1
|
Wang A, Bolnick D. Among-Population Differentiation in the Tapeworm Proteome through Prediction of Excretory/Secretory and Transmembrane Proteins in Schistocephalus solidus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.618520. [PMID: 39554047 PMCID: PMC11565730 DOI: 10.1101/2024.10.25.618520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background Parasites secrete and excrete a variety of molecules evolve to help establish and sustain infections within hosts. Parasite adaptation to their host may lead to between-population divergence in these excretory and secretory products (ESPs), but few studies have tested for intraspecific variation in helminth proteomes. Methods Schistocephalus solidus is a cestode that parasitizes three spined stickleback, Gasterosteus aculeatus . We used an ultra-performance liquid chromatography-mass spectrometry protocol to characterize the ESP and whole-body proteome of S. solidus. Specifically, we characterized the proteome of S. solidus at the plerocercoid stage from wild caught stickleback from three lakes on Vancouver Island (British Columbia, Canada) and one lake in Alaska (United States). We tested for differences in proteome composition among the four populations and specifically between ESPs and body tissue. Results Overall, we identified 1362 proteins in the total proteome of S. solidus, with 542 of the 1362 proteins detected exclusively in the ESPs. Of the ESP proteins, we found signaling peptides and transmembrane proteins that were previously not detected or characterized in S. solidus. We also found protein spectrum counts greatly varied between all lake populations. Conclusions These population-level differences were observed in both ESP and tissue types. Our study suggests that S. solidus can excrete and secrete a wide range of proteins which are distinct among populations. These differences might reflect plastic responses to host genotype differences, or evolved adaptations by Schistocephalus to different local host populations.
Collapse
|
2
|
Heggi MT, Nour El-Din HT, Morsy DI, Abdelaziz NI, Attia AS. Microbial evasion of the complement system: a continuous and evolving story. Front Immunol 2024; 14:1281096. [PMID: 38239357 PMCID: PMC10794618 DOI: 10.3389/fimmu.2023.1281096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
The complement system is a fundamental part of the innate immune system that plays a key role in the battle of the human body against invading pathogens. Through its three pathways, represented by the classical, alternative, and lectin pathways, the complement system forms a tightly regulated network of soluble proteins, membrane-expressed receptors, and regulators with versatile protective and killing mechanisms. However, ingenious pathogens have developed strategies over the years to protect themselves from this complex part of the immune system. This review briefly discusses the sequence of the complement activation pathways. Then, we present a comprehensive updated overview of how the major four pathogenic groups, namely, bacteria, viruses, fungi, and parasites, control, modulate, and block the complement attacks at different steps of the complement cascade. We shed more light on the ability of those pathogens to deploy more than one mechanism to tackle the complement system in their path to establish infection within the human host.
Collapse
Affiliation(s)
- Mariam T. Heggi
- Clinical Pharmacy Undergraduate Program, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanzada T. Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Ahmed S. Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Kang JM, Lê HG, Võ TC, Yoo WG, Sohn WM, Na BK. Mapping of the Complement C9 Binding Region on Clonorchis sinensis Paramyosin. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:255-259. [PMID: 36041487 PMCID: PMC9441447 DOI: 10.3347/kjp.2022.60.4.255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022]
Abstract
Heliminthic paramyosin is a multifunctional protein that not only acts as a structural protein in muscle layers but as an immune-modulatory molecule interacting with the host immune system. Previously, we found that paramyosin from Clonorchis sinensis (CsPmy) is bound to human complement C9 protein (C9). To analyze the C9 binding region on CsPmy, overlapping recombinant fragments of CsPmy were produced and their binding activity to human C9 was investigated. The fragmental expression of CsPmy and C9 binding assays revealed that the C9 binding region was located at the C-terminus of CsPmy. Further analysis of the C-terminus of CsPmy to narrow the C9 binding region on CsPmy indicated that the region flanking731Leu–780 Leu was a potent C9 binding region. The CsPmy fragments corresponding to the region effectively inhibited human C9 polymerization. These results provide a precise molecular basis for CsPmy as a potent immunomodulator to evade host immune defenses by inhibiting complement attack.
Collapse
Affiliation(s)
- Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Won Gi Yoo
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
- Corresponding author ()
| |
Collapse
|
4
|
De Marco Verissimo C, Jewhurst HL, Dobó J, Gál P, Dalton JP, Cwiklinski K. Fasciola hepatica is refractory to complement killing by preventing attachment of mannose binding lectin (MBL) and inhibiting MBL-associated serine proteases (MASPs) with serpins. PLoS Pathog 2022; 18:e1010226. [PMID: 35007288 PMCID: PMC8782513 DOI: 10.1371/journal.ppat.1010226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/21/2022] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
The complement system is a first-line innate host immune defence against invading pathogens. It is activated via three pathways, termed Classical, Lectin and Alternative, which are mediated by antibodies, carbohydrate arrays or microbial liposaccharides, respectively. The three complement pathways converge in the formation of C3-convertase followed by the assembly of a lethal pore-like structure, the membrane attack complex (MAC), on the pathogen surface. We found that the infectious stage of the helminth parasite Fasciola hepatica, the newly excysted juvenile (NEJ), is resistant to the damaging effects of complement. Despite being coated with mannosylated proteins, the main initiator of the Lectin pathway, the mannose binding lectin (MBL), does not bind to the surface of live NEJ. In addition, we found that recombinantly expressed serine protease inhibitors secreted by NEJ (rFhSrp1 and rFhSrp2) selectively prevent activation of the complement via the Lectin pathway. Our experiments demonstrate that rFhSrp1 and rFhSrp2 inhibit native and recombinant MBL-associated serine proteases (MASPs), impairing the primary step that mediates C3b and C4b deposition on the NEJ surface. Indeed, immunofluorescence studies show that MBL, C3b, C4b or MAC are not deposited on the surface of NEJ incubated in normal human serum. Taken together, our findings uncover new means by which a helminth parasite prevents the activation of the Lectin complement pathway to become refractory to killing via this host response, in spite of presenting an assortment of glycans on their surface.
Collapse
Affiliation(s)
- Carolina De Marco Verissimo
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Heather L. Jewhurst
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - John P. Dalton
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
5
|
Abstract
Schistosomes are long lived, intravascular parasitic platyhelminths that infect >200 million people globally. The molecular mechanisms used by these blood flukes to dampen host immune responses are described in this review. Adult worms express a collection of host-interactive tegumental ectoenzymes that can cleave host signaling molecules such as the "alarmin" ATP (cleaved by SmATPDase1), the platelet activator ADP (SmATPDase1, SmNPP5), and can convert AMP into the anti-inflammatory mediator adenosine (SmAP). SmAP can additionally cleave the lipid immunomodulator sphingosine-1-phosphate and the proinflammatory anionic polymer, polyP. In addition, the worms release a barrage of proteins (e.g., SmCB1, SjHSP70, cyclophilin A) that can impinge on immune cell function. Parasite eggs also release their own immunoregulatory proteins (e.g., IPSE/α1, omega1, SmCKBP) as do invasive cercariae (e.g., Sm16, Sj16). Some schistosome glycans (e.g., LNFPIII, LNnT) and lipids (e.g., Lyso-PS, LPC), produced by several life stages, likewise affect immune cell responses. The parasites not only produce eicosanoids (e.g., PGE2, PGD2-that can be anti-inflammatory) but can also induce host cells to release these metabolites. Finally, the worms release extracellular vesicles (EVs) containing microRNAs, and these too have been shown to skew host cell metabolism. Thus, schistosomes employ an array of biomolecules-protein, lipid, glycan, nucleic acid, and more, to bend host biochemistry to their liking. Many of the listed molecules have been individually shown capable of inducing aspects of the polarized Th2 response seen following infection (with the generation of regulatory T cells (Tregs), regulatory B cells (Bregs) and anti-inflammatory, alternatively activated (M2) macrophages). Precisely how host cells integrate the impact of these myriad parasite products following natural infection is not known. Several of the schistosome immunomodulators described here are in development as novel therapeutics against autoimmune, inflammatory, and other, nonparasitic, diseases.
Collapse
Affiliation(s)
- Sreemoyee Acharya
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Akram A. Da’dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Patrick J. Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
Chulanetra M, Chaicumpa W. Revisiting the Mechanisms of Immune Evasion Employed by Human Parasites. Front Cell Infect Microbiol 2021; 11:702125. [PMID: 34395313 PMCID: PMC8358743 DOI: 10.3389/fcimb.2021.702125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
For the establishment of a successful infection, i.e., long-term parasitism and a complete life cycle, parasites use various diverse mechanisms and factors, which they may be inherently bestowed with, or may acquire from the natural vector biting the host at the infection prelude, or may take over from the infecting host, to outmaneuver, evade, overcome, and/or suppress the host immunity, both innately and adaptively. This narrative review summarizes the up-to-date strategies exploited by a number of representative human parasites (protozoa and helminths) to counteract the target host immune defense. The revisited information should be useful for designing diagnostics and therapeutics as well as vaccines against the respective parasitic infections.
Collapse
Affiliation(s)
- Monrat Chulanetra
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Carson JP, Gobert GN. Modulation of the Host Immune Response by Schistosome Egg-Secreted Proteins Is a Critical Avenue of Host-Parasite Communication. Pathogens 2021; 10:863. [PMID: 34358013 PMCID: PMC8308880 DOI: 10.3390/pathogens10070863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022] Open
Abstract
During a schistosome infection, the interactions that occur between the mammalian host and the parasite change rapidly once egg laying begins. Both juvenile and adult schistosomes adapt to indefinitely avoid the host immune system. In contrast, the survival of eggs relies on quickly traversing from the host. Following the commencement of egg laying, the host immune response undergoes a shift from a type 1 helper (Th1) inflammatory response to a type 2 helper (Th2) granulomatous response. This change is driven by immunomodulatory proteins within the egg excretory/secretory products (ESPs), which interact with host cells and alter their behaviour to promote egg translocation. However, in parallel, these ESPs also provoke the development of chronic schistosomiasis pathology. Recent studies using high-throughput proteomics have begun to characterise the components of schistosome egg ESPs, particularly those of Schistosoma mansoni, S. japonicum and S. haematobium. Future application of this knowledge may lead to the identification of proteins with novel immunomodulatory activity or pathological importance. However, efforts in this area are limited by a lack of in situ or in vivo functional characterisation of these proteins. This review will highlight the current knowledge of the content and demonstrated functions of schistosome egg ESPs.
Collapse
Affiliation(s)
| | - Geoffrey N. Gobert
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK;
| |
Collapse
|
8
|
Anisuzzaman, Frahm S, Prodjinotho UF, Bhattacharjee S, Verschoor A, Prazeres da Costa C. Host-Specific Serum Factors Control the Development and Survival of Schistosoma mansoni. Front Immunol 2021; 12:635622. [PMID: 33968028 PMCID: PMC8103320 DOI: 10.3389/fimmu.2021.635622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/06/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Schistosomiasis is a neglected tropical disease (NTD) caused by blood-dwelling flatworms which develop from skin-penetrating cercariae, the freely swimming water-borne infective stage of Schistosoma mansoni, into adult worms. This natural course of infection can be mimicked in experimental mouse models of schistosomiasis. However, only a maximum of 20-30% of penetrated cercariae mature into fecund adults. The reasons for this are unknown but could potentially involve soluble factors of the innate immune system, such as complement factors and preexisting, natural antibodies. Materials and Methods Using our recently developed novel serum- and cell-free in vitro culture system for newly transformed schistosomula (NTS), which supports long-term larval survival, we investigated the effects of mouse serum and its major soluble complement factors C1q, C3, C4 as well as preexisting, natural IgM in vitro and assessed worm development in vivo by infecting complement and soluble (s)IgM-deficient animals. Results In contrast to sera from humans and a broad variety of mammalian species, serum from mice, surprisingly, killed parasites already at skin stage in vitro. Interestingly, the most efficient killing component(s) were heat-labile but did not include important members of the perhaps best known family of heat-labile serum factors, the complement system, nor consisted of complement-activating natural immunoglobulins. Infection of complement C1q and sIgM-deficient mice with S. mansoni as well as in vitro tests with sera from mice deficient in C3 and C4 revealed no major role for these soluble factors in vivo in regard to parasite maturation, fecundity and associated immunopathology. Rather, the reduction of parasite maturation from cercariae to adult worms was comparable to wild-type mice. Conclusion This study reveals that not yet identified heat-labile serum factors are major selective determinants of the host-specificity of schistosomiasis, by directly controlling schistosomal development and survival.
Collapse
Affiliation(s)
- Anisuzzaman
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sören Frahm
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Ulrich Fabien Prodjinotho
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Sonakshi Bhattacharjee
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Admar Verschoor
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Clarissa Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
- Centre for Global Health, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
9
|
Hambrook JR, Hanington PC. Immune Evasion Strategies of Schistosomes. Front Immunol 2021; 11:624178. [PMID: 33613562 PMCID: PMC7889519 DOI: 10.3389/fimmu.2020.624178] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Human schistosomes combat the unique immune systems of two vastly different hosts during their indirect life cycles. In gastropod molluscs, they face a potent innate immune response composed of variable immune recognition molecules and highly phagocytic hemocytes. In humans, a wide variety of innate and adaptive immune processes exist in proximity to these parasites throughout their lifespan. To survive and thrive as the second most common parasitic disease in humans, schistosomes have evolved many techniques to avoid and combat these targeted host responses. Among these techniques are molecular mimicry of host antigens, the utilization of an immune resistant outer tegument, the secretion of several potent proteases, and targeted release of specific immunomodulatory factors affecting immune cell functions. This review seeks to describe these key immune evasion mechanisms, among others, which schistosomes use to survive in both of their hosts. After diving into foundational observational studies of the processes mediating the establishment of schistosome infections, more recent transcriptomic and proteomic studies revealing crucial components of the host/parasite molecular interface are discussed. In order to combat this debilitating and lethal disease, a comprehensive understanding of schistosome immune evasion strategies is necessary for the development of novel therapeutics and treatment plans, necessitating the discussion of the numerous ways in which these parasitic flatworms overcome the immune responses of both hosts.
Collapse
Affiliation(s)
- Jacob R Hambrook
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
10
|
Wu Z, Nagano I, Khueangchiangkhwang S, Maekawa Y. Proteomics of Trichinella. TRICHINELLA AND TRICHINELLOSIS 2021:103-183. [DOI: 10.1016/b978-0-12-821209-7.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Carson JP, Robinson MW, Hsieh MH, Cody J, Le L, You H, McManus DP, Gobert GN. A comparative proteomics analysis of the egg secretions of three major schistosome species. Mol Biochem Parasitol 2020; 240:111322. [PMID: 32961206 PMCID: PMC8059868 DOI: 10.1016/j.molbiopara.2020.111322] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Morbidity associated with hepatic and urogenital schistosomiasis stems primarily from the host immune response directed against schistosome eggs. When eggs become entrapped in host tissues, the development of fibrotic plaques drives downstream pathology. These events occur due to the antigenic nature of egg excretory/secretory products (ESPs). Both Schistosoma mansoni and S. japonicum ESPs have been shown to interact with several cell populations in the host liver including hepatocytes, macrophages, and hepatic stellate cells, with both immunomodulatory and pathological consequences. Several protein components of the ESPs of S. mansoni and S. japonicum eggs have been characterised; however, studies into the collective contents of schistosome egg ESPs are lacking. Utilising shotgun mass spectrometry and an array of in silico analyses, we identified 266, 90 and 50 proteins within the S. mansoni, S. japonicum and S. haematobium egg secretomes respectively. We identified numerous proteins with already established immunomodulatory activities, vaccine candidates and vesicle markers. Relatively few common orthologues within the ESPs were identified by BLAST, indicating that the three egg secretomes differ in content significantly. Having a clearer understanding of these components may lead to the identification of new proteins with uncharacterised immunomodulatory potential or pathological relevance. This will enhance our understanding of host-parasite interactions, particularly those occurring during chronic schistosomiasis, and pave the way towards novel therapeutics and vaccines.
Collapse
Affiliation(s)
- Jack P Carson
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Michael H Hsieh
- Division of Urology, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | | | | | - Hong You
- Molecular Parasitology Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Geoffrey N Gobert
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
12
|
Bischofsberger M, Winkelmann F, Rabes A, Reisinger EC, Sombetzki M. Pathogen-host interaction mediated by vesicle-based secretion in schistosomes. PROTOPLASMA 2020; 257:1277-1287. [PMID: 32462473 PMCID: PMC7449993 DOI: 10.1007/s00709-020-01515-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/15/2020] [Indexed: 05/07/2023]
Abstract
As part of the parasite's excretory/secretory system, extracellular vesicles (EVs) represent a potent communication tool of schistosomes with their human host to strike the balance between their own survival in a hostile immunological environment and a minimal damage to the host tissue. Their cargo consists of functional proteins, lipids, and nucleic acids that facilitate biological processes like migration, nutrient acquisition, or reproduction. The most important impact of the vesicle-mediated communication, however, is the promotion of the parasite survival via mimicking host protein function and directly or indirectly modulating the immune response of the host. Overcoming this shield of immunological adaption in the schistosome-host relation is the aim of current research activities in this field and crucial for the development of a reliable anti-schistosomal therapy. Not least because of their prospective use in clinical applications, research on EVs is now a rapidly expanding field. We herein focus on the current state of knowledge of vesicle-based communication of schistosomes and discussing the role of EVs in facilitating biological processes and immune modulatory properties of EVs considering the different life stages of the parasite.
Collapse
Affiliation(s)
- Miriam Bischofsberger
- Department of Tropical Medicine, Infectious Diseases and Section of Nephrology, University Medical Center Rostock, Rostock, Germany
| | - Franziska Winkelmann
- Department of Tropical Medicine, Infectious Diseases and Section of Nephrology, University Medical Center Rostock, Rostock, Germany
| | - Anne Rabes
- Department of Tropical Medicine, Infectious Diseases and Section of Nephrology, University Medical Center Rostock, Rostock, Germany
| | - Emil C Reisinger
- Department of Tropical Medicine, Infectious Diseases and Section of Nephrology, University Medical Center Rostock, Rostock, Germany
| | - Martina Sombetzki
- Department of Tropical Medicine, Infectious Diseases and Section of Nephrology, University Medical Center Rostock, Rostock, Germany.
| |
Collapse
|
13
|
Angeles JMM, Mercado VJP, Rivera PT. Behind Enemy Lines: Immunomodulatory Armamentarium of the Schistosome Parasite. Front Immunol 2020; 11:1018. [PMID: 32582161 PMCID: PMC7295904 DOI: 10.3389/fimmu.2020.01018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
The deeply rooted, intricate relationship between the Schistosoma parasite and the human host has enabled the parasite to successfully survive within the host and surreptitiously evade the host's immune attacks. The parasite has developed a variety of strategies in its immunomodulatory armamentarium to promote infection without getting harmed or killed in the battlefield of immune responses. These include the production of immunomodulatory molecules, alteration of membranes, and the promotion of granuloma formation. Schistosomiasis thus serves as a paradigm for understanding the Th2 immune responses seen in various helminthiases. This review therefore aims to summarize the immunomodulatory mechanisms of the schistosome parasites to survive inside the host. Understanding these immunomodulatory strategies not only provides information on parasite-host interactions, but also forms the basis in the development of novel drugs and vaccines against the schistosome infection, as well as various types of autoimmune and inflammatory conditions.
Collapse
Affiliation(s)
- Jose Ma M Angeles
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - Van Jerwin P Mercado
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - Pilarita T Rivera
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
14
|
Sm16, A Schistosoma mansoni Immunomodulatory Protein, Fails to Elicit a Protective Immune Response and Does Not Have an Essential Role in Parasite Survival in the Definitive Host. J Immunol Res 2019; 2019:6793596. [PMID: 31886307 PMCID: PMC6915009 DOI: 10.1155/2019/6793596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023] Open
Abstract
Sm16 is an immunomodulatory protein that seems to play a key role in the suppression of the cutaneous inflammatory response during Schistosoma mansoni penetration of the skin of definitive hosts. Therefore, Sm16 represents a potential target for protective immune responses induced by vaccination. In this work, we generated the recombinant protein rSm16 and produced polyclonal antibodies against this protein to evaluate its expression during different parasite life-cycle stages and its location on the surface of the parasite. In addition, we analyzed the immune responses elicited by immunization with rSm16 using two different vaccine formulations, as well as its ability to induce protection in Balb/c mice. In order to explore the biological function of Sm16 during the course of experimental infection, RNA interference was also employed. Our results demonstrated that Sm16 is expressed in cercaria and schistosomula and is located in the schistosomula surface. Despite humoral and cellular immune responses triggered by vaccination using rSm16 associated with either Freund's or alum adjuvants, immunized mice presented no reduction in either parasite burden or parasite egg laying. Knockdown of Sm16 gene expression in schistosomula resulted in decreased parasite size in vitro but had no effect on parasite survival or egg production in vivo. Thus, our findings demonstrate that although the vaccine formulations used in this study succeeded in activating immune responses, these failed to promote parasite elimination. Finally, we have shown that Sm16 is not vital for parasite survival in the definitive host and hence may not represent a suitable target for vaccine development.
Collapse
|
15
|
Walter L, Sürth V, Röttgerding F, Zipfel PF, Fritz-Wolf K, Kraiczy P. Elucidating the Immune Evasion Mechanisms of Borrelia mayonii, the Causative Agent of Lyme Disease. Front Immunol 2019; 10:2722. [PMID: 31849943 PMCID: PMC6902028 DOI: 10.3389/fimmu.2019.02722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/06/2019] [Indexed: 01/24/2023] Open
Abstract
Borrelia (B.) mayonii sp. nov. has recently been reported as a novel human pathogenic spirochete causing Lyme disease (LD) in North America. Previous data reveal a higher spirochaetemia in the blood compared to patients infected by LD spirochetes belonging to the B. burgdorferi sensu lato complex, suggesting that this novel genospecies must exploit strategies to overcome innate immunity, in particular complement. To elucidate the molecular mechanisms of immune evasion, we utilized various methodologies to phenotypically characterize B. mayonii and to identify determinants involved in the interaction with complement. Employing serum bactericidal assays, we demonstrated that B. mayonii resists complement-mediated killing. To further elucidate the role of the key regulators of the alternative pathway (AP), factor H (FH), and FH-like protein 1 (FHL-1) in immune evasion of B. mayonii, serum adsorption experiments were conducted. The data revealed that viable spirochetes recruit both regulators from human serum and FH retained its factor I-mediated C3b-inactivating activity when bound to the bacterial cells. In addition, two prominent FH-binding proteins of approximately 30 and 18 kDa were detected in B. mayonii strain MN14-1420. Bioinformatics identified a gene, exhibiting 60% identity at the DNA level to the cspA encoding gene of B. burgdorferi. Following PCR amplification, the gene product was produced as a His-tagged protein. The CspA-orthologous protein of B. mayonii interacted with FH and FHL-1, and both bound regulators promoted inactivation of C3b in the presence of factor I. Additionally, the CspA ortholog counteracted complement activation by inhibiting the alternative and terminal but not the classical and Lectin pathways, respectively. Increasing concentrations of CspA of B. mayonii also strongly affected C9 polymerization, terminating the formation of the membrane attack complex. To assess the role of CspA of B. mayonii in facilitating serum resistance, a gain-of-function strain was generated, harboring a shuttle vector allowing expression of the CspA encoding gene under its native promotor. Spirochetes producing the native protein on the cell surface overcame complement-mediated killing, indicating that CspA facilitates serum resistance of B. mayonii. In conclusion, here we describe the molecular mechanism utilized by B. mayonii to resists complement-mediated killing by capturing human immune regulators.
Collapse
Affiliation(s)
- Lea Walter
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Valerie Sürth
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Florian Röttgerding
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz-Institute for Natural Products Research and Infection Biology, Jena, Germany.,Friedrich Schiller University, Jena, Germany
| | - Karin Fritz-Wolf
- Max Planck Institute for Medical Research, Heidelberg, Germany.,Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
16
|
Wang Z, Hao C, Huang J, Zhuang Q, Zhan B, Zhu X. Mapping of the complement C1q binding site on Trichinella spiralis paramyosin. Parasit Vectors 2018; 11:666. [PMID: 30587214 PMCID: PMC6307294 DOI: 10.1186/s13071-018-3258-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022] Open
Abstract
Background Trichinella spiralis is a tissue-dwelling parasite has developed the ability to evade the host immune attack to establish parasitism in a host. One of the strategies evolved by the nematode is to produce proteins that immunomodulate the host immune system. TsPmy is a paramyosin secreted by T. spiralis on the surface of larvae and adult worms that can interact with complement components C1q and C8/C9 to compromise their activation and functions. To better understand the mechanism of TsPmy involved in the C1q inactivation and immune evasion, the C1q-binding site on TsPmy was investigated. Methods The TsPmy C1q-binding site was investigated by sequential narrow-down fragment expression in bacteria and peptide binding screening. C1q binding activity was identified by Far-Western blotting and ELISA assays. Results After several runs of sequential fragment expression, the C1q binding site was narrowed down to fragments of N-terminal TsPmy226-280aa and TsPmy231-315aa, suggesting the final C1q binding site is probably located to TsPmy231-280aa. A total of nine peptides covering different amino acid sequences within TsPmy231-280aa were synthesized. The binding assay to C1q determined that only P2 peptide covering TsPmy241-280aa binds to C1q, indicating that the C1q binding domain may need both the linearized sequence and conformational structure required for binding to C1q. The binding of peptide P2 to C1q significantly inhibited both C1q-initiated complement classical activation and C1q-induced macrophage chemotaxis. Conclusions This study identifies the C1q binding site within TsPmy which provides helpful information for developing a vaccine against trichinellosis by targeting the C1q-binding activity of TsPmy.
Collapse
Affiliation(s)
- Zixia Wang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chunyue Hao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qinghui Zhuang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
17
|
White Bear J, Long T, Skinner D, McKerrow JH. Predictions of novel Schistosoma mansoni - human protein interactions consistent with experimental data. Sci Rep 2018; 8:13092. [PMID: 30166569 PMCID: PMC6117258 DOI: 10.1038/s41598-018-31272-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
Infection by the human blood fluke, Schistosoma mansoni involves a variety of cross-species protein- protein interactions. The pathogen expresses a diverse arsenal of proteins that facilitate the breach of physical and biochemical barriers present in skin evasion of the immune system, and digestion of human plasma proteins including albumin and hemoglobin, allowing schistosomes to reside in the host for years. However, only a small number of specific interactions between S. mansoni and human proteins have been identified. We present and apply a protocol that generates testable predictions of S. mansoni-human protein interactions. In this study, we have preliminary predictions of novel interactions between schistosome and human proteins relevant to infection and the ability of the parasite to evade the immune system. We applied a computational whole-genome comparative approach to predict potential S. mansoni-human protein interactions based on similarity to known protein complexes. We first predict S. mansoni -human protein interactions based on similarity to known protein complexes. Putative interactions were then scored and assessed using several contextual filters, including the use of annotation automatically derived from literature using a simple natural language processing methodology. Next, in vitro experiments were carried out between schistosome and host proteins to validate several prospective predictions. Our method predicted 7 out of the 10 previously known cross-species interactions involved in pathogenesis between S. mansoni and its human host. Interestingly, two novel putative interactions involving Schistosoma proteins, the cercarial elastase SmCE, and the adult tegument surface protein Sm29, were also predicted and experimentally characterized. Preliminary data suggest that elafin, a host endogenous serine protease inhibitor, may be a novel substrate for SmCE. Additionally, CD59, an inhibitor of the membrane attack complex, could interact with Sm29. Furthermore, the application framework provides an integrated methodology for investigation of host-pathogen interactions and an extensive source of orthogonal data for experimental analysis. We have made the predictions available for community perusal.
Collapse
Affiliation(s)
- J White Bear
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California, San Francisco, CA, 94158, USA.
- Graduate Group in Bioinformatics, University of California, San Francisco, CA, 94158, USA.
- MIT Lincoln Laboratory 244 Wood St, Lexington, MA, USA.
| | - Thavy Long
- Department of Pathology and Sandler Center for Basic Research in Parasitic Diseases, University of California at San Francisco, San Francisco, California, 94158, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego 9500 Gilman Dr, La Jolla, CA, 92093, USA
- INRA - InTheRes - UMR 1436, Equipe Transporteurs Membranaires et Résistance, 180, Chemin de Tournefeuille, Toulouse, France
| | - Danielle Skinner
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - James H McKerrow
- Department of Pathology and Sandler Center for Basic Research in Parasitic Diseases, University of California at San Francisco, San Francisco, California, 94158, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego 9500 Gilman Dr, La Jolla, CA, 92093, USA
| |
Collapse
|
18
|
Brangulis K, Akopjana I, Petrovskis I, Kazaks A, Kraiczy P, Tars K. Crystal structure of the membrane attack complex assembly inhibitor BGA71 from the Lyme disease agent Borrelia bavariensis. Sci Rep 2018; 8:11286. [PMID: 30050126 PMCID: PMC6062577 DOI: 10.1038/s41598-018-29651-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/14/2018] [Indexed: 11/09/2022] Open
Abstract
Borrelia (B.) bavariensis, B. burgdorferi, B. afzelii, B. garinii, B. spielmanii, and B. mayonii are the causative agents in Lyme disease. Lyme disease spirochetes reside in infected Ixodes ticks and are transferred to mammalian hosts during tick feeding. Once transmitted, spirochetes must overcome the first line of defense of the innate immune system either by binding complement regulators or by terminating the formation of the membrane attack complex (MAC). In B. bavariensis, the proteins BGA66 and BGA71 inhibit complement activation by interacting with the late complement components C7, C8, and C9, as well as with the formed MAC. In this study, we have determined the crystal structure of the potent MAC inhibitor BGA71 at 2.9 Ǻ resolution. The structure revealed a cysteine cross-linked homodimer. Based on the crystal structure of BGA71 and the structure-based sequence alignment with CspA from B. burgdorferi, we have proposed a potential binding site for C7 and C9, both of which are constituents of the formed MAC. Our results shed light on the molecular mechanism of immune evasion developed by the human pathogenic Borrelia species to overcome innate immunity. These results will aid in the understanding of Lyme disease pathogenesis and pave the way for the development of new strategies to prevent Lyme disease.
Collapse
Affiliation(s)
- Kalvis Brangulis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067, Riga, Latvia. .,Riga Stradins University, Department of Human Physiology and Biochemistry, Dzirciema 16, LV-1007, Riga, Latvia.
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067, Riga, Latvia
| | - Ivars Petrovskis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067, Riga, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067, Riga, Latvia
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Paul-Ehrlich-Str. 40, D-60596, Frankfurt am Main, Germany
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067, Riga, Latvia.,University of Latvia, Faculty of Biology, Jelgavas 1, LV-1004, Riga, Latvia
| |
Collapse
|
19
|
Cwiklinski K, Jewhurst H, McVeigh P, Barbour T, Maule AG, Tort J, O'Neill SM, Robinson MW, Donnelly S, Dalton JP. Infection by the Helminth Parasite Fasciola hepatica Requires Rapid Regulation of Metabolic, Virulence, and Invasive Factors to Adjust to Its Mammalian Host. Mol Cell Proteomics 2018; 17:792-809. [PMID: 29321187 PMCID: PMC5880117 DOI: 10.1074/mcp.ra117.000445] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
The parasite Fasciola hepatica infects a broad range of mammals with
impunity. Following ingestion of parasites (metacercariae) by the host, newly
excysted juveniles (NEJ) emerge from their cysts, rapidly penetrate the duodenal wall
and migrate to the liver. Successful infection takes just a few hours and involves
negotiating hurdles presented by host macromolecules, tissues and micro-environments,
as well as the immune system. Here, transcriptome and proteome analysis of ex
vivo F. hepatica metacercariae and NEJ reveal the rapidity and multitude
of metabolic and developmental alterations that take place in order for the parasite
to establish infection. We found that metacercariae despite being encased in a cyst
are metabolically active, and primed for infection. Following excystment, NEJ expend
vital energy stores and rapidly adjust their metabolic pathways to cope with their
new and increasingly anaerobic environment. Temperature increases induce neoblast
proliferation and the remarkable up-regulation of genes associated with growth and
development. Cysteine proteases synthesized by gastrodermal cells are secreted to
facilitate invasion and tissue degradation, and tegumental transporters, such as
aquaporins, are varied to deal with osmotic/salinity changes. Major proteins of the
total NEJ secretome include proteases, protease inhibitors and anti-oxidants, and an
array of immunomodulators that likely disarm host innate immune effector cells. Thus,
the challenges of infection by F. hepatica parasites are met by
rapid metabolic and physiological adjustments that expedite tissue invasion and
immune evasion; these changes facilitate parasite growth, development and maturation.
Our molecular analysis of the critical processes involved in host invasion has
identified key targets for future drug and vaccine strategies directed at preventing
parasite infection.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK;
| | - Heather Jewhurst
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Paul McVeigh
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.,§Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Tara Barbour
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Aaron G Maule
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.,§Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Jose Tort
- ¶Departamento de Genética, Facultad de Medicina, Universidad de la República, Uruguay
| | | | - Mark W Robinson
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.,§Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sheila Donnelly
- **The i3 Institute and School of Medical and Molecular Biosciences, University of Technology, Sydney, Australia
| | - John P Dalton
- From the ‡School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.,§Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
20
|
Siqueira GH, de Souza GO, Heinemann MB, Vasconcellos SA, Nascimento ALTO. The role of Lsa23 to mediate the interaction of Leptospira interrogans with the terminal complement components pathway. Microb Pathog 2017; 112:182-189. [PMID: 28963011 DOI: 10.1016/j.micpath.2017.09.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 11/18/2022]
Abstract
Leptospirosis is a severe worldwide zoonotic disease caused by pathogenic Leptospira spp. It has been demonstrated that pathogenic leptospires are resistant to the bactericidal activity of normal human serum while saprophytic strains are susceptible. Pathogenic strains have the ability to bind soluble complement regulators and these activities are thought to contribute to bacterial immune evasion. One strategy used by some pathogens to evade the complement cascade, which is not well explored, is to block the terminal pathway. We have, thus, examined whether leptospires are able to interact with components of the terminal complement pathway. ELISA screening using anti-leptospires serum has shown that the pathogenic, virulent strain L. interrogans L1-130 can bind to immobilized human C8 (1 μg). However, virulent and saprophyte L. biflexa strains showed the ability to interact with C8 and C9, when these components were employed at physiological concentration (50 μg/mL), but the virulent strain seemed more competent. Lsa23, a putative leptospiral adhesin only present in pathogenic strains, interacts with C8 and C9 in a dose-dependent mode, suggesting that this protein could mediate the binding of virulent Leptospira with these components. To our knowledge, this is the first work reporting the binding of Leptospira to C8 and C9 terminal complement components, suggesting that the inhibition of this pathway is part of the strategy used by leptospires to evade the innate immunity.
Collapse
Affiliation(s)
- Gabriela H Siqueira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 São Paulo, SP, Brazil
| | - Gisele O de Souza
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Marcos B Heinemann
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Silvio A Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 São Paulo, SP, Brazil.
| |
Collapse
|
21
|
Ma S, Zai J, Han Y, Hong Y, Zhang M, Cao X, Han Q, Lu K, Zhao Z, Lin J, Fu Z. Characterization of Schistosoma japonicum tetraspanning orphan receptor and its role in binding to complement C2 and immunoprotection against murine schistosomiasis. Parasit Vectors 2017; 10:288. [PMID: 28599669 PMCID: PMC5466742 DOI: 10.1186/s13071-017-2229-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 06/02/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Schistosomiasis remains an important global public health problem, as millions of people are at risk of acquiring infection. An ideal method for sustainable control of schistosomiasis would be to develop an efficient vaccine. Schistosomes can survive in the host vascular system by immune evasion, regulating the host complement cascade. Schistosoma japonicum tetraspanning orphan receptor (SjTOR) is a complement regulator, which is a tegument membrane protein. To date there is no experimental evidence to explain the function of SjTOR. RESULTS We cloned the first extracellular domain of the SjTOR (SjTOR-ed1) gene and expressed the gene in Escherichia coli. The expression level of SjTOR in different developmental stages of S. japonicum was assessed by quantitative real-time RT-PCR. Western blotting showed that recombinant SjTOR-ed1 (rSjTOR-ed1) could be recognised by schistosome-infected mouse serum. Immunolocalization indicated that the protein was mainly distributed on the tegument of the parasite. Haemolytic assays and ELISA revealed that rSjTOR-ed1 could inhibit complement hemolysis and bind to complement C2. Purified rSjTOR-ed1 emulsified with ISA206 adjuvant could induce a significant reduction of worm burden from 24.51 to 26.51%, and liver egg numbers from 32.92 to 39.62% in two independent trials in mice. CONCLUSIONS The results of this study indicated that rSjTOR-ed1 could inhibit complement hemolysis and bind to complement C2, and it is a potential vaccine candidate that protects against S. japonicum infection.
Collapse
Affiliation(s)
- Shuai Ma
- Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinli Zai
- Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yanhui Han
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan Province, 453003, China
| | - Yang Hong
- Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Min Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan Province, 471023, China
| | - Xiaodan Cao
- Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Qian Han
- Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Ke Lu
- Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Zhixin Zhao
- Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jiaojiao Lin
- Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Zhiqiang Fu
- Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
22
|
Guo K, Sun X, Gu Y, Wang Z, Huang J, Zhu X. Trichinella spiralis paramyosin activates mouse bone marrow-derived dendritic cells and induces regulatory T cells. Parasit Vectors 2016; 9:569. [PMID: 27809931 PMCID: PMC5095993 DOI: 10.1186/s13071-016-1857-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 11/10/2022] Open
Abstract
Background Dendritic cells (DCs) are antigen-presenting cells that regulate T cell responses for many infectious diseases. The tissue-dwelling nematode Trichinella spiralis expresses paramyosin (TsPmy) not only as a structural protein but also as an immunomodulator to alleviate complement attack by binding to some host complement components. Whether TsPmy is involved in other immunomodulatory pathway and how TsPmy interacts with host DCs is still unknown. Methods Mouse bone marrow-derived DCs were incubated with recombinant TsPmy (rTsPmy) for activation. Maturation of DC was determined by the expression of surface markers CD40, CD80, CD86 and MHCII. The rTsPmy-pulsed DCs were co-incubated with T. spiralis-sensitized or naïve mouse CD4+ T cells to observe their activation on T cells and polarizing regulatory T cells using flow cytometry. Cytokines were measured by enzyme-linked immunosorbent assays (ELISA). Results TsPmy was able to activate mouse bone marrow-derived DCs to semi-mature status characterized by expressing surface CD40 and CD86, but not CD80 and MHCII. The semi-mature TsPmy-pulsed DCs were able to stimulate T. spiralis-sensitized CD4+ T cells to proliferate. Incubation of TsPmy-pulsed DCs with naïve CD4+ splenocytes polarized the latter to CD4+CD25+Foxp3+ regulatory T cells. However, mice immunized with rTsPmy only induce the CD4+CD25−Foxp3+ T cell population, associated with high level of IL-10, TGF-β and IL-17A. Conclusions During T. spiralis infection, TsPmy plays an important role in modulating the host immune system by stimulating DCs to differentiate the CD4+ T cells to regulatory T cells, in addition to binding to components of the host complement cascade, as survival strategies to live in host.
Collapse
Affiliation(s)
- Kai Guo
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Research Centre of Microbiome, Capital Medical University, Beijing, 100069, China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Research Centre of Microbiome, Capital Medical University, Beijing, 100069, China
| | - Yuan Gu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Research Centre of Microbiome, Capital Medical University, Beijing, 100069, China
| | - Zixia Wang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Research Centre of Microbiome, Capital Medical University, Beijing, 100069, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Research Centre of Microbiome, Capital Medical University, Beijing, 100069, China
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China. .,Research Centre of Microbiome, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
23
|
Schistosome-Derived Molecules as Modulating Actors of the Immune System and Promising Candidates to Treat Autoimmune and Inflammatory Diseases. J Immunol Res 2016; 2016:5267485. [PMID: 27635405 PMCID: PMC5011209 DOI: 10.1155/2016/5267485] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/29/2016] [Accepted: 07/13/2016] [Indexed: 12/27/2022] Open
Abstract
It is long known that some parasite infections are able to modulate specific pathways of host's metabolism and immune responses. This modulation is not only important in order to understand the host-pathogen interactions and to develop treatments against the parasites themselves but also important in the development of treatments against autoimmune and inflammatory diseases. Throughout the life cycle of schistosomes the mammalian hosts are exposed to several biomolecules that are excreted/secreted from the parasite infective stage, named cercariae, from their tegument, present in adult and larval stages, and finally from their eggs. These molecules can induce the activation and modulation of innate and adaptive responses as well as enabling the evasion of the parasite from host defense mechanisms. Immunomodulatory effects of helminth infections and egg molecules are clear, as well as their ability to downregulate proinflammatory cytokines, upregulate anti-inflammatory cytokines, and drive a Th2 type of immune response. We believe that schistosomes can be used as a model to understand the potential applications of helminths and helminth-derived molecules against autoimmune and inflammatory diseases.
Collapse
|
24
|
Cagliani R, Forni D, Filippi G, Mozzi A, De Gioia L, Pontremoli C, Pozzoli U, Bresolin N, Clerici M, Sironi M. The mammalian complement system as an epitome of host-pathogen genetic conflicts. Mol Ecol 2016; 25:1324-39. [PMID: 26836579 DOI: 10.1111/mec.13558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/29/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022]
Abstract
The complement system is an innate immunity effector mechanism; its action is antagonized by a wide array of pathogens and complement evasion determines the virulence of several infections. We investigated the evolutionary history of the complement system and of bacterial-encoded complement-interacting proteins. Complement components targeted by several pathogens evolved under strong selective pressure in primates, with selection acting on residues at the contact interface with microbial/viral proteins. Positively selected sites in CFH and C4BPA account for the human specificity of gonococcal infection. Bacterial interactors, evolved adaptively as well, with selected sites located at interaction surfaces with primate complement proteins. These results epitomize the expectation under a genetic conflict scenario whereby the host's and the pathogen's genes evolve within binding avoidance-binding seeking dynamics. In silico mutagenesis and protein-protein docking analyses supported this by showing that positively selected sites, both in the host's and in the pathogen's interacting partner, modulate binding.
Collapse
Affiliation(s)
- Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Giulia Filippi
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126, Milan, Italy
| | - Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126, Milan, Italy
| | - Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Nereo Bresolin
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy.,Dino Ferrari Centre, Department of Physiopathology and Transplantation, University of Milan, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20090, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, 20148, Milan, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| |
Collapse
|
25
|
Vedamurthy GV, Sahoo S, Devi IK, Murugavel S, Joshi P. The N-terminal segment of glyceraldehyde-3-phosphate dehydrogenase of Haemonchus contortus interacts with complements C1q and C3. Parasite Immunol 2016; 37:568-78. [PMID: 26332726 DOI: 10.1111/pim.12273] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/26/2015] [Indexed: 11/30/2022]
Abstract
Haemonchus contortus, an economically important blood-sucking parasite of sheep and goats, survives the harsh host gut environment by secreting a number of proteins referred as excretory/secretory (ES) products. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme, is one of the components of H. contortus ES products. The parasite enzyme binds to complement C3 and inhibits its activity. In this study, the C3-binding activity of the parasite GAPDH was mapped to the N-terminal part of the enzyme by generating defined recombinant fragments of the protein. The N-terminal fragment also trapped complement C1q but not C5 and inhibited complement-mediated lysis of sensitized sheep erythrocytes. Competitive binding assay indicates different binding regions for C1q and C3 proteins. GAPDH stimulated proliferation of goat peripheral blood mononuclear cells in vitro and reacted with the sera from H. contortus-infected animals. However, the fragments of GAPDH did not stimulate cell proliferation nor reacted with the infected animal sera. Furthermore, denatured GAPDH failed to react with the infected animal sera in dot blot suggesting conformation-dependent epitope. These results demonstrate an elegant strategy of the parasite to completely shut down complement activation and identify GAPDH as a promising target for future therapeutic intervention.
Collapse
Affiliation(s)
- G V Vedamurthy
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, India
| | - S Sahoo
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, India
| | - I K Devi
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, India
| | - S Murugavel
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, India
| | - P Joshi
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
26
|
Trichinella spiralis Paramyosin Binds Human Complement C1q and Inhibits Classical Complement Activation. PLoS Negl Trop Dis 2015; 9:e0004310. [PMID: 26720603 PMCID: PMC4697845 DOI: 10.1371/journal.pntd.0004310] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/27/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Trichinella spiralis expresses paramyosin (Ts-Pmy) as a defense mechanism. Ts-Pmy is a functional protein with binding activity to human complement C8 and C9 and thus plays a role in evading the attack of the host's immune system. In the present study, the binding activity of Ts-Pmy to human complement C1q and its ability to inhibit classical complement activation were investigated. METHODS AND FINDINGS The binding of recombinant and natural Ts-Pmy to human C1q were determined by ELISA, Far Western blotting and immunoprecipitation, respectively. Binding of recombinant Ts-Pmy (rTs-Pmy) to C1q inhibited C1q binding to IgM and consequently inhibited C3 deposition. The lysis of antibody-sensitized erythrocytes (EAs) elicited by the classical complement pathway was also inhibited in the presence of rTs-Pmy. In addition to inhibiting classical complement activation, rTs-Pmy also suppressed C1q binding to THP-1-derived macrophages, thereby reducing C1q-induced macrophages migration. CONCLUSION Our results suggest that T. spiralis paramyosin plays an important role in immune evasion by interfering with complement activation through binding to C1q in addition to C8 and C9.
Collapse
|
27
|
Hammerschmidt C, Klevenhaus Y, Koenigs A, Hallström T, Fingerle V, Skerka C, Pos KM, Zipfel PF, Wallich R, Kraiczy P. BGA66 and BGA71 facilitate complement resistance of Borrelia bavariensis by inhibiting assembly of the membrane attack complex. Mol Microbiol 2015; 99:407-24. [PMID: 26434356 DOI: 10.1111/mmi.13239] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 01/09/2023]
Abstract
Borrelia (B.) bavariensis exhibits a marked tropism for nervous tissues and frequently causes neurological manifestations in humans. The molecular mechanism by which B. bavariensis overcomes innate immunity, in particular, complement remains elusive. In contrast to other serum-resistant spirochetes, none of the B. bavariensis isolates investigated bound complement regulators of the alternative (AP) and classical pathway (CP) or proteolytically inactivated complement components. Focusing on outer surface proteins BGA66 and BGA71, we demonstrated that both molecules either inhibit AP, CP and terminal pathway (TP) activation, or block activation of the CP and TP respectively. Both molecules bind complement components C7, C8 and C9, and thereby prevent assembly of the terminal complement complex. This inhibitory activity was confirmed by the introduction of the BGA66 and BGA71 encoding genes into a serum-sensitive B. garinii strain. Transformed spirochetes producing either BGA66 or BGA71 overcome complement-mediated killing, thus indicating that both proteins independently facilitate serum resistance of B. bavariensis. The generation of C-terminally truncated proteins as well as a chimeric BGA71 protein lead to the localization of the complement-interacting binding site within the N-terminus. Collectively, our data reveal a novel immune evasion strategy of B. bavariensis that is directed against the activation of the TP.
Collapse
Affiliation(s)
- Claudia Hammerschmidt
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Yvonne Klevenhaus
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Arno Koenigs
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Teresia Hallström
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Volker Fingerle
- National Reference Center for Borrelia, Oberschleißheim, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Klaas Martinus Pos
- Institute of Biochemistry, Goethe University of Frankfurt, Frankfurt, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.,Friedrich Schiller University, Jena, Germany
| | - Reinhard Wallich
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| |
Collapse
|
28
|
Non-immune immunoglobulins shield Schistosoma japonicum from host immunorecognition. Sci Rep 2015; 5:13434. [PMID: 26299686 PMCID: PMC4547136 DOI: 10.1038/srep13434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022] Open
Abstract
Schistosomiasis is a major human parasitic disease with a global impact. Schistosoma japonicum, the most difficult to control, can survive within host veins for decades. Mechanisms of immune evasion by the parasite, including antigenic variation and surface masking, have been implicated but not well defined. In this study, we defined the immunoglobulin-binding proteomes of S. japonicum using human IgG, IgM, and IgE as the molecular bait for affinity purification, followed by protein identification by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Several proteins situated at the tegument of S. japonicum were able to nonselectively bind to the Fc domain of host immunoglobulins, indicating a mechanism for the avoidance of host immune attachment and recognition. The profile of the immunoglobulin-binding proteomes provides further clues for immune evasion mechanisms adopted by S. japonicum.
Collapse
|
29
|
Jiz MA, Wu H, Olveda R, Jarilla B, Kurtis JD. Development of Paramyosin as a Vaccine Candidate for Schistosomiasis. Front Immunol 2015; 6:347. [PMID: 26257728 PMCID: PMC4508564 DOI: 10.3389/fimmu.2015.00347] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/23/2015] [Indexed: 12/24/2022] Open
Abstract
Schistosomiasis, caused by three principal species of diecious trematodes (flatworms), currently afflicts over 250 million individuals, results in an estimated 2–15% chronic disability, and contributes to poor health and economic stagnation in endemic areas. Although schistosomiasis is effectively treated with praziquantel, rapid reinfection with rebound morbidity precludes effective control based on chemotherapy alone and justifies current efforts to develop vaccines for these parasites. Paramyosin (Pmy), an invertebrate muscle-associated protein, has emerged as a promising vaccine candidate for both Schistosoma mansoni and Schistosoma japonicum. Herein, we discuss the discovery of Pmy, its development as a vaccine candidate in rodents and bovines, as well as studies of naturally occurring immune responses to Pmy in prospective, observational human studies. We conclude with a proposed developmental plan to move Pmy toward Phase I clinical trials.
Collapse
Affiliation(s)
- Mario A Jiz
- Department of Health, Research Institute for Tropical Medicine , Manila , Philippines
| | - Haiwei Wu
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School , Providence, RI , USA ; Department of Pediatrics, Rhode Island Hospital, Brown University Medical School , Providence, RI , USA
| | - Remigio Olveda
- Department of Health, Research Institute for Tropical Medicine , Manila , Philippines
| | - Blanca Jarilla
- Department of Health, Research Institute for Tropical Medicine , Manila , Philippines
| | - Jonathan D Kurtis
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School , Providence, RI , USA ; Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Brown University Medical School , Providence, RI , USA
| |
Collapse
|
30
|
Kang JM, Ju HL, Lee J, Kim TI, Cho SH, Kim TS, Sohn WM, Na BK. Mapping of the putative epitope domain of Clonorchis sinensis paramyosin (CsPmy) recognized by CsPmy-specific immunoglobulin G in sera of human clonorchiasis. Mol Biochem Parasitol 2015; 201:66-71. [DOI: 10.1016/j.molbiopara.2015.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 06/13/2015] [Accepted: 06/15/2015] [Indexed: 01/03/2023]
|
31
|
Antony JS, Ojurongbe O, Kremsner PG, Velavan TP. Lectin complement protein Collectin 11 (CL-K1) and susceptibility to urinary schistosomiasis. PLoS Negl Trop Dis 2015; 9:e0003647. [PMID: 25807310 PMCID: PMC4373859 DOI: 10.1371/journal.pntd.0003647] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/25/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Urinary Schistosomiasis is a neglected tropical disease endemic in many sub Saharan -African countries. Collectin Kidney 1 (CL-K1, encoded by COLEC11 on chromosome 2p25.3), a member of the vertebrate C-type lectin super family, has recently been identified as pattern-recognition molecule (PRR) of the lectin complement pathway. CL-K1 is preferentially expressed in the kidneys, but also in other organs and it is considered to play a role in host defense to some infectious agents. Schistosome teguments are fucosylated and CL-K1 has, through its collagen-like domain, a high binding affinity to fucose. METHODOLOGY/PRINCIPAL FINDINGS We utilized a Nigerian study group consisting of 167 Schistosoma haematobium infected individuals and 186 matched healthy subjects, and investigated the contribution of CL-K1 deficiency and of COLEC11 polymorphisms to infection phenotype. Higher CL-K1 serum levels were associated with decreased risk of schistosome infection (P corr = 0.0004). CL-K1 serum levels were differentially distributed between the COLEC11 genotypes and haplotypes observed. The non-synonymous variant p.R216H was associated with the occurrence of schistosomiasis (OR = 0.44, 95%CI = 0.22-0.72, P corr = 0.0004). The reconstructed COLEC11*TCCA haplotypes were associated with higher CL-K1 serum levels (P = 0.002) and with decreased schistosomiasis (OR = 0.38, 95%CI = 0.23-0.63, P corr = 0.0001). CONCLUSIONS In agreement with findings from our earlier published study, our findings support the observation that CL-K1 and their functional variants may be host factors associated with protection in schistosomiasis and may be a useful marker for further investigations.
Collapse
Affiliation(s)
- Justin S. Antony
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Olusola Ojurongbe
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Peter G. Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Fondation Congolaise pour la Recherche Medicale, Brazzaville, Republic of Congo
| |
Collapse
|
32
|
Blom AM, Bergmann S, Fulde M, Riesbeck K, Agarwal V. Streptococcus pneumoniae phosphoglycerate kinase is a novel complement inhibitor affecting the membrane attack complex formation. J Biol Chem 2014; 289:32499-511. [PMID: 25281746 DOI: 10.1074/jbc.m114.610212] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gram-positive bacterium Streptococcus pneumoniae is a major human pathogen that causes infections ranging from acute otitis media to life-threatening invasive disease. Pneumococci have evolved several strategies to circumvent the host immune response, in particular the complement attack. The pneumococcal glycolytic enzyme phosphoglycerate kinase (PGK) is both secreted and bound to the bacterial surface and simultaneously binds plasminogen and its tissue plasminogen activator tPA. In the present study we demonstrate that PGK has an additional role in modulating the complement attack. PGK interacted with the membrane attack complex (MAC) components C5, C7, and C9, thereby blocking the assembly and membrane insertion of MAC resulting in significant inhibition of the hemolytic activity of human serum. Recombinant PGK interacted in a dose-dependent manner with these terminal pathway proteins, and the interactions were ionic in nature. In addition, PGK inhibited C9 polymerization both in the fluid phase and on the surface of sheep erythrocytes. Interestingly, PGK bound several MAC proteins simultaneously. Although C5 and C7 had partially overlapping binding sites on PGK, C9 did not compete with either one for PGK binding. Moreover, PGK significantly inhibited MAC deposition via both the classical and alternative pathway at the pneumococcal surface. Additionally, upon activation plasmin(ogen) bound to PGK cleaved the central complement protein C3b thereby further modifying the complement attack. In conclusion, our data demonstrate for the first time to our knowledge a novel pneumococcal inhibitor of the terminal complement cascade aiding complement evasion by this important pathogen.
Collapse
Affiliation(s)
- Anna M Blom
- From the Section of Medical Protein Chemistry, Department of Laboratory Medicine Malmö, Lund University, 20502 Malmö, Sweden,
| | - Simone Bergmann
- Institute of Microbiology, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Marcus Fulde
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany, and
| | - Kristian Riesbeck
- Section of Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, 20502 Malmö, Sweden
| | - Vaibhav Agarwal
- From the Section of Medical Protein Chemistry, Department of Laboratory Medicine Malmö, Lund University, 20502 Malmö, Sweden
| |
Collapse
|
33
|
Da'dara AA, Krautz-Peterson G. New insights into the reaction of Schistosoma mansoni cercaria to the human complement system. Parasitol Res 2014; 113:3685-96. [PMID: 25030119 PMCID: PMC4176527 DOI: 10.1007/s00436-014-4033-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/04/2014] [Indexed: 11/28/2022]
Abstract
Schistosomes are parasitic worms that have a complex life cycle. The larval stage cercaria, infectious to mammals, is described as highly susceptible to the complement system, largely due to the glycocalyx that covers the cercarial membrane. In an attempt to have a more complete understanding of cercaria reaction to the complement system, three different approaches were used. Live cercariae exposed to normal human serum (NHS) as source of complement factors were assessed for (i) membrane attack complex (MAC) deposition on the parasite surface, (ii) cercaria survival rate by Hoechst staining of parasite DNA, and (iii) transformation into schistosomula by detection of the glucose transporter protein 4 (SGTP4), a marker for new tegument formation. We found that 82-95% of cercariae directly exposed to NHS for 18 h were viable and retained their ability to shed the glycocalyx, suggesting minimal tegument damage. In contrast, inhibition of glycocalyx shedding using eserine caused significant MAC binding and parasite death. Culturing complement-exposed cercariae to measure long-term survival showed that more parasites died over time, reaching a survival rate of 18-31% by day 6 in culture. The reason for this slow death is unknown, but the surviving parasites were able to form a new tegument as shown by detection of SGTP4 on the parasite surface. Furthermore, we found that complement activation significantly damaged the acetabular gland ducts and lysed secretory vesicles released by transforming cercariae. These findings should contribute for future in vivo studies of the effects of the complement system in skin migrating cercariae.
Collapse
Affiliation(s)
- Akram A Da'dara
- Department of Infectious Diseases and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Rd, North Grafton, MA, 01536, USA
| | | |
Collapse
|
34
|
Gobert GN, You H, McManus DP. Gaining biological perspectives from schistosome genomes. Mol Biochem Parasitol 2014; 196:21-8. [PMID: 25076011 DOI: 10.1016/j.molbiopara.2014.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 02/06/2023]
Abstract
Characterization of the genomic basis underlying schistosome biology is an important strategy for the development of future treatments and interventions. Genomic sequence is now available for the three major clinically relevant schistosome species, Schistosoma mansoni, S. japonicum and S. haematobium, and this information represents an invaluable resource for the future control of human schistosomiasis. The identification of a biologically important, but distinct from the host, schistosome gene product is the ultimate goal for many research groups. While the initial elucidation of the genome of an organism is critical for most biological research, continued improvement or curation of the genome construction should be an ongoing priority. In this review we will discuss prominent recent findings utilizing a systems approach to schistosome biology, as well as the increased use of interference RNA (RNAi). Both of these research strategies are aiming to place parasite genes into a more meaningful biological perspective.
Collapse
Affiliation(s)
- Geoffrey N Gobert
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Hong You
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
35
|
Monoclonal antibody targeting complement C9 binding domain of Trichinella spiralis paramyosin impairs the viability of Trichinella infective larvae in the presence of complement. Parasit Vectors 2014; 7:313. [PMID: 24996670 PMCID: PMC4101707 DOI: 10.1186/1756-3305-7-313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/01/2014] [Indexed: 01/24/2023] Open
Abstract
Background Trichinella spiralis expresses paramyosin (Ts-Pmy) not only as a structural protein but also as an immunomodulator that inhibits host complement as a survival strategy. Previous studies demonstrated that Ts-Pmy bound to complement components C8 and C9 and inhibited the polymerization of C9 during the formation of the membrane attack complex (MAC). The C9 binding domain of Ts-Pmy was identified within 14 amino acid residues at the C-terminus of Ts-Pmy. The production of a monoclonal antibody that specifically targets the C9 binding site is necessary for further studies of Ts-Pmy function and may be used as a therapeutic agent for T. spiralis infection. Methods In this study, a monoclonal antibody against the complement C9 binding domain of Ts-Pmy (mAb 9G3) was produced using hybridoma technology. The binding activity of the mAb produced for recombinant or native Ts-Pmy and the blockade of Ts-Pmy binding to C9 by the mAb were assessed by Western blot analysis. The effect of the mAb on the viability of T. spiralis was observed by co-incubation of T. spiralis with mAb 9G3 in the presence of complement in vitro and by passive transfer of the mAb into naive mice following T. spiralis larval challenge. Results mAb 9G3 was successfully produced against the C9 binding domain of Ts-Pmy and bound specifically not only to recombinant Ts-Pmy but also to native Ts-Pmy expressed in different stages of T. spiralis, including adult worms, newborn larvae and muscle larvae. The binding of mAb 9G3 to Ts-Pmy efficiently blocked the binding of Ts-Pmy to human complement C9, resulting in a significant increase in the complement-mediated killing of newborn larvae in vitro and reduced infectivity of T. spiralis larvae in mice passively transferred with the mAb. Conclusions mAb 9G3 is a specific antibody that binds to the C9 binding domain of Ts-Pmy and interferes with Ts-Pmy’s complement-binding activity. Therefore, this mAb is a protective antibody that has potential as a preventive and therapeutic agent for T. spiralis infection.
Collapse
|
36
|
Sahoo S, Murugavel S, Devi IK, Vedamurthy GV, Gupta SC, Singh BP, Joshi P. Glyceraldehyde-3-phosphate dehydrogenase of the parasitic nematode Haemonchus contortus binds to complement C3 and inhibits its activity. Parasite Immunol 2014; 35:457-67. [PMID: 23927077 DOI: 10.1111/pim.12058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 07/31/2013] [Indexed: 11/28/2022]
Abstract
Haemonchus contortus is an economically important gastrointestinal parasite that infects primarily sheep and goats. To survive inside the host, the parasite must overcome the host immune response. In this study, we have identified and characterized a complement-C3-binding protein (H.c-C3BP) from this parasite employing biochemical and molecular biology tools. Initially, a truncated form of the protein was isolated from the excretory-secretory products of the parasite using C3-Sepharose column that facilitated its identification by mass spectroscopy. Subsequently, the parent molecule was generated in E. coli, and sequence analysis confirmed it as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). GAPDH reacted with the antiserum raised against the truncated protein, and the truncated protein reacted with anti-GAPDH antiserum. The protein inhibited complement function as measured by haemolytic assay and membrane attack complex (MAC) formation. Sera from H. contortus-infected animals reacted with GAPDH as well as the truncated form of the protein, which further lend support to protein secretion. Thus, the C3-binding property of H. contortus GAPDH is a new function, and it represents a new entity of complement-binding protein. Identification and characterization of H.c-C3BP should facilitate development of new therapeutics considering a key role of this protein in immune modulation.
Collapse
Affiliation(s)
- S Sahoo
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, UP, India
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhao X, Hao Y, Yang J, Gu Y, Zhu X. Mapping of the complement C9 binding domain on Trichinella spiralis paramyosin. Parasit Vectors 2014; 7:80. [PMID: 24564979 PMCID: PMC3937825 DOI: 10.1186/1756-3305-7-80] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/16/2014] [Indexed: 12/20/2022] Open
Abstract
Background Trichinellosis is an important foodborne zoonosis that is distributed worldwide. Trichinella spiralis may evade host complement-mediated attack by expressing complement inhibitory proteins, such as paramyosin (Pmy). Previous studies have shown that Trichinella spiralis paramyosin (Ts-Pmy) is able to bind to the human complement component C9 to inhibit the complement activation and protect the parasite from complement-mediated attack. Further determination of the complement-binding domain on Ts-pmy will enable us to better understand the Ts-Pmy’s biofunction in the immune evasion and provide feasible approach to develop epitope-based subunit vaccine against trichinellosis. Methods The complement C9 binding region on Ts-Pmy was determined by expression of overlapped fragments of Ts-Pmy and their binding activities to C9. The exact binding site was further narrowed-down to a 14-amino acid peptide at C-terminus using synthesized peptides with different size of amino acid sequence. The C9 complement-binding of the 14-amino acid peptide and its interference in the C9 polymerization and the complement-mediated lysis of rabbit erythrocytes was investigated. Results The protein interaction between human C9 and native Ts-Pmy was further confirmed by immunoprecipitation with T. spiralis lysates. The fragmental expression and C9 binding assays identified that the binding region of Ts-Pmy to C9 is located within 831–885 of Ts-Pmy C-terminus. The exact binding site on Ts-Pmy to C9 was narrowed down to 14 amino acid residues (866Val-879Met) by using different sizes of synthesized peptides. In the presence of the synthesized 14-amino acid peptide, human C9 polymerization and the hemolytic activity of the human complement was inhibited. Conclusions Our results revealed the precise molecular basis for T. spiralis to produce Ts-Pmy as an immunomodulator to evade the attack of the host complement system as a survival mechanism.
Collapse
Affiliation(s)
| | | | | | | | - Xinping Zhu
- Department of Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
38
|
Karmakar S, Zhang W, Ahmad G, Alam MU, Winn R, Torben W, Le L, Tillery KA, Siddiqui AA. Complement plays a minimal role in Sm-p80-mediated protection against Schistosoma mansoni. Hum Vaccin Immunother 2013; 10:640-7. [PMID: 24374377 DOI: 10.4161/hv.27576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sm-p80, the large subunit of Schistosoma masoni calpain, is a leading antigen candidate for a schistosome vaccine. Prophylactic and antifecundity efficacy of Sm-p80 has been tested using a variety of vaccine approaches. However, the mechanism of Sm-p80-mediated killing is still unknown. In this study, potential role of complement in Sm-p80-mediated protection was studied using both in vitro (cobra venom factor inhibition) and in vivo using mice deficient in C3 (C3 -/-; B6.129S4-C3tm1Crr/J). In the absence of C3, Sm-p80-based vaccine was able to provide significant reduction in adult worm burden following challenge with schistosome cercariae in mice suggesting the effector functions of complement may be limited in this vaccine-induced protection.
Collapse
Affiliation(s)
- Souvik Karmakar
- Center for Tropical Medicine and Infectious Diseases; Texas Tech University Health Sciences Center; Lubbock, TX USA; Department of Immunology and Molecular Microbiology; Texas Tech University Health Sciences Center; Lubbock, TX USA
| | - Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases; Texas Tech University Health Sciences Center; Lubbock, TX USA; Department of Immunology and Molecular Microbiology; Texas Tech University Health Sciences Center; Lubbock, TX USA
| | - Gul Ahmad
- Department of Natural Sciences; School of Arts & Sciences; Peru State College; Peru, NE USA
| | - Mayeen U Alam
- Center for Tropical Medicine and Infectious Diseases; Texas Tech University Health Sciences Center; Lubbock, TX USA; Department of Immunology and Molecular Microbiology; Texas Tech University Health Sciences Center; Lubbock, TX USA
| | - Richard Winn
- Center for Tropical Medicine and Infectious Diseases; Texas Tech University Health Sciences Center; Lubbock, TX USA; Department of Immunology and Molecular Microbiology; Texas Tech University Health Sciences Center; Lubbock, TX USA
| | | | - Loc Le
- Center for Tropical Medicine and Infectious Diseases; Texas Tech University Health Sciences Center; Lubbock, TX USA; Department of Immunology and Molecular Microbiology; Texas Tech University Health Sciences Center; Lubbock, TX USA
| | - Kory A Tillery
- Center for Tropical Medicine and Infectious Diseases; Texas Tech University Health Sciences Center; Lubbock, TX USA; Department of Immunology and Molecular Microbiology; Texas Tech University Health Sciences Center; Lubbock, TX USA
| | - Afzal A Siddiqui
- Center for Tropical Medicine and Infectious Diseases; Texas Tech University Health Sciences Center; Lubbock, TX USA; Department of Immunology and Molecular Microbiology; Texas Tech University Health Sciences Center; Lubbock, TX USA; Department of Pathology; Texas Tech University Health Sciences Center; Lubbock, TX USA
| |
Collapse
|
39
|
Zipfel PF, Hallström T, Riesbeck K. Human complement control and complement evasion by pathogenic microbes – Tipping the balance. Mol Immunol 2013; 56:152-60. [DOI: 10.1016/j.molimm.2013.05.222] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Versatile roles of CspA orthologs in complement inactivation of serum-resistant Lyme disease spirochetes. Infect Immun 2013; 82:380-92. [PMID: 24191298 DOI: 10.1128/iai.01094-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
CspA of the Lyme disease spirochete Borrelia burgdorferi represents a key molecule in immune evasion, protecting borrelial cells from complement-mediated killing. As previous studies focused almost exclusively on CspA of B. burgdorferi, here we investigate the different binding capacities of CspA orthologs of Borrelia burgdorferi, B. afzelii, and B. spielmanii for complement regulator factor H and plasminogen and their ability to inhibit complement activation by either binding these host-derived plasma proteins or independently by direct interaction with components involved in formation of the lethal, pore-like terminal complement complex. To further examine their function in serum resistance in vivo, a serum-sensitive B. garinii strain was used to generate spirochetes, ectopically producing functional CspA orthologs. Irrespective of their species origin, all three CspA orthologs impart resistance to complement-mediated killing when produced in a serum-sensitive B. garinii surrogate strain. To analyze the inhibitory effect on complement activation and to assess the potential to inactivate C3b by binding of factor H and plasminogen, recombinant CspA orthologs were also investigated. All three CspA orthologs simultaneously bound factor H and plasminogen but differed in regard to their capacity to inactivate C3b via bound plasmin(ogen) and inhibit formation of the terminal complement complex. CspA of B. afzelii binds plasmin(ogen) and inhibits the terminal complement complex more efficiently than CspA of B. burgdorferi and B. spielmanii. Taken together, CspA orthologs of serum-resistant Lyme disease spirochetes act as multifunctional evasion molecules that inhibit complement on two central activation levels, C3b generation and assembly of the terminal complement complex.
Collapse
|
41
|
On the three-finger protein domain fold and CD59-like proteins in Schistosoma mansoni. PLoS Negl Trop Dis 2013; 7:e2482. [PMID: 24205416 PMCID: PMC3812095 DOI: 10.1371/journal.pntd.0002482] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/02/2013] [Indexed: 11/28/2022] Open
Abstract
Background It is believed that schistosomes evade complement-mediated killing by expressing regulatory proteins on their surface. Recently, six homologues of human CD59, an important inhibitor of the complement system membrane attack complex, were identified in the schistosome genome. Therefore, it is important to investigate whether these molecules could act as CD59-like complement inhibitors in schistosomes as part of an immune evasion strategy. Methodology/Principal Findings Herein, we describe the molecular characterization of seven putative SmCD59-like genes and attempt to address the putative biological function of two isoforms. Superimposition analysis of the 3D structure of hCD59 and schistosome sequences revealed that they contain the three-fingered protein domain (TFPD). However, the conserved amino acid residues involved in complement recognition in mammals could not be identified. Real-time RT-PCR and Western blot analysis determined that most of these genes are up-regulated in the transition from free-living cercaria to adult worm stage. Immunolocalization experiments and tegument preparations confirm that at least some of the SmCD59-like proteins are surface-localized; however, significant expression was also detected in internal tissues of adult worms. Finally, the involvement of two SmCD59 proteins in complement inhibition was evaluated by three different approaches: (i) a hemolytic assay using recombinant soluble forms expressed in Pichia pastoris and E. coli; (ii) complement-resistance of CHO cells expressing the respective membrane-anchored proteins; and (iii) the complement killing of schistosomula after gene suppression by RNAi. Our data indicated that these proteins are not involved in the regulation of complement activation. Conclusions Our results suggest that this group of proteins belongs to the TFPD superfamily. Their expression is associated to intra-host stages, present in the tegument surface, and also in intra-parasite tissues. Three distinct approaches using SmCD59 proteins to inhibit complement strongly suggested that these proteins are not complement inhibitors and their function in schistosomes remains to be determined. Schistosomes are parasites that reside for many years in the blood stream, demanding efficient mechanisms of evading immune response effectors such as complement deposition. A group of genes similar to human CD59, an important complement inhibitor in mammals, were identified in the schistosome genome. Computer predictions of protein structure indicated substantial similarity of the schistosome proteins and the mammalian CD59 family of proteins, which due to their three-finger-shaped spatial conformation are members of the Three-Finger Protein Domain fold superfamily (TFPD). Members of this family of schistosome proteins were also shown to be expressed predominantly during the mammalian stages when worms are exposed to complement and found to be present at the host-interactive surface of schistosomes. Three different methods were employed to test the possible involvement of these proteins in complement inhibition. Our results strongly suggest that these proteins are not involved in the inhibition of complement and that further studies are needed to establish their functional role(s) in schistosomes.
Collapse
|
42
|
Abstract
UNLABELLED In order to survive and persist in an immunocompetent human host, Borrelia burgdorferi controls the human immune attack and blocks the damaging effects of the activated complement system. These Gram-negative spirochetes use CspA (CRASP-1) and four additional immune evasion proteins to bind combinations of human plasma regulators, including factor H, factor H-like protein 1 (FHL-1), complement factor H-related protein 1 (CFHR1), CFHR2, CFHR5, and plasminogen. As many microbial immune evasion proteins have multiple functions, we hypothesized that CspA has additional roles in complement or immune control. Here, we identify CspA as a terminal complement inhibitor. Borrelial CspA binds the human terminal complement components C7 and C9 and blocks assembly and membrane insertion of the terminal complement complex (TCC). CspA inhibits TCC assembly at the level of C7, as revealed by hemolytic assays, and inhibits polymerization of C9. CspA, when ectopically expressed on the surface of serum-sensitive Borrelia garinii, blocks TCC assembly on the level of C7 and induces serum resistance in the transformed bacteria. This CspA-mediated serum resistance and terminal complement pathway inhibition allow B. burgdorferi to survive in the hostile environment of human plasma. IMPORTANCE The present study defines a new mechanism by which the pathogenic bacterium Borrelia burgdorferi controls the terminal complement pathway of the human host to survive in human serum. The borrelial CspA binds to terminal pathway proteins C7 and C9 and inhibits the terminal complement pathway at the step of C7 and thereby inhibits terminal complement complex (TCC) assembly and membrane insertion. CspA blocks TCC assembly and insertion when expressed at the bacterial surface. CspA is the first TCC inhibitor cloned and functionally characterized from a Gram-negative bacterium. This identification of a bacterial TCC inhibitor of pathogen origin expands our knowledge of complement evasion of pathogenic bacteria and shows that pathogenic bacteria target the terminal pathway of complement. Thus, CspA as a central microbial virulence factor can represent an interesting biomarker and a target to develop new therapeutics and vaccines against borreliae.
Collapse
|
43
|
Hu Y, Zhang J, Yang S, Wang H, Zeng H, Zhang T, Liu J. Screening and molecular cloning of a protective antigen from the midgut of Haemaphysalis longicornis. THE KOREAN JOURNAL OF PARASITOLOGY 2013; 51:327-34. [PMID: 23864744 PMCID: PMC3712107 DOI: 10.3347/kjp.2013.51.3.327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 11/23/2022]
Abstract
Vaccination is considered a promising alternative for controlling tick infestations. Haemaphysalis longicornis midgut proteins separated by SDS-PAGE and transferred to polyvinylidene difluoride (PVDF) membrane were screened for protective value against bites. The western blot demonstrated the immunogenicity of 92 kDa protein (P92). The analysis of the P92 amino acid sequence by LC-MS/MS indicated that it was a H. longicornis paramyosin (Hl-Pmy). The full lenghth cDNA of Hl-Pmy was obtained by rapid amplification of cDNA ends (RACE) which consisted of 2,783 bp with a 161 bp 3' untranslated region. Sequence alignment of tick paramyosin (Pmy) showed that Hl-Pmy shared a high level of conservation among ticks. Comparison with the protective epitope sequence of other invertebrate Pmy, it was calculated that the protective epitope of Hl-Pmy was a peptide (LEEAEGSSETVVEMNKKRDTE) named LEE, which was close to the N-terminal of Hl-Pmy protein. The secondary structure analysis suggested that LEE had non-helical segments within an α-helical structure. These results provide the basis for developing a vaccine against biting H. longicornis ticks.
Collapse
Affiliation(s)
- Yonghong Hu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | | | | | | | | | | | | |
Collapse
|
44
|
The emerging role of complement lectin pathway in trypanosomatids: molecular bases in activation, genetic deficiencies, susceptibility to infection, and complement system-based therapeutics. ScientificWorldJournal 2013; 2013:675898. [PMID: 23533355 PMCID: PMC3595680 DOI: 10.1155/2013/675898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/01/2013] [Indexed: 12/21/2022] Open
Abstract
The innate immune system is evolutionary and ancient and is the pivotal line of the host defense system to protect against invading pathogens and abnormal self-derived components. Cellular and molecular components are involved in recognition and effector mechanisms for a successful innate immune response. The complement lectin pathway (CLP) was discovered in 1990. These new components at the complement world are very efficient. Mannan-binding lectin (MBL) and ficolin not only recognize many molecular patterns of pathogens rapidly to activate complement but also display several strategies to evade innate immunity. Many studies have shown a relation between the deficit of complement factors and susceptibility to infection. The recently discovered CLP was shown to be important in host defense against protozoan microbes. Although the recognition of pathogen-associated molecular patterns by MBL and Ficolins reveal efficient complement activations, an increase in deficiency of complement factors and diversity of parasite strategies of immune evasion demonstrate the unsuccessful effort to control the infection. In the present paper, we will discuss basic aspects of complement activation, the structure of the lectin pathway components, genetic deficiency of complement factors, and new therapeutic opportunities to target the complement system to control infection.
Collapse
|
45
|
References. Parasitology 2012. [DOI: 10.1002/9781119968986.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Wang X, Chen W, Lv X, Tian Y, Men J, Zhang X, Lei H, Zhou C, Lu F, Liang C, Hu X, Xu J, Wu Z, Li X, Yu X. Identification and characterization of paramyosin from cyst wall of metacercariae implicated protective efficacy against Clonorchis sinensis infection. PLoS One 2012; 7:e33703. [PMID: 22470461 PMCID: PMC3312334 DOI: 10.1371/journal.pone.0033703] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/20/2012] [Indexed: 12/14/2022] Open
Abstract
Human clonorchiasis has been increasingly prevalent in recent years and results in a threat to the public health in epidemic regions, motivating current strategies of vaccines to combat Clonorchis sinensis (C. sinensis). In this study, we identified C. sinensis paramyosin (CsPmy) from the cyst wall proteins of metacercariae by proteomic approaches and characterized the expressed recombinant pET-26b-CsPmy protein (101 kDa). Bioinformatics analysis indicated that full-length sequences of paramyosin are conserved in helminthes and numerous B-cell/T-cell epitopes were predicted in amino acid sequence of CsPmy. Western blot analysis showed that CsPmy was expressed at four life stages of C. sinensis, both cyst wall proteins and soluble tegumental components could be probed by anti-CsPmy serum. Moreover, immunolocalization results revealed that CsPmy was specifically localized at cyst wall and excretory bladder of metacercaria, as well as the tegument, oral sucker and vitellarium of adult worm. Both immunoblot and immunolocalization results demonstrated that CsPmy was highly expressed at the stage of adult worm, metacercariae and cercaria, which could be supported by real-time PCR analysis. Both recombinant protein and nucleic acid of CsPmy showed strong immunogenicity in rats and induced combined Th1/Th2 immune responses, which were reflected by continuous high level of antibody titers and increased level of IgG1/IgG2a subtypes in serum. In vaccine trials, comparing with control groups, both CsPmy protein and DNA vaccine exhibited protective effect with significant worm reduction rate of 54.3% (p<0.05) and 36.1% (p<0.05), respectively. In consistence with immune responses in sera, elevated level of cytokines IFN-γ and IL-4 in splenocytes suggested that CsPmy could induce combined cellular immunity and humoral immunity in host. Taken together, CsPmy could be a promising vaccine candidate in the prevention of C. sinensis regarding its high immunogenicity and surface localization.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wenjun Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoli Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yanli Tian
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jingtao Men
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xifeng Zhang
- Department of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, People's Republic of China
| | - Huali Lei
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Chenhui Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Chi Liang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xuchu Hu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jin Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- * E-mail: (XL); (XY)
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- * E-mail: (XL); (XY)
| |
Collapse
|
47
|
Liao Q, Yuan X, Xiao H, Liu C, Lv Z, Zhao Y, Wu Z. Identifying Schistosoma japonicum excretory/secretory proteins and their interactions with host immune system. PLoS One 2011; 6:e23786. [PMID: 21887319 PMCID: PMC3161075 DOI: 10.1371/journal.pone.0023786] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/25/2011] [Indexed: 12/22/2022] Open
Abstract
Schistosoma japonicum is a major infectious agent of schistosomiasis. It has been reported that large number of proteins excreted and secreted by S. japonicum during its life cycle are important for its infection and survival in definitive hosts. These proteins can be used as ideal candidates for vaccines or drug targets. In this work, we analyzed the protein sequences of S. japonicum and found that compared with other proteins in S. japonicum, excretory/secretory (ES) proteins are generally longer, more likely to be stable and enzyme, more likely to contain immune-related binding peptides and more likely to be involved in regulation and metabolism processes. Based on the sequence difference between ES and non-ES proteins, we trained a support vector machine (SVM) with much higher accuracy than existing approaches. Using this SVM, we identified 191 new ES proteins in S. japonicum, and further predicted 7 potential interactions between these ES proteins and human immune proteins. Our results are useful to understand the pathogenesis of schistosomiasis and can serve as a new resource for vaccine or drug targets discovery for anti-schistosome.
Collapse
Affiliation(s)
- Qi Liao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
- Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
- Bioinformatics Research Group, Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiongying Yuan
- Bioinformatics Research Group, Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hui Xiao
- Bioinformatics Research Group, Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Changning Liu
- Bioinformatics Research Group, Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhiyue Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
- Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yi Zhao
- Bioinformatics Research Group, Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail: (YZ); (ZW)
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
- Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
- * E-mail: (YZ); (ZW)
| |
Collapse
|
48
|
Trichinella spiralis paramyosin binds to C8 and C9 and protects the tissue-dwelling nematode from being attacked by host complement. PLoS Negl Trop Dis 2011; 5:e1225. [PMID: 21750743 PMCID: PMC3130009 DOI: 10.1371/journal.pntd.0001225] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/20/2011] [Indexed: 01/28/2023] Open
Abstract
Background Paramyosin is a thick myofibrillar protein found exclusively in invertebrates. Evidence suggested that paramyosin from helminths serves not only as a structural protein but also as an immunomodulatory agent. We previously reported that recombinant Trichinella spiralis paramyosin (Ts-Pmy) elicited a partial protective immunity in mice. In this study, the ability of Ts-Pmy to bind host complement components and protect against host complement attack was investigated. Methods and Findings In this study, the transcriptional and protein expression levels of Ts-Pmy were determined in T. spiralis newborn larva (NBL), muscle larva (ML) and adult worm developmental stages by RT-PCR and western blot analysis. Expression of Ts-Pmy at the outer membrane was observed in NBL and adult worms using immunogold electron microscopy and immunofluorescence staining. Functional analysis revealed that recombinant Ts-Pmy(rTs-Pmy) strongly bound to complement components C8 and C9 and inhibited the polymerization of C9 during the formation of the membrane attack complex (MAC). rTs-Pmy also inhibited the lysis of rabbit erythrocytes (ER) elicited by an alternative pathway-activated complement from guinea pig serum. Inhibition of native Ts-Pmy on the surface of NBL with a specific antiserum reduced larvae viability when under the attack of complement in vitro. In vivo passive transfer of anti-Ts-Pmy antiserum and complement-treated larvae into mice also significantly reduced the number of larvae that developed to ML. Conclusion These studies suggest that the outer membrane form of T. spiralis paramyosin plays an important role in the evasion of the host complement attack. Trichinellosis is a serious food borne parasitic disease caused by the consumption of meat contaminated with the infective larvae of Trichinella spiralis. The ability of the tissue-dwelling parasite to evade the host complement attack is essential for its survival and for establishing infection in the host. This study describes the expression of paramyosin, a muscular protein in invertebrates, on the surface of Trichinella spiralis and its role in the defense against the host complement attack as a survival strategy. Using a specific antiserum, expression of Trichinella spiralis paramyosin was detected on the outer membrane of the adult worms and newborn larvae. Functional analysis revealed that recombinant Trichinella spiralis paramyosin protein strongly bound human complement components C8 and C9 and inhibited the formation of the complement membrane attack complex. Neutralization with a specific antiserum greatly impaired the protective effect of paramyosin on the viability and infectivity of Trichinella spiralis newborn larva when under attack by complement. These studies suggest that the outer membrane form of Trichinella spiralis paramyosin plays an important role in the evasion of the host complement attack and is therefore a good target for vaccine and pharmaceutical development.
Collapse
|
49
|
Enzymatic shaving of the tegument surface of live schistosomes for proteomic analysis: a rational approach to select vaccine candidates. PLoS Negl Trop Dis 2011; 5:e993. [PMID: 21468311 PMCID: PMC3066142 DOI: 10.1371/journal.pntd.0000993] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 03/02/2011] [Indexed: 11/19/2022] Open
Abstract
Background The membrane-associated and membrane-spanning constituents of the Schistosoma mansoni tegument surface, the parasite's principal interface with the host bloodstream, have recently been characterized using proteomic techniques. Biotinylation of live worms using membrane-impermeant probes revealed that only a small subset of the proteins was accessible to the reagents. Their position within the multilayered architecture of the surface has not been ascertained. Methodology/Principal Findings An enzymatic shaving approach on live worms has now been used to release the most accessible components, for analysis by MS/MS. Treatment with trypsin, or phosphatidylinositol-specific phospholipase C (PiPLC), only minimally impaired membrane integrity. PiPLC-enriched proteins were distinguished from those released in parasite vomitus or by handling damage, using isobaric tagging. Trypsin released five membrane proteins, Sm200, Sm25 and three annexins, plus host CD44 and the complement factors C3 and C4. Nutrient transporters and ion channels were absent from the trypsin fraction, suggesting a deeper location in the surface complex; surprisingly, two BAR-domain containing proteins were released. Seven parasite and two host proteins were enriched by PiPLC treatment, the vaccine candidate Sm29 being the most prominent along with two orthologues of human CD59, potentially inhibitors of complement fixation. The enzymes carbonic anhydrase and APD-ribosyl cyclase were also enriched, plus Sm200 and alkaline phosphatase. Host GPI-anchored proteins CD48 and CD90, suggest ‘surface painting’ during worm peregrination in the portal system. Conclusions/Significance Our findings suggest that the membranocalyx secreted over the tegument surface is not the inert barrier previously proposed, some tegument proteins being externally accessible to enzymes and thus potentially located within it. Furthermore, the detection of C3 and C4 indicates that the complement cascade is initiated, while two CD59 orthologues suggest a potential mechanism for its inhibition. The detection of several host proteins is a testimonial to the acquisitive properties of the tegument surface. The exposed parasite proteins could represent novel vaccine candidates for combating this neglected disease. Adult schistosome parasites can reside in the host bloodstream for decades surrounded by components of the immune system. It was originally proposed that their survival depended on the secretion of an inert bilayer, the membranocalyx, to protect the underlying plasma membrane from attack. We have investigated whether any proteins were exposed on the surface of live worms using incubation with selected hydrolases, in combination with mass spectrometry to identify released proteins. We show that a small number of parasite proteins are accessible to the enzymes and so could represent constituents of the membranocalyx. We also identified several proteins acquired by the parasite on contact with host cells. In addition, components of the cytolytic complement pathway were detected, but these appeared not to harm the worm, indicating that some of its own surface proteins could inhibit the lytic pathway. We suggest that, collectively, the ‘superficial’ parasite proteins may provide good candidates for a schistosome vaccine.
Collapse
|
50
|
Wei J, Gu Y, Yang J, Yang Y, Wang S, Cui S, Zhu X. Identification and characterization of protective epitope of Trichinella spiralis paramyosin. Vaccine 2011; 29:3162-8. [PMID: 21382481 DOI: 10.1016/j.vaccine.2011.02.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 02/10/2011] [Accepted: 02/15/2011] [Indexed: 11/16/2022]
Abstract
Trichinella spiralis paramyosin (Ts-Pmy) is a protective antigen that induces partial immunity against T. spiralis infection in mice. To identify protective epitope of Ts-Pmy, a monoclonal antibody (mAb) 7E2 against the recombinant protein was generated, which partially protected against T. spiralis infection following passive transfer. The mAb was used to screen a random phage-displayed peptide library. Ten positive clones were identified, most of which matched amino acids 88-107 or 108-127 of Ts-Pmy. Expression of overlapping fragments of Ts-Pmy in E. coli confirmed that region 88-107 was specifically recognized by 7E2. A peptide based on this epitope region (YX1) was synthesized and shown to compete with native Ts-Pmy for binding to 7E2. Mice immunized with KLH-conjugated YX1 were protected against T. spiralis larval challenge. The identification of a protective epitope within Ts-Pmy highlights the possibility of developing a subunit vaccine against T. spiralis infection.
Collapse
Affiliation(s)
- Junfei Wei
- Department of Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | | | | | | | | | | | | |
Collapse
|