1
|
Schmitt-Ulms G, Wang X, Watts J, Booth S, Wille H, Zhao W. A unified model for the origins of spongiform degeneration and other neuropathological features in prion diseases. ARXIV 2025:arXiv:2412.16678v2. [PMID: 39876936 PMCID: PMC11774453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Decades after their initial observation in prion-infected brain tissues, the identities of virus-like dense particles, varicose tubules, and oval bodies containing parallel bands and fibrils have remained elusive. Our recent work revealed that a phenotype of dilation of the endoplasmic reticulum (ER), most notable for the perinuclear space (PNS), contributes to spongiform degeneration. To assess the significance of this phenotype for the etiology of prion diseases, we explored whether it can be functionally linked to other neuropathological hallmarks observed in these diseases, as this would indicate it to be a central event. Having surveyed the neuropathological record and other distant literature niches, we propose a model in which pathogenic forms of the prion protein poison raft domains, including essential Na+, K+-ATPases (NKAs) embedded within them, thereby triggering an ER-centered cellular rescue program coordinated by the unfolded protein response (UPR). The execution of this program stalls general protein synthesis, causing the deterioration of synaptic spines. As the disease progresses, cells selectively increase sterol biosynthesis, along with ribosome and ER biogenesis. These adaptive rescue attempts cause morphological changes to the ER which manifest as ER dilation or ER hypertrophy in a manner that is influenced by Ca2+ influx into the cell. The nuclear-to-cytoplasmic transport of mRNAs and tRNAs interrupts in late stage disease, thereby depriving ribosomes of supplies and inducing them to aggregate into a paracrystalline form. In support of this model, we share previously reported data, whose features are consistent with the interpretation that 1) the phenotype of ER dilation is observed in major prion diseases, 2) varicose tubules and oval bodies represent ER hypertrophy, and 3) virus-like dense particles are paracrystalline aggregates of inactive ribosomes.
Collapse
Affiliation(s)
- Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Xinzhu Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| | - Joel Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Stephanie Booth
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada
- Centre for Prions and Protein Folding Diseases, University of Edmonton, Edmonton, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Liu LP, Fang YD, Kang PT, Gao XY, Zhang GW, Pan J, Lu J, Liu JX, Zhang WD. Isolation, identification and characteristics of Aeromonas sobria from diseased rainbow trout ( Oncorhynchus mykiss). Front Microbiol 2025; 15:1499126. [PMID: 39839118 PMCID: PMC11748802 DOI: 10.3389/fmicb.2024.1499126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/03/2024] [Indexed: 01/23/2025] Open
Abstract
Aeromonas sobria is an opportunistic pathogen that can infect humans, animals and aquatic species, which is widely distributed in different aquatic environments and products. In recent years, with the rapid expansion of intensive aquaculture, the disease caused by A. sobria has occurred. This study aims to understand the pathogenic characteristics of A. sobria and provide scientific basis for the prevention and control of the epidemic. The dominant strain As012 was isolated from the diseased rainbow trout during the outbreak. Through physiological and biochemical experiments, sequencing and phylogenetic tree analysis of 16S rRNA and gyrB genes, the strain As012 was identified as A. sobria. The clinical signs of the diseased rainbow trout in the experimental infection were consistent with those in the farm, and the LD50 was 1.0 × 106.6 CFU/mL. The histopathological lesions in the gills, heart, liver, spleen and intestines were mainly extensive hemorrhage. In addition, eight virulence genes were screened from strain As012, including Act, Aer, AexT4, Alt, ahyB, ascV, Nuc and Hly. The strain As012 can grow in the environment with pH 1-11, temperature 8-43°C and NaCl concentration 0-8%. The drug sensitivity results showed that it was resistant to 12 antibiotics including penicillin G, vancomycin, and clindamycin, and highly sensitive to 16 antibiotics including cefazolin, ciprofloxacin, and furadantin. The results showed that A. sobria, the dominant strain isolated from diseased rainbow trout, was the main pathogen causing the epidemic in the farm. The strain As012 has a very wide range of growth and strong pathogenicity, causing widespread hemorrhaging in various tissues of rainbow trout. It is multi-resistant, but highly sensitive to cephalosporins, quinolones, nitrofurans and sulfonamides. Among them, ciprofloxacin will be one of the effective antibiotics for preventing and controlling A. sobria infection in Chinese aquaculture.
Collapse
Affiliation(s)
- Li-Ping Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Lanzhou Witsen Biotechnology Co., LTD, Lanzhou, China
| | - Ying-Dong Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng-Tian Kang
- Department of Disease Control, Gansu Fishery Technology Extension Station, Lanzhou, China
| | - Xiang-Yun Gao
- Department of Disease Control, Gansu Fishery Technology Extension Station, Lanzhou, China
| | - Guo-Wei Zhang
- Department of Disease Control, Gansu Fishery Technology Extension Station, Lanzhou, China
| | - Jing Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jia Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ji-Xing Liu
- Lanzhou Witsen Biotechnology Co., LTD, Lanzhou, China
| | - Wang-Dong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Zhao R, Wang J, Wang D, Wang Y, Hu G, Li S. Isolation, Identification, and Characterisation of a Novel ST2378 Aeromonas hydrophila Strain from Naturally Diseased Frogs, Rana dybowskii. Pathogens 2024; 13:552. [PMID: 39057779 PMCID: PMC11279971 DOI: 10.3390/pathogens13070552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
In 2023, Rana dybowskii exhibiting characteristic skin ulcers were found on a farm in northeastern China. Subsequently, two dominant bacteria, Aeromonas hydrophila Rd001 and Acinetobacter johnsonii Rd002, were isolated from naturally infected R. dybowskii. Experimental infection confirmed that Rd001 was the primary pathogen responsible for the disease in R. dybowskii, with a mean lethal dose (LD50) of 6.25 × 102 CFU/g. The virulence genotype of Rd001 was identified as ser+/aha+/lip+/nuc+/hlyA+/aer+/alt+/ast+/act+. Antimicrobial susceptibility testing indicated that Rd001 was sensitive to enrofloxacin, flumequine, and neomycin. MLST analysis showed that Rd001 belonged to a new sequence type of A. hydrophila, named ST2378. This study offered the first comprehensive investigation into the pathogenicity, virulence genotypes, antimicrobial resistance, and genetic traits of A. hydrophila isolated from R. dybowskii, providing a theoretical foundation for preventing and controlling A. hydrophila infections.
Collapse
Affiliation(s)
| | | | | | | | - Guo Hu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (R.Z.); (J.W.); (D.W.); (Y.W.)
| | - Shaowu Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; (R.Z.); (J.W.); (D.W.); (Y.W.)
| |
Collapse
|
4
|
Li Y, Wangjiang T, Sun Z, Shi L, Chen S, Chen L, Guo X, Wu W, Xiong G, Wang L. Inhibition mechanism of crude lipopeptide from Bacillus subtilis against Aeromonas veronii growth, biofilm formation, and spoilage of channel catfish flesh. Food Microbiol 2024; 120:104489. [PMID: 38431332 DOI: 10.1016/j.fm.2024.104489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Aeromonas veronii is associated with food spoilage and some human diseases, such as diarrhea, gastroenteritis, hemorrhagic septicemia or asymptomatic and even death. This research investigated the mechanism of the growth, biofilm formation, virulence, stress resistance, and spoilage potential of Bacillus subtilis lipopeptide against Aeromonas veronii. Lipopeptides suppressed the transmembrane transport of Aeromonas veronii by changing the cell membrane's permeability, the structure of membrane proteins, and Na+/K+-ATPase. Lipopeptide significantly reduced the activities of succinate dehydrogenase (SDH) and malate dehydrogenase (MDH) by 86.03% and 56.12%, respectively, ultimately slowing Aeromonas veronii growth. Lipopeptides also restrained biofilm formation by inhibiting Aeromonas veronii motivation and extracellular polysaccharide secretion. Lipopeptides downregulated gene transcriptional levels related to the virulence and stress tolerance of Aeromonas veronii. Furthermore, lipopeptides treatment resulted in a considerable decrease in the extracellular protease activity of Aeromonas veronii, which restrained the decomposing of channel catfish flesh. This research provides new insights into lipopeptides for controlling Aeromonas veronii and improving food safety.
Collapse
Affiliation(s)
- Yali Li
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tianqi Wangjiang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China; State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zhida Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liu Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Sheng Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Lang Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Xiaojia Guo
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Guangquan Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| |
Collapse
|
5
|
Zhu X, Qian Q, Wu C, Zhu Y, Gao X, Jiang Q, Wang J, Liu G, Zhang X. Pathogenicity of Aeromonas veronii Causing Mass Mortality of Largemouth Bass ( Micropterus salmoides) and Its Induced Host Immune Response. Microorganisms 2022; 10:2198. [PMID: 36363790 PMCID: PMC9699015 DOI: 10.3390/microorganisms10112198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2023] Open
Abstract
Aeromonas veronii is as an important opportunist pathogen of many aquatic animals, which is wildly distributed in various aquatic environments. In this study, a dominant bacterium GJL1 isolated from diseased M. salmoides was identified as A. veronii according to the morphological, physiological, and biochemical characteristics, as well as molecular identification. Detection of the virulence genes showed the isolate GJL1 carried outer membrane protein A (ompA), flagellin (flgA, flgM, flgN), aerolysin (aer), cytolytic enterotoxin (act), DNases (exu), and hemolysin (hly), and the isolate GJL1 also produced caseinase, lipase, gelatinase, and hemolysin. The virulence of strain GJL1 was confirmed by experimental infection; the median lethal dosage (LD50) of the GJL1 for largemouth bass was 3.6 × 105 CFU/mL, and histopathological analysis revealed that the isolate could cause obvious inflammatory responses in M. salmoides. Additionally, the immune-related gene expression in M. salmoides was evaluated, and the results showed that IgM, HIF-1α, Hep-1, IL-15, TGF-β1, and Cas-3 were significantly upregulated after A. veronii infection. Our results indicated that A. veronii was an etiological agent causing the mass mortality of M. salmoides, which contributes to understanding the immune response of M. salmoides against A. veronii infection.
Collapse
Affiliation(s)
- Xinhai Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qieqi Qian
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Congcong Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yujie Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jun Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guoxing Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Research Center of Characteristic Fish, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Dong J, Yan T, Yang Q, Song Y, Cheng B, Zhou S, Liu Y, Ai X. Palmatine Inhibits the Pathogenicity of Aeromonas hydrophila by Reducing Aerolysin Expression. Foods 2022. [PMCID: PMC9601346 DOI: 10.3390/foods11203250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aeromonas hydrophila, an opportunistic aquatic pathogen widely spread in aquatic environments, is responsible for a number of infectious diseases in freshwater aquaculture. In addition, A. hydrophila can transmit from diseased fish to humans and results in health problems. The occurrence of antibiotic-resistant bacterial strains restricts the application of antibiotics and is responsible for failure of the treatment. Moreover, residues of antibiotics in aquatic products often threaten the quality and safety. Therefore, alternative strategies are called to deal with infections caused by antibiotic-resistant bacteria. Aerolysin, one of the most important virulence factors of A. hydrophila, is adopted as a unique anti-virulence target on the basis of the anti-virulence strategy to battling infections caused by A. hydrophila. Palmatine, an isoquinoline alkaloid from a variety of herbal medicines that showed no anti-A. hydrophila activity, could reduce hemolysis of the bacterium by decreasing aerolysin production. The results of the qPCR assay demonstrated that the transcription of the aerA gene was suppressed. Moreover, cell viability and in vivo study showed that palmatine treatment could decrease the pathogenicity of A. hydrophila both in vitro and in vivo. In summary, palmatine is a leading compound against A. hydrophila-associated infection in aquaculture by inhibiting the expression of aerolysin.
Collapse
Affiliation(s)
- Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Tianhui Yan
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yi Song
- Chinese Academy of Fishery Sciences, Beijing 100039, China
| | - Bo Cheng
- Chinese Academy of Fishery Sciences, Beijing 100039, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Correspondence: ; Tel.: +86-027-81780298
| |
Collapse
|
7
|
Enhanced Hemolytic Activity of Mesophilic Aeromonas salmonicida SRW-OG1 Is Brought about by Elevated Temperatures. Microorganisms 2022; 10:microorganisms10102033. [PMID: 36296309 PMCID: PMC9609485 DOI: 10.3390/microorganisms10102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Aeromonas salmonicida is a well-known cold-water pathogenic bacterium. Previously, we reported the first isolation of pathogenic A. salmonicida from diseased Epinephelus coioides, a kind of warm-water fish, and it was proved to be a putative mesophilic strain with potent pathogenicity to humans. In order to investigate the mechanisms underlying mesophilic growth ability and virulence, the transcriptome of A. salmonicida SRW-OG1 at 18, 28, and 37 °C was analyzed. The transcriptome of A. salmonicida SRW-OG1 at different temperatures showed a clear separation boundary, which might provide valuable information for the temperature adaptation and virulence regulation of A. salmonicida SRW-OG1. Interestingly, aerA and hlyA, the hemolytic genes encoding aerolysin and hemolysin, were found to be significantly up-regulated at 28 and 37 °C. Since aerolysin and hemolysin are the most well-known and -characterized virulence factors of pathogenic Aeromonas strains, the induction of aerA and hlyA was associated with the mesophilic virulence. Further study proved that the extracellular products (ECPs) purchased from A. salmonicida SRW-OG1 cultured at 28 and 37 °C showed elevated hemolytic activity and virulence than those at 18 °C. Moreover, the silence of aerA and hlyA led to significantly decreased hemolysis and virulence. Taken together, our results revealed that the mesophilic virulence of A. salmonicida SRW-OG1 might be due to the enhanced expression of aerA and hlyA induced by elevated temperatures.
Collapse
|
8
|
Isolation, Identification and Characteristics of Aeromonas caviae from Diseased Largemouth Bass (Micropterus salmoides). FISHES 2022. [DOI: 10.3390/fishes7030119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The largemouth bass (Micropterus salmoides) is one of the most economically valuable fish species in China. In this study, a bacterial pathogen was isolated from the internal organs of diseased M. salmoides, and the strain was named WH21406. This isolate was identified as Aeromonas caviae on the basis of its morphology, biochemical features and 16S rDNA phylogenetic analysis. Four virulence genes related to pathogenicity, namely, flagella (fla), elastase (ela), haemolysin (hly) and aerolysin (aer), were detected in this isolate. The median lethal dosage (LD50) of A. caviae WH21406 for M. salmoides was calculated to be 3.46 × 105 CFU mL−1. The histopathological analysis showed obvious tissue damage in the gill, liver, kidney, spleen and gut of the diseased fish. The antibiotic susceptibility test demonstrated that strain WH21406 was highly sensitive to enrofloxacin, norfloxacin, streptomycin and amikacin. The results of this study provide a foundation for the diagnosis, prevention and treatment of A. caviae infection in M. salmoides.
Collapse
|
9
|
Lima C, Andrade-Barros AI, Bernardo JTG, Balogh E, Quesniaux VF, Ryffel B, Lopes-Ferreira M. Natterin-Induced Neutrophilia Is Dependent on cGAS/STING Activation via Type I IFN Signaling Pathway. Int J Mol Sci 2022; 23:ijms23073600. [PMID: 35408954 PMCID: PMC8998820 DOI: 10.3390/ijms23073600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Natterin is a potent pro-inflammatory fish molecule, inducing local and systemic IL-1β/IL-1R1-dependent neutrophilia mediated by non-canonical NLRP6 and NLRC4 inflammasome activation in mice, independent of NLRP3. In this work, we investigated whether Natterin activates mitochondrial damage, resulting in self-DNA leaks into the cytosol, and whether the DNA sensor cGAS and STING pathway participate in triggering the innate immune response. Employing a peritonitis mouse model, we found that the deficiency of the tlr2/tlr4, myd88 and trif results in decreased neutrophil influx to peritoneal cavities of mice, indicative that in addition to MyD88, TRIF contributes to neutrophilia triggered by TLR4 engagement by Natterin. Next, we demonstrated that gpcr91 deficiency in mice abolished the neutrophil recruitment after Natterin injection, but mice pre-treated with 2-deoxy-d-glucose that blocks glycolysis presented similar infiltration than WT Natterin-injected mice. In addition, we observed that, compared with the WT Natterin-injected mice, DPI and cyclosporin A treated mice had a lower number of neutrophils in the peritoneal exudate. The levels of dsDNA in the supernatant of the peritoneal exudate and processed IL-33 in the supernatant of the peritoneal exudate or cytoplasmic supernatant of the peritoneal cell lysate of WT Natterin-injected mice were several folds higher than those of the control mice. The recruitment of neutrophils to peritoneal cavity 2 h post-Natterin injection was intensely impaired in ifnar KO mice and partially in il-28r KO mice, but not in ifnγr KO mice. Finally, using cgas KO, sting KO, or irf3 KO mice we found that recruitment of neutrophils to peritoneal cavities was virtually abolished in response to Natterin. These findings reveal cytosolic DNA sensors as critical regulators for Natterin-induced neutrophilia.
Collapse
Affiliation(s)
- Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, Vital Brazil Avenue, São Paulo 05503-009, Brazil; (A.I.A.-B.); (J.T.G.B.); (M.L.-F.)
- Correspondence:
| | - Aline Ingrid Andrade-Barros
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, Vital Brazil Avenue, São Paulo 05503-009, Brazil; (A.I.A.-B.); (J.T.G.B.); (M.L.-F.)
| | - Jefferson Thiago Gonçalves Bernardo
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, Vital Brazil Avenue, São Paulo 05503-009, Brazil; (A.I.A.-B.); (J.T.G.B.); (M.L.-F.)
| | - Eniko Balogh
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4027 Debrecen, Hungary;
| | - Valerie F. Quesniaux
- Molecular and Experimental Immunology and Neurogenetics (INEM), UMR7355, CNRS and University of Orléans, 45071 Orléans, France; (V.F.Q.); (B.R.)
| | - Bernhard Ryffel
- Molecular and Experimental Immunology and Neurogenetics (INEM), UMR7355, CNRS and University of Orléans, 45071 Orléans, France; (V.F.Q.); (B.R.)
| | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, Vital Brazil Avenue, São Paulo 05503-009, Brazil; (A.I.A.-B.); (J.T.G.B.); (M.L.-F.)
| |
Collapse
|
10
|
Yadav SK, Panwar D, Singh A, Tellis MB, Joshi RS, Dixit A. Molecular phylogeny, structure modeling and in silico screening of putative inhibitors of aerolysin of Aeromonas hydrophila EUS112. J Biomol Struct Dyn 2021; 40:8840-8849. [PMID: 33931004 DOI: 10.1080/07391102.2021.1918254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aeromonas hydrophila, a Gram-negative bacterium, causes diseases in fish, resulting in excessive loss to the aquaculture industry. Aeromonas is a highly heterogeneous group of bacteria, and the heterogeneity of the genus is attributed to variation and diversity in the virulence factors and toxins among various Aeromonas strains. One of the major toxins aerolysin, secreted by the bacterium, causes hemorrhagic-septicemia and diarrhea and can serve as a drug target. Here, we describe characterization, molecular phylogeny, and homology modeling of the aerolysin of A. hydrophila strain EUS112 (AhEUS112) cloned in our lab. The encoded aerolysin is 485 amino acids long with an N-terminal signal sequence of 23 amino acids. Phylogenetic analysis of the aerolysin of AhEUS112 revealed that it belongs to a diverse group of toxins, showing maximum similarity with aerolysins of other Aeromonas strains followed by Vibrio toxin. The homology model of the mature aerolysin of AhEUS112 was generated using the crystal structure of a mutant aerolysin (PDB#3g4n) as the template, which showed that the encoded aerolysin exists as a channel protein. Validation of the generated model using bioinformatics tool confirmed it to be a good quality model that can be used for drug design. Molecular dock analysis revealed that drugs, aralia-saponin I, cyclamin, ardisiacrispin B, and aralia-saponin II bind to aerolysin with a higher affinity as compared to other drugs and at functionally important amino acids of aerolysin. Hence, these molecules can act as an effective therapeutics for inhibiting the aerolysin pore formation and curtail the severity of Aeromonas infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sunita Kumari Yadav
- Department of Zoology, Daulat Ram College, University of Delhi, Delhi, India
| | - Deepak Panwar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Ankita Singh
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Meenakshi B Tellis
- Biochemical Sciences Division, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road Pune, India.,Department of Botany, Savitribai Phule Pune University, Ganeshkhind Rd, Ganeshkhind, Pune, India
| | - Rakesh Shamsunder Joshi
- Biochemical Sciences Division, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road Pune, India
| | - Aparna Dixit
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
11
|
Banerji R, Karkee A, Kanojiya P, Saroj SD. Pore-forming toxins of foodborne pathogens. Compr Rev Food Sci Food Saf 2021; 20:2265-2285. [PMID: 33773026 DOI: 10.1111/1541-4337.12737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
Pore-forming toxins (PFTs) are water-soluble molecules that have been identified as the most crucial virulence factors during bacterial pathogenesis. PFTs disrupt the host cell membrane to internalize or to deliver other bacterial or virulence factors for establishing infections. Disruption of the host cell membrane by PFTs can lead to uncontrollable exchanges between the extracellular and the intracellular matrix, thereby disturbing the cellular homeostasis. Recent studies have provided insights into the molecular mechanism of PFTs during pathogenesis. Evidence also suggests the activation of several signal transduction pathways in the host cell on recognition of PFTs. Additionally, numerous distinctive host defense mechanisms as well as membrane repair mechanisms have been reported; however, studies reveal that PFTs aid in host immune evasion of the bacteria through numerous pathways. PFTs have been primarily associated with foodborne pathogens. Infection and death from diseases by consuming contaminated food are a constant threat to public health worldwide, affecting socioeconomic development. Moreover, the emergence of new foodborne pathogens has led to the rise of bacterial antimicrobial resistance affecting the population. Hence, this review focuses on the role of PFTs secreted by foodborne pathogens. The review highlights the molecular mechanism of foodborne bacterial PFTs, assisting bacterial survival from the host immune responses and understanding the downstream mechanism in the activation of various signaling pathways in the host upon PFT recognition. PFT research is a remarkable and an important field for exploring novel and broad applications of antimicrobial compounds as therapeutics.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Astha Karkee
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
12
|
Dong J, Zhang L, Liu Y, Xu N, Zhou S, Yang Y, Yang Q, Ai X. Luteolin decreases the pathogenicity of Aeromonas hydrophila via inhibiting the activity of aerolysin. Virulence 2020; 12:165-176. [PMID: 33372840 PMCID: PMC7781616 DOI: 10.1080/21505594.2020.1867455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aeromonas hydrophila (A. hydrophila) can cause a number of diseases in both human and animals. A. hydrophila-related infections in aquaculture cause severe economic losses every year throughout the world. The emergence of antibiotic resistance that is due to the abuse of antibiotics has limited the application of antibiotics. Thus, novel approaches are needed to combat with treatment failure of antibiotics caused by resistant bacterial strains. Aerolysin plays a critical role in the pathogenesis of A. hydrophila and has been considered as a novel target for developing drugs based on anti-virulence strategies. Here, we reported that luteolin, a natural product with no anti-A. hydrophila activity, could reduce aerolysin-induced hemolysis by inhibiting aerolysin activity. The binding mode was simulated by molecular docking and dynamics simulation. Then the main binding sites were confirmed by fluorescence quenching assays. We found that luteolin could hindered the formation of functional heptamer of aerolysin according to the results of the oligomerization assay. Moreover, luteolin could protect A549 cells from aerolysin mediated cell death and increase the survival rate of A. hydrophila-infected channel catfish. These findings suggest a novel approach to developing drugs fighting against A. hydrophila, and luteolin can be a promising drug candidate for treatment of A. hydrophila-associated infections.
Collapse
Affiliation(s)
- Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs , Beijing, China
| | - Lushan Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs , Beijing, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs , Beijing, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs , Beijing, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs , Beijing, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs , Beijing, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs , Beijing, China
| |
Collapse
|
13
|
Šubrtová Salmonová H, Marchi M, Doskočil I, Kodešová T, Vlková E. Pathogenic profile and cytotoxic activity of Aeromonas spp. isolated from Pectinatella magnifica and surrounding water in the South Bohemian aquaculture region. JOURNAL OF FISH DISEASES 2020; 43:1213-1227. [PMID: 32776333 DOI: 10.1111/jfd.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Pectinatella magnifica is an invasive freshwater bryozoan that has expanded in many localities worldwide, including fishing areas. It contains microbial communities, predominantly consisting of Aeromonas bacteria that are frequently associated with fish infections. The objective of this study was to investigate the potential pathogenicity of Aeromonas spp. associated with P. magnifica and evaluate the health risks for fish. Aeromonas strains were isolated from P. magnifica (101 strains) and from surrounding water (29 strains) in the South Bohemian region and investigated for the presence of 14 virulence-associated genes using PCR. We demonstrated high prevalence of phospholipase GCAT, polar flagellin, enolase, DNAse, aerolysin/cytotoxic enterotoxin, serine protease and heat-stable cytotonic enterotoxin-coding genes. Further, all twelve isolates that were analysed for cytotoxicity against intestinal epithelial cells were found to be cytotoxic. Six of the isolates were also tested as co-cultures composed of pairs. Enhanced cytotoxicity was observed when the pair was composed of strains from different species. In conclusion, P. magnifica is colonized by Aeromonas strains that have a relatively high prevalence of virulence-associated genes and the ability to provoke disease. Results also suggest a possibly increased risk arising from mixed infections.
Collapse
Affiliation(s)
- Hana Šubrtová Salmonová
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Matilde Marchi
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ivo Doskočil
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Tereza Kodešová
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Eva Vlková
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
14
|
Dong J, Zhang L, Liu Y, Xu N, Zhou S, Yang Q, Yang Y, Ai X. Thymol Protects Channel Catfish from Aeromonas hydrophila Infection by Inhibiting Aerolysin Expression and Biofilm Formation. Microorganisms 2020; 8:microorganisms8050636. [PMID: 32349419 PMCID: PMC7284873 DOI: 10.3390/microorganisms8050636] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
Aeromonas hydrophila is an opportunistic pathogen responsible for a number of diseases in freshwater farming. Moreover, the bacterium has been identified as a zoonotic pathogen that threatens human health. Antibiotics are widely used for treatments of infectious diseases in aquaculture. However, the abuse of antibiotics has led to the emergence of antimicrobial resistant strains. Thus, novel strategies are required against resistant A. hydrophila strains. The quorum sensing (QS) system, involved in virulence factor production and biofilm formation, is a promising target in identifying novel drugs against A. hydrophila infections. In this study, we found that thymol, at sub-inhibitory concentrations, could significantly reduce the production of aerolysin and biofilm formation by inhibiting the transcription of genes aerA, ahyI, and ahyR. These results indicate that thymol inhibits the quorum sensing system. The protective effects of thymol against A. hydrophila mediated cell injury were determined by live/dead assay and lactate dehydrogenase (LDH) release assay. Moreover, the in vivo study showed that thymol could significantly decrease the mortality of channel catfish infected with A. hydrophila. Taken together, these findings demonstrate that thymol could be chosen as a phytotherapeutic candidate for inhibiting quorum sensing system-mediated aerolysin production and biofilm formation in A. hydrophila.
Collapse
Affiliation(s)
- Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (L.Z.); (Y.L.); (N.X.); (S.Z.); (Q.Y.); (Y.Y.)
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing 100071, China
| | - Lushan Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (L.Z.); (Y.L.); (N.X.); (S.Z.); (Q.Y.); (Y.Y.)
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (L.Z.); (Y.L.); (N.X.); (S.Z.); (Q.Y.); (Y.Y.)
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing 100071, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (L.Z.); (Y.L.); (N.X.); (S.Z.); (Q.Y.); (Y.Y.)
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing 100071, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (L.Z.); (Y.L.); (N.X.); (S.Z.); (Q.Y.); (Y.Y.)
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing 100071, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (L.Z.); (Y.L.); (N.X.); (S.Z.); (Q.Y.); (Y.Y.)
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing 100071, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (L.Z.); (Y.L.); (N.X.); (S.Z.); (Q.Y.); (Y.Y.)
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing 100071, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.D.); (L.Z.); (Y.L.); (N.X.); (S.Z.); (Q.Y.); (Y.Y.)
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing 100071, China
- Correspondence: ; Tel.: +86-027-8178-0298
| |
Collapse
|
15
|
Chen F, Sun J, Han Z, Yang X, Xian JA, Lv A, Hu X, Shi H. Isolation, Identification and Characteristics of Aeromonas veronii From Diseased Crucian Carp ( Carassius auratus gibelio). Front Microbiol 2019; 10:2742. [PMID: 32038507 PMCID: PMC6988821 DOI: 10.3389/fmicb.2019.02742] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/11/2019] [Indexed: 11/13/2022] Open
Abstract
Aeromonas species often cause disease in farmed fish. In the present study, dominant bacteria were isolated from diseased crucian carp (Carassius auratus gibelio). Based on this, a bacterial isolate was tentatively named CFJY-623. This isolate was identified as Aeromonas veronii based on analysis of its morphological, physiological, and biochemical features, as well as 16S rRNA and gyrB gene sequences. Six virulence genes related to pathogenicity including aerolysin, cytotonic enterotoxins, elastase, glycerophospholipid: cholesterol acyltransferase, lipase, and serine protease were identified in this A. veronii isolate. The median lethal dosage (LD50) of the CFJY-623 isolate for crucian carp was determined as 1.31 × 107 CFU/mL. Artificial experimental infection showed that the CFJY-623 isolate caused considerable histological lesions in the fish, including tissue cell degeneration, necrosis, and inflammatory cell infiltrating. Drug sensitivity testing showed that the isolate was susceptible to aminoglycosides, carbapenemes, and nitrofurans. Exploring its growing features showed that this isolate exhibited a high level of environmental adaptability. These results provided a scientific basis for the identification of A. veronii and treatment for fish infected by this pathogen.
Collapse
Affiliation(s)
- Feng Chen
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China
| | - Jingfeng Sun
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China
| | - Zhuoran Han
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China
| | - Xijun Yang
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China
| | - Jian-an Xian
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Aijun Lv
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China
| | - Xiucai Hu
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China
| | - Hongyue Shi
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
16
|
Savva CG, Clark AR, Naylor CE, Popoff MR, Moss DS, Basak AK, Titball RW, Bokori-Brown M. The pore structure of Clostridium perfringens epsilon toxin. Nat Commun 2019; 10:2641. [PMID: 31201325 PMCID: PMC6572795 DOI: 10.1038/s41467-019-10645-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/20/2019] [Indexed: 12/25/2022] Open
Abstract
Epsilon toxin (Etx), a potent pore forming toxin (PFT) produced by Clostridium perfringens, is responsible for the pathogenesis of enterotoxaemia of ruminants and has been suggested to play a role in multiple sclerosis in humans. Etx is a member of the aerolysin family of β-PFTs (aβ-PFTs). While the Etx soluble monomer structure was solved in 2004, Etx pore structure has remained elusive due to the difficulty of isolating the pore complex. Here we show the cryo-electron microscopy structure of Etx pore assembled on the membrane of susceptible cells. The pore structure explains important mutant phenotypes and suggests that the double β-barrel, a common feature of the aβ-PFTs, may be an important structural element in driving efficient pore formation. These insights provide the framework for the development of novel therapeutics to prevent human and animal infections, and are relevant for nano-biotechnology applications. Epsilon toxin (Etx) is a potent pore forming toxin (PFT) produced by Clostridium perfringens. Here authors show the cryo-EM structure of the Etx pore assembled on the membrane of susceptible cells and shed light on pore formation and mutant phenotypes.
Collapse
Affiliation(s)
- Christos G Savva
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester, LE1 7HB, UK
| | - Alice R Clark
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, UK
| | - Claire E Naylor
- Molecular Dimensions, Willie Snaith Road, Newmarket, CB8 7SQ, UK
| | - Michel R Popoff
- Bactéries Anaérobies et Toxines, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - David S Moss
- Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Ajit K Basak
- Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Richard W Titball
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Monika Bokori-Brown
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
17
|
|
18
|
Dong J, Liu Y, Xu N, Yang Q, Ai X. Morin Protects Channel Catfish From Aeromonas hydrophila Infection by Blocking Aerolysin Activity. Front Microbiol 2018; 9:2828. [PMID: 30519232 PMCID: PMC6258893 DOI: 10.3389/fmicb.2018.02828] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
Aeromonas hydrophila (A. hydrophila) is an opportunistic bacterial pathogen widely distributed in the environments, particular aquatic environment. The pathogen can cause a range of infections in both human and animals including fishes. However, the application of antibiotics in treatment of A. hydrophila infections leads to the emergence of resistant strains. Consequently, new approaches need to be developed in fighting this pathogen. Aerolysin, the chief virulence factor produced by pathogenic A. hydrophila strains has been employed as target identifying new drugs. In our present study, we found that morin, a flavonoid without anti-bacterial activity isolated from traditional Chinese medicine, could directly inhibit the hemolytic activity of aerolysin. To determine the binding sites and the action of mechanism of morin against AerA, several assays were performed. Ser36, Pro347, and Arg356 were identified as the main binding sites affecting the conformation of AerA and resulted in block of the heptameric formation. Moreover, morin could protect Vero cells from cell injury mediated by aerolysin. In vivo study showed that morin could provide a protection to channel catfish against A. hydrophila infection. These results demonstrated that morin could be developed as a promising candidate for the treatment of A. hydrophila infections by decreasing the pathogenesis of A. hydrophila.
Collapse
Affiliation(s)
- Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| |
Collapse
|
19
|
Ismail AS, Valastyan JS, Bassler BL. A Host-Produced Autoinducer-2 Mimic Activates Bacterial Quorum Sensing. Cell Host Microbe 2016; 19:470-80. [PMID: 26996306 DOI: 10.1016/j.chom.2016.02.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/26/2016] [Accepted: 02/29/2016] [Indexed: 12/31/2022]
Abstract
Host-microbial symbioses are vital to health; nonetheless, little is known about the role crosskingdom signaling plays in these relationships. In a process called quorum sensing, bacteria communicate with one another using extracellular signal molecules called autoinducers. One autoinducer, AI-2, is proposed to promote interspecies bacterial communication, including in the mammalian gut. We show that mammalian epithelia produce an AI-2 mimic activity in response to bacteria or tight-junction disruption. This AI-2 mimic is detected by the bacterial AI-2 receptor, LuxP/LsrB, and can activate quorum-sensing-controlled gene expression, including in the enteric pathogen Salmonella typhimurium. AI-2 mimic activity is induced when epithelia are directly or indirectly exposed to bacteria, suggesting that a secreted bacterial component(s) stimulates its production. Mutagenesis revealed genes required for bacteria to both detect and stimulate production of the AI-2 mimic. These findings uncover a potential role for the mammalian AI-2 mimic in fostering crosskingdom signaling and host-bacterial symbioses.
Collapse
Affiliation(s)
- Anisa S Ismail
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| | - Julie S Valastyan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA.
| |
Collapse
|
20
|
Lin P, Cheng T, Jin S, Wu Y, Fu B, Long R, Zhao P, Xia Q. PC, a Novel Oral Insecticidal Toxin from Bacillus bombysepticus Involved in Host Lethality via APN and BtR-175. Sci Rep 2015; 5:11101. [PMID: 26057951 PMCID: PMC4460869 DOI: 10.1038/srep11101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/13/2015] [Indexed: 01/31/2023] Open
Abstract
Insect pests have developed resistance to chemical insecticides, insecticidal toxins as bioinsecticides or genetic protection built into crops. Consequently, novel, orally active insecticidal toxins would be valuable biological alternatives for pest control. Here, we identified a novel insecticidal toxin, parasporal crystal toxin (PC), from Bacillus bombysepticus (Bb). PC shows oral pathogenic activity and lethality towards silkworms and Cry1Ac-resistant Helicoverpa armigera strains. In vitro assays, PC after activated by trypsin binds to BmAPN4 and BtR-175 by interacting with CR7 and CR12 fragments. Additionally, trypsin-activated PC demonstrates cytotoxicity against Sf9 cells expressing BmAPN4, revealing that BmAPN4 serves as a functional receptor that participates in Bb and PC pathogenicity. In vivo assay, knocking out BtR-175 increased the resistance of silkworms to PC. These data suggest that PC is the first protein with insecticidal activity identified in Bb that is capable of causing silkworm death via receptor interactions, representing an important advance in our understanding of the toxicity of Bb and the contributions of interactions between microbial pathogens and insects to disease pathology. Furthermore, the potency of PC as an insecticidal protein makes it a good candidate for inclusion in integrated agricultural pest management systems.
Collapse
Affiliation(s)
- Ping Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Shengkai Jin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yuqian Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bohua Fu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Renwen Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
21
|
Roos S, Wyder M, Candi A, Regenscheit N, Nathues C, van Immerseel F, Posthaus H. Binding studies on isolated porcine small intestinal mucosa and in vitro toxicity studies reveal lack of effect of C. perfringens beta-toxin on the porcine intestinal epithelium. Toxins (Basel) 2015; 7:1235-52. [PMID: 25860161 PMCID: PMC4417965 DOI: 10.3390/toxins7041235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/18/2015] [Accepted: 03/31/2015] [Indexed: 12/14/2022] Open
Abstract
Beta-toxin (CPB) is the essential virulence factor of C. perfringens type C causing necrotizing enteritis (NE) in different hosts. Using a pig infection model, we showed that CPB targets small intestinal endothelial cells. Its effect on the porcine intestinal epithelium, however, could not be adequately investigated by this approach. Using porcine neonatal jejunal explants and cryosections, we performed in situ binding studies with CPB. We confirmed binding of CPB to endothelial but could not detect binding to epithelial cells. In contrast, the intact epithelial layer inhibited CPB penetration into deeper intestinal layers. CPB failed to induce cytopathic effects in cultured polarized porcine intestinal epithelial cells (IPEC-J2) and primary jejunal epithelial cells. C. perfringens type C culture supernatants were toxic for cell cultures. This, however, was not inhibited by CPB neutralization. Our results show that, in the porcine small intestine, CPB primarily targets endothelial cells and does not bind to epithelial cells. An intact intestinal epithelial layer prevents CPB diffusion into underlying tissue and CPB alone does not cause direct damage to intestinal epithelial cells. Additional factors might be involved in the early epithelial damage which is needed for CPB diffusion towards its endothelial targets in the small intestine.
Collapse
Affiliation(s)
- Simone Roos
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland.
| | - Marianne Wyder
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland.
| | - Ahmet Candi
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland.
| | - Nadine Regenscheit
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland.
| | - Christina Nathues
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland.
| | - Filip van Immerseel
- Department of Pathology, Bacteriology and Avian Medicine, Ghent University, Ghent 9000, Belgium.
| | - Horst Posthaus
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland.
| |
Collapse
|
22
|
Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis. EMBO J 2012; 31:2615-28. [PMID: 22531785 DOI: 10.1038/emboj.2012.93] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 03/08/2012] [Indexed: 12/18/2022] Open
Abstract
Bacterial pathogens modulate host cell apoptosis to establish a successful infection. Pore-forming toxins (PFTs) secreted by pathogenic bacteria are major virulence factors and have been shown to induce various forms of cell death in infected cells. Here we demonstrate that the highly conserved caspase-2 is required for PFT-mediated apoptosis. Despite being the second mammalian caspase to be identified, the role of caspase-2 during apoptosis remains enigmatic. We show that caspase-2 functions as an initiator caspase during Staphylococcus aureus α-toxin- and Aeromonas aerolysin-mediated apoptosis in epithelial cells. Downregulation of caspase-2 leads to a strong inhibition of PFT-mediated apoptosis. Activation of caspase-2 is PIDDosome-independent, and endogenous caspase-2 is recruited to a high-molecular-weight complex in α-toxin-treated cells. Interestingly, prevention of PFT-induced potassium efflux inhibits the formation of caspase-2 complex, leading to its inactivation, thus resisting apoptosis. These results revealed a thus far unknown, obligatory role for caspase-2 as an initiator caspase during PFT-mediated apoptosis.
Collapse
|
23
|
Bücker R, Krug SM, Rosenthal R, Günzel D, Fromm A, Zeitz M, Chakraborty T, Fromm M, Epple HJ, Schulzke JD. Aerolysin From Aeromonas hydrophila Perturbs Tight Junction Integrity and Cell Lesion Repair in Intestinal Epithelial HT-29/B6 Cells. J Infect Dis 2011; 204:1283-92. [DOI: 10.1093/infdis/jir504] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
24
|
Budatha M, Ningshen TJ, Dutta-Gupta A. Is hexamerin receptor a GPI-anchored protein in Achaea janata (Lepidoptera: Noctuidae)? J Biosci 2011; 36:545-53. [DOI: 10.1007/s12038-011-9082-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Calvello R, Mitolo V, Acquafredda A, Cianciulli A, Panaro MA. Plasma membrane damage sensing and repairing. Role of heterotrimeric G-proteins and the cytoskeleton. Toxicol In Vitro 2011; 25:1067-74. [PMID: 21511029 DOI: 10.1016/j.tiv.2011.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 01/05/2023]
Abstract
Different toxic agents, derived from bacteria, viruses or cells of the immune system, as well as mechanical forces generated during cell locomotion are able to open pores in the cell plasma membrane. Most of these biological agents operate through specific receptors. We studied the formation and resealing of the "non-specific" plasma membrane pores generated by the mild non-ionic detergent Triton X-100. In HL-60-derived granulocytic cells plasma membrane pore opening after a 1-h treatment with Triton X-100 is documented by entry into the cell of the membrane impermeant dye ethidium bromide. As a consequence of the opening of pores the intracellular K(+) concentration falls dramatically, the cytosolic pH diminishes and the cell membrane is depolarized. Furthermore the cells acquire a polarized morphology, demonstrating the involvement of the actin cytoskeleton. At the Triton concentration used the membrane lesions are progressively repaired and by 8h the impermeability to ethidium bromide is restored and the intracellular K(+) concentration is virtually normal. Following treatments with Triton+Pertussis toxin, Triton+Cytochalasin, or Triton+Pertussis toxin+Cytochalasin the progress of membrane repair is dramatically slowed and is no longer completed by 8h. It is concluded that the membrane damage activates pertussis-sensitive G-proteins which likely act as sensors of the damage, while both G-proteins and the actin cytoskeleton are involved in the membrane repair mechanism.
Collapse
Affiliation(s)
- Rosa Calvello
- Department of Pharmaco-Biology, University of Bari, Italy.
| | | | | | | | | |
Collapse
|
26
|
Abrami L, Bischofberger M, Kunz B, Groux R, van der Goot FG. Endocytosis of the anthrax toxin is mediated by clathrin, actin and unconventional adaptors. PLoS Pathog 2010; 6:e1000792. [PMID: 20221438 PMCID: PMC2832758 DOI: 10.1371/journal.ppat.1000792] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 01/26/2010] [Indexed: 11/21/2022] Open
Abstract
The anthrax toxin is a tripartite toxin, where the two enzymatic subunits require the third subunit, the protective antigen (PA), to interact with cells and be escorted to their cytoplasmic targets. PA binds to cells via one of two receptors, TEM8 and CMG2. Interestingly, the toxin times and triggers its own endocytosis, in particular through the heptamerization of PA. Here we show that PA triggers the ubiquitination of its receptors in a β-arrestin-dependent manner and that this step is required for clathrin-mediated endocytosis. In addition, we find that endocytosis is dependent on the heterotetrameric adaptor AP-1 but not the more conventional AP-2. Finally, we show that endocytosis of PA is strongly dependent on actin. Unexpectedly, actin was also found to be essential for efficient heptamerization of PA, but only when bound to one of its 2 receptors, TEM8, due to the active organization of TEM8 into actin-dependent domains. Endocytic pathways are highly modular systems. Here we identify some of the key players that allow efficient heptamerization of PA and subsequent ubiquitin-dependent, clathrin-mediated endocytosis of the anthrax toxin. Bacillus anthracis is the bacterium responsible for the anthrax disease. Its virulence is mainly due to 2 factors, the anthrax toxin and the anti-phagocytic capsule. This toxin is composed of three independent polypeptide chains. Two of these have enzymatic activity and are responsible for the effects of the toxin. The third has no activity but is absolutely required to bring the 2 enzymatic subunits into the cell where they act. If one blocks entry into the cells, one blocks the effects of these toxins, which is why it is important to understand how the toxin enters into the cell at the molecular level. Here we identified various molecules that are involved in efficiently bringing the toxin into the cell. First, we found that the actin cytoskeleton plays an important role in organizing one of the two anthrax toxin receptors at the cell surface. Second, we found a cytosolic protein, β-arrestin, that is required to modify the intracellular part of the toxin receptor, to allow uptake. Finally, we directly show, for the first time, that anthrax toxin uptake is mediated by the so-called clathrin-dependent pathway, a very modular entry pathway, but that the toxin utilizes this pathway in an unconventional way.
Collapse
Affiliation(s)
- Laurence Abrami
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - Mirko Bischofberger
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - Béatrice Kunz
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - Romain Groux
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
27
|
Eby JC, Ciesla WP, Hamman W, Donato GM, Pickles RJ, Hewlett EL, Lencer WI. Selective translocation of the Bordetella pertussis adenylate cyclase toxin across the basolateral membranes of polarized epithelial cells. J Biol Chem 2010; 285:10662-70. [PMID: 20139088 DOI: 10.1074/jbc.m109.089219] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The catalytic domain of Bordetella pertussis adenylate cyclase toxin (ACT) translocates directly across the plasma membrane of mammalian cells to induce toxicity by the production of cAMP. Here, we use electrophysiology to examine the translocation of toxin into polarized epithelial cells that model the mucosal surfaces of the host. We find that both polarized T84 cell monolayers and human airway epithelial cultures respond to nanomolar concentrations of ACT when applied to basolateral membranes, with little or no response to toxin applied apically. The induction of toxicity is rapid and fully explained by increases in intracellular cAMP, consistent with toxin translocation directly across the basolateral membrane. Intoxication of T84 cells occurs in the absence of CD11b/CD18 or evidence of another specific membrane receptor, and it is not dependent on post-translational acylation of the toxin or on host cell membrane potential, both previously reported to be required for toxin action. Thus, elements of the basolateral membrane render epithelial cells highly sensitive to the entry of ACT in the absence of a specific receptor for toxin binding.
Collapse
Affiliation(s)
- Joshua C Eby
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Knapp O, Maier E, Benz R, Geny B, Popoff MR. Identification of the channel-forming domain of Clostridium perfringens Epsilon-toxin (ETX). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2584-93. [PMID: 19835840 DOI: 10.1016/j.bbamem.2009.09.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/17/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
Epsilon-toxin (ETX) is a potent toxin produced by Clostridium perfringens strains B and D. The bacteria are important pathogens in domestic animals and cause edema mediated by ETX. This toxin acts most likely by heptamer formation and rapid permeabilization of target cell membranes for monovalent anions and cations followed by a later entry of calcium. In this study, we compared the primary structure of ETX with that of the channel-forming stretches of a variety of binding components of A-B-types of toxins such as Anthrax protective antigen (PA), C2II of C2-toxin and Ib of Iota-toxin and found a remarkable homology to amino acids 151-180 of ETX. Site-directed mutagenesis of amino acids within the putative channel-forming domain resulted in changes of cytotoxicity and effects on channel characteristics in lipid bilayer experiments including changes of selectivity and partial channel block by methanethiosulfonate (MTS) reagents and antibodies against His(6)-tags from the trans-side of the lipid bilayer membranes.
Collapse
Affiliation(s)
- Oliver Knapp
- Department of Biotechnology, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|
29
|
Pacheco S, Gómez I, Arenas I, Saab-Rincon G, Rodríguez-Almazán C, Gill SS, Bravo A, Soberón M. Domain II loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a "ping pong" binding mechanism with Manduca sexta aminopeptidase-N and cadherin receptors. J Biol Chem 2009; 284:32750-7. [PMID: 19808680 DOI: 10.1074/jbc.m109.024968] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus thuringiensis Cry toxins are used worldwide as insecticides in agriculture, in forestry, and in the control of disease transmission vectors. In the lepidopteran Manduca sexta, cadherin (Bt-R(1)) and aminopeptidase-N (APN) function as Cry1A toxin receptors. The interaction with Bt-R(1) promotes cleavage of the amino-terminal end, including helix alpha-1 and formation of prepore oligomer that binds to APN, leading to membrane insertion and pore formation. Loops of domain II of Cry1Ab toxin are involved in receptor interaction. Here we show that Cry1Ab mutants located in domain II loop 3 are affected in binding to both receptors and toxicity against Manduca sexta larvae. Interaction with both receptors depends on the oligomeric state of the toxin. Monomers of loop 3 mutants were affected in binding to APN and to a cadherin fragment corresponding to cadherin repeat 12 but not with a fragment comprising cadherin repeats 7-12. In contrast, the oligomers of loop 3 mutants were affected in binding to both Bt-R(1) fragments but not to APN. Toxicity assays showed that either monomeric or oligomeric structures of Cry1Ab loop 3 mutations were severely affected in insecticidal activity. These data suggest that loop 3 is differentially involved in the binding with both receptor molecules, depending on the oligomeric state of the toxin and also that possibly a "ping pong" binding mechanism with both receptors is involved in toxin action.
Collapse
Affiliation(s)
- Sabino Pacheco
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Knapp O, Maier E, Mkaddem SB, Benz R, Bens M, Chenal A, Geny B, Vandewalle A, Popoff MR. Clostridium septicum alpha-toxin forms pores and induces rapid cell necrosis. Toxicon 2009; 55:61-72. [PMID: 19632260 DOI: 10.1016/j.toxicon.2009.06.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/25/2009] [Accepted: 06/29/2009] [Indexed: 11/25/2022]
Abstract
Alpha-toxin is the unique lethal virulent factor produced by Clostridium septicum, which causes traumatic or non-traumatic gas gangrene and necrotizing enterocolitis in humans. Here, we analyzed channel formation of the recombinant septicum alpha-toxin and characterized its activity on living cells. Recombinant septicum alpha-toxin induces the formation of ion-permeable channels with a single-channel conductance of about 175pS in 0.1M KCl in lipid bilayer membranes, which is typical for a large diffusion pore. Septicum alpha-toxin channels remained mostly in the open configuration, displayed no lipid specificity, and exhibited slight anion selectivity. Septicum alpha-toxin caused a rapid decrease in the transepithelial electrical resistance of MDCK cell monolayers grown on filters, and induced a rapid cell necrosis in a variety of cell lines, characterized by cell permeabilization to propidium iodide without DNA fragmentation and activation of caspase-3. Septicum alpha-toxin also induced a rapid K(+) efflux and ATP depletion. Incubation of the cells in K(+)-enriched medium delayed cell death caused by septicum alpha-toxin or epsilon-toxin, another potent pore-forming toxin, suggesting that the rapid loss of intracellular K(+) represents an early signal of pore-forming toxins-mediated cell necrosis.
Collapse
Affiliation(s)
- Oliver Knapp
- Institut Pasteur, Bactéries anaérobies et Toxines, 28 rue du Dr Roux, F-75724 Paris cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Castilho MCB, Castro TLA, Araújo VS, Trajano RS, Santos PA, Pimenta PMC, Lucheze K, Melo JTB, Gonçalves AM, Nogueira RT, de Luna MG, Freitas-Almeida AC. High frequency of hemolytic and cytotoxic activity in Aeromonas spp. isolated from clinical, food and environmental in Rio de Janeiro, Brazil. Antonie van Leeuwenhoek 2009; 96:53-61. [PMID: 19347601 DOI: 10.1007/s10482-009-9335-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 03/19/2009] [Indexed: 11/26/2022]
Abstract
Molecular study of aerolysin and cytotonic enterotoxin genes by PCR and colony blot hybridization was performed in 117 strains of Aeromonas spp. isolated from different sources. Homogeneous distribution of these genes in A. hydrophila complex strains was observed. For A. caviae and A. sobria complex strains, aerolysin genes were more frequent than cytotonic enterotoxins genes. Of 64 A. caviae complex strains, only one (1.5%) amplified the 451 bp product for the aer gene, however, the same primers detected a 400 bp product in 50 (78%) strains. This product was sequenced and had two short regions with homology to several hemolysin genes. The genotype aer (+)/aerA(+)/hly (+)/ast (+)/alt (+) was detected in six A. hydrophila strains from food and environmental source. The most common genotype found in A. hydrophila strains was hly (+) (85%) and aerA(+) (78.7%), while in A. caviae complex strains was aerA(+) (32.8%). All A. veronii complex sobria strains were aer (+)/aerA(+). All A. caviae and A. hydrophila were positive when tested with aer probe using the colony blot test. Thirty-seven percent of A. hydrophila and 53% of A. caviae tested were positive for ast probe. Eighty-nine percent of samples were cytotoxic in Vero cells. Our data demonstrated that Aeromonas spp. can harbor and express virulence genes and reinforce the potential of Aeromonas as a human pathogen.
Collapse
Affiliation(s)
- Magda C B Castilho
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Avenida 28 de setembro 87, 3o andar, Fundos, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Eyngor M, Chilmonczyk S, Zlotkin A, Manuali E, Lahav D, Ghittino C, Shapira R, Hurvitz A, Eldar A. Transcytosis ofStreptococcus iniaethrough skin epithelial barriers: anin vitrostudy. FEMS Microbiol Lett 2007; 277:238-48. [DOI: 10.1111/j.1574-6968.2007.00973.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
Singh R, Browning JL, Abi-Habib R, Wong K, Williams SA, Merchant R, Denmeade SR, Buckley TJ, Frankel AE. Recombinant prostate-specific antigen proaerolysin shows selective protease sensitivity and cell cytotoxicity. Anticancer Drugs 2007; 18:809-16. [PMID: 17581303 DOI: 10.1097/cad.0b013e3280bad82d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Native proaerolysin is a channel-forming bacterial protoxin that binds to cell-surface receptors and then is activated by furin or furin-like proteases. We genetically engineered proaerolysin by replacing the furin-cleavage sequence with a prostate-specific antigen-selective sequence. The recombinant modified proaerolysin was expressed and purified from Aeromonas salmonicida in good yields and purity. Recombinant modified proaerolysin had no furin sensitivity and markedly increased prostate-specific antigen sensitivity relative to wild-type proaerolysin. Human prostate cancer cells were significantly more sensitive to recombinant modified proaerolysin in the presence of active prostate-specific antigen when compared with the absence of prostate-specific antigen or the presence of potent prostate-specific antigen inhibitors. Most normal human cells with the exception of prostate and renal epithelial cells showed very low sensitivity to recombinant modified proaerolysin. Our results suggest that recombinant modified proaerolysin is a potent prostate-specific antigen-sensitive protoxin that deserves further development for regional therapy of benign and malignant prostate growths.
Collapse
Affiliation(s)
- Ravibhushan Singh
- Cancer Research Institute, Scott & White Memorial Hospital, 5701 South Airport Road, Temple, TX 76502, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chassin C, Bens M, de Barry J, Courjaret R, Bossu JL, Cluzeaud F, Ben Mkaddem S, Gibert M, Poulain B, Popoff MR, Vandewalle A. Pore-forming epsilon toxin causes membrane permeabilization and rapid ATP depletion-mediated cell death in renal collecting duct cells. Am J Physiol Renal Physiol 2007; 293:F927-37. [PMID: 17567938 DOI: 10.1152/ajprenal.00199.2007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Clostridium perfringens epsilon toxin (ET) is a potent pore-forming cytotoxin causing fatal enterotoxemia in livestock. ET accumulates in brain and kidney, particularly in the renal distal-collecting ducts. ET binds and oligomerizes in detergent-resistant membranes (DRMs) microdomains and causes cell death. However, the causal linkage between membrane permeabilization and cell death is not clear. Here, we show that ET binds and forms 220-kDa insoluble complexes in plasma membrane DRMs of renal mpkCCD(cl4) collecting duct cells. Phosphatidylinositol-specific phospholipase C did not impair binding or the formation of ET complexes, suggesting that the receptor for ET is not GPI anchored. ET induced a dose-dependent fall in the transepithelial resistance and potential in confluent cells grown on filters, transiently stimulated Na+ absorption, and induced an inward ionic current and a sustained rise in [Ca2+]i. ET also induced rapid depletion of cellular ATP, and stimulated the AMP-activated protein kinase, a metabolic-sensing Ser/Thr kinase. ET also induced mitochondrial membrane permeabilization and mitochondrial-nuclear translocation of apoptosis-inducing factor, a potent caspase-independent cell death effector. Finally, ET induced cell necrosis characterized by a marked reduction in nucleus size without DNA fragmentation. DRM disruption by methyl-beta-cyclodextrin impaired ET oligomerization, and significantly reduced the influx of Na+ and [Ca2+]i, but did not impair ATP depletion and cell death caused by the toxin. These findings indicate that ET causes rapid necrosis of renal collecting duct cells and establish that ATP depletion-mediated cell death is not strictly correlated with the plasma membrane permeabilization and ion diffusion caused by the toxin.
Collapse
Affiliation(s)
- C Chassin
- Institut National de la Santé et de la Recherche Médicale U773, Centre de Recherche Biomédicale Bichat-Beaujon CRB3, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Reig N, van der Goot FG. About lipids and toxins. FEBS Lett 2006; 580:5572-9. [PMID: 16962591 DOI: 10.1016/j.febslet.2006.08.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/08/2006] [Accepted: 08/09/2006] [Indexed: 11/25/2022]
Abstract
Many mono or multicellular organisms secrete soluble proteins, referred to as protein toxins, which alter the behavior of foreign, or target cells, possibly leading to their death. These toxins affect either the cell membrane by forming pores or modifying lipids, or some intracellular target. To reach this target, they must cross one of the cellular membranes, generally that of an intracellular organelle. As described in this minireview, lipids play crucial roles in the intoxication process of most if not all toxins, by allowing/promoting binding, endocytosis, trafficking and/or translocation into the cytoplasm.
Collapse
Affiliation(s)
- Núria Reig
- Ecole Polytechnique de Lausanne, Institute of Global Health, 1015 Lausanne, Switzerland
| | | |
Collapse
|
36
|
Blanco LP, DiRita VJ. Bacterial-associated cholera toxin and GM1 binding are required for transcytosis of classical biotype Vibrio cholerae through an in vitro M cell model system. Cell Microbiol 2006; 8:982-98. [PMID: 16681839 DOI: 10.1111/j.1462-5822.2005.00681.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To elucidate mechanisms involved in M cell uptake and transcytosis of Vibrio cholerae, we used an in vitro model of human M-like cells in a Caco-2 monolayer. Interspersed among the epithelial monolayer of Caco-2 cells we detect cells that display M-like features with or without prior lymphocyte treatment and we have established key parameters for V. cholerae transcytosis in this model. Cholera toxin (CT) mutants lacking the A subunit alone or both the A and B subunits were deficient for transcytosis. We explored this finding further and showed that expression of both subunits is required for binding by whole V. cholerae to immobilized CT receptor, the glycosphingolipid GM1. Confocal microscopy showed CT associated with transcytosing bacteria, and transcytosis was inhibited by pre-incubation with GM1 before infection. Finally, heat treatment of the bacterial cells caused a loss of binding to GM1 that was correlated with a significant decrease in uptake and transcytosis by the monolayer. Our data support a model in which the ability of bacteria to interact with GM1 in a CT-dependent fashion plays a critical role in transcytosis of V. cholerae by M cells.
Collapse
Affiliation(s)
- Luz P Blanco
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
37
|
Avisar D, Segal M, Sneh B, Zilberstein A. Cell-cycle-dependent resistance to Bacillus thuringiensis Cry1C toxin in Sf9 cells. J Cell Sci 2005; 118:3163-71. [PMID: 15985466 DOI: 10.1242/jcs.02440] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Sf9 cell line, derived from the moth Spodoptera frugiperda, is highly and specifically sensitive to the Bacillus thuringiensis Cry1C toxin. Upon exposure to Cry1C, ionic pores are formed in the plasma membrane leading to cell swelling and death. Here, we describe a unique transient tolerance to Cry1C of dividing cells, which allowed completion of the division process in the presence of Cry1C. Correlatively, arresting the cells at G2-M phase by nocodazole treatment rendered them insensitive to Cry1C. When the arresting agent was removed, the cells completed their division and gradually regained Cry1C sensitivity. In comparison to normal cells with 1-2% cell-division frequency, the M-phase arrested cells bound less toxin in binding assays. Moreover, no lipid rafts could be isolated from the membranes of M-phase arrested cells. Caveolin-1, identified here for the first time in insect cells, was immunodetected as a lipid raft component of normal cells, but was only present in the membrane-soluble fraction of G2-M-arrested cells. Thus M-phase-linked changes in lipid raft organization may account for diminished Cry1C binding and toxicity. Furthermore, considering the pivotal role of lipid rafts in different cell functions of many cell types, the lack of organized lipid rafts in dividing cells may transiently affect cell susceptibility to pathogens, toxins and other lipid raft-linked functions.
Collapse
Affiliation(s)
- Dror Avisar
- Department of Plant Sciences, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
38
|
Takahashi A, Tanoue N, Nakano M, Hamamoto A, Okamoto K, Fujii Y, Harada N, Nakaya Y. A pore-forming toxin produced by Aeromonas sobria activates Ca2+ dependent Cl- secretion. Microb Pathog 2005; 38:173-80. [PMID: 15797812 DOI: 10.1016/j.micpath.2005.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 01/14/2005] [Indexed: 11/22/2022]
Abstract
Bacteria produce many types of hemolysin that induce diarrhea by mechanisms that are not completely understood. Aeromonas sobria hemolysin (ASH) is a major virulence factor produced by A. sobria, a human pathogen that causes diarrhea. Since epithelial cells in the intestine are the primary targets of hemolysin, we investigated the effects of ASH on ion transport in human colonic epithelial (Caco-2) cells. ASH increased short-circuit currents (Isc) in a dose-dependent manner, and it also activated a 125I efflux from Caco-2 cells. ASH-induced Isc increases and 125I efflux activations were both suppressed by low Ca2+ levels in the extracellular solution or by pretreatment with the Ca2+ chlelator BAPTA-AM. Intracellular Ca2+ levels were increased by ASH in a biphasic fashion characterized by a rapid sharp increase (peak 1) followed by a sustained low plateau (peak 2). ASH-induced peak 1 was inhibited by pretreatment with pertussis toxin, indicating that Ca2+ was mobilized from intracellular stores, and peak 2 was induced by an influx of extracellular Ca2+. Peak 2 but not peak 1 was related to Cl- secretion. These results indicate that ASH activates Ca2+-dependent Cl- secretion.
Collapse
Affiliation(s)
- Akira Takahashi
- Department of Nutrition and Metabolism, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-5 Kuramoto-cho, Tokushima City, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tanoue N, Takahashi A, Okamoto K, Fujii Y, Taketani Y, Harada N, Nakano M, Nakaya Y. A pore-forming toxin produced by Aeromonas sobria activates cAMP-dependent Cl- secretory pathways to cause diarrhea. FEMS Microbiol Lett 2005; 242:195-201. [PMID: 15621437 DOI: 10.1016/j.femsle.2004.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 09/16/2004] [Accepted: 11/02/2004] [Indexed: 11/30/2022] Open
Abstract
Aeromonas sobria hemolysin (ASH) is one of the major virulence factors produced by A. sobria, a human pathogen that causes diarrhea. We investigated the effects of ASH on Cl(-) transport in human colonic epithelial cells. ASH increased short-circuit currents (Isc) and (125)I efflux from Caco-2 cells, indicating ASH activate Cl(-) secretion. Additions of inhibitors of cyclic AMP dependent Cl(-) channels, glybenclamide and NPPB suppressed the Isc and (125)I efflux increases induced by ASH. And ASH increased the intracellular cyclic AMP concentration. Moreover, ASH stimulated fluid accumulation in the iliac loop test, and glybenclamide and NPPB suppressed this fluid accumulation. Thus, cAMP-dependent Cl(-) secretory pathway could be related with diarrhea induced by A. sobria.
Collapse
Affiliation(s)
- Naomi Tanoue
- Department of Nutrition, School of Medicine, Tokushima University, 3-18-5 Kuramoto-cho, Tokushima City, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ullmann D, Krause G, Knabner D, Weber H, Beutin L. Isolation and Characterization of Potentially Human Pathogenic, Cytotoxin-producing Aeromonas Strains from Retailed Seafood in Berlin, Germany. ACTA ACUST UNITED AC 2005; 52:82-7. [PMID: 15752267 DOI: 10.1111/j.1439-0450.2005.00820.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The presence of potentially human pathogenic strains of Aeromonas was investigated in 84 samples of seafood which were purchased from retail traders in Berlin, Germany in spring 2000. A total of 134 Aeromonas strains were isolated on selective [GSP agar and Aeromonas (Ryan) agar] and unselective (standard count agar and enterohaemolysin agar) media from 27 (32.1%) of the samples and were classified as Aeromonas hydrophila (67.9%), A. caviae (26.1%) and A. sobria (6.0%) by biotyping. Thirteen (48.1%) of the 27 positive samples contained more than one species of Aeromonas. Production of haemolysins on enterohaemolysin agar was found with 132 (98.5%) of the strains at 28 degrees C and with 130 strains (97.0%) at 37 degrees C growth temperature. Vero cytotoxins were produced by 99 (73.9%) of the strains when grown at 28 degrees C but only by 24 of the strains (17.9%) at 37 degrees C. The latter strains were identified as A. hydrophila (n = 22) and A. sobria (n = 2) which came from 17 (20.2%) samples of raw seafood and from ready-to-eat salted herring 'Matjes' products. Cytotoxin-encoding genes for aerolysin (aer) and haemolysin A (hlyA) were investigated by PCR. Aer and hlyA genes were detected in both, strains which produced toxins only at 28 degrees C and strains which produced toxins at 37 degrees C. Our data indicate that raw seafood and ready-to-eat fish products can harbour potential human pathogenic, cytotoxin producing Aeromonas strains.
Collapse
Affiliation(s)
- D Ullmann
- Technische Fachhochschule Berlin, Fachbereich V, Lebensmitteltechnologie, D-10785 Berlin, Germany
| | | | | | | | | |
Collapse
|
41
|
Bravo A, Gómez I, Conde J, Muñoz-Garay C, Sánchez J, Miranda R, Zhuang M, Gill SS, Soberón M. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1667:38-46. [PMID: 15533304 DOI: 10.1016/j.bbamem.2004.08.013] [Citation(s) in RCA: 268] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 08/16/2004] [Accepted: 08/30/2004] [Indexed: 11/19/2022]
Abstract
Bacillus thuringiensis Cry1A toxins, in contrast to other pore-forming toxins, bind two putative receptor molecules, aminopeptidase N (APN) and cadherin-like proteins. Here we show that Cry1Ab toxin binding to these two receptors depends on the toxins' oligomeric structure. Toxin monomeric structure binds to Bt-R1, a cadherin-like protein, that induces proteolytic processing and oligomerization of the toxin (Gomez, I., Sanchez, J., Miranda, R., Bravo A., Soberon, M., FEBS Lett. (2002) 513, 242-246), while the oligomeric structure binds APN, which drives the toxin into the detergent-resistant membrane (DRM) microdomains causing pore formation. Cleavage of APN by phospholipase C prevented the location of Cry1Ab oligomer and Bt-R1 in the DRM microdomains and also attenuates toxin insertion into membranes despite the presence of Bt-R1. Immunoprecipitation experiments demonstrated that initial Cry1Ab toxin binding to Bt-R1 is followed by binding to APN. Also, immunoprecipitation of Cry1Ab toxin-binding proteins using pure oligomeric or monomeric structures showed that APN was more efficiently detected in samples immunoprecipitated with the oligomeric structure, while Bt-R1 was preferentially detected in samples immunoprecipitated with the monomeric Cry1Ab. These data agrees with the 200-fold higher apparent affinity of the oligomer than that of the monomer to an APN enriched protein extract. Our data suggest that the two receptors interact sequentially with different structural species of the toxin leading to its efficient membrane insertion.
Collapse
Affiliation(s)
- A Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, México.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Epple HJ, Mankertz J, Ignatius R, Liesenfeld O, Fromm M, Zeitz M, Chakraborty T, Schulzke JD. Aeromonas hydrophila beta-hemolysin induces active chloride secretion in colon epithelial cells (HT-29/B6). Infect Immun 2004; 72:4848-58. [PMID: 15271947 PMCID: PMC470692 DOI: 10.1128/iai.72.8.4848-4858.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diarrheal mechanisms in Aeromonas enteritis are not completely understood. In this study we investigated the effect of aeromonads and of their secretory products on ion secretion and barrier function of monolayers of human intestinal cells (HT-29/B6). Ion secretion was determined as a short-circuit current (I(SC)) of HT-29/B6 monolayers mounted in Ussing-type chambers. Transepithelial resistance (R(t)) served as a measure of permeability. A diarrheal strain of Aeromonas hydrophila (strain Sb) added to the mucosal side of HT-29/B6 monolayers induced a significant I(SC) (39 +/- 3 microA/cm(2)) and decreased the R(t) to approximately 10% of the initial value. A qualitatively identical response was obtained with sterile supernatant of strain Sb, and Aeromonas supernatant also induced a significant I(SC) in totally stripped human colon. Tracer flux and ion replacement studies revealed the I(SC) to be mainly accounted for by electrogenic Cl(-) secretion. Supernatant applied serosally completely abolished basal I(SC). The supernatant-induced I(SC) was inhibited by the protein kinase C inhibitor chelerythrine, whereas a protein kinase A inhibitor (H8) and a Ca(2+) chelator (BAPTA-AM) had no effect. Physicochemical properties indicated that the supernatant's active compound was an aerolysin-related Aeromonas beta-hemolysin. Accordingly, identical I(SC) and R(t) responses were obtained with Escherichia coli lysates harboring the cloned beta-hemolysin gene from strain SB or the aerA gene encoding for aerolysin. Sequence comparison revealed a 64% homology between aerolysin and the beta-hemolysin cloned from Aeromonas sp. strain Sb. In conclusion, beta-hemolysin secreted by pathogenic aeromonads induces active Cl(-) secretion in the intestinal epithelium, possibly by channel insertion into the apical membrane and by activation of protein kinase C.
Collapse
Affiliation(s)
- H J Epple
- Medical Clinic I, Gastroenterology, Infectiology, and Rheumatology, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hale ML, Marvaud JC, Popoff MR, Stiles BG. Detergent-resistant membrane microdomains facilitate Ib oligomer formation and biological activity of Clostridium perfringens iota-toxin. Infect Immun 2004; 72:2186-93. [PMID: 15039342 PMCID: PMC375178 DOI: 10.1128/iai.72.4.2186-2193.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens iota-toxin consists of two separate proteins identified as a cell binding protein, iota b (Ib), which forms high-molecular-weight complexes on cells generating Na(+)/K(+)-permeable pores through which iota a (Ia), an ADP-ribosyltransferase, presumably enters the cytosol. Identity of the cell receptor and membrane domains involved in Ib binding, oligomer formation, and internalization is currently unknown. In this study, Vero (toxin-sensitive) and MRC-5 (toxin-resistant) cells were incubated with Ib, after which detergent-resistant membrane microdomains (DRMs) were extracted with cold Triton X-100. Western blotting revealed that Ib oligomers localized in DRMs extracted from Vero, but not MRC-5, cells while monomeric Ib was detected in the detergent-soluble fractions of both cell types. The Ib protoxin, previously shown to bind Vero cells but not form oligomers or induce cytotoxicity, was detected only in the soluble fractions. Vero cells pretreated with phosphatidylinositol-specific phospholipase C before addition of Ib indicated that glycosylphosphatidyl inositol-anchored proteins were minimally involved in Ib binding or oligomer formation. While pretreatment of Vero cells with filipin (which sequesters cholesterol) had no effect, methyl-beta-cyclodextrin (which extracts cholesterol) reduced Ib binding and oligomer formation and delayed iota-toxin cytotoxicity. These studies showed that iota-toxin exploits DRMs for oligomer formation to intoxicate cells.
Collapse
Affiliation(s)
- Martha L Hale
- Toxinology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702-5011, USA.
| | | | | | | |
Collapse
|