QS through different mechanisms, such as competitively inhibiting AI perception (e.g., by QS inhibitors) and AI degradation (e.g., by QQ enzymes). In this review, we first introduce different signaling molecules, including diffusible signal factor (DSF) and acyl homoserine lactones (AHLs) for Gram-negative bacteria, AIPs for Gram-positive bacteria, and AI-2 for interspecies communication, thus demonstrating the mode of action of the QS system. We next exemplify the QQ mechanisms of various quorum quenchers, such as chemical QS inhibitors, and the physical/enzymatic degradation of QS signals. We devote special attention to AHL-degrading enzymes, which are categorized in detail according to their diverse catalytic mechanisms and enzymatic properties. In the final part, the applications and advantages of quorum quenchers (especially QQ enzymes and bacteria) are summarized in the context of agricultural/aquacultural pathogen biocontrol, membrane bioreactors for wastewater treatment, and the attenuation of human pathogenic bacteria. Taken together, we present the state-of-the-art in research considering QS and QQ, providing theoretical evidence and support for wider application of this promising environmentally friendly biocontrol strategy.
Collapse
Affiliation(s)
- Xixian Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Junxia Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Xu H, Xu R, Wang X, Liang Q, Zhang L, Liu J, Wei J, Lu Y, Yu D. Co-infections of Aeromonas veronii and Nocardia seriolae in largemouth bass (Micropterus salmoides). Microb Pathog 2022; 173:105815. [DOI: 10.1016/j.micpath.2022.105815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
|
12
|
Huo X, Wang Z, Xiao X, Yang C, Su J. Nanopeptide CMCS-20H loaded by carboxymethyl chitosan remarkably enhances protective efficacy against bacterial infection in fish. Int J Biol Macromol 2022; 201:226-241. [PMID: 34995671 DOI: 10.1016/j.ijbiomac.2021.12.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 01/21/2023]
Affiliation(s)
- Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhensheng Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
Mekasha S, Linke D. Secretion Systems in Gram-Negative Bacterial Fish Pathogens. Front Microbiol 2022; 12:782673. [PMID: 34975803 PMCID: PMC8714846 DOI: 10.3389/fmicb.2021.782673] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial fish pathogens are one of the key challenges in the aquaculture industry, one of the fast-growing industries worldwide. These pathogens rely on arsenal of virulence factors such as toxins, adhesins, effectors and enzymes to promote colonization and infection. Translocation of virulence factors across the membrane to either the extracellular environment or directly into the host cells is performed by single or multiple dedicated secretion systems. These secretion systems are often key to the infection process. They can range from simple single-protein systems to complex injection needles made from dozens of subunits. Here, we review the different types of secretion systems in Gram-negative bacterial fish pathogens and describe their putative roles in pathogenicity. We find that the available information is fragmented and often descriptive, and hope that our overview will help researchers to more systematically learn from the similarities and differences between the virulence factors and secretion systems of the fish-pathogenic species described here.
Collapse
Affiliation(s)
- Sophanit Mekasha
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Qu F, Li J, Zeng X, She Q, Li Y, Xie W, Cao S, Zhou Y, He Z, Tang J, Mao Z, Wang Y, Fang J, Xu W, Liu Z. Grass carp MAP3K4 participates in the intestinal immune response to bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2022; 120:82-91. [PMID: 34780976 DOI: 10.1016/j.fsi.2021.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Mitogen-activated protein kinase kinase kinase 4 (MAP3K4) is a multifunctional mediator of the conserved MAPK signaling pathway that plays essential roles in the regulation of immune responses in mammals. However, the function of teleost MAP3K4s in innate immunity, especially in the intestinal immune system, is still poorly understood. In the current study, we identified a fish MAP3K4 homolog (CiMAP3K4) in Ctenopharyngodon idella as well as its immune function in intestine following bacterial infection in vivo and in vitro. The open reading frame (ORF) of CiMAP3K4 encodes putative peptide of 1544 amino acids containing a predicted serine/threonine protein kinase (S_TKc) domain with high identity with other fish MAP3K4s. Phylogenetic analysis revealed the CiMAP3K4 belonged to the fish cluster and showed the closest relationship to Pimephales promelas. Quantitative real-time PCR (qRT-PCR) analysis revealed that CiMAP3K4 transcripts were widely distributed in all tested tissues, especially with high expression in the muscle and intestine of healthy grass carp. In vitro, CiMAP3K4 gene expression was upregulated by bacterial PAMPs (lipolysaccharide (LPS), peptidoglycan (PGN), L-Ala-γ-D-Glu-meso-diaminopimelic acid (Tri-DAP) and muramyl dipeptide (MDP)) and pathogens (Aeromonas hydrophila and Aeromonas veronii) in primary intestinal cells. In vivo, the mRNA expression levels of CiMAP3K4 in the intestine were significantly induced by bacterial MDP challenge in a time-dependent manner; however, this effect could be inhibited by the bioactive dipeptides β-alanyl-l-histidine (carnosine) and alanyl-glutamine (Ala-Gln). Moreover, CiMAP3K4 was located primarily in the cytoplasm, and its overexpression increased the transcriptional activity of AP-1 in HEK293T cells. Collectively, these results suggested that CiMAP3K4 might play an important role in the intestinal immune response to bacterial infections, which paves the way for a better understanding of the intestinal immune system of grass carp.
Collapse
Affiliation(s)
- Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Jialing Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Xuan Zeng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Qing She
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Yurong Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Wenjie Xie
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Yonghua Zhou
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Zhimin He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Zhuangwen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Yuping Wang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Jiamei Fang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Wenqian Xu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China.
| |
Collapse
|
15
|
Tooba L, Shahzad A, Zahid M, Muhammad R, Anam I, Abdur R, Mohammed AA, Mater HM. Molecular characterization of Aeromonas hydrophila isolates from diseased fishes in district Kasur, Punjab, Pakistan. BRAZ J BIOL 2022; 84:e254816. [DOI: 10.1590/1519-6984.254816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022] Open
Abstract
Abstract Pakistan is an agricultural country and fisheries play a very important role in the economic development of the country. Different diseases are prevalent in Pakistani fish but information related to the causative agents is not well-known. Keeping in view the significance of bacterial pathogens as the causative agents of multiple fish diseases, the present study was conducted for identification, characterization and analysis of virulence genes of Aeromonas spp. isolated from diseased fishes. A total of fifty fish samples having multiple clinical indications were collected from different fish farms of district Kasur, Punjab Pakistan. For isolation of Aeromonas spp. samples were enriched and inoculated on Aeromonas isolation medium. Isolates were identified and characterized by different biochemical tests, Analytical Profile Index (API) 20E kit and Polymerase Chain Reaction (PCR) assays. All isolates were screened for three putative virulence genes including aerolysin (aer), haemolysin (hyl) and heat labile cytotonic enterotoxin (alt). Seven isolates of Aeromonas (A.) hydrophila were retrieved and identified based on API 20E. These isolates were further confirmed as A. hydrophila on the basis of PCR assays. Three isolates were detected positive for the presence of virulence genes (alt and hyl). Whereas aerolysin (aer) gene was not present in any of A. hydrophila isolates. The present study confirmed A. hydrophila as the causative agent of epizootic ulcerative syndrome and motile Aeromonas septicemia in fish farms of district Kasur, Punjab Pakistan. Moreover, detection of two virulence genes (alt and hyl) in A. hydrophila isolates is a threat for fish consumers of study area.
Collapse
Affiliation(s)
- L. Tooba
- University of Veterinary and Animal Sciences, Pakistan
| | - A. Shahzad
- University of Veterinary and Animal Sciences, Pakistan
| | - M. Zahid
- University of Azad Jammu and Kashmir, Pakistan
| | - R. Muhammad
- University of Veterinary and Animal Sciences, Pakistan
| | - I. Anam
- University of Veterinary and Animal Sciences, Pakistan
| | | | | | | |
Collapse
|
16
|
Sadique A, Neogi SB, Bashar T, Sultana M, Johura FT, Islam S, Hasan NA, Huq A, Colwell RR, Alam M. Dynamics, Diversity, and Virulence of Aeromonas spp. in Homestead Pond Water in Coastal Bangladesh. Front Public Health 2021; 9:692166. [PMID: 34307285 PMCID: PMC8298834 DOI: 10.3389/fpubh.2021.692166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Aeromonads are aquatic bacteria associated with frequent outbreaks of diarrhea in coastal Bangladesh, but their potential risks from environmental sources have remained largely unexplored. This study, over 2 years, examined homestead pond waters in the region for monthly dynamics and diversity of Aeromonas spp. The bacterial counts showed bi-modal annual growth peak, pre- and post-monsoon, strongly correlating (p < 0.0005) with temperature. Of 200 isolates characterized, Aeromonas veronii bv. sobria (27%) was predominant among co-existent Aeromonas schubertii (20%), Aeromonas hydrophila (17%), Aeromonas caviae (13%), and three more. PCR screening of virulence-related genes identified 15 genotypes (I to XV), however, enterotoxigenicity in animal model was observed for five genotypes, ca. 18% (nine of 50) strains, prevalent in A. veronii bv. sobria, A. hydrophila, and A. caviae. Pathogenic strains were distinguishable by possessing at least three of the major virulence genes: ascV, hlyA, ela, ast, and alt, together with accessory virulence factors. PFGE of XbaI-digested genomic DNA revealed high genetic diversity and distant lineage of potentially toxigenic clones. Therefore, along with increased global warming, Aeromonas spp. having multi-factorial virulence potential in coastal ponds that serve as drinking water sources pose a potential health risk, and underscores the need for routine monitoring.
Collapse
Affiliation(s)
- Abdus Sadique
- icddr, b, Formerly International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Sucharit Basu Neogi
- icddr, b, Formerly International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Tanvir Bashar
- icddr, b, Formerly International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Marzia Sultana
- icddr, b, Formerly International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Fatema-Tuz Johura
- icddr, b, Formerly International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Saiful Islam
- icddr, b, Formerly International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Nur A Hasan
- EzBiome Inc., Gaithersburg, MD, United States.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, United States
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| | - Rita R Colwell
- EzBiome Inc., Gaithersburg, MD, United States.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, United States.,Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States.,Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Munirul Alam
- icddr, b, Formerly International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
17
|
Chen Q, Zhang Z, Tang H, Zhou L, Ao S, Zhou Y, Zhu X, Gao X, Jiang Q, Tu C, Zhang X. Aeromonas hydrophila associated with red spot disease in Macrobrachium nipponense and host immune-related gene expression profiles. J Invertebr Pathol 2021; 182:107584. [PMID: 33811849 DOI: 10.1016/j.jip.2021.107584] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 12/28/2022]
Abstract
In September 2018, a serious disease causing high mortality with red spot syndrome occurred in a Macrobrachium nipponense aquaculture farm in Jintan County, Jiangsu Province, China. In this study, a pathogenic isolate 5-S3 was isolated from diseased M. nipponense and was identified as Aeromonas hydrophila by phenotypically and molecularly. The pathogenicity of the isolate 5-S3 to M. nipponense was determined by challenge experiments. Results of artificial challenge showed A. hydrophila was pathogenic to M. nipponense, the LD50 was 9.58 × 104 CFU/mL, and histopathological analysis revealed that the hepatopancreas of infected M. nipponense exhibited obvious inflammatory responses to A. hydrophila infection. The isolate showed significant phenotypical activities such as the lecithinase, esterase, caseinase and hemolysin which are indicative of their virulence potential. Besides, virulence genes such as aerA, act, fla, ahpβ, alt, lip, eprCAI, hlyA, acg and gcaT were detected in the isolate 5-S3. Subsequently, the immune-related genes expression in M. nipponense were evaluated by quantitative real-time PCR (qRT-PCR), and the results showed that the expression levels of dorsal, relish, crustin1, crustin2, anti-lipopolysaccharide factors 1 (ALF1), anti-lipopolysaccharide factors 2 (ALF2), hemocyanin, i-lysozyme and prophenoloxidase were significantly up-regulated in hepatopancreas of M. nipponense after A. hydrophila infection, the stat, p38, crustin3, anti-lipopolysaccharide factors 3 (ALF3) genes had no significant change during the infection. The present results reveal that A. hydrophila was an etiological agent causing red spot syndrome and mass mortality of M. nipponense and the influence of A. hydrophila infection on host immune genes.
Collapse
Affiliation(s)
- Qiyun Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zirui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huanyu Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Liying Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shiqi Ao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yifan Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xinhai Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chuandeng Tu
- Marine Science & Technology Institute, College of Environmental Science & Engineering, Yangzhou University, 5 Yangzhou 225127, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
18
|
Srinivasan R, Devi KR, Santhakumari S, Kannappan A, Chen X, Ravi AV, Lin X. Anti-quorum Sensing and Protective Efficacies of Naringin Against Aeromonas hydrophila Infection in Danio rerio. Front Microbiol 2020; 11:600622. [PMID: 33424802 PMCID: PMC7793879 DOI: 10.3389/fmicb.2020.600622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
It is now well known that the quorum sensing (QS) mechanism coordinates the production of several virulence factors and biofilm formation in most pathogenic microorganisms. Aeromonas hydrophila is a prime pathogen responsible for frequent outbreaks in aquaculture settings. Recent studies have also continuously reported that A. hydrophila regulates virulence factor production and biofilm formation through the QS system. In addition to the presence of antibiotic resistance genes, biofilm-mediated antibiotic resistance increases the severity of A. hydrophila infections. To control the bacterial pathogenesis and subsequent infections, targeting the QS mechanism has become one of the best alternative methods. Though very few compounds were identified as QS inhibitors against A. hydrophila, to date, the screening and identification of new and effective natural QS inhibitors is a dire necessity to control the infectious A. hydrophila. The present study endorses naringin (NA) as an anti-QS and anti-infective agent against A. hydrophila. Initially, the NA showed a concentration-dependent biofilm reduction against A. hydrophila. Furthermore, the results of microscopic analyses and quantitative virulence assays displayed the promise of NA as a potential anti-QS agent. Subsequently, the downregulation of ahh1, aerA, lip and ahyB validate the interference of NA in virulence gene expression. Furthermore, the in vivo assays were carried out in zebrafish model system to evaluate the anti-infective potential of NA. The outcome of the immersion challenge assay showed that the recovery rate of the zebrafish has substantially increased upon treatment with NA. Furthermore, the quantification of the bacterial load upon NA treatment showed a decreased level of bacterial counts in zebrafish when compared to the untreated control. Moreover, the NA treatment averts the pathogen-induced histoarchitecture damages in vital organs of zebrafish, compared to their respective controls. The current study has thus analyzed the anti-QS and anti-infective capabilities of NA and could be employed to formulate effective treatment measures against A. hydrophila infections.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Kannan Rama Devi
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Sivasubramanian Santhakumari
- Department of Biotechnology, Alagappa University, Karaikudi, India.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Arunachalam Kannappan
- Department of Biotechnology, Alagappa University, Karaikudi, India.,Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomeng Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | | | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
19
|
Barger PC, Liles MR, Newton JC. Type II Secretion Is Essential for Virulence of the Emerging Fish Pathogen, Hypervirulent Aeromonas hydrophila. Front Vet Sci 2020; 7:574113. [PMID: 33088835 PMCID: PMC7544816 DOI: 10.3389/fvets.2020.574113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/24/2020] [Indexed: 11/18/2022] Open
Abstract
Hypervirulent Aeromonas hydrophila (vAh) is an emerging pathogen in freshwater aquaculture systems. In the U.S.A., outbreaks of motile aeromonad septicemia associated with vAh result in the loss of over 3 million pounds of channel catfish from Southeastern production systems each year. A. hydrophila is a well-known opportunistic pathogen that secretes degradative and potentially toxigenic proteins, and the rapid mortality that occurs when catfish are challenged with vAh by intraperitoneal injection suggests that vAh-induced motile aeromonad septicemia may be, in part, a toxin-mediated disease. While vAh isolates from carp isolated in China possess complete Type I, Type II, and Type VI secretion systems, many of the US catfish isolates only possess complete Type I and Type II secretions systems. In order to determine the role of secreted proteins in vAh-induced disease, and to determine the extent of protein secretion by the Type II secretion pathway, an exeD secretin mutant was constructed using a recombineering method in the well-characterized US vAh strain, ML09-119. Wild-type and mutant secretomes were analyzed for protein content by SDS-PAGE and by assays for specific enzymes and toxins. Type II secretion-deficient mutants had a near complete loss of secreted proteins and enzyme/toxin activity, including hemolytic and proteolytic activity. The intact Type II secretion system was cloned and used to complement the deletion mutant, ML09-119 exeD, which restored protein secretion and the degradative and toxigenic potential. In vivo challenges in channel catfish resulted in complete attenuation of virulence in ML09-119 exeD, while the complemented mutant was observed to have restored virulence. These results indicate that secreted proteins are critical to vAh virulence, and that the Type II secretion system is the primary secretory pathway utilized for multiple effectors of vAh pathogenesis.
Collapse
Affiliation(s)
- Priscilla C. Barger
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Biological Sciences, College of Sciences and Math, Auburn University, Auburn, AL, United States
| | - Mark R. Liles
- Biological Sciences, College of Sciences and Math, Auburn University, Auburn, AL, United States
| | - Joseph C. Newton
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
20
|
Yamasaki O, Takahashi E, Noda K, Kanaya N, Tanabe S, Shirakawa Y, Morizane S. Surgical site infection caused by Aeromonas hydrophila presenting as necrotizing soft tissue infection after esophagectomy. J Dermatol 2020; 47:673-676. [PMID: 32207545 DOI: 10.1111/1346-8138.15323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 11/30/2022]
Abstract
Several virulence factors of Aeromonas such as hemolysin, proteases and lipases have been characterized. The relationship between these virulence factors and disease remains unclear. A 71-year-old man underwent thoracoscopic esophagectomy, lymph node dissection and Roux-en-Y reconstruction for esophageal cancer. On postoperative day 1, redness around the wound on the thoracic abdominal wall gradually enlarged and necrosis became apparent with septic shock. Necrotizing soft tissue infection was suspected and emergency surgical debridement was performed. Blood and wound cultures were positive for Aeromonas hydrophila. The strain was found to have hemolytic activity, proteolytic activity and extremely high elastolytic activity. In addition, the strain actively produced elastolytic metalloprotease, which may contribute to extensive tissue necrosis.
Collapse
Affiliation(s)
- Osamu Yamasaki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Eizo Takahashi
- Collaborative Research Center of Okayama University for Infectious Diseases in India, Okayama University, Kolkata, India
| | - Kazuyo Noda
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nobuhiko Kanaya
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shunsuke Tanabe
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuhiro Shirakawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
21
|
Dietary Supplementation of Probiotic Bacillus subtilis Affects Antioxidant Defenses and Immune Response in Grass Carp Under Aeromonas hydrophila Challenge. Probiotics Antimicrob Proteins 2020; 11:545-558. [PMID: 29654472 DOI: 10.1007/s12602-018-9409-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study investigated whether Bacillus subtilis can provide protection for grass carp against oxidative stress damage induced by Aeromonas hydrophila. A total of 240 healthy grass carp (Ctenopharyngodon idellus) (average weight of 71.42 ± 4.36g) were randomly divided into four groups with three replicates: control group, A. hydrophila group, B. subtilis + A. hydrophila group, and A. hydrophila + B. subtilis group. After challenge with A. hydrophila, the lipid oxidative damage, antioxidant defenses, and the gene expression of inflammatory cytokines of the grass carp were investigated. Our results showed that A. hydrophila caused lipid oxidative damage, led to significant decreases in antioxidant defenses, and induced inflammatory responses of grass carp. However, the grass carp group fed the probiotic B. subtilis diet for 42 days before the challenge and the group fed the probiotic B. subtilis diet immediately after the challenge both showed (i) a reduced level of oxidative stress with a decrease in the level of MDA; (ii) an increase in antioxidant defenses, including an increase in total antioxidant capacity (T-AOC), increased activities of SOD and CAT, increased levels of GSH, and upregulated gene expression of antioxidant enzymes (SOD, CAT, and Gpx); and (iii) an improved immune response with the level of antiinflammatory cytokines IL-10 messenger RNA (mRNA) upregulated and the levels of pro-inflammatory cytokines TNF-α, IL-1β, and IL-8 mRNA downregulated. Based on this study, B. subtilis can provide effective protection of fish against oxidative stress damage induced by A. hydrophila infection.
Collapse
|
22
|
Samayanpaulraj V, Sivaramapillai M, Palani SN, Govindaraj K, Velu V, Ramesh U. Identification and characterization of virulent Aeromonas hydrophila Ah17 from infected Channa striata in river Cauvery and in vitro evaluation of shrimp chitosan. Food Sci Nutr 2020; 8:1272-1283. [PMID: 32148833 PMCID: PMC7020301 DOI: 10.1002/fsn3.1416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 11/06/2022] Open
Abstract
Aeromonas hydrophila, an inhabitant in the aquatic ecosystem is considered as an important foodborne bacterial zoonotic pathogen in aquaculture. The present study aimed to identify virulent A. hydrophila from naturally infected Channa striata in river Cauvery and in vitro evaluation of shrimp chitosan. Rimler Shotts (RS) and blood agar medium identified the presence of pathogenic Aeromonas sp. from the infected C. striata. A. hydrophila Ah17 was identified using 16S rRNA nucleotide sequence. Extracellular enzymes such as amylase, lipase, and protease were screened in A. hydrophila Ah17. Antibiotic susceptibility tests showed A. hydrophila Ah17 was highly resistant against β-lactam, glycopeptide, macrolides, phosphonic, fucidin, and oxazolidinone classes of antibiotics. Virulent genes such as hemolysin (aer and hly), heat-labile enterotoxin (act), cytotonic heat-stable enterotoxin (ast), elastase (ahyB), and lipase (lip) were identified. Growth and the viable cell population of virulent A. hydrophila Ah17 were significantly reduced in a dose-dependent manner against shrimp chitosan (CHS) from Penaeus indicus (P. indicus). Thus, the present study isolated virulent A. hydrophila Ah17 from the environmental source and characterized in vitro with shrimp chitosan.
Collapse
Affiliation(s)
- Vignesh Samayanpaulraj
- Department of Molecular BiologySchool of Biological SciencesMadurai Kamaraj UniversityIndia
| | | | - Sankara Naynar Palani
- Department of Molecular BiologySchool of Biological SciencesMadurai Kamaraj UniversityIndia
| | - Krishnaveni Govindaraj
- Department of Molecular BiologySchool of Biological SciencesMadurai Kamaraj UniversityIndia
| | - Vijay Velu
- Department of Molecular BiologySchool of Biological SciencesMadurai Kamaraj UniversityIndia
| | | |
Collapse
|
23
|
Mao L, Qin Y, Kang J, Wu B, Huang L, Wang S, Zhang M, Zhang J, Zhang R, Yan Q. Role of LuxR-type regulators in fish pathogenic Aeromonas hydrophila. JOURNAL OF FISH DISEASES 2020; 43:215-225. [PMID: 31770821 DOI: 10.1111/jfd.13114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
LuxR-type transcriptional factors are essential in many bacterial physiological processes. However, there have been no reports on their roles in Aeromonas hydrophila. In this study, six stable silent strains were constructed using shRNA. Significant decreases in the expression levels of luxR05 , luxR08 , luxR19 , luxR11 , luxR164 and luxR165 were shown in their respective strains by qRT-PCR. The luxR05 -RNAi and luxR164 -RNAi exhibit the most significant changes in sensitivity to kanamycin and gentamicin. The luxR05 -RNAi showed minimum biofilm formation and the least motility, while luxR164 -RNAi showed minimum biofilm formation, adhesion, growth and extracellular protease activity compared to the wild-type strain. In summary, the results of this paper suggest that all six luxR genes are involved in multiple physiological processes in A. hydrophila and that the roles of luxR05 and luxR164 are highly significant. The sensitivity of luxR05 -RNAi and luxR164 -RNAi to drugs may be closely related to biofilm formation. The luxR05 may play an important role in the pathogenicity of A. hydrophila by regulating the movement, adhesion and biofilm formation of bacteria, whereas luxR164 may be involved in similar functions by regulating bacterial adhesion, extracellular enzyme activity and growth. These results help further our understanding of the drug resistance and pathogenesis of A. hydrophila.
Collapse
Affiliation(s)
- Leilei Mao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
- Fujian Fisheries Technology Extension Center, Fuzhou, China
| | - Jianping Kang
- Fujian Fisheries Technology Extension Center, Fuzhou, China
| | - Bin Wu
- Fujian Fisheries Technology Extension Center, Fuzhou, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Suyun Wang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Mengmeng Zhang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Jiahui Zhang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Ruixuan Zhang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
- Fujian Fisheries Technology Extension Center, Fuzhou, China
| |
Collapse
|
24
|
Prevalence of Potentially Pathogenic Antibiotic-Resistant Aeromonas spp. in Treated Urban Wastewater Effluents versus Recipient Riverine Populations: a 3-Year Comparative Study. Appl Environ Microbiol 2020; 86:AEM.02053-19. [PMID: 31757827 DOI: 10.1128/aem.02053-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Antibiotic resistance continues to be an emerging threat both in clinical and environmental settings. Among the many causes, the impact of postchlorinated human wastewater on antibiotic resistance has not been well studied. Our study compared antibiotic susceptibility among Aeromonas spp. in postchlorinated effluents to that of the recipient riverine populations for three consecutive years against 12 antibiotics. Aeromonas veronii and Aeromonas hydrophila predominated among both aquatic environments, although greater species diversity was evident in treated wastewater. Overall, treated wastewater contained a higher prevalence of nalidixic acid-, trimethoprim-sulfamethoxazole (SXT)-, and tetracycline-resistant isolates, as well as multidrug-resistant (MDR) isolates compared to upstream surface water. After selecting for tetracycline-resistant strains, 34.8% of wastewater isolates compared to 8.3% of surface water isolates were multidrug resistant, with nalidixic acid, streptomycin, and SXT being the most common. Among tetracycline-resistant isolates, efflux pump genes tetE and tetA were the most prevalent, though stronger resistance correlated with tetA. Over 50% of river and treated wastewater isolates exhibited cytotoxicity that was significantly correlated with serine protease activity, suggesting many MDR strains from effluent have the potential to be pathogenic. These findings highlight that conventionally treated wastewater remains a reservoir of resistant, potentially pathogenic bacterial populations being introduced into aquatic systems that could pose a threat to both the environment and public health.IMPORTANCE Aeromonads are Gram-negative, asporogenous rod-shaped bacteria that are autochthonous in fresh and brackish waters. Their pathogenic nature in poikilotherms and mammals, including humans, pose serious environmental and public health concerns especially with rising levels of antibiotic resistance. Wastewater treatment facilities serve as major reservoirs for the dissemination of antibiotic resistance genes (ARGs) and resistant bacterial populations and are, thus, a potential major contributor to resistant populations in aquatic ecosystems. However, few longitudinal studies exist analyzing resistance among human wastewater effluents and their recipient aquatic environments. In this study, considering their ubiquitous nature in aquatic environments, we used Aeromonas spp. as bacterial indicators of environmental antimicrobial resistance, comparing it to that in postchlorinated wastewater effluents over 3 years. Furthermore, we assessed the potential of these resistant populations to be pathogenic, thus elaborating on their potential public health threat.
Collapse
|
25
|
Fujii T, Fukano K, Hirano K, Mimura A, Terauchi M, Etoh SI, Iida A. A new serine protease family with elastase activity is produced by Streptomyces bacteria. MICROBIOLOGY-SGM 2020; 166:253-261. [PMID: 31896394 DOI: 10.1099/mic.0.000880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We found an elastolytic activity in the culture supernatant of Streptomyces sp. P-3, and the corresponding enzyme (streptomycetes elastase, SEL) was purified to apparent homogeneity from the culture supernatant. The molecular mass of purified SEL was approximately 18 kDa as judged by SDS-PAGE analysis and gel-filtration chromatography. Utilizing information from N-terminal amino acid sequencing of SEL and mass spectrometry of SEL tryptic fragments, we succeeded in cloning the gene-encoding SEL. The cloned SEL gene contains a 726 bp ORF, which encodes a 241 amino acid polypeptide containing a putative signal peptide for secretion (28 amino acid) and pro-sequence (14 amino acid). Although the deduced primary structure of SEL has sequence similarity to proteins in the S1 protease family, the amino acid sequence shares low identity (< 31.5 %) with any known elastase. SEL efficiently hydrolyses synthetic peptides having Ala or Val in the P1 position such as N-succinyl-Ala-Ala-(Pro or Val)-Ala-p-nitroanilide (pNA), whereas reported proteases by streptomycetes having elastolytic activity prefer large residues, such as Phe and Leu. Compared of kcat/Km ratios for Suc-Ala-Ala-Val-Ala-pNA and Suc-Ala-Ala-Pro-Ala-pNA with subtilisin YaB, which has high elastolytic activity, Streptomyces sp. P-3 SEL exhibits 12- and 121-fold higher, respectively. Phylogenetic analyses indicate that the predicted SEL protein, together with predicted proteins in streptomycetes, constitutes a novel group within the S1 serine protease family. These characteristics suggest that SEL-like proteins are new members of the S1 serine protease family, which display elastolytic activity.
Collapse
Affiliation(s)
- Taiki Fujii
- Food Science Research Laboratories, Research and Development Division, Mitsubishi Corporation Life Science Limited, Inashiki-gun, Ibaraki, Japan
| | - Kazuhiro Fukano
- Food Science Research Laboratories, Research and Development Division, Mitsubishi Corporation Life Science Limited, Inashiki-gun, Ibaraki, Japan
| | - Keita Hirano
- Food Science Research Laboratories, Research and Development Division, Mitsubishi Corporation Life Science Limited, Inashiki-gun, Ibaraki, Japan
| | - Akinori Mimura
- Food Science Research Laboratories, Research and Development Division, Mitsubishi Corporation Life Science Limited, Inashiki-gun, Ibaraki, Japan
| | - Miyu Terauchi
- Food Science Research Laboratories, Research and Development Division, Mitsubishi Corporation Life Science Limited, Inashiki-gun, Ibaraki, Japan
| | - Shin-Ichi Etoh
- Food Science Research Laboratories, Research and Development Division, Mitsubishi Corporation Life Science Limited, Inashiki-gun, Ibaraki, Japan
| | - Akihiro Iida
- Food Science Research Laboratories, Research and Development Division, Mitsubishi Corporation Life Science Limited, Inashiki-gun, Ibaraki, Japan
| |
Collapse
|
26
|
Chen DD, Li JH, Yao YY, Zhang YA. Aeromonas hydrophila suppresses complement pathways via degradation of complement C3 in bony fish by metalloprotease. FISH & SHELLFISH IMMUNOLOGY 2019; 94:739-745. [PMID: 31561026 DOI: 10.1016/j.fsi.2019.09.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Aeromonas hydrophila is a pathogen that causes high mortality in the grass carp. The complement system, as a frontline defence of innate immunity, plays an important role in the immune response against pathogens. However, the immunity evasion mechanism of A. hydrophila against the complement system of grass carp remains unclear. In this study, we described an additional mechanism used by A. hydrophila GD18 to evade the complement system and survive in grass carp serum. First, A. hydrophila evaded the bactericidal activity of grass carp serum. Second, the haemolytic activity assays showed that A. hydrophila obviously suppressed the alternative pathway, which depended on preventing the formation or disabling the function of the membrane-attack complex (MAC). Further research indicated that A. hydrophila targeted complement C3, the central component of the three complement pathways, and degraded it in the grass carp serum, leading to the inhibition of the complement pathways, which resulted in the serum-resistance of A. hydrophila. Furthermore, cleavage analyses showed that extracellular proteases (ECPases) of A. hydrophila efficiently cleaved purified C3 as well as C3 in grass carp serum. Finally, protease inhibitor studies and mass spectrum analysis identified the secreted metalloprotease elastase (AhE), which was present in large amounts in crude ECPases, as the central molecule responsible for C3 cleavage. Compared to wild strain GD18, the AhE knockout, Δahe was dramatically reduced in the ability of serum resistance. Our findings suggested that A. hydrophila escaped serum-killing by suppressing the complement pathways via the degradation of complement C3 in bony fish, which was related to secreted metalloproteases.
Collapse
Affiliation(s)
- Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| | - Ji-Hong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Yao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
27
|
Wickramanayake MVKS, Dahanayake PS, Hossain S, Heo GJ. Antimicrobial resistance of pathogenic Aeromonas spp. isolated from marketed Pacific abalone (Haliotis discus hannai) in Korea. J Appl Microbiol 2019; 128:606-617. [PMID: 31606917 DOI: 10.1111/jam.14485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 11/28/2022]
Abstract
AIMS The object of this study was to identify potential health concerns of the Aeromons spp. isolated from marketed Pacific abalone (Haliotis discus hannai) with respect to their virulence and antimicrobial resistance patterns. METHODS AND RESULTS We identified 29 strains of aeromonads consisting of five species; Aeromonas hydrophila (n = 9), Aeromonas enteropelogenes (n = 14), Aeromonas veronii (n = 3), Aeromonas salmonicida (n = 2) and Aeromonas sobria (n = 1), by employing series of biochemical tests and gene sequencing. In the phenotypic virulence assays, all isolates showed gelatinase and caseinase activities, while lipase formation (69%), phospholipase production (90%), DNase formation (82%), slime production (49%) and haemolysis activity (α = 18% and β = 82%) were also detected among isolates. Prevalence of virulence genes; aerA (100%), fla (66%), ahyB (73%), act (52%), alt (42%), ast (35%), ser (52%), gcat (69%), ascV (43%), hlyA (83%), lip (52%) and exu (59%) were detected by PCR assays. In disc diffusion test, 100% resistance was detected against ampicillin while cephalothin, rifampicin, oxytetracycline, colistine sulphate, nalidixic acid and piperaciliin were resisted by 86, 73, 42, 35, 28, 20 and 20% of the isolates respectively. Thirteen (45%) of the isolates showed multiple antimicrobial resistance (MAR) indices ≥ 0·2. CONCLUSIONS Our findings suggest that the potential health risk posed by the abalone-borne Aeromonas spp. should not be underestimated. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first time to evaluate possible public health risks upon consumption of abalone harbored Aeromonas spp. and also to isolate potential pathogenic and multidrug-resistant Aeromonas spp. from Pacific abalone in Korea.
Collapse
Affiliation(s)
- M V K S Wickramanayake
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - P S Dahanayake
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Sabrina Hossain
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Gang-Joon Heo
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, 28644, Republic of Korea
| |
Collapse
|
28
|
Aeromonas hydrophila, an Emerging Causative Agent of Freshwater-Farmed Whiteleg shrimp Litopenaeus vannamei. Microorganisms 2019; 7:microorganisms7100450. [PMID: 31614964 PMCID: PMC6843590 DOI: 10.3390/microorganisms7100450] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 11/16/2022] Open
Abstract
Aeromonas hydrophila is a well-known bacterial pathogen associated with mass mortalities in aquaculture. Yet, few reports are available on whiteleg shrimp-pathogenic A. hydrophila. In the present study, a virulent isolate WS05 was confirmed as a causative agent of diseased freshwater-cultured whiteleg shrimp and showed a mean lethal dose (LD50) value of 4.8 × 104 CFU mL−1. It was identified phenotypically and molecularly as an A. hydrophila strain, and exhibited susceptibility to several veterinary antibiotics extensively used in aquaculture, including cotrimoxazole, doxycycline, florfenicol, neomycin, and tetracycline. In view of the strongest inhibition zone of florfenicol against isolate WS05, the synergistic effect of the combinations of florfenicol and herb extracts was further evaluated, and the result indicated that Punica granatum extract was a potential synergist of florfenicol against isolate WS05 and the fractional inhibitory concentration index (FICI) for the florfenicol-P. granatum extract was calculated as 0.31. When combined with 7.81 mg mL−1P. granatum extract, the minimum inhibitory concentration (MIC) of florfenicol against isolate WS05 was reduced from 0.50 to 0.03 mg L−1, and its activity against isolate WS05 was also enhanced with a significant reduction of ≥3.61 log in cell density after 24 h of treatment compared with that in the single drug treatment. In addition, the protective effect was potentiated by the combination of florfenicol and P. granatum extract, with a cumulative mortality of 36.66% (p < 0.05) and 33.33% (p < 0.05) lower than that in the single treatment with florfenicol and P. granatum extract after the challenge with isolate WS05 for seven days. As far as we know, this is the first study to describe whiteleg shrimp-pathogenic A. hydrophila and suggest P. granatum extract as a potential synergist of florfenicol against the A. hydrophila pathogen.
Collapse
|
29
|
Guo YL, Feng L, Jiang WD, Wu P, Liu Y, Kuang SY, Tang L, Tang WN, Zhou XQ. Dietary iron deficiency impaired intestinal immune function of on-growing grass carp under the infection of Aeromonas hydrophila: Regulation of NF-κB and TOR signaling. FISH & SHELLFISH IMMUNOLOGY 2019; 93:669-682. [PMID: 31408728 DOI: 10.1016/j.fsi.2019.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Iron is an important mineral element for fish. In this study, we investigated the influences of dietary iron deficiency on intestinal immune function as well as underlying signaling of on-growing grass carp (Ctenopharyngodon idella). Fish were fed with six graded level of dietary iron for sixty days, and a fourteen days' challenge test under infection of Aeromonas hydrophila thereafter. Results showed that compared with optimal iron level, iron deficiency increased enteritis morbidity, decreased lysozyme (LZ) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M (IgM) concentrations and down-regulated mRNA levels of hepcidin, liver expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B, Mucin2, β-defensin-1, anti-inflammatory cytokines transforming growth factor β1 (TGF-β1), TGF-β2, interleukin 4/13A (IL-4/13A), IL-4/13B, IL-10, IL-11 and IL-15, inhibitor of κBα (IκBα), target of rapamycin (TOR) and ribosomal protein S6 kinase 1 (S6K1), whereas up-regulated mRNA levels of pro-inflammatory cytokines IL-1β, interferon γ2 (IFN-γ2), IL-8, IL-12p35, IL-12p40 and IL-17D, nuclear factor kappa B (NF-κB) p65, IκB kinases α (IKKα), IKKβ and eIF4E-binding protein (4E-BP) in intestine of on-growing grass carp, indicating that iron deficiency impaired intestinal immune function of fish under infection of A. hydrophila. Besides, iron excess also increased enteritis morbidity and impaired immune function of fish under infection of A. hydrophila. In addition, the effect of ferrous fumarate on intestinal immune function of on-growing grass carp is more efficient than ferrous sulfate. Finally, based on ability against enteritis, LZ activities in mid intestine and distal intestine, we recommended adding 83.37, 86.71 and 85.39 mg iron/kg into diet, respectively.
Collapse
Affiliation(s)
- Yan-Lin Guo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 6111.0930, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 6111.0930, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 6111.0930, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 6111.0930, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 6111.0930, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 6111.0930, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 6111.0930, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 6111.0930, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 6111.0930, China; Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 6111.0930, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 6111.0930, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China.
| |
Collapse
|
30
|
Putative virulence factors of Plesiomonas shigelloides. Antonie van Leeuwenhoek 2019; 112:1815-1826. [PMID: 31372945 DOI: 10.1007/s10482-019-01303-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/17/2019] [Indexed: 12/29/2022]
Abstract
Plesiomonas shigelloides is a Gram-negative rod-shaped bacterium which has been isolated from humans, animals and the environment. It has been associated with diarrhoeal disease in humans and various epizootic diseases in animals. In this study P. shigelloides strains were isolated from the faecal material of a captive Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis; YFP) living in semi-natural conditions in China. Plesiomonas shigelloides strain EE2 was subjected to whole genome sequencing. The draft genome was then compared to the genome sequences of ten other P. shigelloides isolates using the Pathosystems Resource Integration Center pipeline. In addition to several virulence factors which have been previously reported, we are proposing new candidate virulence factors such as a repeats-in-toxin protein, lysophospholipase, a twin-arginine translocation system and the type VI secretion effector Phospholipase A1.
Collapse
|
31
|
Bhowmick UD, Bhattacharjee S. Bacteriological, Clinical and Virulence Aspects of Aeromonas-associated Diseases in Humans. Pol J Microbiol 2019; 67:137-149. [PMID: 30015452 PMCID: PMC7256846 DOI: 10.21307/pjm-2018-020] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2018] [Indexed: 12/04/2022] Open
Abstract
Aeromonads have been isolated from varied environmental sources such as polluted and drinking water, as well as from tissues and body fluids of cold and warm-blooded animals. A phenotypically and genotypically heterogenous bacteria, aeromonads can be successfully identified by ribotyping and/or by analysing gyrB gene sequence, apart from classical biochemical characterization. Aeromonads are known to cause scepticemia in aquatic organisms, gastroenteritis and extraintestinal diseases such as scepticemia, skin, eye, wound and respiratory tract infections in humans. Several virulence and antibiotic resistance genes have been identified and isolated from this group, which if present in their mobile genetic elements, may be horizontally transferred to other naive environmental bacteria posing threat to the society. The extensive and indiscriminate use of antibiotics has given rise to many resistant varieties of bacteria. Multidrug resistance genes, such as NDM1, have been identified in this group of bacteria which is of serious health concern. Therefore, it is important to understand how antibiotic resistance develops and spreads in order to undertake preventive measures. It is also necessary to search and map putative virulence genes of Aeromonas for fighting the diseases caused by them. This review encompasses current knowledge of bacteriological, environmental, clinical and virulence aspects of the Aeromonas group and related diseases in humans and other animals of human concern.
Collapse
Affiliation(s)
- Uttara Dey Bhowmick
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal,Raja Rammohunpur, Siliguri, District Darjeeling, West Bengal,India
| | - Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal,Raja Rammohunpur, Siliguri, District Darjeeling, West Bengal,India
| |
Collapse
|
32
|
|
33
|
Zhou Y, Yu L, Nan Z, Zhang P, Kan B, Yan D, Su J. Taxonomy, virulence genes and antimicrobial resistance of Aeromonas isolated from extra-intestinal and intestinal infections. BMC Infect Dis 2019; 19:158. [PMID: 30764764 PMCID: PMC6376669 DOI: 10.1186/s12879-019-3766-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 01/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clinical characteristics (taxonomy, virulence genes and antimicrobial resistance ) of Aeromonas in isolated from extra-intestinal and intestinal infections were investigated to describe epidemiology, associated virulence factors and optimal therapy options. METHODS Clinical samples (n = 115) of Aeromonas were collected from a general hospital in Beijing between the period 2015 and 2017. Taxonomy was investigate by Multilocus phylogenetic analysis (MLPA), 10 putative virulence factors by use of polymerase chain reaction (PCR) and antimicrobial resistance to 15 antibiotics by use of the microbroth dilution method. RESULTS The most common species of Aeromonas detected in samples of intestinal tract included; A. caviae (43.9%), A. veronii (35.7%), and A. dhakensis (12.2%). Prevalent species of Aeromonas collected from extra-intestinal infections included; A. hydrophila (29.4%), A. caviae (29.4%), and A. dhakensis (23.5%). A. hydrophila were detected in 1% of stool samples and 29.4% (5/17) of extra-intestinal infections. A. hydrophila strains in extra-intestinal infections were related to malignancy. The most common medical conditions among patients with Aeromonas infections included malignancy and liver-transplant related cholecystitis. Multiple drug resistance (MDR) was prevalent in extra-intestinal isolates (82.3%, 14/17) and was greater than the prevalence in intestinal isolates (30.6%, 30/98) (P < 0.05). Resistant rates of extra-intestinal isolates were 70.6, 35.3, 23.5 and 5.9% for ceftriaxone, ciprofloxacin, gentamicin and imipenem, respectively, and were higher than found in previous studies. Despite differences in the number and type of virulence genes among samples of Aeromonas, no significant correlation was found between invasion and virulent genes in intestinal or extra-intestinal infections. CONCLUSIONS Overall results of this study support a role for Aeromonas spp. as a potential causative infectious agent of gastroenteritis, and malignancy, liver cirrhosis, post liver transplantation in immunocompromised patients. A. hydrophila was more prevalent in samples of extra-intestinal infections when compared to samples of intestinal infections, and was especially prominent in samples of patients presenting with malignancy. Aeromonas isolates from extra-intestinal samples had high rates of drug resistance but 3rd generation cephalosporins, fluoroquinolones and aminoglycosides remain as options to treat severe diarrhea. However, increasing MDR of extra-intestinal infection samples warrants monitoring.
Collapse
Affiliation(s)
- Yanyan Zhou
- Center of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Li Yu
- Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Zheng Nan
- Center of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Pingping Zhang
- Center of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control; Department of Diarrheal Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 102206, China
| | - Donghui Yan
- Center of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Jianrong Su
- Center of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
34
|
Maekawa S, Wang PC, Chen SC. Comparative Study of Immune Reaction Against Bacterial Infection From Transcriptome Analysis. Front Immunol 2019; 10:153. [PMID: 30804945 PMCID: PMC6370674 DOI: 10.3389/fimmu.2019.00153] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/17/2019] [Indexed: 12/28/2022] Open
Abstract
Transcriptome analysis is a powerful tool that enables a deep understanding of complicated physiological pathways, including immune responses. RNA sequencing (RNA-Seq)-based transcriptome analysis and various bioinformatics tools have also been used to study non-model animals, including aquaculture species for which reference genomes are not available. Rapid developments in these techniques have not only accelerated investigations into the process of pathogenic infection and defense strategies in fish, but also used to identify immunity-related genes in fish. These findings will contribute to fish immunotherapy for the prevention and treatment of bacterial infections through the design of more specific and effective immune stimulants, adjuvants, and vaccines. Until now, there has been little information regarding the universality and diversity of immune reactions against pathogenic infection in fish. Therefore, one of the aims of this paper is to introduce the RNA-Seq technique for examination of immune responses in pathogen-infected fish. This review also aims to highlight comparative studies of immune responses against bacteria, based on our previous findings in largemouth bass (Micropterus salmoides) against Nocardia seriolae, gray mullet (Mugil cephalus) against Lactococcus garvieae, orange-spotted grouper (Epinephelus coioides) against Vibrio harveyi, and koi carp (Cyprinus carpio) against Aeromonas sobria, using RNA-seq techniques. We demonstrated that only 39 differentially expressed genes (DEGs) were present in all species. However, the number of specific DEGs in each species was relatively higher than that of common DEGs; 493 DEGs in largemouth bass against N. seriolae, 819 DEGs in mullets against L. garvieae, 909 in groupers against V. harveyi, and 1471 in carps against A. sobria. The DEGs in different fish species were also representative of specific immune-related pathways. The results of this study will enhance our understanding of the immune responses of fish, and will aid in the development of effective vaccines, therapies, and disease-resistant strains.
Collapse
Affiliation(s)
- Shun Maekawa
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Southern Taiwan Fish Disease Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Southern Taiwan Fish Disease Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
35
|
Hokken MWJ, Zoll J, Coolen JPM, Zwaan BJ, Verweij PE, Melchers WJG. Phenotypic plasticity and the evolution of azole resistance in Aspergillus fumigatus; an expression profile of clinical isolates upon exposure to itraconazole. BMC Genomics 2019; 20:28. [PMID: 30626317 PMCID: PMC6327609 DOI: 10.1186/s12864-018-5255-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/15/2018] [Indexed: 01/26/2023] Open
Abstract
Background The prevalence of azole resistance in clinical and environmental Aspergillus fumigatus isolates is rising over the past decades, but the molecular basis of the development of antifungal drug resistance is not well understood. This study focuses on the role of phenotypic plasticity in the evolution of azole resistance in A. fumigatus. When A. fumigatus is challenged with a new stressful environment, phenotypic plasticity may allow A. fumigatus to adjust their physiology to still enable growth and reproduction, therefore allowing the establishment of genetic adaptations through natural selection on the available variation in the mutational and recombinational gene pool. To investigate these short-term physiological adaptations, we conducted time series transcriptome analyses on three clinical A. fumigatus isolates, during incubation with itraconazole. Results After analysis of expression patterns, we identified 3955, 3430, 1207, and 1101 differentially expressed genes (DEGs), after 30, 60, 120 and 240 min of incubation with itraconazole, respectively. We explored the general functions in these gene groups and we identified 186 genes that were differentially expressed during the whole time series. Additionally, we investigated expression patterns of potential novel drug-efflux transporters, genes involved in ergosterol and phospholipid biosynthesis, and the known MAPK proteins of A. fumigatus. Conclusions Our data suggests that A. fumigatus adjusts its transcriptome quickly within 60 min of exposure to itraconazole. Further investigation of these short-term adaptive phenotypic plasticity mechanisms might enable us to understand how the direct response of A. fumigatus to itraconazole promotes survival of the fungus in the patient, before any “hard-wired” genetic mutations arise. Electronic supplementary material The online version of this article (10.1186/s12864-018-5255-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Margriet W J Hokken
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands. .,Center of Expertise in Mycology Radboudumc/CWZ, Weg door Jonkerbos 100, 6532 SZ, Nijmegen, the Netherlands.
| | - Jan Zoll
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Weg door Jonkerbos 100, 6532 SZ, Nijmegen, the Netherlands
| | - Jordy P M Coolen
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Weg door Jonkerbos 100, 6532 SZ, Nijmegen, the Netherlands
| | - Bas J Zwaan
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Weg door Jonkerbos 100, 6532 SZ, Nijmegen, the Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Weg door Jonkerbos 100, 6532 SZ, Nijmegen, the Netherlands
| |
Collapse
|
36
|
De Silva B, Hossain S, Dahanayake P, Heo GJ. Aeromonasspp. from marketed Yesso scallop (Patinopecten yessoensis): molecular characterization, phylogenetic analysis, virulence properties and antimicrobial susceptibility. J Appl Microbiol 2018; 126:288-299. [DOI: 10.1111/jam.14106] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/05/2018] [Accepted: 09/08/2018] [Indexed: 11/28/2022]
Affiliation(s)
- B.C.J. De Silva
- Veterinary Medical Center and College of Veterinary Medicine; Chungbuk National University; Cheongju Korea
| | - S. Hossain
- Veterinary Medical Center and College of Veterinary Medicine; Chungbuk National University; Cheongju Korea
| | - P.S. Dahanayake
- Veterinary Medical Center and College of Veterinary Medicine; Chungbuk National University; Cheongju Korea
| | - G.-J. Heo
- Veterinary Medical Center and College of Veterinary Medicine; Chungbuk National University; Cheongju Korea
| |
Collapse
|
37
|
Ran C, Qin C, Xie M, Zhang J, Li J, Xie Y, Wang Y, Li S, Liu L, Fu X, Lin Q, Li N, Liles MR, Zhou Z. Aeromonas veroniiand aerolysin are important for the pathogenesis of motile aeromonad septicemia in cyprinid fish. Environ Microbiol 2018; 20:3442-3456. [DOI: 10.1111/1462-2920.14390] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/01/2018] [Accepted: 08/17/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Chubin Qin
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Mingxu Xie
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Jinxiong Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Jie Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Yadong Xie
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Yibing Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Shuning Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Lihui Liu
- Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology; Pearl River Fisheries Research Institute; Guangdong Province, Guangzhou 510380 People's Republic of China
| | - Xiaozhe Fu
- Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology; Pearl River Fisheries Research Institute; Guangdong Province, Guangzhou 510380 People's Republic of China
| | - Qiang Lin
- Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology; Pearl River Fisheries Research Institute; Guangdong Province, Guangzhou 510380 People's Republic of China
| | - Ningqiu Li
- Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology; Pearl River Fisheries Research Institute; Guangdong Province, Guangzhou 510380 People's Republic of China
| | - Mark R. Liles
- Department of Biological Sciences; Auburn University; Auburn AL 36849 USA
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| |
Collapse
|
38
|
Gao J, Xi B, Chen K, Song R, Qin T, Xie J, Pan L. The stress hormone norepinephrine increases the growth and virulence of Aeromonas hydrophila. Microbiologyopen 2018; 8:e00664. [PMID: 29897673 PMCID: PMC6460269 DOI: 10.1002/mbo3.664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 01/06/2023] Open
Abstract
Stress is an important contributing factor in the outbreak of infectious fish diseases. To comprehensively understand the impact of catecholamine stress hormone norepinephrine (NE) on the pathogenicity of Aeromonas hydrophila, we assessed variations in bacterial growth, virulence‐related genes expression and virulence factors activity after NE addition in serum‐SAPI medium. Further, we assessed the effects of NE on A. hydrophila virulence in vivo by challenging fish with pathogenic strain AH196 and following with or without NE injection. The NE‐associated stimulation of A. hydrophila strain growth was not linear‐dose‐dependent, and only 100 μM, or higher concentrations, could stimulate growth. Real‐time PCR analyses revealed that NE notably changed 13 out of the 16 virulence‐associated genes (e.g. ompW, ahp, aha, ela, ahyR, ompA, and fur) expression, which were all significantly upregulated in A. hydrophila AH196 (p < 0.01). NE could enhance the protease activity, but not affect the lipase activity, hemolysis, and motility. Further, the mortality of crucian carp challenged with A. hydrophila AH196 was significantly higher in the group treated with NE (p < 0.01). Collectively, our results showed that NE enhanced the growth and virulence of pathogenic bacterium A. hydrophila.
Collapse
Affiliation(s)
- Jinwei Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Hunan Fisheries Science Institute, Changsha, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Bingwen Xi
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Kai Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha, China
| | - Ting Qin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jun Xie
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liangkun Pan
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
39
|
Teng T, Xi B, Chen K, Pan L, Xie J, Xu P. Comparative transcriptomic and proteomic analyses reveal upregulated expression of virulence and iron transport factors of Aeromonas hydrophila under iron limitation. BMC Microbiol 2018; 18:52. [PMID: 29866030 PMCID: PMC5987420 DOI: 10.1186/s12866-018-1178-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/05/2018] [Indexed: 12/26/2022] Open
Abstract
Background Iron plays important roles in the growth, reproduction and pathogenicity of Aeromonas hydrophila. In this study, we detected and compared the mRNA and protein expression profiles of A. hydrophila under normal and iron restricted medium with 200 μM 2,2-Dipyridyl using RNA Sequencing (RNA-seq) and isobaric tags for relative and absolute quantification (iTRAQ) analyses. Results There were 1204 genes (601 up- and 603 down-regulated) and 236 proteins (90 up- and 146 down-regulated) shown to be differentially expressed, and 167 genes and proteins that showed consistent expression. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the differentially expressed genes and proteins were mainly involved in iron ion transport, protein activity, energy metabolism and virulence processes. Further validation of the RNA-seq and iTRAQ results by quantitative real-time PCR (qPCR) revealed that 18 of the 20 selected genes were consistently expressed. The iron-ion absorption and concentration of A. hydrophila under iron-limited conditions were enhanced, and most virulence factors (protease activity, hemolytic activity, lipase activity, and swimming ability) were also increased. Artificial A. hydrophila infection caused higher mortality in cyprinid Megalobrama amblycephala under iron-limited conditions. Conclusion Understanding the responses of pathogenic Aeromonas hydrophila within the hostile environment of the fish host, devoid of free iron, is important to reveal bacterial infection and pathogenesis. This study further confirmed the previous finding that iron-limitation efficiently enhanced the virulence of A. hydrophila using multi-omics analyses. We identified differentially expressed genes and proteins, related to enterobactin synthesis and virulence establishment, that play important roles in addressing iron scarcity. Electronic supplementary material The online version of this article (10.1186/s12866-018-1178-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Teng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Bingwen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Kai Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Liangkun Pan
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China. .,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China. .,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
40
|
Genotypic Detection of Some Virulence Factors Among Aeromonas hydrophila Isolated from Diarrhea Cases (Iraq). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
Zhou Y, Fan Y, Jiang N, Liu W, Shi Y, Zhao J, Zeng L. Molecular characteristics and virulence analysis of eight Aeromonas hydrophila isolates obtained from diseased Amur sturgeon Acipenser schrenckii Brandt, 1869. J Vet Med Sci 2018; 80:421-426. [PMID: 29367518 PMCID: PMC5880820 DOI: 10.1292/jvms.17-0529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aeromonas hydrophila is an opportunistic pathogen of a variety of aquatic animals that displays extreme diversity in drug resistance, phenotypes, virulence genes, and virulence. In this study, eight
pathogenic A. hydrophila strains were isolated from diseased Amur sturgeons and investigated for their sensitivity to select antibiotics, their phenotype, virulence genes, and virulence. According to the
phylogenetic analysis of the DNA gyrase subunit B protein, the eight isolates formed a single branch in the A. hydrophila group. The antibiotics ceftazidime, cefuroxime, cefoperazone, cefotaxime,
ceftriaxone, aztreonam, and cefepime appeared effective against them. All of the isolates possessed the virulence genes for aerolysin, flagellin, heat-stable cytotonic enterotoxin, heat-labile cytotonic enterotoxin,
hemolysin, and elastase, while only one isolate, HZ8, possessed the gene for lateral flagella. The cytolytic enterotoxin and lipase genes were present in all isolates, except in ZJ10 and ZJ12. Enterobacterial repetitive
intergenic consensus sequence PCR indicated that the eight A. hydrophila isolates could be divided into four types. Isolates YW2, TR3, HZ8 and ZJ10, each representing a different type, were selected for
challenge experiments. The challenge tests revealed that isolate HZ8 had the lowest lethal dose, causing 50% mortality at 2.30 × 104 colony forming units (cfu)/ml. The isolate ZJ10 had the
highest LD50, 1.25 × 106 cfu/ml. Knowledge of the characteristics of the A. hydrophila isolates obtained from Amur sturgeon will be beneficial in developing
potential disease control strategies.
Collapse
Affiliation(s)
- Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Yuheng Shi
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Jianqing Zhao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| |
Collapse
|
42
|
Kong WG, Li SS, Chen XX, Huang YQ, Tang Y, Wu ZX. A study of the damage of the intestinal mucosa barrier structure and function of Ctenopharyngodon idella with Aeromonas hydrophila. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1223-1235. [PMID: 28425012 DOI: 10.1007/s10695-017-0366-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/16/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study is to explore the effect of Aeromonas hydrophila on the intestinal mucosal barrier structure and intestinal permeability in grass carp (Ctenopharyngodon idella). Histopathological examinations showed that A. hydrophila induced severe intestinal lesions, including inflammatory cell infiltration and intestinal villus fusion and swelling. Messenger RNA (mRNA) expression of the inflammatory cytokines TNF-α, IL-1β, IL-8, IL-10 and MyD88 was significantly increased after infection with A. hydrophila. The permeability of intestinal mucosa was determined using Evans blue (EB) and D-lactic acid. The results indicated that the levels of EB and serum D-lactic acid were significantly increased after infection with A. hydrophila (p < 0.05). Our results also indicated that the intestinal mucosal barrier injury induced by A. hydrophila infection was closely associated with the expression of the tight junction (TJ) protein zonula occludens-1 (ZO-1), occludin, claudin b and claudin c as well as the activity of Na+, K+-ATPase and Ca2+, Mg2+-ATPase. Lower mRNA levels of occludin and lower Na+, K+-ATPase and Ca2+, Mg2+-ATPase activity in the intestines were observed after challenge. ZO-1 and claudin c were significantly increased 24 h after infection with A. hydrophila. The most interesting finding was that claudin b also significantly increased 24 h after challenge and then decreased to lower levels at 72, 120 and 168 h post-infection compared to the PBS-treated control group. The results demonstrated that grass carp infection with A. hydrophila induced intestinal inflammation and impaired the structure and function of the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Wei-Guang Kong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center, Wuhan, 430070, China
| | - Si-Si Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center, Wuhan, 430070, China
| | - Xiao-Xuan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center, Wuhan, 430070, China
| | - Yu-Qing Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center, Wuhan, 430070, China
| | - Ying Tang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center, Wuhan, 430070, China
| | - Zhi-Xin Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center, Wuhan, 430070, China.
| |
Collapse
|
43
|
Yang Y, Miao P, Li H, Tan S, Yu H, Yu H. Antibiotic susceptibility and molecular characterization of
Aeromonas hydrophila
from grass carp. J Food Saf 2017. [DOI: 10.1111/jfs.12393] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ying Yang
- School of Life Science and EngineeringFoshan UniversityFoshan Guangdong China
| | - Pengfei Miao
- School of Life Science and EngineeringFoshan UniversityFoshan Guangdong China
| | - Hua Li
- School of Life Science and EngineeringFoshan UniversityFoshan Guangdong China
| | - Shuwen Tan
- School of Life Science and EngineeringFoshan UniversityFoshan Guangdong China
| | - Haiyi Yu
- School of Life Science and EngineeringFoshan UniversityFoshan Guangdong China
| | - Hui Yu
- School of Life Science and EngineeringFoshan UniversityFoshan Guangdong China
| |
Collapse
|
44
|
Kong W, Huang C, Tang Y, Zhang D, Wu Z, Chen X. Effect of Bacillus subtilis on Aeromonas hydrophila-induced intestinal mucosal barrier function damage and inflammation in grass carp (Ctenopharyngodon idella). Sci Rep 2017; 7:1588. [PMID: 28484272 PMCID: PMC5431481 DOI: 10.1038/s41598-017-01336-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/28/2017] [Indexed: 12/19/2022] Open
Abstract
Our study explored the effect of oral intubation of Bacillus subtilis on Aeromonas hydrophila-induced intestinal mucosal barrier function damage and inflammation in grass carp. The mid-intestine mucosal tissue was collected for ATPase activity measurement. Intestinal mucosa was also ultrastructurally examined with transmission electron microscope (TEM), and its permeability was determined using Evans blue (EB) and D-lactic acid. The mid-intestine pro-inflammation cytokine, MyD88 and tight junction (TJ) protein mRNA expression levels were measured using real-time quantitative PCR. The results revealed that B. subtilis was found to prevent the decrease in the activity of Na+, K+-ATPase and Ca2+, Mg2+-ATPase, as well as the increase in EB and D-lactic acid concentration and inflammation induced by A. hydrophila in grass carp. Compared with A. hydrophila groups, B. subtilis safeguarded the integrity of intestinal villi and tight junction structure and restrained A. hydrophila-induced down-regulation of TJ proteins zonula occludens-1 (ZO-1) and occludin. B. subtilis also restrained up-regulation of TJ protein claudin b, pro-inflammation cytokine tumour necrosis factor α (TNF-α), cytokine interleukin 8 (IL-8), IL-1β, and adaptor protein myeloid differentiation factor 88 (MyD88) mRNA levels. Thus, oral intubation of B. subtilis could reduce A. hydrophila-induced intestinal mucosal barrier function damage and inflammation.
Collapse
Affiliation(s)
- Weiguang Kong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Can Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Tang
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Ding Zhang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Zhixin Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| | - Xiaoxuan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
45
|
Ren Y, Li S, Wu Z, Zhou C, Zhang D, Chen X. The Influences of Bacillus subtilis on the Virulence of Aeromonas hydrophila and Expression of luxS Gene of Both Bacteria Under Co-cultivation. Curr Microbiol 2017; 74:718-724. [DOI: 10.1007/s00284-017-1236-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
|
46
|
Song X, Hu X, Sun B, Bo Y, Wu K, Xiao L, Gong C. A transcriptome analysis focusing on inflammation-related genes of grass carp intestines following infection with Aeromonas hydrophila. Sci Rep 2017; 7:40777. [PMID: 28094307 PMCID: PMC5240114 DOI: 10.1038/srep40777] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/12/2016] [Indexed: 11/09/2022] Open
Abstract
Inflammation is a protective response that is implicated in bacterial enteritis and other fish diseases. The inflammatory mechanisms behind Aeromonas hydrophila infections in fish remain poorly understood. In this study, we performed a de novo grass carp transcriptome assembly using Illumina's Solexa sequencing technique. On this basis we carried out a comparative analysis of intestinal transcriptomes from A. hydrophila-challenged and physiological saline solution (PSS/mock) -challenged fish, and 315 genes were up-regulated and 234 were down-regulated in the intestines infected with A. hydrophila. The GO enrichment analysis indicated that the differentially expressed genes were enriched to 12, 4, and 8 GO terms in biological process, molecular function, and cellular component, respectively. A KEGG analysis showed that 549 DEGs were involved in 165 pathways. Moreover, 15 DEGs were selected for quantitative real-time PCR analysis to validate the RNA-seq data. The results confirmed the consistency of the expression levels between RNA-seq and qPCR data. In addition, a time-course analysis of the mRNA expression of 12 inflammatory genes further demonstrated that the intestinal inflammatory responses to A. hydrophila infection simultaneously modulated gene expression variations. The present study provides intestine-specific transcriptome data, allowing us to unravel the mechanisms of intestinal inflammation triggered by bacterial pathogens.
Collapse
Affiliation(s)
- Xuehong Song
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.,National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Bingyao Sun
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yunxuan Bo
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Kang Wu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Lanying Xiao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.,National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| |
Collapse
|
47
|
A review of current methods using bacteriophages in live animals, food and animal products intended for human consumption. J Microbiol Methods 2016; 130:38-47. [DOI: 10.1016/j.mimet.2016.07.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 12/23/2022]
|
48
|
Rasmussen-Ivey CR, Figueras MJ, McGarey D, Liles MR. Virulence Factors of Aeromonas hydrophila: In the Wake of Reclassification. Front Microbiol 2016; 7:1337. [PMID: 27610107 PMCID: PMC4997093 DOI: 10.3389/fmicb.2016.01337] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/12/2016] [Indexed: 12/19/2022] Open
Abstract
The ubiquitous "jack-of-all-trades," Aeromonas hydrophila, is a freshwater, Gram-negative bacterial pathogen under revision in regard to its phylogenetic and functional affiliation with other aeromonads. While virulence factors are expectedly diverse across A. hydrophila strains and closely related species, our mechanistic knowledge of the vast majority of these factors is based on the molecular characterization of the strains A. hydrophila AH-3 and SSU, which were reclassified as A. piscicola AH-3 in 2009 and A. dhakensis SSU in 2013. Individually, these reclassifications raise important questions involving the applicability of previous research on A. hydrophila virulence mechanisms; however, this issue is exacerbated by a lack of genomic data on other research strains. Collectively, these changes represent a fundamental gap in the literature on A. hydrophila and confirm the necessity of biochemical, molecular, and morphological techniques in the classification of research strains that are used as a foundation for future research. This review revisits what is known about virulence in A. hydrophila and the feasibility of using comparative genomics in light of this phylogenetic revision. Conflicting data between virulence factors, secretion systems, quorum sensing, and their effect on A. hydrophila pathogenicity appears to be an artifact of inappropriate taxonomic comparisons and/or be due to the fact that these properties are strain-specific. This review audits emerging data on dominant virulence factors that are present in both A. dhakensis and A. hydrophila in order to synthesize existing data with the aim of locating where future research is needed.
Collapse
Affiliation(s)
| | - Maria J Figueras
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina y Ciencias de la Salud, Institut d'Investigació Sanitària Pere Virgili, Universidad Rovira i Virgili, Reus Spain
| | - Donald McGarey
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA USA
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| |
Collapse
|
49
|
Albarral V, Sanglas A, Palau M, Miñana-Galbis D, Fusté MC. Potential pathogenicity ofAeromonas hydrophilacomplex strains isolated from clinical, food, and environmental sources. Can J Microbiol 2016; 62:296-306. [DOI: 10.1139/cjm-2015-0466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aeromonas are autochthonous inhabitants of aquatic environments, including chlorinated and polluted waters, although they can also be isolated from a wide variety of environmental and clinical sources. They cause infections in vertebrates and invertebrates and are considered to be an emerging pathogen in humans, producing intestinal and extra-intestinal diseases. Most of the clinical isolates correspond to A. hydrophila, A. caviae, and A. veronii bv. Sobria, which are described as the causative agents of wound infections, septicaemia, and meningitis in immunocompromised people, and diarrhoea and dysenteric infections in the elderly and children. The pathogenic factors associated with Aeromonas are multifactorial and involve structural components, siderophores, quorum-sensing mechanisms, secretion systems, extracellular enzymes, and exotoxins. In this study, we analysed a representative number of clinical and environmental strains belonging to the A. hydrophila species complex to evaluate their potential pathogenicity. We thereby detected their enzymatic activities and antibiotic susceptibility pattern and the presence of virulence genes (aer, alt, ast, and ascV). The notably high prevalence of these virulence factors, even in environmental strains, indicated a potential pathogenic capacity. Additionally, we determined the adhesion capacity and cytopathic effects of this group of strains in Caco-2 cells. Most of the strains exhibited adherence and caused complete lysis.
Collapse
Affiliation(s)
- Vicenta Albarral
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, Barcelona 08028, Spain
| | - Ariadna Sanglas
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, Barcelona 08028, Spain
| | - Montserrat Palau
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, Barcelona 08028, Spain
| | - David Miñana-Galbis
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, Barcelona 08028, Spain
| | - M. Carmen Fusté
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona 08028, Spain
| |
Collapse
|
50
|
Wang Y, Ke F, Ma J, Zhou S. A tandem-repeat galectin-9 involved in immune response of yellow catfish, Pelteobagrus fulvidraco, against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2016; 51:153-160. [PMID: 26892795 DOI: 10.1016/j.fsi.2016.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/09/2016] [Accepted: 02/12/2016] [Indexed: 06/05/2023]
Abstract
Galectins exclusively recognize and bind β-galactoside on cell surface by carbohydrate recognition domain (CRD). In spite of extensive study of mammalian galectin importance in immune system, little is known about that of fish. To study the immune response of yellow catfish to pathogens, a tandem-repeat galectin-9 from yellow catfish was identified and named PfGAL9. Its full-length cDNA was 1314 bp, including a 117 bp of 5' untranslated region (UTR), a 951 bp of open reading frame (ORF), and a 246 bp of 3' UTR. The ORF encoded 316 amino acids (35.12 KDa), shared the highest 78% identity with the predicted galectin-9 of Ictalurus punctatus. This protein possessed two distinct CRDs with two highly conserved sugar binding motifs. Quantitative PCR showed that PfGAL9 was lowly expressed in skin, gill, fin, muscle, heart, and intestine, highly expressed in tested immune tissues (head kidney, trunk kidney, liver, spleen, and blood) in normal body. After inactivated Aeromonas hydrophila challenge, PfGAL9 was remarkably increased in head kidney and liver in a time-dependent manner. The recombinant protein was expressed in Escherichia coli, which not only agglutinated but also bond all examined bacteria. The binding activities are consistent with the size of aggregates formed by agglutinated bacteria. The agglutination must depend on its direct interaction with bacteria. These results suggested that PfGAL9 was involved in the innate immune response against bacterial infection and clearance of pathogens in yellow catfish.
Collapse
Affiliation(s)
- Yun Wang
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Fei Ke
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China.
| | - Jingjing Ma
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Shuaibang Zhou
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| |
Collapse
|