1
|
Shende R, Wong SSW, Meitei HT, Lal G, Madan T, Aimanianda V, Pal JK, Sahu A. Protective role of host complement system in Aspergillus fumigatus infection. Front Immunol 2022; 13:978152. [PMID: 36211424 PMCID: PMC9539816 DOI: 10.3389/fimmu.2022.978152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening fungal infection for immunocompromised hosts. It is, therefore, necessary to understand the immune pathways that control this infection. Although the primary infection site is the lungs, aspergillosis can disseminate to other organs through unknown mechanisms. Herein we have examined the in vivo role of various complement pathways as well as the complement receptors C3aR and C5aR1 during experimental systemic infection by Aspergillus fumigatus, the main species responsible for IA. We show that C3 knockout (C3-/-) mice are highly susceptible to systemic infection of A. fumigatus. Intriguingly, C4-/- and factor B (FB)-/- mice showed susceptibility similar to the wild-type mice, suggesting that either the complement pathways display functional redundancy during infection (i.e., one pathway compensates for the loss of the other), or complement is activated non-canonically by A. fumigatus protease. Our in vitro study substantiates the presence of C3 and C5 cleaving proteases in A. fumigatus. Examination of the importance of the terminal complement pathway employing C5-/- and C5aR1-/- mice reveals that it plays a vital role in the conidial clearance. This, in part, is due to the increased conidial uptake by phagocytes. Together, our data suggest that the complement deficiency enhances the susceptibility to systemic infection by A. fumigatus.
Collapse
Affiliation(s)
- Rajashri Shende
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule (S. P.) Pune University Campus, Pune, India
- Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Sarah Sze Wah Wong
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Department of Mycology, Paris, France
| | - Heikrujam Thoihen Meitei
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Savitribai Phule (S. P.) Pune University Campus, Pune, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Savitribai Phule (S. P.) Pune University Campus, Pune, India
| | - Taruna Madan
- Department of Innate Immunity, ICMR – National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Vishukumar Aimanianda
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Department of Mycology, Paris, France
- *Correspondence: Arvind Sahu, ; Vishukumar Aimanianda,
| | - Jayanta Kumar Pal
- Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Arvind Sahu
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule (S. P.) Pune University Campus, Pune, India
- *Correspondence: Arvind Sahu, ; Vishukumar Aimanianda,
| |
Collapse
|
2
|
Schulz K, Trendelenburg M. C1q as a target molecule to treat human disease: What do mouse studies teach us? Front Immunol 2022; 13:958273. [PMID: 35990646 PMCID: PMC9385197 DOI: 10.3389/fimmu.2022.958273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
The complement system is a field of growing interest for pharmacological intervention. Complement protein C1q, the pattern recognition molecule at the start of the classical pathway of the complement cascade, is a versatile molecule with additional non-canonical actions affecting numerous cellular processes. Based on observations made in patients with hereditary C1q deficiency, C1q is protective against systemic autoimmunity and bacterial infections. Accordingly, C1q deficient mice reproduce this phenotype with susceptibility to autoimmunity and infections. At the same time, beneficial effects of C1q deficiency on disease entities such as neurodegenerative diseases have also been described in murine disease models. This systematic review provides an overview of all currently available literature on the C1q knockout mouse in disease models to identify potential target diseases for treatment strategies focusing on C1q, and discusses potential side-effects when depleting and/or inhibiting C1q.
Collapse
Affiliation(s)
- Kristina Schulz
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
- *Correspondence: Kristina Schulz,
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
3
|
Brain D, Plant-Hately A, Heaton B, Arshad U, David C, Hedrich C, Owen A, Liptrott NJ. Drug delivery systems as immunomodulators for therapy of infectious disease: Relevance to COVID-19. Adv Drug Deliv Rev 2021; 178:113848. [PMID: 34182016 PMCID: PMC8233062 DOI: 10.1016/j.addr.2021.113848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
The emergence of SARS-CoV-2, and the ensuing global pandemic, has resulted in an unprecedented response to identify therapies that can limit uncontrolled inflammation observed in patients with moderate to severe COVID-19. The immune pathology behind COVID-19 is complex and involves the activation and interaction of multiple systems including, but not limited to, complement, inflammasomes, endothelial as well as innate and adaptive immune cells to bring about a convoluted profile of inflammation, coagulation and tissue damage. To date, therapeutic approaches have focussed on inhibition of coagulation, untargeted immune suppression and/or cytokine-directed blocking agents. Regardless of recently achieved improvements in individual patient outcomes and survival rates, improved and focussed approaches targeting individual systems involved is needed to further improve prognosis and wellbeing. This review summarizes the current understanding of molecular and cellular systems involved in the pathophysiology of COVID-19, and their contribution to pathogen clearance and damage to then discuss possible therapeutic options involving immunomodulatory drug delivery systems as well as summarising the complex interplay between them.
Collapse
Affiliation(s)
- Danielle Brain
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Alex Plant-Hately
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Bethany Heaton
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Usman Arshad
- Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Christopher David
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Christian Hedrich
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK; Department of Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Andrew Owen
- Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Neill J Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Centre of Excellence for Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
4
|
Intracellular Delivery: An Overview. TARGETED INTRACELLULAR DRUG DELIVERY BY RECEPTOR MEDIATED ENDOCYTOSIS 2019. [DOI: 10.1007/978-3-030-29168-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
The relative merits of therapies being developed to tackle inappropriate ('self'-directed) complement activation. AUTOIMMUNITY HIGHLIGHTS 2016; 7:6. [PMID: 26935316 PMCID: PMC4775539 DOI: 10.1007/s13317-016-0078-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/03/2016] [Indexed: 12/11/2022]
Abstract
The complement system is an enzyme cascade that helps defend against infection. Many complement proteins occur in serum as inactive enzyme precursors or reside on cell surfaces. Complement components have many biologic functions and their activation can eventually damage the plasma membranes of cells and some bacteria. Although a direct link between complement activation and autoimmune diseases has not been found, there is increasing evidence that complement activation significantly contributes to the pathogenesis of a large number of inflammatory diseases that may have autoimmune linkage. The inhibition of complement may therefore be very important in a variety of autoimmune diseases since their activation may be detrimental to the individual involved. However, a complete and long-term inhibition of complement may have some contra side effects such as increased susceptibility to infection. The site of complement activation will, however, determine the type of inhibitor to be used, its route of application and dosage level. Compared with conventional drugs, complement inhibitors may be the best option for treatment of autoimmune diseases. The review takes a critical look at the relative merits of therapies being developed to tackle inappropriate complement activation that are likely to result in sporadic autoimmune diseases or worsen already existing one. It covers the complement system, general aspects of complement inhibition therapy, therapeutic strategies and examples of complement inhibitors. It concludes by highlighting on the possibility that a better inhibitor of complement activation when found will help provide a formidable treatment for autoimmune diseases as well as preventing one.
Collapse
|
6
|
Expression of membrane complement regulators, CD46, CD55 and CD59, in mesothelial cells of patients on peritoneal dialysis therapy. Mol Immunol 2015; 65:302-9. [DOI: 10.1016/j.molimm.2015.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/31/2015] [Accepted: 02/05/2015] [Indexed: 01/05/2023]
|
7
|
Colli-Dula RC, Martyniuk CJ, Kroll KJ, Prucha MS, Kozuch M, Barber DS, Denslow ND. Dietary exposure of 17-alpha ethinylestradiol modulates physiological endpoints and gene signaling pathways in female largemouth bass (Micropterus salmoides). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:148-60. [PMID: 25203422 PMCID: PMC4252624 DOI: 10.1016/j.aquatox.2014.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 05/13/2023]
Abstract
17Alpha-ethinylestradiol (EE2), used for birth control in humans, is a potent estrogen that is found in wastewater at low concentrations (ng/l). EE2 has the ability to interfere with the endocrine system of fish, affecting reproduction which can result in population level effects. The objective of this study was to determine if dietary exposure to EE2 would alter gene expression patterns and key pathways in the liver and ovary and whether these could be associated with reproductive endpoints in female largemouth bass during egg development. Female LMB received 70ng EE2/g feed (administered at 1% of body weight) for 60 days. EE2 dietary exposure significantly reduced plasma vitellogenin concentrations by 70%. Hepatosomatic and gonadosomatic indices were also decreased with EE2 feeding by 38.5% and 40%, respectively. Transcriptomic profiling revealed that there were more changes in steady state mRNA levels in the liver compared to the ovary. Genes associated with reproduction were differentially expressed, such as vitellogenin in the liver and aromatase in the gonad. In addition, a set of genes related with oxidative stress (e.g. glutathione reductase and glutathione peroxidase) were identified as altered in the liver and genes associated with the immune system (e.g. complement component 1, and macrophage-inducible C-type lectin) were altered in the gonad. In a follow-up study with 0.2ng EE2/g feed for 60 days, similar phenotypic and gene expression changes were observed that support these findings with the higher concentrations. This study provides new insights into how dietary exposure to EE2 interferes with endocrine signaling pathways in female LMB during a critical period of reproductive oogenesis.
Collapse
Affiliation(s)
- Reyna-Cristina Colli-Dula
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Kevin J Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Melinda S Prucha
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Marianne Kozuch
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - David S Barber
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
8
|
Yan C, Gao H. New insights for C5a and C5a receptors in sepsis. Front Immunol 2012; 3:368. [PMID: 23233853 PMCID: PMC3518060 DOI: 10.3389/fimmu.2012.00368] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 11/19/2012] [Indexed: 11/24/2022] Open
Abstract
The complement system plays a central role in inflammation and immunity. Among the complement activation products, C5a is one of the most potent inflammatory peptides with a broad spectrum of functions. There is strong evidence for complement activation including elevated plasma level of C5a in humans and animals with sepsis. C5a exerts its effects through the C5a receptors. Of the two receptors that bind C5a, the C5aR (CD88) is known to mediate signaling activity, whereas the function of another C5a binding receptor, C5L2, remains largely unknown. Here, we review the critical role of C5a in sepsis and summarize evidence indicating that both C5aR and C5L2 act as regulating receptors for C5a during sepsis.
Collapse
Affiliation(s)
| | - Hongwei Gao
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of MedicineBoston, MA, USA
| |
Collapse
|
9
|
Schepp-Berglind J, Atkinson C, Elvington M, Qiao F, Mannon P, Tomlinson S. Complement-dependent injury and protection in a murine model of acute dextran sulfate sodium-induced colitis. THE JOURNAL OF IMMUNOLOGY 2012; 188:6309-18. [PMID: 22566568 DOI: 10.4049/jimmunol.1200553] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Complement plays a key role in the pathophysiology of many inflammatory diseases, and in this study, we investigated the role of complement in the pathogenesis of inflammatory bowel disease. Compared to wild-type mice, mice deficient in C3 or factor B were protected from acute dextran sulfate sodium (DSS)-induced colitis. C1q/mannose-binding lectin (MBL) double-deficient mice, however, exhibited more severe colitis than wild-type mice. When mice were allowed to recover after DSS treatment, all C1q/MBL(-/-) mice died by day 2 of recovery period, and, surprisingly, all C3(-/-) and factor B(-/-) mice died by day 5. Serum endotoxin levels were significantly increased in complement-deficient mice prior to death, particularly in C1q/MBL(-/-) mice, and antibiotic treatment prevented the lethal effect of DSS in all complement-deficient mice. In contrast to complement deficiency, targeted complement inhibition with either complement receptor 2 (CR2)-Crry (blocks all pathways at C3 activation) or CR2-factor H (blocks alternative pathway) was highly protective at treating established acute colitis. Endotoxin levels remained low in complement-inhibited mice, and complement inhibition also reduced inflammatory cytokines, leukocyte infiltration, and tissue injury while improving wound repair and mucosal healing. CR2-factor H provided more effective protection than CR2-Crry. Thus, complement has both pathogenic and protective roles in acute DSS-induced colitis, and whereas the alternative pathway appears to play a key role in tissue inflammation and injury, the classical/lectin pathway provides important protection in terms of host defense and wound repair. Targeted inhibition of the alternative pathway may represent a therapeutic modality for treating acute phases of inflammatory bowel disease.
Collapse
Affiliation(s)
- Jennifer Schepp-Berglind
- Department of Microbiology and Immunology, Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
10
|
Dahlke K, Wrann CD, Sommerfeld O, Sossdorf M, Recknagel P, Sachse S, Winter SW, Klos A, Stahl GL, Ma YX, Claus RA, Reinhart K, Bauer M, Riedemann NC. Distinct different contributions of the alternative and classical complement activation pathway for the innate host response during sepsis. THE JOURNAL OF IMMUNOLOGY 2011; 186:3066-75. [PMID: 21263075 DOI: 10.4049/jimmunol.1002741] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Complement activation represents a crucial innate defense mechanism to invading microorganisms, but there is an eminent lack of understanding of the separate contribution of the different complement activation pathways to the host response during sepsis. We therefore investigated different innate host immune responses during cecal ligation and puncture (CLP)-induced sepsis in mice lacking either the alternative (fD(-/-)) or classical (C1q(-/-)) complement activation pathway. Both knockout mice strains showed a significantly reduced survival and increased organ dysfunction when compared with control mice. Surprisingly, fD(-/-) mice demonstrated a compensated bacterial clearance capacity as control mice at 6 h post CLP, whereas C1q(-/-) mice were already overwhelmed by bacterial growth at this time point. Interestingly, at 24 h after CLP, fD(-/-) mice failed to clear bacteria in a way comparable to control mice. However, both knockout mice strains showed compromised C3 cleavage during sepsis. Investigating potential causes for this discrepancy, we were able to demonstrate that despite normal bacterial clearance capacity early during the onset of sepsis, fD(-/-) mice displayed increased inflammatory cytokine generation and neutrophil recruitment into lungs and blood when compared with both control- and C1q(-/-) mice, indicating a potential loss of control over these immune responses. Further in vitro experiments revealed a strongly increased Nf-κB activation capacity in isolated neutrophils from fD(-/-) mice, supporting this hypothesis. Our results provide evidence for the new concept that the alternative complement activation pathway exerts a distinctly different contribution to the innate host response during sepsis when compared with the classical pathway.
Collapse
Affiliation(s)
- Katja Dahlke
- Department of Anesthesiology and Intensive Care Therapy, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nayak A, Ferluga J, Tsolaki AG, Kishore U. The non-classical functions of the classical complement pathway recognition subcomponent C1q. Immunol Lett 2010; 131:139-50. [PMID: 20381531 DOI: 10.1016/j.imlet.2010.03.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 03/22/2010] [Accepted: 03/28/2010] [Indexed: 11/28/2022]
Abstract
C1q, the ligand recognition subcomponent of the classical complement pathway has steadily been gaining recognition as a bridge between innate and adaptive immunity. C1q has been shown to be involved in the modulation of various immune cells (such as dendritic cells, platelets, microglia cells and lymphocytes), clearance of apoptotic cells, a range of cell processes such as differentiation, chemotaxis, aggregation and adhesion, and pathogenesis of neurodegenerative diseases and systemic lupus erythematosus. Recent studies have highlighted the importance of C1q during pregnancy, coagulation process and embryonic development including neurological synapse function. It is intriguing to note that a prototypical defence molecule has so many diverse functions that probably have its origin in its versatility as a potent charge pattern recognition molecule, modularity within the ligand-recognising globular domain, and the redundancy of putative C1q receptors. The range of function that C1q has been shown to perform also provides clues for the undiscovered functions of a number of C1q family members.
Collapse
Affiliation(s)
- Annapurna Nayak
- Centre for Infection, Immunity and Disease Mechanisms, Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge, London UB8 3PH, UK
| | | | | | | |
Collapse
|
12
|
Benhnia MREI, McCausland MM, Laudenslager J, Granger SW, Rickert S, Koriazova L, Tahara T, Kubo RT, Kato S, Crotty S. Heavily isotype-dependent protective activities of human antibodies against vaccinia virus extracellular virion antigen B5. J Virol 2009; 83:12355-67. [PMID: 19793826 PMCID: PMC2786738 DOI: 10.1128/jvi.01593-09] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 09/17/2009] [Indexed: 11/20/2022] Open
Abstract
Antibodies against the extracellular virion (EV or EEV) form of vaccinia virus are an important component of protective immunity in animal models and likely contribute to the protection of immunized humans against poxviruses. Using fully human monoclonal antibodies (MAbs), we now have shown that the protective attributes of the human anti-B5 antibody response to the smallpox vaccine (vaccinia virus) are heavily dependent on effector functions. By switching Fc domains of a single MAb, we have definitively shown that neutralization in vitro--and protection in vivo in a mouse model--by the human anti-B5 immunoglobulin G MAbs is isotype dependent, thereby demonstrating that efficient protection by these antibodies is not simply dependent on binding an appropriate vaccinia virion antigen with high affinity but in fact requires antibody effector function. The complement components C3 and C1q, but not C5, were required for neutralization. We also have demonstrated that human MAbs against B5 can potently direct complement-dependent cytotoxicity of vaccinia virus-infected cells. Each of these results was then extended to the polyclonal human antibody response to the smallpox vaccine. A model is proposed to explain the mechanism of EV neutralization. Altogether these findings enhance our understanding of the central protective activities of smallpox vaccine-elicited antibodies in immunized humans.
Collapse
Affiliation(s)
- Mohammed Rafii-El-Idrissi Benhnia
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California 92037, Kyowa Hakko Kirin California, La Jolla, California 92037
| | - Megan M. McCausland
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California 92037, Kyowa Hakko Kirin California, La Jolla, California 92037
| | - John Laudenslager
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California 92037, Kyowa Hakko Kirin California, La Jolla, California 92037
| | - Steven W. Granger
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California 92037, Kyowa Hakko Kirin California, La Jolla, California 92037
| | - Sandra Rickert
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California 92037, Kyowa Hakko Kirin California, La Jolla, California 92037
| | - Lilia Koriazova
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California 92037, Kyowa Hakko Kirin California, La Jolla, California 92037
| | - Tomoyuki Tahara
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California 92037, Kyowa Hakko Kirin California, La Jolla, California 92037
| | - Ralph T. Kubo
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California 92037, Kyowa Hakko Kirin California, La Jolla, California 92037
| | - Shinichiro Kato
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California 92037, Kyowa Hakko Kirin California, La Jolla, California 92037
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California 92037, Kyowa Hakko Kirin California, La Jolla, California 92037
| |
Collapse
|
13
|
Skountzou I, Martin MDP, Wang B, Ye L, Koutsonanos D, Weldon W, Jacob J, Compans RW. Salmonella flagellins are potent adjuvants for intranasally administered whole inactivated influenza vaccine. Vaccine 2009; 28:4103-12. [PMID: 19654062 DOI: 10.1016/j.vaccine.2009.07.058] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/01/2009] [Accepted: 07/19/2009] [Indexed: 12/24/2022]
Abstract
Bacterial flagellins are potent inducers of innate immune responses in the mouse lung because they bind to TLR5 expressed on the apical surfaces of airway epithelial cells. TLR engagement leads to the initiation of a signaling cascade that results in a pro-inflammatory response with subsequent up-regulation of several cytokines and leads to adaptive immune responses. We examined the ability of two soluble flagellins, a monomeric flagellin expressed in Escherichia coli and a highly purified polymeric flagellin directly isolated from Salmonella, to enhance the efficacy of influenza vaccines in mice. Here we demonstrate that both flagellins co-administered intranasally with inactivated A/PR/8/34 (PR8) virus induced robust increases of systemic influenza-specific IgA and IgG titers and resulted in a more comprehensive humoral response as indicated by the increase of IgG2a and IgG2b subclass responses. Groups immunized with the adjuvanted vaccines were fully protected against high dose lethal challenge by homologous virus whereas inactivated PR8 alone conferred only partial protection. Finally we show that shortly after immunization the adjuvanted vaccines induced a dramatic increase in pro-inflammatory cytokines in the lung, resulting in extensive lung infiltration by granulocytes and monocytes/macrophages. Our results reveal a promising perspective for the use of both soluble monomeric and polymeric flagellin as mucosal vaccine adjuvants to improve protection against influenza epidemics as well as a range of other infectious diseases.
Collapse
Affiliation(s)
- Ioanna Skountzou
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Mizuno M, Ito Y, Hepburn N, Mizuno T, Noda Y, Yuzawa Y, Harris CL, Morgan BP, Matsuo S. Zymosan, but Not Lipopolysaccharide, Triggers Severe and Progressive Peritoneal Injury Accompanied by Complement Activation in a Rat Peritonitis Model. THE JOURNAL OF IMMUNOLOGY 2009; 183:1403-1412. [DOI: 10.4049/jimmunol.0804245] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Fungal peritonitis is an important complication in peritoneal dialysis patients; either continuous or recurrent peritonitis may enhance peritoneal damage. Even when the peritoneal dialysis catheter is removed in patients with fungal peritonitis, peritoneal fibrosis can progress and evolve into encapsular peritoneal sclerosis. It is unclear why fungal infections are worse than bacterial in these respects. Zymosan is a cell wall component of yeast that strongly activates the complement system. In this study, we compared the effects of zymosan and bacterial LPS on peritoneal inflammation in a rat peritoneal injury model induced by mechanical scraping. Intraperitoneal administration of zymosan, but not LPS or vehicle, caused markedly enhanced peritonitis with massive infiltration of cells and deposition of complement activation products C3b and membrane attack complex on day 5. In rats administered zymosan and sacrificed on days 18 or 36, peritoneal inflammation persisted with accumulation of ED-1-positive cells, small deposits of C3b and membrane attack complex, exudation of fibrinogen, and capillary proliferation in subperitoneal tissues. When zymosan was administered daily for 5 days after peritoneal scrape, there was even greater peritoneal inflammation with peritoneal thickening, inflammatory cell accumulation, and complement deposition. Inhibition of systemic complement by pretreatment with cobra venom factor or local inhibition by i.p. administration of the recombinant complement regulator Crry-Ig reduced peritoneal inflammation in zymosan-treated rats. Our results show that yeast components augment inflammation in the injured peritoneum by causing complement activation within the peritoneal cavity. Local anticomplement therapy may therefore protect from peritoneal damage during fungal infection of the peritoneum.
Collapse
Affiliation(s)
- Masashi Mizuno
- *Renal Replacement Therapy and
- †Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiko Ito
- *Renal Replacement Therapy and
- †Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Natalie Hepburn
- §Complement Biology Group, Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, United Kingdom
| | - Tomohiro Mizuno
- ‡Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Graduate School of Pharmaceutical Sciences, Nagoya, Japan; and
| | - Yukihiro Noda
- ‡Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Graduate School of Pharmaceutical Sciences, Nagoya, Japan; and
| | - Yukio Yuzawa
- †Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Claire L. Harris
- §Complement Biology Group, Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, United Kingdom
| | - B. Paul Morgan
- §Complement Biology Group, Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, United Kingdom
| | - Seiichi Matsuo
- †Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
15
|
Impaired opsonization with C3b and phagocytosis of Streptococcus pneumoniae in sera from subjects with defects in the classical complement pathway. Infect Immun 2008; 76:3761-70. [PMID: 18541650 DOI: 10.1128/iai.00291-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Results from studies using mice deficient in specific complement factors and clinical data on patients with an inherited deficiency of the classical complement pathway component C2 suggest that the classical pathway is vital for immunity to Streptococcus pneumoniae. However, the consequences of defects in classical pathway activity for opsonization with C3b and the phagocytosis of different S. pneumoniae serotypes in human serum are not known, and there has not been a systematic analysis of the abilities of sera from subjects with a C2 deficiency to opsonize S. pneumoniae. Hence, to investigate the role of the classical pathway in immunity to S. pneumoniae in more detail, flow cytometry assays of opsonization with C3b and the phagocytosis of three capsular serotypes of S. pneumoniae were performed using human sera depleted of the complement factor C1q or B or sera obtained from C2-deficient subjects. The results demonstrate that, in human serum, the classical pathway is vital for C3b-iC3b deposition onto cells of all three serotypes of S. pneumoniae and seems to be more important than the alternative pathway for phagocytosis. Compared to the results for sera from normal subjects, C3b-iC3b deposition and total anti-S. pneumoniae antibody activity levels in sera obtained from C2(-/-) subjects were reduced and the efficiency of phagocytosis of all three S. pneumoniae strains was impaired. Anticapsular antibody levels did not correlate with phagocytosis or C3b-iC3b deposition. These data confirm that the classical pathway is vital for complement-mediated phagocytosis of S. pneumoniae and demonstrate why subjects with a C2 deficiency have a marked increase in susceptibility to S. pneumoniae infections.
Collapse
|
16
|
van Till JWO, van Veen SQ, van Ruler O, Lamme B, Gouma DJ, Boermeester MA. The innate immune response to secondary peritonitis. Shock 2007; 28:504-17. [PMID: 17589378 DOI: 10.1097/shk.0b013e318063e6ca] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Secondary peritonitis continues to cause high morbidity and mortality despite improvements in medical and surgical therapy. This review combines data from published literature, focusing on molecular patterns of inflammation in pathophysiology and prognosis during peritonitis. Orchestration of the innate immune response is essential. To clear the microbial infection, activation and attraction of leukocytes are essential and beneficial, just like the expression of inflammatory cytokines. Exaggeration of these inflammatory systems leads to tissue damage and organ failure. Nonsurvivors have increased proinflammation, complement activation, coagulation, and chemotaxis. In these patients, anti-inflammatory systems are decreased in blood and lungs, whereas the abdominal compartment shows decreased neutrophil activation and decreased or stationary chemokine and cytokine levels. A later down-regulation of proinflammatory mediators with concomitant overexpression of anti-inflammatory mediators leads to immunoparalysis and failure to clear residual bacterial load, resulting in the occurrence of superimposed infections. Thus, in patients with adverse outcome, the inflammatory reaction is no longer contained within the abdomen, and the inflammatory response has shifted to other compartments. For the understanding of the host response to secondary peritonitis, it is essential to realize that the defense systems presumably are expressed differently and, in part, autonomously in different compartments.
Collapse
Affiliation(s)
- J W Olivier van Till
- Department of Surgery, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Lu J, Wu X, Teh BK. The regulatory roles of C1q. Immunobiology 2007; 212:245-52. [PMID: 17544810 DOI: 10.1016/j.imbio.2006.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 11/09/2006] [Accepted: 11/09/2006] [Indexed: 10/23/2022]
Abstract
C1q binds to immune complexes to elicit complement-dependent microbial killing and enhance phagocytosis. Besides this classical role, C1q also opsonizes apoptotic cells for clearance by phagocytes. C1q deficiency increases susceptibility to microbial infections and is also associated with elevated autoimmunity as characterized by increased apoptotic bodies in tissues. Most complement proteins are of liver origin, but C1q is predominantly synthesized by peripheral tissue macrophages and dendritic cells. Besides being found in the blood, C1q has also been found deposited in extracellular tissues around these cells. In vitro, immobilized C1q inhibits monocyte, macrophage and T-cell production of inflammatory cytokines. It also regulates T-cell activation. Therefore, mounting evidence suggest a major regulatory role for C1q in inflammation and autoimmunity.
Collapse
Affiliation(s)
- Jinhua Lu
- Department of Microbiology, Yong Loo Lin School of Medicine and NUS Immunology Program, National University of Singapore, Blk MD4, 5 Science Drive 2, Singapore 117597, Singapore.
| | | | | |
Collapse
|
18
|
Dumestre-Pérard C, Doerr E, Colomb MG, Loos M. Involvement of complement pathways in patients with bacterial septicemia. Mol Immunol 2007; 44:1631-8. [PMID: 17049606 DOI: 10.1016/j.molimm.2006.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 08/07/2006] [Accepted: 08/08/2006] [Indexed: 11/25/2022]
Abstract
The complement system is a major humoral portion of the innate immune system, playing a significant role in host defence against microorganisms. The biological importance of this system is underlined by the fact that at least three different pathways for its activation exist, the classical, the MBL and the alternative pathway. To elucidate the involvement of the classical and/or the MBL pathway during bacterial septicemia, 32 patients with gram-positive and 30 patients with gram-negative bacterial infections were investigated. In patients with gram-positive bacteria, a significant consumption of C1q (p=0.005) but not of mannose-binding lectin (MBL) (p=0.2) was found during the acute phase of infection. In contrast, in patients with gram-negative bacterial infections, a significant reduction of MBL (p=0.002) and only a moderate, less significant reduction of C1q (p=0.03) were observed. As a model for the binding of MBL to gram-negative bacteria, Salmonella strains with defined mutations in their lipopolysaccharide (LPS) structure were used. The comparison of the binding of MBL to these Salmonella strains with that of the corresponding isolated LPS forms bound to microtiter plates revealed a similar binding pattern, supporting the interpretation that LPS on the surface of gram-negative bacteria is the major acceptor molecule for MBL on these bacteria, which according to our results obviously also takes place during gram-negative bacterial septicaemia. Furthermore, we were able to demonstrate that MBL bound to LPS was able to initiate activation of the complement cascade as measured by the occurrence of the cleavage product C4c.
Collapse
Affiliation(s)
- Chantal Dumestre-Pérard
- Institute of Medical Microbiology and Hygiene, Johannes Gutenberg-University, Hochhaus am Augustusplatz, 55101 Mainz, Germany.
| | | | | | | |
Collapse
|
19
|
Windbichler M, Echtenacher B, Takahashi K, Ezekowitz RAB, Schwaeble WJ, Jenseniuis JC, Männel DN. Investigations on the Involvement of the Lectin Pathway of Complement Activation in Anaphylaxis. Int Arch Allergy Immunol 2006; 141:11-23. [PMID: 16804320 DOI: 10.1159/000094177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 02/27/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Systemic anaphylaxis is the most severe form of immediate hypersensitivity reaction. The activation of the complement system occurs during anaphylactic shock. The purpose of this study was to determine in a mouse model whether the lectin pathway of complement activation is involved in anaphylaxis. METHODS To see whether the lectin pathway is involved in anaphylactic shock, serum mannan-binding lectin (MBL) levels were measured after passive anaphylaxis. Also MBL expression and binding to potential ligands were investigated. To determine whether complement or mast cell activation is essential for hypothermia in anaphylactic shock, mouse strains deficient in MBL-A and MBL-C, C1q, factors B and C2, C5, C5aR, or mast cells were tested. RESULTS After antigenic challenge a marked drop in body temperature as well as a rapid decrease in serum MBL levels were observed. The decrease of serum MBL levels in shock could not be attributed to MBL binding to immune complexes or tissues, but an interaction of MBL with mast cell-derived proteoglycans was seen. In contrast to mast cell-deficient mice, none of the complement-deficient mouse strains were protected from shock-associated hypothermia. CONCLUSIONS These results indicate that neither MBL nor activation of the complement cascade is crucial for the induction of anaphylaxis. In contrast mast cell activation is associated with the development of hypothermia and possibly the observed decrease in serum MBL levels.
Collapse
Affiliation(s)
- Michaela Windbichler
- Institute of Immunology, University of Regensburg, Regensburg, Germany, and Department of Pediatrics, Laboratory of Developmental Immunology, Massachusetts General Hospital, Boston, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Windbichler M, Echtenacher B, Hehlgans T, Jensenius JC, Schwaeble W, Männel DN. Involvement of the lectin pathway of complement activation in antimicrobial immune defense during experimental septic peritonitis. Infect Immun 2004; 72:5247-52. [PMID: 15322019 PMCID: PMC517465 DOI: 10.1128/iai.72.9.5247-5252.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A critical first line of defense against infection is constituted by the binding of natural antibodies to microbial surfaces, activating the complement system via the classical complement activation pathway. In this function, the classical activation pathway is supported and amplified by two antibody-independent complement activation routes, i.e., the lectin pathway and the alternative pathway. We studied the contribution of the different complement activation pathways in the host defense against experimental polymicrobial peritonitis induced by cecal ligation and puncture by using mice deficient in either C1q or factors B and C2. The C1q-deficient mice lack the classical complement activation pathway. While infection-induced mortality of wild-type mice was 27%, mortality of C1q-deficient mice was increased to 60%. Mice with a deficiency of both factors B and C2 lack complement activation via the classical, the alternative, and the lectin pathways and exhibit a mortality of 92%, indicating a significant contribution of the lectin and alternative pathways of complement activation to survival. For 14 days after infection, mannan-binding lectin (MBL)-dependent activation of C4 was compromised. Serum MBL-A and MBL-C levels were significantly reduced for 1 week, possibly due to consumption. mRNA expression profiles did not lend support for either of the two MBL genes to respond as typical acute-phase genes. Our results demonstrate a long-lasting depletion of MBL-A and MBL-C from serum during microbial infection and underline the importance of both the lectin and the alternative pathways for antimicrobial immune defense.
Collapse
Affiliation(s)
- Michaela Windbichler
- Department of Immunology, University of Regensburg, F.-J.-Strauss-Allee, D-93042 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Bauhofer A, Torossian A, Lorenz W, Middeke M, Plaul U, Schütz P, Stinner B, Hattel M, Celik I. Dependence of Positive Effects of Granulocyte Colony-stimulating Factor on the Antibiotic Regimen: Evaluation in Rats with Polymicrobial Peritonitis. World J Surg 2004; 28:834-44. [PMID: 15457367 DOI: 10.1007/s00268-004-7210-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We tested the hypothesis that the ability of granulocyte colony-stimulating factor (G-CSF) to prevent death from fecal peritonitis is influenced by the composition of the antibiotic regimen with which it is administered. We used a rodent model of polymicrobial peritoneal contamination and infection and the concept of clinical modeling randomized trials (CMRTs), which includes the conditions of randomized, clinical trials and complex clinical interventions (e.g., anesthesia, volume substitution, antibiotics, surgery, postoperative analgesia). With the peritonitis model we obtained a mortality dose-response curve that was sensitive to antibiotic prophylaxis. G-CSF was most efficacious when it was administered both prophylactically and after the onset of peritonitis. Cefuroxime/metronidazole, ofloxacin/metronidazole, and amoxicillin/clavulanate improved survival in combination with G-CSF best, whereas cefotaxime or ceftriaxone with and without metronidazole did not. G-CSF administration was associated with improved polymorphonuclear neutrophil phagocytosis and enhanced bacterial clearance. Pro-inflammatory cytokine release (tumor necrosis factor-a, interleukin-6, macrophage inflammatory protein-2) was decreased in plasma and in the peritoneal fluid. Their expression was lowered in various organs on the protein and mRNA level. The results were used to design a clinical trial to test the ability of G-CSF to prevent serious infections in patients with colorectal cancer surgery. In this trial G-CSF application and antibiotic prophylaxis were performed with the most effective scheduling and combinations (cefuroxime/metronidazole and ofloxacin/metronidazole) as defined here.
Collapse
Affiliation(s)
- Artur Bauhofer
- Institute of Theoretical Surgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Although polymicrobial diseases are not a new concept for microbiologists, they are experiencing a resurgence of interest owing to the development of suitable animal models and new molecular techniques that allow these diseases to be studied effectively. This broad review provides an excellent introduction to this fascinating topic. Examples are included of each type of polymicrobial disease and the animal models that are used to study these diseases are discussed. In many instances, schematics for the animal model are presented. Viral co-infections including bovine viral diarrhoeal viruses, porcine reproductive and respiratory syndrome, mixed hepatitis virus infections and HIV co-infection with hepatitis virus are discussed, together with attempts to model these diseases in animals. Viral and bacterial co-infections are reviewed with a special focus on otitis media and the rodent models that have been used to probe this important childhood illness. Of the polybacterial diseases, periodontitis is one of the best understood and a clinically relevant rodent model is now available. This model, and the role of biofilm formation in periodontitis are examined. Fungal infections of humans are often referred to as 'opportunistic' but in fact these infections are often fungal co-infections with viruses such as HIV and fungal mixed co-infections. The roles of these infections in disease and the rodent models used to study them are discussed. Parasite co-infections are thought to have a role in the severity of malaria and the severity of Lyme arthritis. These diseases and attempts to model them are evaluated. Finally, co-infections that are associated with virus-induced immunosuppression are discussed, together with their animal models.
Polymicrobial diseases involve two or more microorganisms that act synergistically, or in succession, to mediate complex disease processes. Although polymicrobial diseases in animals and humans can be caused by similar organisms, these diseases are often also caused by organisms from different kingdoms, genera, species, strains, substrains and even by phenotypic variants of a single species. Animal models are often required to understand the mechanisms of pathogenesis, and to develop therapies and prevention regimes. However, reproducing polymicrobial diseases of humans in animal hosts presents significant challenges.
Collapse
Affiliation(s)
- Lauren O Bakaletz
- Center for Microbial Pathogenesis, Columbus Children's Research Institute, Department of Pediatrics, The Ohio State University College of Medicine & Public Health, 700 Children's Drive, Columbus, Ohio 43205-2696, USA.
| |
Collapse
|
23
|
Tang S, Leung JCK, Chan LYY, Tsang AWL, Chen CXR, Zhou W, Lai KN, Sacks SH. Regulation of complement C3 and C4 synthesis in human peritoneal mesothelial cells by peritoneal dialysis fluid. Clin Exp Immunol 2004; 136:85-94. [PMID: 15030518 PMCID: PMC1808994 DOI: 10.1111/j.1365-2249.2004.02407.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although complement is activated in the peritoneal cavity during chronic peritoneal dialysis (PD), little is known about its role in peritoneal defence and injury related to long-term PD. We examined the impact of glucose and commercial peritoneal dialysis solutions on complement expression in HPMCs obtained by primary culture from omental tissues of consented patients undergoing elective abdominal surgery. Constitutive expression of C3 and C4 mRNA in HPMCs was up-regulated upon exposure to 75 mm glucose in a time-dependent manner. C3 and C4 protein was secreted in both apical and basolateral directions. Glucose doses beyond 100 mm markedly down-regulated C3 and C4 expression, and stimulated LDH release dose-dependently. Such cytotoxic effects were attenuated using equivalent doses of mannitol instead of glucose. Treatment with conventional lactate-buffered dialysis solution gave rise to down-regulation of C3 and C4 expression, and heightened LDH release in HPMCs. These effects correlated with the glucose strength of the solution, persisted despite replacement with a bicarbonate-buffered solution, aggravated by glycated albumin, and were partially abrogated by supplementation with 10% fetal bovine serum in the culture system. Our findings suggest that the artificial conditions imposed by PD lead to alterations in local complement synthesis that have implications for the role of the peritoneal mesothelium in both inflammation and defence.
Collapse
Affiliation(s)
- S Tang
- Department of Nephrology and Transplantation, Guy's, King's College and St Thomas' Hospitals' Medical School, King's College London, UK
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Carlsson F, Berggård K, Stålhammar-Carlemalm M, Lindahl G. Evasion of phagocytosis through cooperation between two ligand-binding regions in Streptococcus pyogenes M protein. ACTA ACUST UNITED AC 2003; 198:1057-68. [PMID: 14517274 PMCID: PMC2194224 DOI: 10.1084/jem.20030543] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The M protein of Streptococcus pyogenes is a major bacterial virulence factor that confers resistance to phagocytosis. To analyze how M protein allows evasion of phagocytosis, we used the M22 protein, which has features typical of many M proteins and has two well-characterized regions binding human plasma proteins: the hypervariable NH2-terminal region binds C4b-binding protein (C4BP), which inhibits the classical pathway of complement activation; and an adjacent semivariable region binds IgA-Fc. Characterization of chromosomal S. pyogenes mutants demonstrated that each of the ligand-binding regions contributed to phagocytosis resistance, which could be fully explained as cooperation between the two regions. Deposition of complement on S. pyogenes occurred almost exclusively via the classical pathway, even under nonimmune conditions, but was down-regulated by bacteria-bound C4BP, providing an explanation for the ability of bound C4BP to inhibit phagocytosis. Different opsonizing antisera shared the ability to block binding of both C4BP and IgA, suggesting that the two regions in M22 play important roles also under immune conditions, as targets for protective antibodies. These data indicate that M22 and similar M proteins confer resistance to phagocytosis through ability to bind two components of the human immune system.
Collapse
Affiliation(s)
- Fredric Carlsson
- Dept. of Medical Microbiology, Dermatology, and Infection, Lund University, Sölvegatan 23, SE-22362 Lund, Sweden
| | | | | | | |
Collapse
|
25
|
Abstract
Abstract
Background
Peritoneal mesothelial cells have a remarkable capacity to respond to peritoneal insults. They generate an intense biological response and play an important role in the formation of adhesions. This review describes these activities and comments on their relationship to surgical drainage, peritoneal lavage and laparostomy in the management of patients with peritonitis.
Methods and results
Material was identified from previous review articles, references cited in original papers and a Medline search of the literature. The peritoneal mesothelium adapts to peritonitis by facilitating the clearance of contaminated fluid from the peritoneal cavity and inducing the formation of fibrinous adhesions that support the localization of contaminants. In addition, the fluid within the peritoneal cavity is a battleground in which effector mechanisms generated with the involvement of peritoneal mesothelial cells meet the contaminants. The result is a complex mix of cascading processes that have evolved to protect life in the absence of surgery.
Conclusion
Future advances in the management of patients with severe peritonitis may depend upon molecular strategies that modify the activity of peritoneal mesothelial cells.
Collapse
Affiliation(s)
- V Yao
- Department of Surgery, University of Western Australia, Perth, Australia
| | | | | |
Collapse
|
26
|
Stover CM, Lynch NJ, Dahl MR, Hanson S, Takahashi M, Frankenberger M, Ziegler-Heitbrock L, Eperon I, Thiel S, Schwaeble WJ. Murine serine proteases MASP-1 and MASP-3, components of the lectin pathway activation complex of complement, are encoded by a single structural gene. Genes Immun 2003; 4:374-84. [PMID: 12847554 DOI: 10.1038/sj.gene.6363970] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activation of the lectin pathway of complement is initiated by the binding to microbial carbohydrate structures of a multimolecular fluid-phase complex composed of a carbohydrate recognition subcomponent that associates with three specific serine proteases and an enzymatically inert protein of 19 kDa. The first carbohydrate recognition subcomponent of the lectin pathway identified was mannan-binding lectin (MBL), hence the serine proteases were named MBL-associated serine proteases (MASPs) and numbered according to the sequence of their discovery. Here we describe the primary structures of the two distinct serine proteases MASP-1 and MASP-3 in the rat (and of MASP-3 in the mouse), show their association with plasma MBL complexes, and demonstrate that in rat and mouse, as in man, MASP-1 and MASP-3 are encoded by a single structural gene. For both species, we present the genomic region and regulatory elements responsible for the processing of either MASP-1 or MASP-3 mRNA by alternative splicing/alternative polyadenylation. Furthermore, we demonstrate the evolutionary conservation of MASP-3 mRNA in cDNA transcripts from guinea pig, rabbit, pufferfish, and cow.
Collapse
Affiliation(s)
- C M Stover
- Department of Microbiology and Immunology, University of Leicester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Stahl GL, Xu Y, Hao L, Miller M, Buras JA, Fung M, Zhao H. Role for the alternative complement pathway in ischemia/reperfusion injury. THE AMERICAN JOURNAL OF PATHOLOGY 2003. [PMID: 12547703 DOI: 10.1016/s0002-94401063839-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The terminal complement components play an important role in mediating tissue injury after ischemia and reperfusion (I/R) injury in rats and mice. However, the specific complement pathways involved in I/R injury are unknown. The role of the alternative pathway in I/R injury may be particularly important, as it amplifies complement activation and deposition. In this study, the role of the alternative pathway in I/R injury was evaluated using factor D-deficient (-/-) and heterozygote (+/-) mice. Gastrointestinal ischemia (GI) was induced by clamping the mesenteric artery for 20 minutes and then reperfused for 3 hours. Sham-operated control mice (+/- versus -/-) had similar baseline intestinal lactate dehydrogenase activity (P = ns). Intestinal lactate dehydrogenase activity was greater in -/- mice compared to +/- mice after GI/R (P = 0.02) thus demonstrating protection in the -/- mice. Intestinal myeloperoxidase activity in +/- mice was significantly greater than -/- mice after GI/R (P < 0.001). Pulmonary myeloperoxidase activity after GI/R was significantly higher in +/- than -/- mice (P = 0.03). Addition of human factor D to -/- animals restored GI/R injury and was prevented by a functionally inhibitory antibody against human factor D. These data suggest that the alternative complement pathway plays an important role in local and remote tissue injury after GI/R. Inhibition of factor D may represent an effective therapeutic approach for GI/R injury.
Collapse
Affiliation(s)
- Gregory L Stahl
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Groeneveld ABJ, Tacx AN, Bossink AWJ, van Mierlo GJ, Hack CE. Circulating inflammatory mediators predict shock and mortality in febrile patients with microbial infection. Clin Immunol 2003; 106:106-15. [PMID: 12672401 DOI: 10.1016/s1521-6616(02)00025-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The host response to microbial infection is associated with the release of inflammatory mediators. We hypothesized that the type and degree of the systemic response as reflected by levels of circulating mediators predict morbidity and mortality, according to the invasiveness of microbial infection. We prospectively studied 133 medical patients with fever and culture-proven microbial infection. For 3 days after inclusion, the circulating levels of activated complement C3a, interleukin (IL)-6, and secretory phospholipase A(2) (sPLA(2)) were determined daily. Based on results of microbiological studies performed for up to 7 days, patients were classified as having local infections (Group 1, n = 80 positive local cultures or specific stains for fungal or tuberculous infections) or bacteremia (Group 2, n = 52 plus 1 patient with malaria parasitemia). Outcome was assessed as the development of septic shock and as mortality up to 28 days after inclusion. Fifteen patients (11%) developed septic shock and overall mortality was 18% (n = 24). Bacteremia was associated with shock and shock predisposed to death. Circulating mediator levels were generally higher in Group 2 than in Group 1. Circulating levels of IL-6 and sPLA(2) were higher in patients developing septic shock and in nonsurvivors, particularly in Group 1. High C3a was particularly associated with nonsurvival in Group 2. In Group 1, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve for the peak sPLA(2) for shock development was 0.79 (P < 0.05). The AUC of the ROC curve of the peak IL-6 and sPLA(2) for mortality was 0.69 and 0.68 (P < 0.05), respectively. In Group 2, the AUC of the ROC for peak C3a predicting mortality was 0.73 (P < 0.05). In conclusion, in medical patients with fever and microbial infection, the systemic inflammatory host response predicts shock and death, at an early stage, dependent on the invasiveness of microbial infection. The results suggest a differential pathogenetic role of complement activation on the one hand and release of cytokine and lipid mediators on the other in bacteremic and local microbial infections, respectively. They may partly explain the failure of strategies blocking proinflammatory cytokines or sPLA(2) in human sepsis and may extend the basis for attempts to inhibit complement activation at an early stage in patients at risk of dying from invasive microbial infections.
Collapse
Affiliation(s)
- A B J Groeneveld
- Department of Internal Medicine and Intensive Care Unit, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
29
|
Stahl GL, Xu Y, Hao L, Miller M, Buras JA, Fung M, Zhao H. Role for the alternative complement pathway in ischemia/reperfusion injury. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:449-55. [PMID: 12547703 PMCID: PMC1851150 DOI: 10.1016/s0002-9440(10)63839-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The terminal complement components play an important role in mediating tissue injury after ischemia and reperfusion (I/R) injury in rats and mice. However, the specific complement pathways involved in I/R injury are unknown. The role of the alternative pathway in I/R injury may be particularly important, as it amplifies complement activation and deposition. In this study, the role of the alternative pathway in I/R injury was evaluated using factor D-deficient (-/-) and heterozygote (+/-) mice. Gastrointestinal ischemia (GI) was induced by clamping the mesenteric artery for 20 minutes and then reperfused for 3 hours. Sham-operated control mice (+/- versus -/-) had similar baseline intestinal lactate dehydrogenase activity (P = ns). Intestinal lactate dehydrogenase activity was greater in -/- mice compared to +/- mice after GI/R (P = 0.02) thus demonstrating protection in the -/- mice. Intestinal myeloperoxidase activity in +/- mice was significantly greater than -/- mice after GI/R (P < 0.001). Pulmonary myeloperoxidase activity after GI/R was significantly higher in +/- than -/- mice (P = 0.03). Addition of human factor D to -/- animals restored GI/R injury and was prevented by a functionally inhibitory antibody against human factor D. These data suggest that the alternative complement pathway plays an important role in local and remote tissue injury after GI/R. Inhibition of factor D may represent an effective therapeutic approach for GI/R injury.
Collapse
Affiliation(s)
- Gregory L Stahl
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Bhole D, Stahl GL. Therapeutic potential of targeting the complement cascade in critical care medicine. Crit Care Med 2003; 31:S97-104. [PMID: 12544983 DOI: 10.1097/00003246-200301001-00014] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Caring for the critical care patient involves many different areas of clinical expertise and serves a diverse patient population. Novel therapeutics for the critically ill must be approached with caution, because the underlying molecular mechanisms of the disease process for several commonly seen types of patients (i.e., sepsis, shock, ischemia/reperfusion) are not fully understood. A potentially new and advancing area of therapeutics that may hold promise for the critically ill is inhibition of the complement system. Various novel complement inhibitors are being developed and several are in clinical trials. The advancement of this novel area of therapeutics may one day aid the clinician by providing several different complement inhibitors/antagonists for controlling complement activation or its biologically active mediators.
Collapse
Affiliation(s)
- Deepak Bhole
- Center for Experimental Therapeutics & Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
31
|
Brown JS, Hussell T, Gilliland SM, Holden DW, Paton JC, Ehrenstein MR, Walport MJ, Botto M. The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc Natl Acad Sci U S A 2002; 99:16969-74. [PMID: 12477926 PMCID: PMC139253 DOI: 10.1073/pnas.012669199] [Citation(s) in RCA: 277] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The complement system is an important component of the innate immune response to bacterial pathogens, including Streptococcus pneumoniae. The classical complement pathway is activated by antibody-antigen complexes on the bacterial surface and has been considered predominately to be an effector of the adaptive immune response, whereas the alternative and mannose-binding lectin pathways are activated directly by bacterial cell surface components and are considered effectors of the innate immune response. Recently, a role has been suggested for the classical pathway during innate immunity that is activated by natural IgM or components of the acute-phase response bound to bacterial pathogens. However, the functional importance of the classical pathway for innate immunity to S. pneumoniae and other bacterial pathogens, and its relative contribution compared with the alternative and mannose-binding lectin pathways has not been defined. By using strains of mice with genetic deficiencies of complement components and secretory IgM we have investigated the role of each complement pathway and natural IgM for innate immunity to S. pneumoniae. Our results show that the proportion of a population of S. pneumoniae bound by C3 depends mainly on the classical pathway, whereas the intensity of C3 binding depends on the alternative pathway. Furthermore, the classical pathway, partially targeted by the binding of natural IgM to bacteria, is the dominant pathway for activation of the complement system during innate immunity to S. pneumoniae, loss of which results in rapidly progressing septicemia and impaired macrophage activation. These data demonstrate the vital role of the classical pathway for innate immunity to a bacterial pathogen.
Collapse
Affiliation(s)
- Jeremy S Brown
- Centre for Molecular Microbiology and Infection and Rheumatology Section, Faculty of Medicine, Imperial College London, Flowers Building, Armstrong Road, London SW7 2AZ, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|