1
|
Villar SR, Herreros-Cabello A, Callejas-Hernández F, Maza MC, Del Moral-Salmoral J, Gómez-Montes M, Rodríguez-Angulo HO, Carrillo I, Górgolas M, Bosch-Nicolau P, Molina I, Pérez-Molina JA, Monge-Maillo B, Bottasso OA, Beloscar J, Pérez AR, Fresno M, Gironès N. Discovery of circulating miRNAs as biomarkers of chronic Chagas heart disease via a small RNA-Seq approach. Sci Rep 2024; 14:1187. [PMID: 38216639 PMCID: PMC10786931 DOI: 10.1038/s41598-024-51487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024] Open
Abstract
Chagas disease affects approximately 7 million people worldwide in Latin America and is a neglected tropical disease. Twenty to thirty percent of chronically infected patients develop chronic Chagas cardiomyopathy decades after acute infection. Identifying biomarkers of Chagas disease progression is necessary to develop better therapeutic and preventive strategies. Circulating microRNAs are increasingly reliable biomarkers of disease and therapeutic targets. To identify new circulating microRNAs for Chagas disease, we performed exploratory small RNA sequencing from the plasma of patients and performed de novo miRNA prediction, identifying potential new microRNAs. The levels of the new microRNAs temporarily named miR-Contig-1519 and miR-Contig-3244 and microRNAs that are biomarkers for nonchagasic cardiomyopathies, such as miR-148a-3p and miR-224-5p, were validated by quantitative reverse transcription. We found a specific circulating microRNA signature defined by low miR-Contig-3244, miR-Contig-1519, and miR-148a-3 levels but high miR-224-5p levels for patients with chronic Chagas disease. Finally, we predicted in silico that these altered circulating microRNAs could affect the expression of target genes involved in different cellular pathways and biological processes, which we will explore in the future.
Collapse
Affiliation(s)
- Silvina R Villar
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Rosario, Argentina
| | - Alfonso Herreros-Cabello
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Francisco Callejas-Hernández
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - María C Maza
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Javier Del Moral-Salmoral
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Mario Gómez-Montes
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | | | - Irene Carrillo
- Division of Infectious Diseases, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Górgolas
- Division of Infectious Diseases, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pau Bosch-Nicolau
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Israel Molina
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José A Pérez-Molina
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRICYS, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Begoña Monge-Maillo
- National Referral Unit for Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRICYS, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar A Bottasso
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Rosario, Argentina
| | - Juan Beloscar
- Cátedra y Servicio de Cardiología, Sección Chagas, Hospital Provincial del Centenario, Rosario, Argentina
| | - Ana R Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Rosario, Argentina
| | - Manuel Fresno
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Instituto Universitario de Biología Molecular, Universidad Autónoma de Madrid (IUBM-UAM), Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Madrid, Spain
| | - Núria Gironès
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
- Instituto Universitario de Biología Molecular, Universidad Autónoma de Madrid (IUBM-UAM), Madrid, Spain.
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Madrid, Spain.
| |
Collapse
|
2
|
Kaufman CD, Farré C, Biscari L, Pérez AR, Alloatti A. Trypanosoma cruzi, Chagas disease and cancer: putting together the pieces of a complex puzzle. Front Cell Dev Biol 2023; 11:1260423. [PMID: 38188016 PMCID: PMC10768204 DOI: 10.3389/fcell.2023.1260423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Considering the extensive and widespread impact on individuals, cancer can presently be categorized as a pandemic. In many instances, the development of tumors has been linked to endemic microbe infections. Among parasitic infections, Trypanosoma cruzi stands out as one of the most extensively discussed protozoans in the literature that explores the association between diseases of parasite origin and cancer. However, the effective association remains an unsolved paradox. Both the parasite, along with protozoan-derived molecules, and the associated antiparasitic immune response can induce alterations in various host cell pathways, leading to modifications in cell cycle, metabolism, glycosylation, DNA mutations, or changes in neuronal signaling. Furthermore, the presence of the parasite can trigger cell death or a senescent phenotype and modulate the immune system, the metastatic cascade, and the formation of new blood vessels. The interaction among the parasite (and its molecules), the host, and cancer undoubtedly encompasses various mechanisms that operate differentially depending on the context. Remarkably, contrary to expectations, the evidence tilts the balance toward inhibiting tumor growth or resisting tumor development. This effect is primarily observed in malignant cells, rather than normal cells, indicating a selective or specific component. Nevertheless, nonspecific bystander mechanisms, such as T. cruzi's adjuvancy or the presence of proinflammatory cytokines, may also play a significant role in this phenomenon. This work aims to elucidate this complex scenario by synthesizing the main findings presented in the literature and by proposing new questions and answers, thereby adding pieces to this challenging puzzle.
Collapse
Affiliation(s)
- Cintia Daniela Kaufman
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Cecilia Farré
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lucía Biscari
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Ana Rosa Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Andrés Alloatti
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
3
|
Tayama Y, Mizukami S, Toume K, Komatsu K, Yanagi T, Nara T, Tieu P, Huy NT, Hamano S, Hirayama K. Anti-Trypanosoma cruzi activity of Coptis rhizome extract and its constituents. Trop Med Health 2023; 51:12. [PMID: 36859380 PMCID: PMC9976467 DOI: 10.1186/s41182-023-00502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Current therapeutic agents, including nifurtimox and benznidazole, are not sufficiently effective in the chronic phase of Trypanosoma cruzi infection and are accompanied by various side effects. In this study, 120 kinds of extracts from medicinal herbs used for Kampo formulations and 94 kinds of compounds isolated from medicinal herbs for Kampo formulations were screened for anti-T. cruzi activity in vitro and in vivo. METHODS As an experimental method, a recombinant protozoan cloned strain expressing luciferase, namely Luc2-Tulahuen, was used in the experiments. The in vitro anti-T. cruzi activity on epimastigote, trypomastigote, and amastigote forms was assessed by measuring luminescence intensity after treatment with the Kampo extracts or compounds. In addition, the cytotoxicity of compounds was tested using mouse and human feeder cell lines. The in vivo anti-T. cruzi activity was measured by a murine acute infection model using intraperitoneal injection of trypomastigotes followed by live bioluminescence imaging. RESULTS As a result, three protoberberine-type alkaloids, namely coptisine chloride, dehydrocorydaline nitrate, and palmatine chloride, showed strong anti-T. cruzi activities with low cytotoxicity. The IC50 values of these compounds differed depending on the side chain, and the most effective compound, coptisine chloride, showed a significant effect in the acute infection model. CONCLUSIONS For these reasons, coptisine chloride is a hit compound that can be a potential candidate for anti-Chagas disease drugs. In addition, it was expected that there would be room for further improvement by modifying the side chains of the basic skeleton.
Collapse
Affiliation(s)
- Yuki Tayama
- grid.174567.60000 0000 8902 2273Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ,grid.174567.60000 0000 8902 2273Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Shusaku Mizukami
- grid.174567.60000 0000 8902 2273Department of Immune Regulation, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan ,grid.174567.60000 0000 8902 2273School of Tropical Medicines and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ,grid.174567.60000 0000 8902 2273The Joint Usage/Research Center On Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523 Japan
| | - Kazufumi Toume
- grid.267346.20000 0001 2171 836XSection of Pharmacognosy, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Katsuko Komatsu
- grid.267346.20000 0001 2171 836XSection of Pharmacognosy, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Tetsuo Yanagi
- grid.174567.60000 0000 8902 2273NEKKEN Bio-Resource Center (NBRC), Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan ,grid.174567.60000 0000 8902 2273The Joint Usage/Research Center On Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523 Japan
| | - Takeshi Nara
- grid.411789.20000 0004 0371 1051Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima Japan
| | - Paul Tieu
- grid.25073.330000 0004 1936 8227Faculty of Health Sciences, McMaster University, Hamilton, ON Canada ,Online Research Club, Nagasaki, Japan
| | - Nguyen Tien Huy
- grid.174567.60000 0000 8902 2273Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ,grid.174567.60000 0000 8902 2273School of Tropical Medicines and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ,Online Research Club, Nagasaki, Japan
| | - Shinjiro Hamano
- grid.174567.60000 0000 8902 2273Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ,grid.174567.60000 0000 8902 2273Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan ,grid.174567.60000 0000 8902 2273The Joint Usage/Research Center On Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523 Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,School of Tropical Medicines and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,The Joint Usage/Research Center On Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan.
| |
Collapse
|
4
|
Volpini X, Natali L, Brugo MB, de la Cruz-Thea B, Baigorri RE, Cerbán FM, Fozzatti L, Motran CC, Musri MM. Trypanosoma cruzi Infection Promotes Vascular Remodeling and Coexpression of α-Smooth Muscle Actin and Macrophage Markers in Cells of the Aorta. ACS Infect Dis 2022; 8:2271-2290. [PMID: 36083791 DOI: 10.1021/acsinfecdis.2c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Chagas disease is an emerging global health problem; however, it remains neglected. Increased aortic stiffness (IAS), a predictor of cardiovascular events, has recently been reported in asymptomatic chronic Chagas patients. After vascular injury, smooth muscle cells (SMCs) can undergo alterations associated with phenotypic switch and transdifferentiation, promoting vascular remodeling and IAS. By studying different mouse aortic segments, we tested the hypothesis that Trypanosoma cruzi infection promotes vascular remodeling. Interestingly, the thoracic aorta was the most affected by the infection. Decreased expression of SMC markers and increased expression of proliferative markers were observed in the arteries of acutely infected mice. In acutely and chronically infected mice, we observed cells coexpressing SMC and macrophage (Mo) markers in the media and adventitia layers of the aorta, indicating that T. cruzi might induce cellular processes associated with SMC transdifferentiation into Mo-like cells or vice versa. In the adventitia, the Mo cell functional polarization was associated with an M2-like CD206+arginase-1+ phenotype despite the T. cruzi presence in the tissue. Only Mo-like cells in inflammatory foci were CD206+iNOS+. In addition to the disorganization of elastic fibers, we found thickening of the aortic layers during the acute and chronic phases of the disease. Our findings indicate that T. cruzi infection induces a vascular remodeling with SMC dedifferentiation and increased cell populations coexpressing α-SMA and Mo markers that could be associated with IAS promotion. These data highlight the importance of studying large vessel homeostasis in Chagas disease.
Collapse
Affiliation(s)
- Ximena Volpini
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra. Consejo Nacional de Investigaciones Científicas y Tecnicas. Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Friuli 2434. Colinas de Velez Sarfield, Córdoba, PC X5016NST, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Lautaro Natali
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra. Consejo Nacional de Investigaciones Científicas y Tecnicas. Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Friuli 2434. Colinas de Velez Sarfield, Córdoba, PC X5016NST, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Maria Belén Brugo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Benjamin de la Cruz-Thea
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra. Consejo Nacional de Investigaciones Científicas y Tecnicas. Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Friuli 2434. Colinas de Velez Sarfield, Córdoba, PC X5016NST, Argentina
| | - Ruth Eliana Baigorri
- Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Fabio Marcelo Cerbán
- Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Laura Fozzatti
- Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Claudia Cristina Motran
- Centro de Investigaciones en Bioquímica Clínica e Inmunología. Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Haya de la Torre y Medina Allende. Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (FCQ-UNC). Ciudad Universitaria, Córdoba, PC X5000HUA, Argentina
| | - Melina Mara Musri
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra. Consejo Nacional de Investigaciones Científicas y Tecnicas. Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Friuli 2434. Colinas de Velez Sarfield, Córdoba, PC X5016NST, Argentina.,Departamento de Fisiología, Facultad de Ciencias Exactas Físicas y Naturales. Universidad Nacional de Córdoba (FCEFyN-UNC). Av. Velez Sarfield 299, Centro, Córdoba, PC X5000JJC, Argentina
| |
Collapse
|
5
|
Trypanosoma cruzi Exploits E- and P-Selectins to Migrate Across Endothelial Cells and Extracellular Matrix Proteins. Infect Immun 2021; 89:e0017821. [PMID: 34228487 DOI: 10.1128/iai.00178-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Chagas disease parasite Trypanosoma cruzi must extravasate to home in on susceptible cells residing in most tissues. It remains unknown how T. cruzi undertakes this crucial step of its life cycle. We hypothesized that the pathogen exploits the endothelial cell programming leukocytes use to extravasate to sites of inflammation. Transendothelial migration (TEM) starts after inflammatory cytokines induce E-selectin expression and P-selectin translocation on endothelial cells (ECs), enabling recognition by leukocyte ligands that engender rolling cell adhesion. Here we show that T. cruzi upregulates E- and P-selectins in cardiac ECs to which it binds in a ligand-receptor fashion, whether under static or shear flow conditions. Glycoproteins isolated from T. cruzi (TcEx) specifically recognize P-selectin in a ligand-receptor interaction. As with leukocytes, binding of P-selectin to T. cruzi or TcEx requires sialic acid and tyrosine sulfate, which are pivotal for downstream migration across ECs and extracellular matrix proteins. Additionally, soluble selectins, which bind T. cruzi, block transendothelial migration dose-dependently, implying that the pathogen bears selectin-binding ligand(s) that start transmigration. Furthermore, function-blocking antibodies against E- and P-selectins, which act on endothelial cells and not T. cruzi, are exquisite in preventing TEM. Thus, our results show that selectins can function as mediators of T. cruzi transendothelial transmigration, suggesting a pathogenic mechanism that allows homing in of the parasite on targeted tissues. As selectin inhibitors are sought-after therapeutic targets for autoimmune diseases and cancer metastasis, they may similarly represent a novel strategy for Chagas disease therapy.
Collapse
|
6
|
Nájera CA, Batista MF, Meneghelli I, Bahia D. Mixed signals - how Trypanosoma cruzi exploits host-cell communication and signaling to establish infection. J Cell Sci 2021; 134:134/5/jcs255687. [PMID: 33692153 DOI: 10.1242/jcs.255687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chagas disease (American trypanosomiasis) is a 'neglected' pathology that affects millions of people worldwide, mainly in Latin America. Trypanosoma cruzi, the causative agent, is an obligate intracellular parasite with a complex and diverse biology that infects several mammalian species, including humans. Because of genetic variability among strains and the presence of four biochemically and morphologically distinct parasite forms, the outcome of T. cruzi infection varies considerably depending on host cell type and parasite strain. During the initial contact, cellular communication is established by host-recognition-mediated responses, followed by parasite adherence and penetration. For this purpose, T. cruzi expresses a variety of proteins that modify the host cell, enabling it to safely reach the cytoplasm. After entry into the host cell, T. cruzi forms a transitory structure termed 'parasitophorous vacuole' (PV), followed by its cytoplasmic replication and differentiation after PV rupture, and subsequent invasion of other cells. The success of infection, maintenance and survival inside host cells is facilitated by the ability of T. cruzi to subvert various host signaling mechanisms. We focus in this Review on the various mechanisms that induce host cytoskeletal rearrangements, activation of autophagy-related proteins and crosstalk among major immune response regulators, as well as recent studies on the JAK-STAT pathway.
Collapse
Affiliation(s)
- Carlos Acides Nájera
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 486, Brazil
| | - Marina Ferreira Batista
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 486, Brazil
| | - Isabela Meneghelli
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 486, Brazil
| | - Diana Bahia
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 486, Brazil
| |
Collapse
|
7
|
Pimentel PMDO, de Assis DRR, Gualdrón-Lopez M, Barroso A, Brant F, Leite PG, de Lima Oliveira BC, Esper L, McKinnie SMK, Vederas JC, do Nascimento Cordeiro M, Dos Reis PVM, Teixeira MM, de Castro Pimenta AM, Borges MH, de Lima ME, Machado FS. Tityus serrulatus scorpion venom as a potential drug source for Chagas' disease: Trypanocidal and immunomodulatory activity. Clin Immunol 2021; 226:108713. [PMID: 33711450 DOI: 10.1016/j.clim.2021.108713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/19/2021] [Accepted: 03/06/2021] [Indexed: 11/19/2022]
Abstract
Current chemical therapies for Chagas Disease (CD) lack ability to clear Trypanosoma cruzi (Tc) parasites and cause severe side effects, making search for new strategies extremely necessary. We evaluated the action of Tityus serrulatus venom (TsV) components during Tc infection. TsV treatment increased nitric oxide and pro-inflammatory cytokine production by Tc-infected macrophages (MØ), decreased intracellular parasite replication and trypomastigotes release, also triggering ERK1/2, JNK1/2 and p38 activation. Ts7 demonstrated the highest anti-Tc activity, inducing high levels of TNF and IL-6 in infected MØ. TsV/Ts7 presented synergistic effect on p38 activation when incubated with Tc antigen. KPP-treatment of MØ also decreased trypomastigotes releasing, partially due to p38 activation. TsV/Ts7-pre-incubation of Tc demonstrated a direct effect on parasite decreasing MØ-trypomastigotes releasing. In vivo KPP-treatment of Tc-infected mice resulted in decreased parasitemia. Summarizing, this study opens perspectives for new bioactive molecules as CD-therapeutic treatment, demonstrating the TsV/Ts7/KPP-trypanocidal and immunomodulatory activity during Tc infection.
Collapse
Affiliation(s)
| | - Diego Rodney Rodrigues de Assis
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Melisa Gualdrón-Lopez
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Andréia Barroso
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Program in Health Sciences: Infectious Diseases and Tropical Medicine/Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fátima Brant
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Program in Health Sciences: Infectious Diseases and Tropical Medicine/Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paulo Gaio Leite
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Cabral de Lima Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lisia Esper
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Program in Health Sciences: Infectious Diseases and Tropical Medicine/Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Shaun M K McKinnie
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Pablo Victor Mendes Dos Reis
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Program in Health Sciences: Infectious Diseases and Tropical Medicine/Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adriano Monteiro de Castro Pimenta
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Maria Elena de Lima
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Santa Casa BH: Instituto de Ensino e Pesquisa, Belo Horizonte, Brazil
| | - Fabiana Simão Machado
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Program in Health Sciences: Infectious Diseases and Tropical Medicine/Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
8
|
Trypanosoma cruzi Modulates PIWI-Interacting RNA Expression in Primary Human Cardiac Myocytes during the Early Phase of Infection. Int J Mol Sci 2020; 21:ijms21249439. [PMID: 33322418 PMCID: PMC7764157 DOI: 10.3390/ijms21249439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/28/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Trypanosoma cruzi dysregulates the gene expression profile of primary human cardiomyocytes (PHCM) during the early phase of infection through a mechanism which remains to be elucidated. The role that small non-coding RNAs (sncRNA) including PIWI-interacting RNA (piRNA) play in regulating gene expression during the early phase of infection is unknown. To understand how T. cruzi dysregulate gene expression in the heart, we challenged PHCM with T. cruzi trypomastigotes and analyzed sncRNA, especially piRNA, by RNA-sequencing. The parasite induced significant differential expression of host piRNAs, which can target and regulate the genes which are important during the early infection phase. An average of 21,595,866 (88.40%) of clean reads mapped to the human reference genome. The parasite induced 217 unique piRNAs that were significantly differentially expressed (q ≥ 0.8). Of these differentially expressed piRNAs, 6 were known and 211 were novel piRNAs. In silico analysis showed that some of the dysregulated known and novel piRNAs could target and potentially regulate the expression of genes including NFATC2, FOS and TGF-β1, reported to play important roles during T. cruzi infection. Further evaluation of the specific functions of the piRNAs in the regulation of gene expression during the early phase of infection will enhance our understanding of the molecular mechanism of T. cruzi pathogenesis. Our novel findings constitute the first report that T. cruzi can induce differential expression of piRNAs in PHCM, advancing our knowledge about the involvement of piRNAs in an infectious disease model, which can be exploited for biomarker and therapeutic development.
Collapse
|
9
|
Varikuti S, Jha BK, Holcomb EA, McDaniel JC, Karpurapu M, Srivastava N, McGwire BS, Satoskar AR, Parinandi NL. The role of vascular endothelium and exosomes in human protozoan parasitic diseases. ACTA ACUST UNITED AC 2020; 4. [PMID: 33089078 PMCID: PMC7575144 DOI: 10.20517/2574-1209.2020.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The vascular endothelium is a vital component in maintaining the structure and function of blood vessels. The endothelial cells (ECs) mediate vital regulatory functions such as the proliferation of cells, permeability of various tissue membranes, and exchange of gases, thrombolysis, blood flow, and homeostasis. The vascular endothelium also regulates inflammation and immune cell trafficking, and ECs serve as a replicative niche for many bacterial, viral, and protozoan infectious diseases. Endothelial dysfunction can lead to vasodilation and pro-inflammation, which are the hallmarks of many severe diseases. Exosomes are nanoscale membrane-bound vesicles that emerge from cells and serve as important extracellular components, which facilitate communication between cells and maintain homeostasis during normal and pathophysiological states. Exosomes are also involved in gene transfer, inflammation and antigen presentation, and mediation of the immune response during pathogenic states. Protozoa are a diverse group of unicellular organisms that cause many infectious diseases in humans. In this regard, it is becoming increasingly evident that many protozoan parasites (such as Plasmodium, Trypanosoma, Leishmania, and Toxoplasma) utilize exosomes for the transfer of their virulence factors and effector molecules into the host cells, which manipulate the host gene expression, immune responses, and other biological activities to establish and modulate infection. In this review, we discuss the role of the vascular endothelium and exosomes in and their contribution to pathogenesis in malaria, African sleeping sickness, Chagas disease, and leishmaniasis and toxoplasmosis with an emphasis on their actions on the innate and adaptive immune mechanisms of resistance.
Collapse
Affiliation(s)
- Sanjay Varikuti
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA.,Department of Bioscience & Biotechnology, Banasthali University, Banasthali 304022, India
| | - Bijay Kumar Jha
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Erin A Holcomb
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Jodi C McDaniel
- College of Nursing, The Ohio State University, Columbus, OH 43201, USA
| | - Manjula Karpurapu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Nidhi Srivastava
- Department of Bioscience & Biotechnology, Banasthali University, Banasthali 304022, India
| | - Bradford S McGwire
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Abhay R Satoskar
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Narasimham L Parinandi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| |
Collapse
|
10
|
Role of FAK signaling in chagasic cardiac hypertrophy. Braz J Infect Dis 2020; 24:386-397. [PMID: 32931757 PMCID: PMC9392126 DOI: 10.1016/j.bjid.2020.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/03/2020] [Accepted: 08/16/2020] [Indexed: 12/27/2022] Open
Abstract
Cardiac hypertrophy and dysfunction are a significant complication of chronic Chagas disease, with heart failure, stroke, and sudden death related to disease progression. Thus, understanding the signaling pathways involved in the chagasic cardiac hypertrophy may provide potential targets for pharmacological therapy. Herein, we investigated the implication of focal adhesion kinase (FAK) signaling pathway in triggering hypertrophic phenotype during acute and chronic T. cruzi infection. C57BL/6 mice infected with T. cruzi (Brazil strain) were evaluated for electrocardiographic (ECG) changes, plasma levels of endothelin-1 (ET-1) and activation of signaling pathways involved in cardiac hypertrophy, including FAK and ERK1/2, as well as expression of hypertrophy marker and components of the extracellular matrix in the different stages of T. cruzi infection (60-210 dpi). Heart dysfunction, evidenced by prolonged PR interval and decrease in heart rates in ECG tracing, was associated with high plasma ET-1 level, extracellular matrix remodeling and FAK signaling activation. Upregulation of both FAK tyrosine 397 (FAK-Y397) and serine 910 (FAK-S910) residues phosphorylation as well as ERK1/2 activation, lead to an enhancement of atrial natriuretic peptide gene expression in chronic infection. Our findings highlight FAK-ERK1/2 signaling as a regulator of cardiac hypertrophy in Trypanosoma cruzi infection. Both mechanical stress, induced by cardiac extracellular matrix (ECM) augment and cardiac overload, and ET-1 stimuli orchestrated FAK signaling activation with subsequent activation of the fetal cardiac gene program in the chronic phase of infection, highlighting FAK as an attractive target for Chagas disease therapy.
Collapse
|
11
|
Maurya R, Bhattacharya P, Dey R, Nakhasi HL. Leptin Functions in Infectious Diseases. Front Immunol 2018; 9:2741. [PMID: 30534129 PMCID: PMC6275238 DOI: 10.3389/fimmu.2018.02741] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/07/2018] [Indexed: 01/26/2023] Open
Abstract
Leptin, a pleiotropic protein has long been recognized to play an important role in the regulation of energy homeostasis, metabolism, neuroendocrine function, and other physiological functions through its effects on the central nervous system (CNS) and peripheral tissues. Leptin is secreted by adipose tissue and encoded by the obese (ob) gene. Leptin acts as a central mediator which regulates immunity as well as nutrition. Importantly, leptin can modulate both innate and adaptive immune responses. Leptin deficiency/resistance is associated with dysregulation of cytokine production, increased susceptibility toward infectious diseases, autoimmune disorders, malnutrition and inflammatory responses. Malnutrition induces a state of immunodeficiency and an inclination to death from communicable diseases. Infectious diseases are the disease of poor who invariably suffer from malnutrition that could result from reduced serum leptin levels. Thus, leptin has been placed at the center of many interrelated functions in various pathogenic conditions, such as bacterial, viruses and parasitic infections. We review herein, the recent advances on the role of leptin in malnutrition in pathogenesis of infectious diseases with a particular emphasis on parasitic diseases such as Leishmaniasis, Trypanosomiasis, Amoebiasis, and Malaria.
Collapse
Affiliation(s)
- Radheshyam Maurya
- Department of Animal Biology, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
12
|
Libisch MG, Faral-Tello P, Garg NJ, Radi R, Piacenza L, Robello C. Early Trypanosoma cruzi Infection Triggers mTORC1-Mediated Respiration Increase and Mitochondrial Biogenesis in Human Primary Cardiomyocytes. Front Microbiol 2018; 9:1889. [PMID: 30166980 PMCID: PMC6106620 DOI: 10.3389/fmicb.2018.01889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022] Open
Abstract
Chagasic chronic cardiomyopathy is one of the most frequent and severe manifestations of Chagas disease, caused by the parasite Trypanosoma cruzi. The pathogenic and biochemical mechanisms responsible for cardiac lesions remain not completely understood, although it is clear that hypertrophy and subsequent heart dilatation is in part caused by the direct infection of cardiomyocytes. In this work, we evaluated the initial response of human cardiomyocytes to T. cruzi infection by transcriptomic profiling. Immediately after infection, cardiomyocytes dramatically change their gene expression patterns, up regulating most of the genes encoding for respiratory chain, oxidative phosphorylation and protein synthesis. We found that these changes correlate with an increase in basal and maximal respiration, as well as in spare respiratory capacity, which is accompanied by mitochondrial biogenesis pgc-1α independent. We also demonstrate that these changes are mediated by mTORC1 and reversed by rapamycin, resembling the molecular mechanisms described for the non-chagasic hypertrophic cardiomyopathy. The results of the present work identify that early during infection, the activation of mTORC1, mitochondrial biogenesis and improvement in oxidative phosphorylation are key biochemical changes that provide new insights into the host response to parasite infection and the pathogenesis of chronic chagasic cardiomyopathy. The finding that this phenotype can be reversed opens a new perspective in the treatment of Chagas disease, through the identification of host targets, and the use of combined parasite and host targeted therapies, in order to prevent chagasic cardiomyopathy.
Collapse
Affiliation(s)
- M Gabriela Libisch
- Laboratory of Host-Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Paula Faral-Tello
- Laboratory of Host-Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nisha J Garg
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Rafael Radi
- Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Piacenza
- Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carlos Robello
- Laboratory of Host-Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
13
|
Guasconi L, Burstein VL, Beccacece I, Mena C, Chiapello LS, Masih DT. Dectin-1 on macrophages modulates the immune response to Fasciola hepatica products through the ERK signaling pathway. Immunobiology 2018; 223:834-838. [PMID: 30197196 DOI: 10.1016/j.imbio.2018.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/05/2018] [Accepted: 08/08/2018] [Indexed: 01/15/2023]
Abstract
Fasciolosis is a zoonotic disease of increasing importance due to its worldwide distribution and elevated economic losses. Previously, we demonstrated that Fasciola hepatica excretory-secretory products (FhESP) induce immunomodulatory effects on peritoneal macrophages in a Dectin-1 dependent manner. In this study, we observed that peritoneal macrophages from naive BALB/c mice stimulated in vitro with FhESP presented increased expression levels of phosphorylated extracellular-signal-regulated kinase (ERK), and this effect was dependent on Syk, protein kinase C (PKC) and Dectin-1. In this sense, we observed increased levels of arginase activity, IL-10 and TGF-β in macrophages stimulated with FhESP, which were dependent on PKC and ERK. Furthermore, we observed that the increased arginase activity, as well as in TGF-β and IL-10 levels, was partially dependent on IL-10 receptor signaling in macrophages that were pre-incubated with anti-IL10R before being stimulated with FhESP. Taken together, these results suggest the participation of Dectin-1 and Syk in FhESP interaction with peritoneal macrophages and the possible role of ERK and IL-10 in downstream signaling pathways involved in the immunomodulatory effects induced by Fasciola hepatica products.
Collapse
Affiliation(s)
- Lorena Guasconi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Argentina.
| | - Verónica L Burstein
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Argentina
| | - Ignacio Beccacece
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Argentina
| | - Cristian Mena
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Argentina
| | - Laura S Chiapello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Argentina
| | - Diana Teresa Masih
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET), Argentina
| |
Collapse
|
14
|
Lee J, Kang JM, Kim TI, Kim JH, Sohn HJ, Na BK, Shin HJ. Excretory and Secretory Proteins of Naegleria fowleri Induce Inflammatory Responses in BV-2 Microglial Cells. J Eukaryot Microbiol 2016; 64:183-192. [PMID: 27480446 DOI: 10.1111/jeu.12350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/24/2016] [Accepted: 07/26/2016] [Indexed: 01/01/2023]
Abstract
Naegleria fowleri, a free-living amoeba that is found in diverse environmental habitats, can cause a type of fulminating hemorrhagic meningoencephalitis, primary amoebic meningoencephalitis (PAM), in humans. The pathogenesis of PAM is not fully understood, but it is likely to be primarily caused by disruption of the host's nervous system via a direct phagocytic mechanism by the amoeba. Naegleria fowleri trophozoites are known to secrete diverse proteins that may indirectly contribute to the pathogenic function of the amoeba, but this factor is not clearly understood. In this study, we analyzed the inflammatory responses in BV-2 microglial cells induced by excretory and secretory proteins of N. fowleri (NfESP). Treatment of BV-2 cells with NfESP induced the expression of various cytokines and chemokines, including the proinflammatory cytokines IL-1α and TNF-α. NfESP-induced IL-1α and TNF-α expression in BV-2 cells were regulated by p38, JNK, and ERK MAPKs. NfESP-induced IL-1α and TNF-α production in BV-2 cells were effectively downregulated by inhibition of NF-kB and AP-1. These results collectively suggest that NfESP stimulates BV-2 cells to release IL-1α and TNF-α via NF-kB- and AP-1-dependent MAPK signaling pathways. The released cytokines may contribute to inflammatory responses in microglia and other cell types in the brain during N. fowleri infection.
Collapse
Affiliation(s)
- Jinyoung Lee
- Department of Parasitology and Tropical Medicine, Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, 52727, Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, 52727, Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Korea
| | - Tae Im Kim
- Department of Parasitology and Tropical Medicine, Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, 52727, Korea
| | - Jong-Hyun Kim
- Department of Parasitology, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Hae-Jin Sohn
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Korea.,Department of Biomedical Science, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, 52727, Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Korea
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University School of Medicine, Suwon, 16499, Korea.,Department of Biomedical Science, Ajou University School of Medicine, Suwon, 16499, Korea
| |
Collapse
|
15
|
TGF-β receptor type II costameric localization in cardiomyocytes and host cell TGF-β response is disrupted by Trypanosoma cruzi infection. Parasitology 2016; 143:704-15. [DOI: 10.1017/s0031182016000299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYTransforming growth factor beta (TGF-β) cytokine is involved in Chagas disease establishment and progression. Since Trypanosoma cruzi can modulate host cell receptors, we analysed the TGF-β receptor type II (TβRII) expression and distribution during T. cruzi – cardiomyocyte interaction. TβRII immunofluorescent staining revealed a striated organization in cardiomyocytes, which was co-localized with vinculin costameres and enhanced (38%) after TGF-β treatment. Cytochalasin D induced a decrease of 45·3% in the ratio of cardiomyocytes presenting TβRII striations, demonstrating an association of TβRII with the cytoskeleton. Western blot analysis showed that cytochalasin D significantly inhibited Smad 2 phosphorylation and fibronectin stimulation after TGF-β treatment in cardiomyocytes. Trypanosoma cruzi infection elicited a decrease of 79·8% in the frequency of cardiomyocytes presenting TβRII striations, but did not interfere significantly in its expression. In addition, T. cruzi-infected cardiomyocytes present a lower response to exogenous TGF-β, showing no enhancement of TβRII striations and a reduction of phosphorylated Smad 2, with no significant difference in TβRII expression when compared to uninfected cells. Together, these results suggest that the co-localization of TβRII with costameres is important in activating the TGF-β signalling cascade, and that T. cruzi-derived cytoskeleton disorganization could result in altered or low TGF-β response in infected cardiomyocytes.
Collapse
|
16
|
Soares-Silva M, Diniz FF, Gomes GN, Bahia D. The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids. Front Microbiol 2016; 7:183. [PMID: 26941717 PMCID: PMC4764696 DOI: 10.3389/fmicb.2016.00183] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/02/2016] [Indexed: 01/08/2023] Open
Abstract
Leishmania spp. and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae, and are both obligate intracellular parasites that manipulate host signaling pathways and the innate immune system to establish infection. Mitogen-activated protein kinases (MAPKs) are serine and threonine protein kinases that are highly conserved in eukaryotes, and are involved in signal transduction pathways that modulate physiological and pathophysiological cell responses. This mini-review highlights existing knowledge concerning the mechanisms that Leishmania spp. and T. cruzi have evolved to target the host’s MAPK signaling pathways and highjack the immune response, and, in this manner, promote parasite maintenance in the host.
Collapse
Affiliation(s)
- Mercedes Soares-Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Flavia F Diniz
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Gabriela N Gomes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Diana Bahia
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisMinas Gerais, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| |
Collapse
|
17
|
Soares-Silva M, Diniz FF, Gomes GN, Bahia D. The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids. Front Microbiol 2016. [PMID: 26941717 DOI: 10.3389/fmicb.2016.00183/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Leishmania spp. and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae, and are both obligate intracellular parasites that manipulate host signaling pathways and the innate immune system to establish infection. Mitogen-activated protein kinases (MAPKs) are serine and threonine protein kinases that are highly conserved in eukaryotes, and are involved in signal transduction pathways that modulate physiological and pathophysiological cell responses. This mini-review highlights existing knowledge concerning the mechanisms that Leishmania spp. and T. cruzi have evolved to target the host's MAPK signaling pathways and highjack the immune response, and, in this manner, promote parasite maintenance in the host.
Collapse
Affiliation(s)
- Mercedes Soares-Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Flavia F Diniz
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Gabriela N Gomes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Diana Bahia
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisMinas Gerais, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| |
Collapse
|
18
|
Immune Evasion Strategies of Trypanosoma cruzi. J Immunol Res 2015; 2015:178947. [PMID: 26240832 PMCID: PMC4512591 DOI: 10.1155/2015/178947] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/31/2014] [Indexed: 01/03/2023] Open
Abstract
Microbes have evolved a diverse range of strategies to subvert the host immune system. The protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, provides a good example of such adaptations. This parasite targets a broad spectrum of host tissues including both peripheral and central lymphoid tissues. Rapid colonization of the host gives rise to a systemic acute response which the parasite must overcome. The parasite in fact undermines both innate and adaptive immunity. It interferes with the antigen presenting function of dendritic cells via an action on host sialic acid-binding Ig-like lectin receptors. These receptors also induce suppression of CD4(+) T cells responses, and we presented evidence that the sialylation of parasite-derived mucins is required for the inhibitory effects on CD4 T cells. In this review we highlight the major mechanisms used by Trypanosoma cruzi to overcome host immunity and discuss the role of parasite colonization of the central thymic lymphoid tissue in chronic disease.
Collapse
|
19
|
Trypanosoma cruzi infection and host lipid metabolism. Mediators Inflamm 2014; 2014:902038. [PMID: 25276058 PMCID: PMC4168237 DOI: 10.1155/2014/902038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 08/05/2014] [Indexed: 01/14/2023] Open
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease. Approximately 8 million people are thought to be affected worldwide. Several players in host lipid metabolism have been implicated in T. cruzi-host interactions in recent research, including macrophages, adipocytes, low density lipoprotein (LDL), low density lipoprotein receptor (LDLR), and high density lipoprotein (HDL). All of these factors are required to maintain host lipid homeostasis and are intricately connected via several metabolic pathways. We reviewed the interaction of T. cruzi with each of the relevant host components, in order to further understand the roles of host lipid metabolism in T. cruzi infection. This review sheds light on the potential impact of T. cruzi infection on the status of host lipid homeostasis.
Collapse
|
20
|
Duran-Rehbein GA, Vargas-Zambrano JC, Cuéllar A, Puerta CJ, Gonzalez JM. Mammalian cellular culture models of Trypanosoma cruzi infection: a review of the published literature. ACTA ACUST UNITED AC 2014; 21:38. [PMID: 25083732 PMCID: PMC4118624 DOI: 10.1051/parasite/2014040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/14/2014] [Indexed: 12/13/2022]
Abstract
Cellular culture infection with Trypanosoma cruzi is a tool used to dissect the biological mechanisms behind Chagas disease as well as to screen potential trypanocidal compounds. Data on these models are highly heterogeneous, which represents a challenge when attempting to compare different studies. The purpose of this review is to provide an overview of the cell culture infectivity assays performed to date. Scientific journal databases were searched for articles in which cultured cells were infected with any Trypanosoma cruzi strain or isolate regardless of the study’s goal. From these articles the cell type, parasite genotype, culture conditions and infectivity results were extracted. This review represents an initial step toward the unification of infectivity model data. Important differences were detected when comparing the pathophysiology of Chagas disease with the experimental conditions used in the analyzed studies. While Trypanosoma cruzi preferentially infects stromal cells in vivo, most of the assays employ epithelial cell lines. Furthermore, the most commonly used parasite strain (Tulahuen-TcVI) is associated with chagasic cardiomyopathy only in the Southern Cone of South America. Suggestions to overcome these discrepancies include the use of stromal cell lines and parasite genotypes associated with the known characteristics of the natural history of Chagas disease.
Collapse
Affiliation(s)
| | | | - Adriana Cuéllar
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Concepción Judith Puerta
- Laboratorio de Parasitología Molecular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - John Mario Gonzalez
- Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Bogotá, DC, Colombia
| |
Collapse
|
21
|
Endothelin-1 and its role in the pathogenesis of infectious diseases. Life Sci 2014; 118:110-9. [PMID: 24780317 DOI: 10.1016/j.lfs.2014.04.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/08/2014] [Accepted: 04/15/2014] [Indexed: 12/12/2022]
Abstract
Endothelins are potent regulators of vascular tone, which also have mitogenic, apoptotic, and immunomodulatory properties (Rubanyi and Polokoff, 1994; Kedzierski and Yanagisawa, 2001; Bagnato et al., 2011). Three isoforms of endothelin have been identified to date, with endothelin-1 (ET-1) being the best studied. ET-1 is classically considered a potent vasoconstrictor. However, in addition to the effects of ET-1 on vascular smooth muscle cells, the peptide is increasingly recognized as a pro-inflammatory cytokine (Teder and Noble, 2000; Sessa et al., 1991). ET-1 causes platelet aggregation and plays a role in the increased expression of leukocyte adhesion molecules, the synthesis of inflammatory mediators contributing to vascular dysfunction. High levels of ET-1 are found in alveolar macrophages, leukocytes (Sessa et al., 1991) and fibroblasts (Gu et al., 1991). Clinical and experimental data indicate that ET-1 is involved in the pathogenesis of sepsis (Tschaikowsky et al., 2000; Goto et al., 2012), viral and bacterial pneumonia (Schuetz et al., 2008; Samransamruajkit et al., 2002), Rickettsia conorii infections (Davi et al., 1995), Chagas disease (Petkova et al., 2000, 2001), and severe malaria (Dai et al., 2012; Machado et al., 2006; Wenisch et al., 1996a; Dietmann et al., 2008). In this minireview, we will discuss the role of endothelin in the pathogenesis of infectious processes.
Collapse
|
22
|
The enigmatic role of cholinergic reflex in the pathogenesis of Chagas disease. Parasitol Res 2014; 113:2113-20. [DOI: 10.1007/s00436-014-3861-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
|
23
|
Morrot A. The Role of Sialic Acid-Binding Receptors (Siglecs) in the Immunomodulatory Effects of Trypanosoma cruzi Sialoglycoproteins on the Protective Immunity of the Host. SCIENTIFICA 2013; 2013:965856. [PMID: 24455435 PMCID: PMC3885277 DOI: 10.1155/2013/965856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and is an important endemic infection in Latin America. Lately, it has also become a health concern in the United States and Europe. Most of the immunomodulatory mechanisms associated with this parasitic infection have been attributed to mucin-like molecules on the T. cruzi surface. Mucins are high molecular weight glycoproteins that are involved in regulating diverse cellular activities in both normal and pathological conditions. In Trypanosoma cruzi infection, the parasite-derived mucins are the main acceptors of sialic acid and it has been suggested that they play a role in various host-parasite interactions during the course of Chagas disease. Recently, we have presented evidence that sialylation of the mucins is required for the inhibitory effects on CD4(+) T cells. In what follows we propose that signaling via sialic acid-binding Ig-like lectin receptors for these highly sialylated structures on host cells contributes to the arrest of cell cycle progression in the G1 phase and may allow the parasite to modulate the immune system of the host.
Collapse
Affiliation(s)
- Alexandre Morrot
- Institute of Microbiology, Federal University of Rio de Janeiro, CCS, Sala D1-035, Avenida Carlos Chagas Filho 373, Cidade Universitária, Ilha do Fundão, 21.941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
24
|
Kim JH, Song AR, Sohn HJ, Lee J, Yoo JK, Kwon D, Shin HJ. IL-1β and IL-6 activate inflammatory responses of astrocytes againstNaegleria fowleriinfection via the modulation of MAPKs and AP-1. Parasite Immunol 2013. [DOI: 10.1111/pim.12021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- J.-H. Kim
- Department of Microbiology; Department of Molecular Science and Technology; Ajou University School of Medicine; Suwon Republic of Korea
| | - A.-R. Song
- Department of Microbiology; Department of Molecular Science and Technology; Ajou University School of Medicine; Suwon Republic of Korea
| | - H.-J. Sohn
- Department of Microbiology; Department of Molecular Science and Technology; Ajou University School of Medicine; Suwon Republic of Korea
| | - J. Lee
- Department of Microbiology; Department of Molecular Science and Technology; Ajou University School of Medicine; Suwon Republic of Korea
| | - J.-K. Yoo
- Department of Microbiology; Department of Molecular Science and Technology; Ajou University School of Medicine; Suwon Republic of Korea
| | - D. Kwon
- Department of Microbiology; School of Medicine; Kwandong University; Gangneung Republic of Korea
| | - H.-J. Shin
- Department of Microbiology; Department of Molecular Science and Technology; Ajou University School of Medicine; Suwon Republic of Korea
| |
Collapse
|
25
|
Castillo C, Villarroel A, Duaso J, Galanti N, Cabrera G, Maya JD, Kemmerling U. Phospholipase C gamma and ERK1/2 Mitogen Activated Kinase Pathways are differentially modulated by Trypanosoma cruzi during tissue invasion in human placenta. Exp Parasitol 2013; 133:12-7. [DOI: 10.1016/j.exppara.2012.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/08/2012] [Accepted: 10/19/2012] [Indexed: 02/07/2023]
|
26
|
Trypanosoma cruzi SSP4 Amastigote Protein Induces Expression of Immunoregulatory and Immunosuppressive Molecules in Peripheral Blood Mononuclear Cells. J Trop Med 2012; 2012:829139. [PMID: 23209478 PMCID: PMC3503440 DOI: 10.1155/2012/829139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/25/2012] [Accepted: 10/02/2012] [Indexed: 12/20/2022] Open
Abstract
The acute phase of Chagas' disease in mice and human is marked by states of immunosuppression, in which Trypanosoma cruzi replicates extensively and releases immunomodulatory molecules that delay parasite-specific responses mediated by effector T cells. This mechanism of evasion allows the parasite to spread in the host. Parasite molecules that regulate the host immune response during Chagas' disease have not been fully identified, particularly proteins of the amastigote stage. In this work, we evaluated the role of the GPI anchored SSP4 protein of T. cruzi as an immunomodulatory molecule in peripheral blood mononuclear cells (PBMCs). rMBP::SSP4 protein was able to stimulate nitric oxide (NO) production. Likewise, rMBP::SSP4 induced the expression of genes and production of molecules involved in the inflammatory process, such as, cytokines, chemokines, and adhesion molecules (CAMs) as determined by RT-PCR and ELISA. These results suggest that the amastigote SSP4 molecule could play a key role in the immunoregulatory and/or immunosuppressive process observed in the acute phase of infection with T. cruzi.
Collapse
|
27
|
Andrade D, Serra R, Svensjö E, Lima APC, Ramos ES, Fortes FS, Morandini ACF, Morandi V, Soeiro MDN, Tanowitz HB, Scharfstein J. Trypanosoma cruzi invades host cells through the activation of endothelin and bradykinin receptors: a converging pathway leading to chagasic vasculopathy. Br J Pharmacol 2012; 165:1333-47. [PMID: 21797847 DOI: 10.1111/j.1476-5381.2011.01609.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Independent studies in experimental models of Trypanosoma cruzi appointed different roles for endothelin-1 (ET-1) and bradykinin (BK) in the immunopathogenesis of Chagas disease. Here, we addressed the hypothesis that pathogenic outcome is influenced by functional interplay between endothelin receptors (ET(A)R and ET(B)R) and bradykinin B(2) receptors (B(2)R). EXPERIMENTAL APPROACH Intravital microscopy was used to determine whether ETR/B(2)R drives the accumulation of rhodamine-labelled leucocytes in the hamster cheek pouch (HCP). Inflammatory oedema was measured in the infected BALB/c paw of mice. Parasite invasion was assessed in CHO over-expressing ETRs, mouse cardiomyocytes, endothelium (human umbilical vein endothelial cells) or smooth muscle cells (HSMCs), in the presence/absence of antagonists of B(2)R (HOE-140), ET(A)R (BQ-123) and ET(B)R (BQ-788), specific IgG antibodies to each GPCRs; cholesterol or calcium-depleting drugs. RNA interference (ET(A)R or ET(B)R genes) in parasite infectivity was investigated in HSMCs. KEY RESULTS BQ-123, BQ-788 and HOE-140 reduced leucocyte accumulation in HCP topically exposed to trypomastigotes and blocked inflammatory oedema in infected mice. Acting synergistically, ET(A)R and ET(B)R antagonists reduced parasite invasion of HSMCs to the same extent as HOE-140. Exogenous ET-1 potentiated T. cruzi uptake by HSMCs via ETRs/B(2)R, whereas RNA interference of ET(A)R and ET(B)R genes conversely reduced parasite internalization. ETRs/B(2)R-driven infection in HSMCs was reduced in HSMC pretreated with methyl-β-cyclodextrin, a cholesterol-depleting drug, or in thapsigargin- or verapamil-treated target cells. CONCLUSIONS AND IMPLICATIONS Our findings suggest that plasma leakage, a neutrophil-driven inflammatory response evoked by trypomastigotes via the kinin/endothelin pathways, may offer a window of opportunity for enhanced parasite invasion of cardiovascular cells.
Collapse
Affiliation(s)
- Daniele Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Role of SOCS2 in modulating heart damage and function in a murine model of acute Chagas disease. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:130-40. [PMID: 22658486 DOI: 10.1016/j.ajpath.2012.03.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/25/2012] [Accepted: 03/07/2012] [Indexed: 01/11/2023]
Abstract
Infection with Trypanosoma cruzi induces inflammation, which limits parasite proliferation but may result in chagasic heart disease. Suppressor of cytokine signaling 2 (SOCS2) is a regulator of immune responses and may therefore participate in the pathogenesis of T. cruzi infection. SOCS2 is expressed during T. cruzi infection, and its expression is partially reduced in infected 5-lipoxygenase-deficient [knockout (KO)] mice. In SOCS2 KO mice, there was a reduction in both parasitemia and the expression of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), IL-6, IL-10, SOCS1, and SOCS3 in the spleen. Expression of IFN-γ, TNF-α, SOCS1, and SOCS3 was also reduced in the hearts of infected SOCS2 KO mice. There was an increase in the generation and expansion of T regulatory (Treg) cells and a decrease in the number of memory cells in T. cruzi-infected SOCS2 KO mice. Levels of lipoxinA(4) (LXA(4)) increased in these mice. Echocardiography studies demonstrated an impairment of cardiac function in T. cruzi-infected SOCS2 KO mice. There were also changes in calcium handling and in action potential waveforms, and reduced outward potassium currents in isolated cardiac myocytes. Our data suggest that reductions of inflammation and parasitemia in infected SOCS2-deficient mice may be secondary to the increases in Treg cells and LXA(4) levels. This occurs at the cost of greater infection-associated heart dysfunction, highlighting the relevance of balanced inflammatory and immune responses in preventing severe T. cruzi-induced disease.
Collapse
|
29
|
Nagajyothi F, Desruisseaux MS, Machado FS, Upadhya R, Zhao D, Schwartz GJ, Teixeira MM, Albanese C, Lisanti MP, Chua SC, Weiss LM, Scherer PE, Tanowitz HB. Response of adipose tissue to early infection with Trypanosoma cruzi (Brazil strain). J Infect Dis 2012; 205:830-40. [PMID: 22293433 DOI: 10.1093/infdis/jir840] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Brown adipose tissue (BAT) and white adipose tissue (WAT) and adipocytes are targets of Trypanosoma cruzi infection. Adipose tissue obtained from CD-1 mice 15 days after infection, an early stage of infection revealed a high parasite load. There was a significant increase in macrophages in infected adipose tissue and a reduction in lipid accumulation, adipocyte size, and fat mass and increased expression of lipolytic enzymes. Infection increased levels of Toll-like receptor (TLR) 4 and TLR9 and in the expression of components of the mitogen-activated protein kinase pathway. Protein and messenger RNA (mRNA) levels of peroxisome proliferator-activated receptor γ were increased in WAT, whereas protein and mRNA levels of adiponectin were significantly reduced in BAT and WAT. The mRNA levels of cytokines, chemokines, and their receptors were increased. Nuclear Factor Kappa B levels were increased in BAT, whereas Iκκ-γ levels increased in WAT. Adipose tissue is an early target of T. cruzi infection.
Collapse
Affiliation(s)
- Fnu Nagajyothi
- Department of Pathology, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Machado FS, Tyler KM, Brant F, Esper L, Teixeira MM, Tanowitz HB. Pathogenesis of Chagas disease: time to move on. Front Biosci (Elite Ed) 2012; 4:1743-58. [PMID: 22201990 DOI: 10.2741/495] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas disease. The contributions of parasite and immune system for disease pathogenesis remain unresolved and controversial. The possibility that Chagas disease was an autoimmune progression triggered by T. cruzi infection led some to question the benefit of treating chronically T. cruzi-infected persons with drugs. Furthermore, it provided the rationale for not investing in research aimed at a vaccine which might carry a risk of inducing autoimmunity or exacerbating inflammation. This viewpoint was adopted by cash-strapped health systems in the developing economies where the disease is endemic and has been repeatedly challenged by researchers and clinicians in recent years and there is now a considerable body of evidence and broad consensus that parasite persistence is requisite for pathogenesis and that antiparasitic immunity can be protective against T. cruzi pathogenesis without eliciting autoimmune pathology. Thus, treatment of chronically infected patients is likely to yield positive outcomes and efforts to understand immunity and vaccine development should be recognized as a priority area of research for Chagas disease.
Collapse
Affiliation(s)
- Fabiana S Machado
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
31
|
Machado FS, Rodriguez NE, Adesse D, Garzoni LR, Esper L, Lisanti MP, Burk RD, Albanese C, Van Doorslaer K, Weiss LM, Nagajyothi F, Nosanchuk JD, Wilson ME, Tanowitz HB. Recent developments in the interactions between caveolin and pathogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 729:65-82. [PMID: 22411314 DOI: 10.1007/978-1-4614-1222-9_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role of caveolin and caveolae in the pathogenesis of infection has only recently been appreciated. In this chapter, we have highlighted some important new data on the role of caveolin in infections due to bacteria, viruses and fungi but with particular emphasis on the protozoan parasites Leishmania spp., Trypanosoma cruzi and Toxoplasma gondii. This is a continuing area of research and the final chapter has not been written on this topic.
Collapse
Affiliation(s)
- Fabiana S Machado
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Scharfstein J, Andrade D. Infection-associated vasculopathy in experimental chagas disease pathogenic roles of endothelin and kinin pathways. ADVANCES IN PARASITOLOGY 2011; 76:101-27. [PMID: 21884889 DOI: 10.1016/b978-0-12-385895-5.00005-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acting at the interface between microcirculation and immunity, Trypanosoma cruzi induces modifications in peripheral tissues which translate into mutual benefits to host/parasite balance. In this chapter, we will review evidence linking infection-associated vasculopathy to the proinflammatory activity of a small subset of T. cruzi molecules, namely GPI-linked mucins, cysteine proteases (cruzipain), surface glycoproteins of the trans-sialidase family and/or parasite-derived eicosanoids (thromboxane A(2)). Initial insight into pathogenesis came from research in animal models showing that myocardial fibrosis is worsened as result of endothelin upregulation by infected cardiovascular cells. Paralleling these studies, the kinin system emerged as a proteolytic mechanism that links oedematogenic inflammation to immunity. Analyses of the dynamics of inflammation revealed that tissue culture trypomastigotes elicit interstitial oedema in peripheral sites of infection through synergistic activation of toll-like 2 receptors (TLR2) and G-protein-coupled bradykinin receptors, respectively, engaged by tGPI (TLR2 ligand) and kinin peptides (bradykinin B2 receptors (BK(2)R) ligands) proteolytically generated by cruzipain. Further downstream, kinins stimulate lymph node dendritic cells via G-protein-coupled BK(2)R, thus converting these specialized antigen-presenting cells into T(H)1 inducers. Tightly regulated by angiotensin-converting enzyme, the intact kinins (BK(2)R agonists) may be processed by carboxypeptidase M/N, generating [des-Arg]-kinins, which activates BK(1)R, a subtype of GPCR that is upregulated by cardiovascular cells during inflammation. Ongoing studies may clarify if discrepancies between proinflammatory phenotypes of T. cruzi strains may be ascribed, at least in part, to variable expression of TLR2 ligands and cruzipain isoforms.
Collapse
Affiliation(s)
- Julio Scharfstein
- Instituto de Biofı´sica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Laborato´ rio deImunologia Molecular, Cidade Universita´ ria Rio de Janeiro, Brazil
| | | |
Collapse
|
33
|
Prado CM, Jelicks LA, Weiss LM, Factor SM, Tanowitz HB, Rossi MA. The vasculature in chagas disease. ADVANCES IN PARASITOLOGY 2011; 76:83-99. [PMID: 21884888 DOI: 10.1016/b978-0-12-385895-5.00004-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The cardiovascular manifestations of Chagas disease are well known. However, the contribution of the vasculature and specifically the microvasculature has received little attention. This chapter reviews the evidence supporting the notion that alterations in the microvasculature especially in the heart contribute to the pathogenesis of chagasic cardiomyopathy. These data may also be important in understanding the contributions of the microvasculature in the aetiologies of other cardiomyopathies. The role of endothelin-1 and of thromboxane A(2) vascular spasm and platelet aggregation is also discussed. Further, these observations may provide target(s) for intervention.
Collapse
Affiliation(s)
- Cibele M Prado
- Department of Pathology, Laboratory of Cellular and Molecular Cardiology, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | |
Collapse
|
34
|
Chuenkova MV, Pereiraperrin M. Neurodegeneration and neuroregeneration in Chagas disease. ADVANCES IN PARASITOLOGY 2011; 76:195-233. [PMID: 21884893 DOI: 10.1016/b978-0-12-385895-5.00009-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autonomic dysfunction plays a significant role in the development of chronic Chagas disease (CD). Destruction of cardiac parasympathetic ganglia can underlie arrhythmia and heart failure, while lesions of enteric neurons in the intestinal plexuses are a direct cause of aperistalsis and megasyndromes. Neuropathology is generated by acute infection when the parasite, though not directly damaging to neuronal cells, elicits immune reactions that can become cytotoxic, inducing oxidative stress and neurodegeneration. Anti-neuronal autoimmunity may further contribute to neuropathology. Much less clear is the mechanism of subsequent neuronal regeneration in patients that survive acute infection. Morphological and functional recovery of the peripheral neurons in these patients correlates with the absence of CD clinical symptoms, while persistent neuronal deficiency is observed for the symptomatic group. The discovery that Trypanosoma cruzi trans-sialidase can moonlight as a parasite-derived neurotrophic factor (PDNF) suggests that the parasite might influence the balance between neuronal degeneration and regeneration. PDNF functionally mimics mammalian neurotrophic factors in that it binds and activates neurotrophin Trk tyrosine kinase receptors, a mechanism which prevents neurodegeneration. PDNF binding to Trk receptors triggers PI3K/Akt/GSK-3β and MAPK/Erk/CREB signalling cascades which in neurons translates into resistance to oxidative and nutritional stress, and inhibition of apoptosis, whereas in the cytoplasm of infected cells, PDNF represents a substrate-activator of the host Akt kinase, enhancing host-cell survival until completion of the intracellular cycle of the parasite. Such dual activity of PDNF provides sustained activation of survival mechanisms which, while prolonging parasite persistence in host tissues, can underlie distinct outcomes of CD.
Collapse
Affiliation(s)
- Marina V Chuenkova
- Department of Pathology and Sackler School of Graduate Students, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
35
|
Experimental chemotherapy and approaches to drug discovery for Trypanosoma cruzi infection. ADVANCES IN PARASITOLOGY 2011; 75:89-119. [PMID: 21820553 DOI: 10.1016/b978-0-12-385863-4.00005-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the 100 years since the discovery of Chagas disease, only two drugs have been developed and introduced into clinical practice, and these drugs were introduced over 40 years ago. The tools of drug discovery have improved dramatically in the interim; however, this has not translated into new drugs for Chagas disease. This has been largely because the main practitioners of drug discovery are pharmaceutical companies who are not financially motivated to invest in Chagas disease and other "orphan" diseases. As a result, it has largely been up to academic groups to bring drug candidates through the discovery pipeline and to clinical trials. The difficulty with drug discovery in academia has been the challenge of bringing together the diverse expertise in biology, chemistry, and pharmacology in concerted efforts towards a common goal of developing therapeutics. Funding is often inadequate, but lack of coordination amongst academic investigators with different expertise has also contributed to the slow progress. The purpose of this chapter is to provide an overview of approaches that can be accomplished in academic settings for preclinical drug discovery for Chagas disease. The chapter addresses methods of drug screening against Trypanosoma cruzi cultures and in animal models and includes general topics on compound selection, testing for drug-like properties (including oral bioavailability), investigating the pharmacokinetics and toxicity of compounds, and finally providing parameters to help with triaging compounds.
Collapse
|
36
|
[Endothelial function and high-sensitivity C-reactive protein levels in patients with Chagas disease living in a nonendemic area]. Rev Esp Cardiol 2011; 64:891-6. [PMID: 21802190 DOI: 10.1016/j.recesp.2011.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 05/14/2011] [Indexed: 11/23/2022]
Abstract
INTRODUCTION AND OBJECTIVES The number of patients with Chagas disease in Spain has increased significantly. Chronic inflammation and endothelial dysfunction have been considered among the physiopathological mechanisms of Chagas heart disease. However, there have been conflicting data from clinical studies. Our purpose was to assess endothelial function and systemic levels of nitric oxide and high-sensitivity C-reactive protein in patients with the indeterminate form and with chronic Chagas cardiomyopathy living in a nonendemic area. METHODS Flow-mediated endothelium-dependent vasodilatation and nitroglycerin-mediated vasodilatation were assessed with high-resolution ultrasound of the brachial artery in 98 subjects (32 with the indeterminate form, 22 with chronic Chagas cardiomyopathy and 44 controls). Nitric oxide and high-sensitivity C-reactive protein levels were measured in peripheral venous blood. RESULTS Mean age was 37.6 ± 10.2 years and 60% were female. Nitroglycerin-mediated vasodilatation was significantly reduced in chronic Chagas cardiomyopathy compared to controls (median 16.8% vs 22.5%; P=.03). No significant differences were observed in flow-mediated vasodilatation and nitric oxide levels, although a trend towards lower flow-mediated vasodilatation after correction by baseline brachial artery diameter was observed in chronic Chagas cardiomyopathy. Levels of C-reactive protein were significantly higher in patients with the indeterminate form and with Chagas cardiomyopathy compared with controls (P<.05). CONCLUSIONS Reduced nitroglycerin-mediated vasodilatation suggesting dysfunction of vascular smooth muscle cells was found in patients with chronic Chagas cardiomyopathy living in a nonendemic area. Higher C-reactive protein levels were observed in the indeterminate form and early stages of chronic Chagas cardiomyopathy, which could be related to the inflammatory response to the infection or early cardiovascular involvement.
Collapse
|
37
|
Tanowitz HB, Mukhopadhyay A, Ashton AW, Lisanti MP, Machado FS, Weiss LM, Mukherjee S. Microarray analysis of the mammalian thromboxane receptor-Trypanosoma cruzi interaction. Cell Cycle 2011; 10:1132-43. [PMID: 21364319 DOI: 10.4161/cc.10.7.15207] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, causes vasculopathy and cardiomyopathy in humans and is associated with elevated levels of several vasoactive molecules such as nitric oxide, endothelin-1 and thromboxane A 2 (TXA 2). Parasite derived TXA 2 modulates vasculopathy and other pathophysiological features of Chagasic cardiomyopathy. Previously, we demonstrated that in response to infection with T. cruzi, TXA 2 receptor (TP) null mice displayed increased parasitemia; mortality and cardiac pathology compared with wild type (WT) and TXA 2 synthase null mice. In order to further study the role of TXA 2-TP signaling in the development of Chagas disease, GeneChip microarrays were used to detect transcriptome changes in rat fat pad endothelial cells (RFP-ECs) which is incapable of TXA 2 signaling (TP null) to that of control (wild type) and RFP-EC with reconstituted TP expression. Genes that were significantly regulated due to infection were identified using a time course of 2, 18 and 48 hrs post infection. We identified several key genes such as suppressor of cytokine signaling (SOCS-5), several cytokines (CSF-1, CXCF ligands), and MAP kinases (MAPK-1, Janus kinase) that were upregulated in the absence of TP signaling. These data underscore the importance of the interaction of the parasite with mammalian TP and may explain the increased mortality and cardiovascular pathology observed in infected TP null mice.
Collapse
Affiliation(s)
- Herbert B Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Adesse D, Lisanti MP, Spray DC, Machado FS, Meirelles MDN, Tanowitz HB, Garzoni LR. Trypanosoma cruzi infection results in the reduced expression of caveolin-3 in the heart. Cell Cycle 2010; 9:1639-46. [PMID: 20372051 DOI: 10.4161/cc.9.8.11509] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Caveolae are motile, membrane-bound compartments that contain a number of molecules that participate in cell signaling. Caveolins are protein markers of caveolae and function in a variety of biological processes. Caveolin-3 (Cav-3) is expressed in muscle cells and Cav-3 null mice display a cardiomyopathic phenotype. Ultrastructural cytochemistry, confocal microscopy and immunoblotting revealed a reduction in Cav-3 expression and an activation of ERK (extracellular-signal-regulated kinase) 48 hours after Trypanosoma cruzi infection of cultured cardiac myocytes. CD-1 mice infected with the Brazil strain of T. cruzi displayed reduced expression of Cav-3 and activation of ERK 66 days post infection (dpi). By 180 dpi there was a normalization of these values. These data suggest that the reduction in Cav-3 expression and the activation of ERK during the early phase of infection may contribute to the pathogenesis of chagasic cardiomyopathy.
Collapse
Affiliation(s)
- Daniel Adesse
- Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Chuenkova MV, Pereiraperrin M. Trypanosoma cruzi-Derived Neurotrophic Factor: Role in Neural Repair and Neuroprotection. ACTA ACUST UNITED AC 2010; 1:55-60. [PMID: 21572925 DOI: 10.4303/jnp/n100507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Some patients infected with the parasite Try-panosoma cruzi develop chronic Chagas' disease, while others remain asymptomatic for life. Although pathological mechanisms that govern disease progression remain unclear, the balance between degeneration and regeneration in the peripheral nervous system seems to contribute to the different clinical outcomes. This review focuses on certain new aspects of host-parasite interactions related to regeneration in the host nervous system induced by the trans-sialidase of T. cruzi, also known as a parasite-derived neurotrophic factor (PDNF). PDNF plays multiple roles in T. cruzi infection, ranging from immunosuppression to functional mimicry of mammalian neurotrophic factors and inhibition of apoptosis. PDNF affinity to neurotrophin Trk receptors provide sustained activation of cellular survival mechanisms resulting in neuroprotection and neuronal repair, resistance to cytotoxic insults and enhancement of neuritogenesis. Such unique PDNF-elicited regenerative responses likely prolong parasite persistence in infected tissues while reducing neuropathology in Chagas' disease.
Collapse
Affiliation(s)
- Marina V Chuenkova
- Department of Pathology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
40
|
Guo Z, Wang J, Yang J, Wu NH, Zhang Y, Shen YF. An inhibitory role of p53 via NF-κB element on the cyclin D1 gene under heat shock. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:758-62. [DOI: 10.1016/j.bbagrm.2009.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 09/24/2009] [Accepted: 09/24/2009] [Indexed: 12/28/2022]
|
41
|
Villalta F, Scharfstein J, Ashton AW, Tyler KM, Guan F, Mukherjee S, Lima MF, Alvarez S, Weiss LM, Huang H, Machado FS, Tanowitz HB. Perspectives on the Trypanosoma cruzi-host cell receptor interactions. Parasitol Res 2009; 104:1251-60. [PMID: 19283409 PMCID: PMC2696482 DOI: 10.1007/s00436-009-1383-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 02/25/2009] [Indexed: 01/10/2023]
Abstract
Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Fernando Villalta
- Department of Microbial Pathogenesis and Immune Response, Meharry Medical College, Nashville, TN, USA e-mail:
| | - Julio Scharfstein
- Department Immunobiology, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil e-mail:
| | - Anthony W. Ashton
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Division of Perinatal Research, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Kevin M. Tyler
- BioMedical Research Center, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, UK
| | - Fangxia Guan
- Bioengineering Department of Zhengzhou University, Zhengzhou, People’ Republic of China
| | - Shankar Mukherjee
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria F. Lima
- Department of Microbial Pathogenesis and Immune Response, Meharry Medical College, Nashville, TN, USA
| | - Sandra Alvarez
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Huan Huang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Fabiana S. Machado
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Herbert B. Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA e-mail:
| |
Collapse
|
42
|
Costales JA, Daily JP, Burleigh BA. Cytokine-dependent and-independent gene expression changes and cell cycle block revealed in Trypanosoma cruzi-infected host cells by comparative mRNA profiling. BMC Genomics 2009; 10:252. [PMID: 19480704 PMCID: PMC2709661 DOI: 10.1186/1471-2164-10-252] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 05/29/2009] [Indexed: 01/13/2023] Open
Abstract
Background The requirements for growth and survival of the intracellular pathogen Trypanosoma cruzi within mammalian host cells are poorly understood. Transcriptional profiling of the host cell response to infection serves as a rapid read-out for perturbation of host physiology that, in part, reflects adaptation to the infective process. Using Affymetrix oligonucleotide array analysis we identified common and disparate host cell responses triggered by T. cruzi infection of phenotypically diverse human cell types. Results We report significant changes in transcript abundance in T. cruzi-infected fibroblasts, endothelial cells and smooth muscle cells (2852, 2155 and 531 genes respectively; fold-change ≥ 2, p-value < 0.01) 24 hours post-invasion. A prominent type I interferon response was observed in each cell type, reflecting a secondary response to secreted cytokine in infected cultures. To identify a core cytokine-independent response in T. cruzi-infected fibroblasts and endothelial cells transwell plates were used to distinguish cytokine-dependent and -independent gene expression profiles. This approach revealed the induction of metabolic and signaling pathways involved in cell proliferation, amino acid catabolism and response to wounding as common themes in T. cruzi-infected cells. In addition, the downregulation of genes involved in mitotic cell cycle and cell division predicted that T. cruzi infection may impede host cell cycle progression. The observation of impaired cytokinesis in T. cruzi-infected cells, following nuclear replication, confirmed this prediction. Conclusion Metabolic pathways and cellular processes were identified as significantly altered at the transcriptional level in response to T. cruzi infection in a cytokine-independent manner. Several of these alterations are supported by previous studies of T. cruzi metabolic requirements or effects on the host. However, our methods also revealed a T. cruzi-dependent block in the host cell cycle, at the level of cytokinesis, previously unrecognized for this pathogen-host cell interaction.
Collapse
Affiliation(s)
- Jaime A Costales
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | |
Collapse
|
43
|
Nagajyothi F, Desruisseaux MS, Thiruvur N, Weiss LM, Braunstein VL, Albanese C, Teixeira MM, de Almeida CJ, Lisanti MP, Scherer PE, Tanowitz HB. Trypanosoma cruzi infection of cultured adipocytes results in an inflammatory phenotype. Obesity (Silver Spring) 2008; 16:1992-7. [PMID: 19186325 PMCID: PMC2771879 DOI: 10.1038/oby.2008.331] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Infection with Trypanosoma cruzi, the etiologic agent of Chagas disease is accompanied by an intense inflammatory reaction. Our laboratory group has identified adipose tissue as one of the major sites of inflammation during disease progression. Because adipose tissue is composed of many cell types, we were interested in investigating whether the adipocyte per se was a source of inflammatory mediators in this infection. Cultured adipocytes were infected with the Tulahuen strain of T. cruzi for 48-96 h. Immunoblot and quantitative PCR (qPCR) analyses demonstrated an increase in the expression of proinflammatory cytokines and chemokines, including interleukin (IL)-1 beta, interferon-gamma, tumor necrosis factor-alpha, CCL2, CCL5, and CXCL10 as well as an increase in the expression of Toll-like receptors-2 and 9 and activation of the notch pathway. Interestingly, caveolin-1 expression was reduced while cyclin D1 and extracellular signal-regulated kinase (ERK) expression was increased. The expression of PI3kinase and the activation of AKT (phosphorylated AKT) were increased suggesting that infection may induce components of the insulin/IGF-1 receptor cascade. There was an infection-associated decrease in adiponectin and peroxisome proliferator-activated receptor-gamma (PPAR-gamma). These data provide a mechanism for the increase in the inflammatory phenotype that occurs in T. cruzi-infected adipocytes. Overall, these data implicate the adipocyte as an important target of T. cruzi, and one which contributes significantly to the inflammatory response observed in Chagas disease.
Collapse
Affiliation(s)
- Fnu Nagajyothi
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mahalia S. Desruisseaux
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Niranjan Thiruvur
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Vicki L. Braunstein
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Mauro M. Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Cecilia J. de Almeida
- Department of Cancer Biology and the Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- The Muscular and Neurodegenerative Disease Unit, University of Genoa, Gaslini Pediatric Institute, Genoa, Italy
| | - Michael P. Lisanti
- Department of Cancer Biology and the Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- The Muscular and Neurodegenerative Disease Unit, University of Genoa, Gaslini Pediatric Institute, Genoa, Italy
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern School of Medicine, Dallas, Texas, USA
| | - Herbert B. Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
44
|
Mukherjee S, Nagajyothi F, Mukhopadhyay A, Machado FS, Belbin TJ, de Carvalho AC, Guan F, Albanese C, Jelicks LA, Lisanti MP, Silva JS, Spray DC, Weiss LM, Tanowitz HB. Alterations in myocardial gene expression associated with experimental Trypanosoma cruzi infection. Genomics 2008; 91:423-32. [PMID: 18343633 PMCID: PMC2386515 DOI: 10.1016/j.ygeno.2008.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 12/21/2007] [Accepted: 01/28/2008] [Indexed: 02/05/2023]
Abstract
Chagas disease, characterized by acute myocarditis and chronic cardiomyopathy, is caused by infection with the protozoan parasite Trypanosoma cruzi. We sought to identify genes altered during the development of parasite-induced cardiomyopathy. Microarrays containing 27,400 sequence-verified mouse cDNAs were used to analyze global gene expression changes in the myocardium of a murine model of chagasic cardiomyopathy. Changes in gene expression were determined as the acute stage of infection developed into the chronic stage. This analysis was performed on the hearts of male CD-1 mice infected with trypomastigotes of T. cruzi (Brazil strain). At each interval we compared infected and uninfected mice and confirmed the microarray data with dye reversal. We identified eight distinct categories of mRNAs that were differentially regulated during infection and identified dysregulation of several key genes. These data may provide insight into the pathogenesis of chagasic cardiomyopathy and provide new targets for intervention.
Collapse
Affiliation(s)
- Shankar Mukherjee
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
| | - Fnu Nagajyothi
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
| | - Aparna Mukhopadhyay
- Department of Anatomy and structural Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Fabiana S. Machado
- Division of Molecular Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Thomas J. Belbin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
| | - Antonio Campos de Carvalho
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fangxia Guan
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
- Department of Bioengineering, Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center, Washington, D.C
| | - Linda A. Jelicks
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY
| | - Michael P. Lisanti
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA.and The Muscular and Neurodegenerative Disease Unit, University of Genova, and G. Gaslini Pediatric Institute, Genova, Italy
| | - Joao S. Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidae de São Paulo, Ribeirão Preto, SP, Brazil
| | - David C. Spray
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Herbert B. Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
- Correspondence: Herbert B. Tanowitz, M.D., Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, 718-430-3342, Fax: 718-430-8543,
| |
Collapse
|
45
|
Stempin CC, Garrido VV, Dulgerian LR, Cerbán FM. Cruzipain and SP600125 induce p38 activation, alter NO/arginase balance and favor the survival of Trypanosoma cruzi in macrophages. Acta Trop 2008; 106:119-27. [PMID: 18359001 DOI: 10.1016/j.actatropica.2008.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 01/19/2023]
Abstract
Cruzipain (Cz), an antigen of Trypanosoma cruzi, mediates the activation of arginase involving p38 MAPK. In this work, it was studied whether the phosphorylation of MAPKs into macrophages (Mvarphi) could be induced by Cz and/or by the parasite. We found that Cz induced activation of p38, while the parasite produced phosphorylation of JNK and p44/p42. MAPK phosphorylation changed and JNK activation was blocked when Mvarphi were pre-incubated with Cz, before coming into contact with T. cruzi. We investigated the role of JNK inhibitor SP600125 on T. cruzi infection, since it also induces p38 phosphorylation. Thus, J774 cells were pre-treated with SP600125 and then infected with T. cruzi. This set of cells showed a decrease in nitric oxide (NO) production and an increase in arginase I expression. Another group of J774 cells was pre-treated with SP600125 and incubated with Cz before being infected with T. cruzi. This second group showed a greater reduction in NO production. These results can be correlated with the parasitic growth since the ex vivo treatment with SP600125 on adherent spleen cells (ASC) of BALB/c infected mice also increased the parasitic growth. Therefore, Cz and SP600125 favor the T. cruzi survival in Mvarphi by changing the iNOS/arginase balance.
Collapse
Affiliation(s)
- Cinthia C Stempin
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | | | |
Collapse
|
46
|
Ashton AW, Mukherjee S, Nagajyothi FNU, Huang H, Braunstein VL, Desruisseaux MS, Factor SM, Lopez L, Berman JW, Wittner M, Scherer PE, Capra V, Coffman TM, Serhan CN, Gotlinger K, Wu KK, Weiss LM, Tanowitz HB. Thromboxane A2 is a key regulator of pathogenesis during Trypanosoma cruzi infection. ACTA ACUST UNITED AC 2007; 204:929-40. [PMID: 17420269 PMCID: PMC2118547 DOI: 10.1084/jem.20062432] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chagas' disease is caused by infection with the parasite Trypanosoma cruzi. We report that infected, but not uninfected, human endothelial cells (ECs) released thromboxane A(2) (TXA(2)). Physical chromatography and liquid chromatography-tandem mass spectrometry revealed that TXA(2) is the predominant eicosanoid present in all life stages of T. cruzi. Parasite-derived TXA(2) accounts for up to 90% of the circulating levels of TXA(2) in infected wild-type mice, and perturbs host physiology. Mice in which the gene for the TXA(2) receptor (TP) has been deleted, exhibited higher mortality and more severe cardiac pathology and parasitism (fourfold) than WT mice after infection. Conversely, deletion of the TXA(2) synthase gene had no effect on survival or disease severity. TP expression on somatic cells, but not cells involved in either acquired or innate immunity, was the primary determinant of disease progression. The higher intracellular parasitism observed in TP-null ECs was ablated upon restoration of TP expression. We conclude that the host response to parasite-derived TXA(2) in T. cruzi infection is possibly an important determinant of mortality and parasitism. A deeper understanding of the role of TXA(2) may result in novel therapeutic targets for a disease with limited treatment options.
Collapse
Affiliation(s)
- Anthony W Ashton
- Department of Medicine, Divisions of Cardiology and Infectious Disease, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Magdesian MH, Tonelli RR, Fessel MR, Silveira MS, Schumacher RI, Linden R, Colli W, Alves MJM. A conserved domain of the gp85/trans-sialidase family activates host cell extracellular signal-regulated kinase and facilitates Trypanosoma cruzi infection. Exp Cell Res 2007; 313:210-8. [PMID: 17101128 DOI: 10.1016/j.yexcr.2006.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 10/04/2006] [Accepted: 10/05/2006] [Indexed: 01/11/2023]
Abstract
Chagas' disease is a chronic, debilitating and incapacitating illness, caused by the protozoan parasite Trypanosoma cruzi when infective trypomastigotes invade host cells. Although the mechanism of trypomastigotes interaction with mammalian cells has been intensively studied, a final and integrated picture of the signal transduction mechanisms involved still remains to be elucidated. Our group has previously shown that the conserved FLY domain (VTVXNVFLYNR), present in all members of the gp85/trans-sialidase glycoprotein family coating the surface of trypomastigotes, binds to cytokeratin 18 (CK18) on the surface of LLC-MK(2) epithelial cells, and significantly increases parasite entry into mammalian cells. Now it is reported that FLY, present on the surface of trypomastigotes or on latex beads binds to CK18, promotes dephosphorylation and reorganization of CK18 and activation of the ERK1/2 signaling cascade culminating in an increase of approximately 9-fold in the number of parasites/cell. Inhibition of ERK1/2 phosphorylation completely blocks the adhesion of FLY to cells and blocks by 57% the host cell infection by T. cruzi. Taken together our results indicate that the conserved FLY domain is an important tool that trypomastigotes have evolved to specific exploit the host cell machinery and guarantee a successful infection.
Collapse
Affiliation(s)
- Margaret H Magdesian
- Instituto de Bioquímica Médica, Av Brigadeiro Trompowsky S/N, bloco H sala 19, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Aoki MDP, Cano RC, Pellegrini AV, Tanos T, Guiñazú NL, Coso OA, Gea S. Different signaling pathways are involved in cardiomyocyte survival induced by a Trypanosoma cruzi glycoprotein. Microbes Infect 2006; 8:1723-31. [PMID: 16815723 DOI: 10.1016/j.micinf.2006.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 12/29/2005] [Accepted: 02/02/2006] [Indexed: 11/19/2022]
Abstract
We have recently reported that Trypanosoma cruzi infection protects cardiomyocytes against apoptosis induced by growth factor deprivation. Cruzipain, a major parasite antigen, reproduced this survival effect by a Bcl-2-dependent mechanism. In this study, we have investigated the molecular mechanisms of cruzipain-induced cardiomyocyte protection. Neonatal BALB/c mouse cardiac myocytes were cultured under minimum serum conditions in the presence of cruzipain or T. cruzi (Tulahuen strain). Some cultures were pretreated with the phosphatidylinositol 3-kinase (PI3K) inhibitor Ly294002 or specific inhibitors of the mitogen-activated protein kinase (MAPK) family members such as the mitogen-activated protein kinase kinase (MEK1) inhibitor PD098059, Jun N-terminal kinase (JNK) inhibitor SP600125, p38 MAPK inhibitor SB203580. Inhibition of PI3K and MEK1 but not JNK or p38 MAPK increased the apoptotic rate of cardiomyocytes treated with cruzipain. Phosphorylation of Akt, a major target of PI3K, and ERK1/2, MEK1-targets, was achieved at 15 min and 5 min, respectively. In parallel, these kinases were strongly phosphorylated by T. cruzi infection. In cultures treated with cruzipain, cleavage of caspase 3 was considerably diminished after serum starvation; Bcl-2 overexpression was inhibited by PD098059 but not by Ly294002, whereas Bad phosphorylation and Bcl-xL expression were increased and differentially modulated by both inhibitors. The results suggest that cruzipain exerts its anti-apoptotic property in cardiac myocytes at least by PI3K/Akt and MEK1/ERK1/2 signaling pathways. We further identified a differential modulation of Bcl-2 family members by these two signaling pathways.
Collapse
Affiliation(s)
- Maria Del Pilar Aoki
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, CP 5000 Córdoba, Argentina.
| | | | | | | | | | | | | |
Collapse
|
49
|
Hassan GS, Mukherjee S, Nagajyothi F, Weiss LM, Petkova SB, de Almeida CJ, Huang H, Desruisseaux MS, Bouzahzah B, Pestell RG, Albanese C, Christ GJ, Lisanti MP, Tanowitz HB. Trypanosoma cruzi infection induces proliferation of vascular smooth muscle cells. Infect Immun 2006; 74:152-9. [PMID: 16368968 PMCID: PMC1346667 DOI: 10.1128/iai.74.1.152-159.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma cruzi infection causes cardiomyopathy and vasculopathy. Previous studies have demonstrated that infection of human umbilical vein endothelial and smooth muscle cells resulted in activation of extracellular signal-regulated kinase (ERK). In the present study, smooth muscle cells were infected with trypomastigotes, and immunoblot analysis revealed an increase in the expression of cyclin D1 and proliferating cell nuclear antigen (PCNA), important mediators of smooth muscle cell proliferation. Interestingly, after infection, the expression of caveolin-1 was reduced in both human umbilical vein endothelial cells and smooth muscle cells. Immunoblot and immunohistochemical analyses of lysates of carotid arteries obtained from infected mice revealed increased expression of PCNA, cyclin D1, its substrate, phospho-Rb (Ser780), and phospho-ERK1/2. The expression of the cyclin-dependent kinase inhibitor p21(Cip1/Waf1), caveolin-1, and caveolin-3 was reduced in carotid arteries obtained from infected mice. There was an increase in the abundance of pre-pro-endothelin-1 mRNA in the carotid artery and aorta from infected mice. The ET(A) receptor was also elevated in infected arteries. ERK activates endothelin-1, which in turn exerts positive feedback activating ERK, and cyclin D1 is a downstream target of both endothelin-1 and ERK. There was significant incorporation of bromodeoxyuridine into smooth muscle cell DNA when treatment was with conditioned medium obtained from infected endothelial cells. Taken together, these data suggest that T. cruzi infection stimulates smooth muscle cell proliferation and is likely a result of the upregulation of the ERK-cyclin D1-endothelin-1 pathway.
Collapse
MESH Headings
- Animals
- Bromodeoxyuridine/metabolism
- Carotid Arteries/enzymology
- Caveolins/biosynthesis
- Caveolins/genetics
- Cell Cycle/physiology
- Cell Proliferation
- Cells, Cultured
- Chagas Disease/metabolism
- Chagas Disease/pathology
- Cyclin D1/physiology
- Endothelial Cells/metabolism
- Endothelial Cells/parasitology
- Endothelin-1/genetics
- Extracellular Signal-Regulated MAP Kinases/physiology
- Humans
- Male
- Mice
- Mice, Inbred A
- Mice, Inbred C3H
- Muscle, Smooth, Vascular/parasitology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/parasitology
- Myocytes, Smooth Muscle/pathology
- Proliferating Cell Nuclear Antigen/physiology
- RNA Precursors/metabolism
- Receptor, Endothelin A/metabolism
- Trypanosoma cruzi/physiology
Collapse
Affiliation(s)
- Ghada S Hassan
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tanowitz HB, Huang H, Jelicks LA, Chandra M, Loredo ML, Weiss LM, Factor SM, Shtutin V, Mukherjee S, Kitsis RN, Christ GJ, Wittner M, Shirani J, Kisanuki YY, Yanagisawa M. Role of endothelin 1 in the pathogenesis of chronic chagasic heart disease. Infect Immun 2005; 73:2496-503. [PMID: 15784596 PMCID: PMC1087455 DOI: 10.1128/iai.73.4.2496-2503.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 12/01/2004] [Accepted: 12/08/2004] [Indexed: 01/23/2023] Open
Abstract
On the basis of previous observations, endothelin 1 (ET-1) has been suggested as contributing to the pathogenesis of Chagasic cardiomyopathy. Therefore, ET-1flox/flox;alpha-MHC-Cre(+) mice in which the ET-1 gene was deleted from cardiac myocytes and ET-1flox/flox;Tie 2 Cre(+) mice in which the ET-1 gene was deleted from endothelial cells were infected with Trypanosoma cruzi. Genetic controls for these cell-specific ET-1 knockout mice were used. Ninety percentage of all mice survived acute infection with the Brazil strain and were evaluated 130 days postinfection. Inflammation and fibrosis were observed in all infected mice; however, fibrosis was reduced in ET-1flox/flox;alpha-MHC-Cre(+) mice. Cardiac magnetic resonance imaging revealed that infection resulted in a significant increase in right ventricular internal diameter (RVID) in all mice except ET-1flox/flox;alpha-MHC-Cre(+) mice; i.e., RVID was not changed in infected ET-1flox/flox;alpha-MHC-Cre(+) mice. Echocardiography of the left ventricle demonstrated increased left ventricular end-diastolic diameter, reduced fractional shortening, and decreased relative wall thickness in infected mice. However, the magnitude of the changes was significantly less in ET-1flox/flox;alpha-MHC-Cre(+) mice compared to other groups. These data provide further evidence of a role for ET-1, particularly cardiac myocyte-derived ET-1, in the pathogenesis of chronic Chagasic cardiomyopathy.
Collapse
Affiliation(s)
- Herbert B Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|