1
|
Farhat M, Khayi S, Berrada J, Mouahid M, Ameur N, El-Adawy H, Fellahi S. Salmonella enterica Serovar Gallinarum Biovars Pullorum and Gallinarum in Poultry: Review of Pathogenesis, Antibiotic Resistance, Diagnosis and Control in the Genomic Era. Antibiotics (Basel) 2023; 13:23. [PMID: 38247582 PMCID: PMC10812584 DOI: 10.3390/antibiotics13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/18/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum (SG) has two distinct biovars, Pullorum and Gallinarum. They are bacterial pathogens that exhibit host specificity for poultry and aquatic birds, causing severe systemic diseases known as fowl typhoid (FT) and Pullorum disease (PD), respectively. The virulence mechanisms of biovars Gallinarum and Pullorum are multifactorial, involving a variety of genes and pathways that contribute to their pathogenicity. In addition, these serovars have developed resistance to various antimicrobial agents, leading to the emergence of multidrug-resistant strains. Due to their economic and public health significance, rapid and accurate diagnosis is crucial for effective control and prevention of these diseases. Conventional methods, such as bacterial culture and serological tests, have been used for screening and diagnosis. However, molecular-based methods are becoming increasingly important due to their rapidity, high sensitivity, and specificity, opening new horizons for the development of innovative approaches to control FT and PD. The aim of this review is to highlight the current state of knowledge on biovars Gallinarum and Pullorum, emphasizing the importance of continued research into their pathogenesis, drug resistance and diagnosis to better understand and control these pathogens in poultry farms.
Collapse
Affiliation(s)
- Mouad Farhat
- Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, BP 6202, Rabat 10000, Morocco; (M.F.); (J.B.)
| | - Slimane Khayi
- Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research, Avenue Ennasr, Rabat Principale, BP 415, Rabat 10090, Morocco;
| | - Jaouad Berrada
- Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, BP 6202, Rabat 10000, Morocco; (M.F.); (J.B.)
| | | | - Najia Ameur
- Department of Food Microbiology and Hygiene, National Institute of Hygiene. Av. Ibn Batouta, 27, BP 769, Rabat 10000, Morocco;
| | - Hosny El-Adawy
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
- Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 35516, Egypt
| | - Siham Fellahi
- Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, BP 6202, Rabat 10000, Morocco; (M.F.); (J.B.)
| |
Collapse
|
2
|
Sutton K, Nash T, Sives S, Borowska D, Mitchell J, Vohra P, Stevens MP, Vervelde L. Disentangling the innate immune responses of intestinal epithelial cells and lamina propria cells to Salmonella Typhimurium infection in chickens. Front Microbiol 2023; 14:1258796. [PMID: 37854334 PMCID: PMC10579587 DOI: 10.3389/fmicb.2023.1258796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (STm) is a major foodborne pathogen and poultry are a key reservoir of human infections. To understand the host responses to early stages of Salmonella infection in poultry, we infected 2D and 3D enteroids, the latter of which contains leukocytes, neurons, and mesenchymal cells that are characteristic of the lamina propria. We infected these enteroids with wild-type (WT STm), a non-invasive mutant lacking the prgH gene (ΔprgH STm), or treated them with STm lipopolysaccharide (LPS) and analyzed the expression of innate immune related genes by qPCR at 4 and 8 h. The localization of the tight junction protein, ZO-1, expression was disrupted in WT STm infected enteroids but not ΔprgH STm or LPS treated enteroids, suggesting a loss of epithelial barrier integrity. The innate immune response to LPS was more pronounced in 2D enteroids compared to 3D enteroids and by 8 hpi, the response in 3D enteroids was almost negligible. However, when STm adhered to or invaded the enteroids, both 2D and 3D enteroids exhibited an upregulation of inflammatory responses. The presence of lamina propria cells in 3D enteroids resulted in the unique expression of genes associated with immune functions involved in regulating inflammation. Moreover, 2D and 3D enteroids showed temporal differences in response to bacterial invasion or adherence. At 8 hpi, innate responses in 3D but not 2D enteroids continued to increase after infection with WT STm, whereas the responses to the non-invasive strain decreased at 8 hpi in both 2D and 3D enteroids. In conclusion, STm infection of chicken enteroids recapitulated several observations from in vivo studies of Salmonella-infected chickens, including altered epithelial barrier integrity based on ZO-1 expression and inflammatory responses. Our findings provide evidence that Salmonella-infected enteroids serve as effective models for investigating host-pathogen interactions and exploring the molecular mechanisms of microbial virulence although the 3D model mimics the host more accurately due to the presence of a lamina propria.
Collapse
Affiliation(s)
- Kate Sutton
- Division of Immunology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Tessa Nash
- Division of Immunology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Samantha Sives
- Division of Immunology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Dominika Borowska
- Division of Immunology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jordan Mitchell
- Division of Immunology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Prerna Vohra
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark P. Stevens
- Division of Bacteriology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
The study of selection signature and its applications on identification of candidate genes using whole genome sequencing data in chicken - a review. Poult Sci 2023; 102:102657. [PMID: 37054499 PMCID: PMC10123265 DOI: 10.1016/j.psj.2023.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Chicken is a major source of protein for the increasing human population and is useful for research purposes. There are almost 1,600 distinct regional breeds of chicken across the globe, among which a large body of genetic and phenotypic variations has been accumulated due to extensive natural and artificial selection. Moreover, natural selection is a crucial force for animal domestication. Several approaches have been adopted to detect selection signatures in different breeds of chicken using whole genome sequencing (WGS) data including integrated haplotype score (iHS), cross-populated extend haplotype homozygosity test (XP-EHH), fixation index (FST), cross-population composite likelihood ratio (XP-CLR), nucleotide diversity (Pi), and others. In addition, gene enrichment analyses are utilized to determine KEGG pathways and gene ontology (GO) terms related to traits of interest in chicken. Herein, we review different studies that have adopted diverse approaches to detect selection signatures in different breeds of chicken. This review systematically summarizes different findings on selection signatures and related candidate genes in chickens. Future studies could combine different selection signatures approaches to strengthen the quality of the results thereby providing more affirmative inference. This would further aid in deciphering the importance of selection in chicken conservation for the increasing human population.
Collapse
|
4
|
Fathima S, Hakeem WGA, Shanmugasundaram R, Selvaraj RK. Necrotic Enteritis in Broiler Chickens: A Review on the Pathogen, Pathogenesis, and Prevention. Microorganisms 2022; 10:1958. [PMID: 36296234 PMCID: PMC9610872 DOI: 10.3390/microorganisms10101958] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Clostridium perfringens type A and C are the primary etiological agents associated with necrotic enteritis (NE) in poultry. The predisposing factors implicated in the incidence of NE changes the physical properties of the gut, immunological status of birds, and disrupt the gut microbial homeostasis, causing an over-proliferation of C. perfringens. The principal virulence factors contributing to the pathogenesis of NE are the α-toxin, β-toxin, and NetB toxin. The immune response to NE in poultry is mediated by the Th1 pathway or cytotoxic T-lymphocytes. C. perfringens type A and C are also pathogenic in humans, and hence are of public health significance. C. perfringens intoxications are the third most common bacterial foodborne disease after Salmonella and Campylobacter. The restrictions on the use of antibiotics led to an increased incidence of NE in poultry. Hence, it is essential to develop alternative strategies to keep the prevalence of NE under check. The control strategies rely principally on the positive modulation of host immune response, nutritional manipulation, and pathogen reduction. Current knowledge on the etiology, pathogenesis, predisposing factors, immune response, effect on the gut microbial homeostasis, and preventative strategies of NE in this post-antibiotic era is addressed in this review.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| | | | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Athens, GA 30605, USA
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Pan Y, Cai W, Huang J, Cheng A, Wang M, Yin Z, Jia R. Pyroptosis in development, inflammation and disease. Front Immunol 2022; 13:991044. [PMID: 36189207 PMCID: PMC9522910 DOI: 10.3389/fimmu.2022.991044] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022] Open
Abstract
In the early 2000s, caspase-1, an important molecule that has been shown to be involved in the regulation of inflammation, cell survival and diseases, was given a new function: regulating a new mode of cell death that was later defined as pyroptosis. Since then, the inflammasome, the inflammatory caspases (caspase-4/5/11) and their substrate gasdermins (gasdermin A, B, C, D, E and DFNB59) has also been reported to be involved in the pyroptotic pathway, and this pathway is closely related to the development of various diseases. In addition, important apoptotic effectors caspase-3/8 and granzymes have also been reported to b involved in the induction of pyroptosis. In our article, we summarize findings that help define the roles of inflammasomes, inflammatory caspases, gasdermins, and other mediators of pyroptosis, and how they determine cell fate and regulate disease progression.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- *Correspondence: Anchun Cheng, ; Renyong Jia,
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- *Correspondence: Anchun Cheng, ; Renyong Jia,
| |
Collapse
|
6
|
Kogut MH, Genovese KJ, Byrd JA, Swaggerty CL, He H, Farnell Y, Arsenault RJ. Chicken-Specific Kinome Analysis of Early Host Immune Signaling Pathways in the Cecum of Newly Hatched Chickens Infected With Salmonella enterica Serovar Enteritidis. Front Cell Infect Microbiol 2022; 12:899395. [PMID: 35846741 PMCID: PMC9279939 DOI: 10.3389/fcimb.2022.899395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Poultry is a major source of human foodborne illness caused by broad host range Salmonella serovars (paratyphoid), and developing cost-effective, pre-harvest interventions to reduce these pathogens would be valuable to the industry and consumer. Host responses to infectious agents are often regulated through phosphorylation. However, proteomic mechanisms of Salmonella acute infection biology and host responses to the bacteria have been limited concentrating predominately on the genomic responses of the host to infection. Our recent development of chicken-specific peptide arrays for kinome analysis of host phosphorylation-based cellular signaling responses provided us with the opportunity to develop a more detailed understanding of the early (4-24 h post-infection) host-pathogen interactions during the initial colonization of the cecum by Salmonella. Using the chicken-specific kinomic immune peptide array, biological pathway analysis showed infection with S. Enteritidis increased signaling related to the innate immune response, relative to the non-infected control ceca. Notably, the acute innate immune signaling pathways were characterized by increased peptide phosphorylation (activation) of the Toll-like receptor and NOD-like receptor signaling pathways, the activation of the chemokine signaling pathway, and the activation of the apoptosis signaling pathways. In addition, Salmonella infection induced a dramatic alteration in the phosphorylation events of the JAK-STAT signaling pathway. Lastly, there is also significant activation of the T cell receptor signaling pathway demonstrating the initiation of the acquired immune response to Salmonella infection. Based on the individual phosphorylation events altered by the early Salmonella infection of the cecum, certain conclusions can be drawn: (1) Salmonella was recognized by both TLR and NOD receptors that initiated the innate immune response; (2) activation of the PPRs induced the production of chemokines CXCLi2 (IL-8) and cytokines IL-2, IL-6, IFN-α, and IFN-γ; (3) Salmonella infection targeted the JAK-STAT pathway as a means of evading the host response by targeting the dephosphorylation of JAK1 and TYK2 and STAT1,2,3,4, and 6; (4) apoptosis appears to be a host defense mechanism where the infection with Salmonella induced both the intrinsic and extrinsic apoptotic pathways; and (5) the T cell receptor signaling pathway activates the AP-1 and NF-κB transcription factor cascades, but not NFAT.
Collapse
Affiliation(s)
- Michael H. Kogut
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
- *Correspondence: Michael H. Kogut,
| | - Kenneth J. Genovese
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
| | - J. Allen Byrd
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
| | - Christina L. Swaggerty
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
| | - Haiqi He
- Southern Plains Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA ARS), College Station, TX, United States
| | - Yuhua Farnell
- Department of Poultry Science, Texas A&M University, College Station, TX, United States
| | - Ryan J. Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
7
|
Adenaike AS, Akpan U, Awopejo OO, Oloye OS, Alli-Balogun AO, Agbaje M, Ikeobi CON. Characterization of the cecal microbiome composition of Nigerian indigenous chickens. Trop Anim Health Prod 2022; 54:211. [PMID: 35687206 DOI: 10.1007/s11250-022-03191-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/30/2022] [Indexed: 02/07/2023]
Abstract
Poultry cecum microbes are dynamic and complex. They play important roles in disease prevention, detoxification of harmful substances, nutrient processing, and ingestion harvesting. It may be possible to increase poultry productivity by better understanding and controlling the microbial population. We analyzed the composition and function of Nigerian hens' cecal microbiota using high-throughput sequencing methods. Using high-throughput sequencing of the 16S rRNA genes (V1-V9) hypervariable regions, the cecal microbiota of three Nigerian indigenous chicken genotypes (Naked neck, Frizzle, and Normal feather) was described and compared. A total of two phyla were represented among the three genotypes (Firmicutes and Proteobacteria). Microbiological diversity was found in the community, with naked neck having the most evenness, followed by normal feather, which had the least. There were a lot of similarities between the naked neck and frizzle feather chicken groups when it came to genetic diversity between them. For example, the bacterial cecal microbiota of the naked neck chickens was more diverse, with a higher concentration of motility proteins, two-component systems, bacterial secretion systems, and the formation and breakdown of secondary metabolites. More understanding on gut microbiota roles and interactions will help Nigerian poultry farmers improve their methods and give valuable data for the study of bacteria in the chicken gut.
Collapse
Affiliation(s)
- A S Adenaike
- Department of Animal Breeding and Genetics, Federal University of Agriculture, P.M.B 2240, Alabata Road, Abeokuta, Ogun, Nigeria.
| | - U Akpan
- Department of Animal Breeding and Genetics, Federal University of Agriculture, P.M.B 2240, Alabata Road, Abeokuta, Ogun, Nigeria
| | - O O Awopejo
- Department of Animal Breeding and Genetics, Federal University of Agriculture, P.M.B 2240, Alabata Road, Abeokuta, Ogun, Nigeria
| | - O S Oloye
- Department of Animal Breeding and Genetics, Federal University of Agriculture, P.M.B 2240, Alabata Road, Abeokuta, Ogun, Nigeria
| | - A O Alli-Balogun
- Department of Animal Breeding and Genetics, Federal University of Agriculture, P.M.B 2240, Alabata Road, Abeokuta, Ogun, Nigeria
| | - M Agbaje
- Department of Veterinary Microbiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - C O N Ikeobi
- Department of Animal Breeding and Genetics, Federal University of Agriculture, P.M.B 2240, Alabata Road, Abeokuta, Ogun, Nigeria
| |
Collapse
|
8
|
Abstract
Birds are important hosts for many RNA viruses, including influenza A virus, Newcastle disease virus, West Nile virus and coronaviruses. Innate defense against RNA viruses in birds involves detection of viral RNA by pattern recognition receptors. Several receptors of different classes are involved, such as endosomal toll-like receptors and cytoplasmic retinoic acid-inducible gene I-like receptors, and their downstream adaptor proteins. The function of these receptors and their antagonism by viruses is well established in mammals; however, this has received less attention in birds. These receptors have been characterized in a few bird species, and the completion of avian genomes will permit study of their evolution. For each receptor, functional work has established ligand specificity and activation by viral infection. Engagement of adaptors, regulation by modulators and the supramolecular organization of proteins required for activation are incompletely understood in both mammals and birds. These receptors bind conserved nucleic acid agonists such as single- or double-stranded RNA and generally show purifying selection, particularly the ligand binding regions. However, in birds, these receptors and adaptors differ between species, and between individuals, suggesting that they are under selection for diversification over time. Avian receptors and signalling pathways, like their mammalian counterparts, are targets for antagonism by a variety of viruses, intent on escape from innate immune responses.
Collapse
|
9
|
Li X, Li Q, Ruan W. Identification of Avian Toll-Like Receptor 3 and 7 and Analysis of Gene Variation Sites. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2020-1431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- X Li
- Beijing University of Agriculture, China
| | - Q Li
- Beijing University of Agriculture, China
| | - W Ruan
- Beijing University of Agriculture, China
| |
Collapse
|
10
|
Ijaz A, Veldhuizen EJA, Broere F, Rutten VPMG, Jansen CA. The Interplay between Salmonella and Intestinal Innate Immune Cells in Chickens. Pathogens 2021; 10:1512. [PMID: 34832668 PMCID: PMC8618210 DOI: 10.3390/pathogens10111512] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Salmonellosis is a common infection in poultry, which results in huge economic losses in the poultry industry. At the same time, Salmonella infections are a threat to public health, since contaminated poultry products can lead to zoonotic infections. Antibiotics as feed additives have proven to be an effective prophylactic option to control Salmonella infections, but due to resistance issues in humans and animals, the use of antimicrobials in food animals has been banned in Europe. Hence, there is an urgent need to look for alternative strategies that can protect poultry against Salmonella infections. One such alternative could be to strengthen the innate immune system in young chickens in order to prevent early life infections. This can be achieved by administration of immune modulating molecules that target innate immune cells, for example via feed, or by in-ovo applications. We aimed to review the innate immune system in the chicken intestine; the main site of Salmonella entrance, and its responsiveness to Salmonella infection. Identifying the most important players in the innate immune response in the intestine is a first step in designing targeted approaches for immune modulation.
Collapse
Affiliation(s)
- Adil Ijaz
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
| | - Edwin J. A. Veldhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
| | - Femke Broere
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
| | - Victor P. M. G. Rutten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
| | - Christine A. Jansen
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
11
|
Rehman MSU, Rehman SU, Yousaf W, Hassan FU, Ahmad W, Liu Q, Pan H. The Potential of Toll-Like Receptors to Modulate Avian Immune System: Exploring the Effects of Genetic Variants and Phytonutrients. Front Genet 2021; 12:671235. [PMID: 34512716 PMCID: PMC8427530 DOI: 10.3389/fgene.2021.671235] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLRs) are pathogen recognition receptors, and primitive sources of innate immune response that also play key roles in the defense mechanism against infectious diseases. About 10 different TLRs have been discovered in chicken that recognize ligands and participate in TLR signaling pathways. Research findings related to TLRs revealed new approaches to understand the fundamental mechanisms of the immune system, patterns of resistance against diseases, and the role of TLR-specific pathways in nutrient metabolism in chicken. In particular, the uses of specific feed ingredients encourage molecular biologists to exploit the relationship between nutrients (including different phytochemicals) and TLRs to modulate immunity in chicken. Phytonutrients and prebiotics are noteworthy dietary components to promote immunity and the production of disease-resistant chicken. Supplementations of yeast-derived products have also been extensively studied to enhance innate immunity during the last decade. Such interventions pave the way to explore nutrigenomic approaches for healthy and profitable chicken production. Additionally, single-nucleotide polymorphisms in TLRs have shown potential association with few disease outbreaks in chickens. This review aimed to provide insights into the key roles of TLRs in the immune response and discuss the potential applications of these TLRs for genomic and nutritional interventions to improve health, and resistance against different fatal diseases in chicken.
Collapse
Affiliation(s)
- Muhammad Saif-ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Wasim Yousaf
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Faiz-ul Hassan
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Waqas Ahmad
- Department of Clinical Sciences, University College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Hongping Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|
12
|
Molecular cloning and functional studies on magang goose toll-like receptor 5. Vet Immunol Immunopathol 2021; 236:110236. [PMID: 33892385 DOI: 10.1016/j.vetimm.2021.110236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 02/05/2021] [Accepted: 03/30/2021] [Indexed: 11/22/2022]
Abstract
Disease outbreaks heavily impact the economic viability of animal industries. Little is known about the mechanisms of immune system-related diseases in geese. Toll-like receptors (TLRs) play a major role in the anti-inflammatory immunity process in most animal species, but they have not been studied in the Magang goose. To elucidate the role of TLRs, reverse transcription polymerase chain reaction (RT-PCR) and PCR amplification of cDNA ends (Smart RACE) were used to clone the Magang goose TLR5 gene (mgTLR5). The full-length cDNA of mgTLR5 was 2967 bp in length, including a 5'-terminal untranslated region (UTR) of 215 bp, a 3'-terminal UTR of 384 bp, and an open reading frame of 2583 bp that encodes a protein of 860 amino acids. Structurally, mgTLR5 has a toll/interleukin-receptor (TIR) domain, a transmembrane domain, and seven leucine-rich repeats (LRRs) domains. Homology alignment of TLR5 and its TIR domains with other species revealed that mgTLR5 shared 98 % and 81.3 % of sequence similarity with white goose TLR5 and chicken TLR5, respectively. Quantitative RT-PCR showed that the mgTLR5 gene of the goose is widely expressed in all tested tissues, with the highest expression in the kidney and spleen. The increase in NF-κB promoter activity stimulated by flagellin was dependent on mgTLR5 expression in 293 T cells. Salmonella pullorum and flagellin significantly upregulated the expression of TLR5, IL-8, and IL-1 mRNA in peripheral blood mononucleotide cells of Magang goose cultured in vitro. Stimulation by S. pullorum for 24 h upregulated mgTLR5 expression in the cecum and kidney. We conclude that Magang goose TLR5 is a functional TLR5 homologue of the protein in other species and plays an important role in bacterial recognition.
Collapse
|
13
|
Sharma V, Hecker N, Walther F, Stuckas H, Hiller M. Convergent Losses of TLR5 Suggest Altered Extracellular Flagellin Detection in Four Mammalian Lineages. Mol Biol Evol 2021; 37:1847-1854. [PMID: 32145026 DOI: 10.1093/molbev/msaa058] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptors (TLRs) play an important role for the innate immune system by detecting pathogen-associated molecular patterns. TLR5 encodes the major extracellular receptor for bacterial flagellin and frequently evolves under positive selection, consistent with coevolutionary arms races between the host and pathogens. Furthermore, TLR5 is inactivated in several vertebrates and a TLR5 stop codon polymorphism is widespread in human populations. Here, we analyzed the genomes of 120 mammals and discovered that TLR5 is convergently lost in four independent lineages, comprising guinea pigs, Yangtze river dolphin, pinnipeds, and pangolins. Validated inactivating mutations, absence of protein-coding transcript expression, and relaxed selection on the TLR5 remnants confirm these losses. PCR analysis further confirmed the loss of TLR5 in the pinniped stem lineage. Finally, we show that TLR11, encoding a second extracellular flagellin receptor, is also absent in these four lineages. Independent losses of TLR5 and TLR11 suggest that a major pathway for detecting flagellated bacteria is not essential for different mammals and predicts an impaired capacity to sense extracellular flagellin.
Collapse
Affiliation(s)
- Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany.,CRTD-DFG Center for Regenerative Therapies Dresden, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden; German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| | - Felix Walther
- Senckenberg Natural History Collections Dresden, Senckenberg - Leibniz Institution for Biodiversity and Earth System Research, Dresden, Germany
| | - Heiko Stuckas
- Senckenberg Natural History Collections Dresden, Senckenberg - Leibniz Institution for Biodiversity and Earth System Research, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| |
Collapse
|
14
|
Kulappu Arachchige SN, Young ND, Kanci Condello A, Omotainse OS, Noormohammadi AH, Wawegama NK, Browning GF. Transcriptomic Analysis of Long-Term Protective Immunity Induced by Vaccination With Mycoplasma gallisepticum Strain ts-304. Front Immunol 2021; 11:628804. [PMID: 33603758 PMCID: PMC7885271 DOI: 10.3389/fimmu.2020.628804] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Live attenuated vaccines are commonly used to control Mycoplasma gallisepticum infections in chickens. M. gallisepticum ts-304 is a novel live attenuated vaccine strain that has been shown to be safe and effective. In this study, the transcriptional profiles of genes in the tracheal mucosa in chickens challenged with the M. gallisepticum wild-type strain Ap3AS at 57 weeks after vaccination with ts-304 were explored and compared with the profiles of unvaccinated chickens that had been challenged with strain Ap3AS, unvaccinated and unchallenged chickens, and vaccinated but unchallenged chickens. At two weeks after challenge, pair-wise comparisons of transcription in vaccinated-only, vaccinated-and-challenged and unvaccinated and unchallenged birds detected no differences. However, the challenged-only birds had significant up-regulation in the transcription of genes and enrichment of gene ontologies, pathways and protein classes involved in infiltration and proliferation of inflammatory cells and immune responses mediated through enhanced cytokine and chemokine production and signaling, while those predicted to be involved in formation and motor movement of cilia and formation of the cellular cytoskeleton were significantly down-regulated. The transcriptional changes associated with the inflammatory response were less severe in these mature birds than in the relatively young birds examined in a previous study. The findings of this study demonstrated that vaccination with the attenuated M. gallisepticum strain ts-304 protects against the transcriptional changes associated with the inflammatory response and pathological changes in the tracheal mucosa caused by infection with M. gallisepticum in chickens for at least 57 weeks after vaccination.
Collapse
Affiliation(s)
- Sathya N Kulappu Arachchige
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Anna Kanci Condello
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Oluwadamilola S Omotainse
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Amir H Noormohammadi
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Nadeeka K Wawegama
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
de Oliveira Barbosa F, de Freitas Neto OC, Rodrigues Alves LB, Benevides VP, de Souza AIS, da Silva Rubio M, de Almeida AM, Saraiva MM, de Oliveira CJB, Olsen JE, Junior AB. Immunological and bacteriological shifts associated with a flagellin-hyperproducing Salmonella Enteritidis mutant in chickens. Braz J Microbiol 2020; 52:419-429. [PMID: 33150477 DOI: 10.1007/s42770-020-00399-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/27/2020] [Indexed: 11/30/2022] Open
Abstract
Salmonella Enteritidis causes infections in humans and animals which are often associated with extensive gut colonization and bacterial shedding in faeces. The natural presence of flagella in Salmonella enterica has been shown to be enough to induce pro-inflammatory responses in the gut, resulting in recruitment of polymorphonuclear cells, gut inflammation and, consequently, reducing the severity of systemic infection in chickens. On the other hand, the absence of flagellin in some Salmonella strains favours systemic infection as a result of the poor intestinal inflammatory responses elicited. The hypothesis that higher production of flagellin by certain Salmonella enterica strains could lead to an even more immunogenic and less pathogenic strain for chickens was here investigated. In the present study, a Salmonella Enteritidis mutant strain harbouring deletions in clpP and fliD genes (SE ΔclpPfliD), which lead to overexpression of flagellin, was generated, and its immunogenicity and pathogenicity were comparatively assessed to the wild type in chickens. Our results showed that SE ΔclpPfliD elicited more intense immune responses in the gut during early stages of infection than the wild type did, and that this correlated with earlier intestinal and systemic clearance of the bacterium.
Collapse
Affiliation(s)
- Fernanda de Oliveira Barbosa
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Oliveiro Caetano de Freitas Neto
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Lucas Bocchini Rodrigues Alves
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Valdinete Pereira Benevides
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Andrei Itajahy Secundo de Souza
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Marcela da Silva Rubio
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Adriana Maria de Almeida
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Mauro Mesquita Saraiva
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Celso José Bruno de Oliveira
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Angelo Berchieri Junior
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| |
Collapse
|
16
|
Khan S, Chousalkar KK. Transcriptome profiling analysis of caeca in chicks challenged with Salmonella Typhimurium reveals differential expression of genes involved in host mucosal immune response. Appl Microbiol Biotechnol 2020; 104:9327-9342. [PMID: 32960293 DOI: 10.1007/s00253-020-10887-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/19/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022]
Abstract
Temporal regulation of global gene expression in the caeca of chickens infected with Salmonella Typhimurium has not been investigated previously. In this study, we performed the transcriptome analysis of the caeca of Salmonella Typhimurium challenged chicks to understand the regulation of the mucosal immune system in a temporal manner. The Salmonella infection resulted in the activation of the caecal immune system by the upregulation of the differentially expressed genes (DEGs; false discovery rate (FDR) < 0.05; log2 fold change > 1) involved in biological pathways such as Toll-like receptor signaling pathway, Salmonella infection, cytokine-cytokine receptor interaction, phagosome, apoptosis and intestinal immune network for IgA production. The activation of biological pathways such as RIG-I-like receptor signaling pathway, ErbB signaling pathway and cellular senescence showed a time-dependent response of the host immune system. A 49% increase in the DEGs on day 7 compared with day 3 post-infection (p.i.) suggested a time-dependent role of multiple genes such as AvBD1, AvBD2, AvBD7, IL2, IL10, IL21, SIVA1, CD5, CD14 and GPR142 in the regulation of the immune system. Nested network analysis of the individual biological pathways showed that IL6 played a significant role in the immune system regulation by activating the pathways, including Toll-like receptor signaling pathway, Salmonella infection, intestinal immune network for IgA production and C-type lectin receptor signaling pathway. The downregulated DEGs (FDR < 0.05; log2 fold change < -1) showed that Salmonella challenge affected the functions of pathways, such as tryptophan metabolism, retinol metabolism, folate biosynthesis and pentose and glucoronate interconversions, suggesting the disruption of cellular mechanisms involved in nutrient synthesis, absorption and metabolism. Overall, the immune response was temporally regulated through the activation of Toll-like signaling receptor pathway, cytokine-cytokine interactions and Salmonella infection, where IL6 played a significant role in the modulation of caecal immune system against Salmonella Typhimurium. KEY POINTS: • The immune response to Salmonella Typhimurium challenge was temporally regulated in the caeca of chickens. • Many newly identified genes have been shown to be involved in the activation of the immune system. • Toll-like receptors and interleukins played a key role in immune system regulation.
Collapse
Affiliation(s)
- Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - Kapil K Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia.
| |
Collapse
|
17
|
Ifuku M, Hinkelmann L, Kuhrt LD, Efe IE, Kumbol V, Buonfiglioli A, Krüger C, Jordan P, Fulde M, Noda M, Kettenmann H, Lehnardt S. Activation of Toll-like receptor 5 in microglia modulates their function and triggers neuronal injury. Acta Neuropathol Commun 2020; 8:159. [PMID: 32912327 PMCID: PMC7488138 DOI: 10.1186/s40478-020-01031-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/29/2020] [Indexed: 12/12/2022] Open
Abstract
Microglia are the primary immune-competent cells of the central nervous system (CNS) and sense both pathogen- and host-derived factors through several receptor systems including the Toll-like receptor (TLR) family. Although TLR5 has previously been implicated in different CNS disorders including neurodegenerative diseases, its mode of action in the brain remained largely unexplored. We sought to determine the expression and functional consequences of TLR5 activation in the CNS. Quantitative real-time PCR and immunocytochemical analysis revealed that microglia is the major CNS cell type that constitutively expresses TLR5. Using Tlr5−/− mice and inhibitory TLR5 antibody we found that activation of TLR5 in microglial cells by its agonist flagellin, a principal protein component of bacterial flagella, triggers their release of distinct inflammatory molecules, regulates chemotaxis, and increases their phagocytic activity. Furthermore, while TLR5 activation does not affect tumor growth in an ex vivo GL261 glioma mouse model, it triggers microglial accumulation and neuronal apoptosis in the cerebral cortex in vivo. TLR5-mediated microglial function involves the PI3K/Akt/mammalian target of rapamycin complex 1 (mTORC1) pathway, as specific inhibitors of this signaling pathway abolish microglial activation. Taken together, our findings establish TLR5 as a modulator of microglial function and indicate its contribution to inflammatory and injurious processes in the CNS.
Collapse
|
18
|
Kempf F, Menanteau P, Rychlik I, Kubasová T, Trotereau J, Virlogeux‐Payant I, Schaeffer S, Schouler C, Drumo R, Guitton E, Velge P. Gut microbiota composition before infection determines the Salmonella super- and low-shedder phenotypes in chicken. Microb Biotechnol 2020; 13:1611-1630. [PMID: 32639676 PMCID: PMC7415355 DOI: 10.1111/1751-7915.13621] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/25/2022] Open
Abstract
Heterogeneity of infection and extreme shedding patterns are common features of animal infectious diseases. Individual hosts that are super-shedders are key targets for control strategies. Nevertheless, the mechanisms associated with the emergence of super-shedders remain largely unknown. During chicken salmonellosis, a high heterogeneity of infection is observed when animal-to-animal cross-contaminations and reinfections are reduced. We hypothesized that unlike super-shedders, low-shedders would be able to block the first Salmonella colonization thanks to a different gut microbiota. The present study demonstrates that (i) axenic and antibiotic-treated chicks are more prone to become super-shedders; (ii) super or low-shedder phenotypes can be acquired through microbiota transfer; (iii) specific gut microbiota taxonomic features determine whether the chicks develop a low- and super-shedder phenotype after Salmonella infection in isolator; (iv) partial protection can be conferred by inoculation of four commensal bacteria prior to Salmonella infection. This study demonstrates the key role plays by gut microbiota composition in the heterogeneity of infection and pave the way for developing predictive biomarkers and protective probiotics.
Collapse
Affiliation(s)
- Florent Kempf
- ISPINRAEUniversité François Rabelais de ToursUMR 1282Nouzilly37380France
| | | | - Ivan Rychlik
- Veterinary Research InstituteHudcova 70Brno621 00Czech Republic
| | - Tereza Kubasová
- Veterinary Research InstituteHudcova 70Brno621 00Czech Republic
| | - Jérôme Trotereau
- ISPINRAEUniversité François Rabelais de ToursUMR 1282Nouzilly37380France
| | | | - Samantha Schaeffer
- ISPINRAEUniversité François Rabelais de ToursUMR 1282Nouzilly37380France
- Present address:
INSERM Unité 1162Génomique Fonctionnelle des Tumeurs Solides HépatiquesParisFrance
| | - Catherine Schouler
- ISPINRAEUniversité François Rabelais de ToursUMR 1282Nouzilly37380France
| | - Rosanna Drumo
- ISPINRAEUniversité François Rabelais de ToursUMR 1282Nouzilly37380France
| | - Edouard Guitton
- Plate‐Forme d'Infectiologie ExpérimentaleINRAENouzilly37380France
| | - Philippe Velge
- ISPINRAEUniversité François Rabelais de ToursUMR 1282Nouzilly37380France
| |
Collapse
|
19
|
Bhagwani A, Thompson AAR, Farkas L. When Innate Immunity Meets Angiogenesis-The Role of Toll-Like Receptors in Endothelial Cells and Pulmonary Hypertension. Front Med (Lausanne) 2020; 7:352. [PMID: 32850883 PMCID: PMC7410919 DOI: 10.3389/fmed.2020.00352] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/12/2020] [Indexed: 01/16/2023] Open
Abstract
Toll-like receptors serve a central role in innate immunity, but they can also modulate cell function in various non-immune cell types including endothelial cells. Endothelial cells are necessary for the organized function of the vascular system, and part of their fundamental role is also the regulation of immune function and inflammation. In this review, we summarize the current knowledge of how Toll-like receptors contribute to the immune and non-immune functions of the endothelial cells.
Collapse
Affiliation(s)
- Aneel Bhagwani
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States
| | - A. A. Roger Thompson
- Department of Infection, Immunity & Cardiovascular Disease, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield, United Kingdom
| | - Laszlo Farkas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
20
|
Biological Activity of Porcine Gastric Mucin on Stress Resistance and Immunomodulation. Molecules 2020; 25:molecules25132981. [PMID: 32610600 PMCID: PMC7411864 DOI: 10.3390/molecules25132981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Purified porcine gastric mucin (PGM) is an alternative biomaterial to native mucin which displays multifunctional properties for exploring a wide range of biomedical applications. The present study evaluated the in vitro (RAW 264.7 macrophage cells) and in vivo (zebrafish embryos and larvae) bioactivities of PGM. The median lethal concentration (LC50) of PGM was 197.9 µg/mL for embryos, while it was non-toxic to RAW 264.7 cells, even at 500 µg/mL. Following PGM exposure (100 µg/mL), a higher embryo hatching rate (59.9%) was observed at 48 h post fertilization, compared to the control (30.6%). Protective effects of PGM from pathogenic Aeromonas hydrophila were demonstrated by high larvae survival rates of 85.0% and 94.0% at 50 and 100 μg/mL of PGM exposure, respectively. Heat tolerance effect of PGM (50 and 100 µg/mL) on larvae (40 °C for 48 h) was confirmed by 75% and 100% of survival rates, respectively. Additionally, PGM reduced the A. hydrophila–induced reactive oxygen species (ROS) generation in larvae. The qRT-PCR results in PGM exposed larvae exhibited induction of immune-related genes (tlr5a and tlr5b, myd88, c-rel, il1β, tnf-α, il6, il10, cxcl18b, ccl34a.4, defbl1, hamp, ctsd, muc2.1, muc5.1, muc5.2, and muc5.3), stress response (hsp70, hsp90aa1.1, and hsp90ab1), and antioxidant genes (cat and sod1). Moreover, our results revealed that PGM involved in the regulation of transcriptional gene induction increases Hsp90 protein in the zebrafish larvae. Furthermore, upregulation of Il6, Il10, Tnfα, Ccl3, Defa-rs2, Defa21 and Camp and antioxidant genes (Sod2 and Cat) were observed in PGM-exposed RAW 264.7 cells. Overall findings confirmed the activation of immune responses, disease resistance against pathogenic bacteria, heat tolerance, and ROS-scavenging properties by PGM, which may provide insights into new applications for PGM as a multifunctional immunomodulator.
Collapse
|
21
|
Mannose-Modified Chitosan-Nanoparticle-Based Salmonella Subunit OralVaccine-Induced Immune Response and Efficacy in a Challenge Trial in Broilers. Vaccines (Basel) 2020; 8:vaccines8020299. [PMID: 32545295 PMCID: PMC7349978 DOI: 10.3390/vaccines8020299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 01/17/2023] Open
Abstract
Controlling Salmonella enterica serovar Enteritidis (SE) infection in broilers is a huge challenge. In this study, our objective was to improve the efficacy of a chitosan nanoparticle (CS)-based Salmonella subunit vaccine for SE, containing immunogenic outer membrane proteins (OMP) and flagellin (FLA), called the CS(OMP+FLA) vaccine, by surface conjugating it with mannose to target dendritic cells, and comparing the immune responses and efficacy with a commercial live Salmonella vaccine in broilers. The CS(OMP+FLA)-based vaccines were administered orally at age 3 days and as a booster dose after three weeks, and the broilers were challenged with SE at 5 weeks of age. Birds were sacrificed 10 days post-challenge and it was observed that CS(OMP+FLA) vaccine surface conjugated with both mannose and FLA produced the greatest SE reduction, by over 1 log10 colony forming unit per gram of the cecal content, which was comparable to a commercial live vaccine. Immunologically, specific mucosal antibody responses were enhanced by FLA-surface-coated CS(OMP+FLA) vaccine, and mannose-bound CS(OMP+FLA) improved the cellular immune response. In addition, increased mRNA expression of Toll-like receptors and cytokine was observed in CS(OMP+FLA)-based-vaccinated birds. The commercial live vaccine failed to induce any such substantial immune response, except that they had a slightly improved T helper cell frequency. Our data suggest that FLA-coated and mannose-modified CS(OMP+FLA) vaccine induced robust innate and adaptive cell-mediated immune responses and substantially reduced the Salmonella load in the intestines of broilers.
Collapse
|
22
|
Kulappu Arachchige SN, Young ND, Shil PK, Legione AR, Kanci Condello A, Browning GF, Wawegama NK. Differential Response of the Chicken Trachea to Chronic Infection with Virulent Mycoplasma gallisepticum Strain Ap3AS and Vaxsafe MG (Strain ts-304): a Transcriptional Profile. Infect Immun 2020; 88:e00053-20. [PMID: 32122943 PMCID: PMC7171234 DOI: 10.1128/iai.00053-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/26/2020] [Indexed: 12/29/2022] Open
Abstract
Mycoplasma gallisepticum is the primary etiological agent of chronic respiratory disease in chickens. Live attenuated vaccines are most commonly used in the field to control the disease, but current vaccines have some limitations. Vaxsafe MG (strain ts-304) is a new vaccine candidate that is efficacious at a lower dose than the current commercial vaccine strain ts-11, from which it is derived. In this study, the transcriptional profiles of the trachea of unvaccinated chickens and chickens vaccinated with strain ts-304 were compared 2 weeks after challenge with M. gallisepticum strain Ap3AS during the chronic stage of infection. After challenge, genes, gene ontologies, pathways, and protein classes involved in inflammation, cytokine production and signaling, and cell proliferation were upregulated, while those involved in formation and motor movement of cilia, formation of intercellular junctional complexes, and formation of the cytoskeleton were downregulated in the unvaccinated birds compared to the vaccinated birds, reflecting immune dysregulation and the pathological changes induced in the trachea by infection with M. gallisepticum Vaccination appears to protect the structural and functional integrity of the tracheal mucosa 2 weeks after infection with M. gallisepticum.
Collapse
Affiliation(s)
- Sathya N Kulappu Arachchige
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pollob K Shil
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Alistair R Legione
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Anna Kanci Condello
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Nadeeka K Wawegama
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
23
|
Zmrhal V, Slama P. Current knowledge about interactions between avian dendritic cells and poultry pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103565. [PMID: 31830703 DOI: 10.1016/j.dci.2019.103565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
In poultry production conditions today, birds are surrounded by viral, bacterial, and parasitic agents. DCs are the main antigen-presenting cells located in tissues of the body, and their role involves recognizing antigen structures, engulfing and processing them, and subsequently presenting antigen peptides on their surface by major histocompatibility complex, where T cells and B cells are stimulated and can begin appropriate cellular and antibody immune response. This unique function indicates that these cells can be used in producing vaccines, but first it is necessary to culture DCs in vitro to identify the principles of their interactions with pathogens. The following review summarizes our current knowledge about avian dendritic cells and their interactions with pathogens. It provides a basis for future studies of these unique cells and their use in vaccine development.
Collapse
Affiliation(s)
- Vladimir Zmrhal
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
24
|
Tang B, Pors SE, Kristensen BM, Skjerning RBJ, Olsen RH, Bojesen AM. GtxA is a virulence factor that promotes a Th2-like response during Gallibacterium anatis infection in laying hens. Vet Res 2020; 51:40. [PMID: 32156313 PMCID: PMC7065373 DOI: 10.1186/s13567-020-00764-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 01/07/2023] Open
Abstract
GtxA, a leukotoxic RTX-toxin, has been proposed a main virulence factor of Gallibacterium anatis. To evaluate the impact of GtxA during infection, we experimentally infected laying hens with a G. anatis wild-type (WT) strain and its isogenic gtxA deletion mutant (ΔgtxA), respectively, and monitored the birds during a 6 day period. Birds inoculated with ΔgtxA had significantly reduced gross lesions and microscopic changes compared to the birds inoculated with the WT strain. To assess the host response further, we quantified the expression of pro-inflammatory cytokines and apoptosis genes by RT-qPCR. In the ovarian tissue, the expression levels of IL-4 and TNF-α were significantly lower in the ΔgtxA group compared to the WT group, while IL-6 and IL-10 levels appeared similar in the two groups. In the spleen tissue of ΔgtxA infected chickens, IL-4 expression was also lower compared to the WT infected chickens. The results indicated that GtxA plays a key role in an acute cytokine-mediated Th2-like response against G. anatis infection in the ovary tissue. The pro-inflammatory response in the ovary tissue of birds inoculated with ΔgtxA mutant was thus significantly lower than the wild-type response. This was, at least partly, supported by the apoptosis gene expression levels, which were significantly higher in the ΔgtxA mutant compared to the wild-type infected chickens. In conclusion, GtxA clearly plays an important role in the pathogenesis of G. anatis infections in laying hens. Further investigations into the specific factors regulating the host response is however needed to provide a more complete understanding of the bacteria-host interaction.
Collapse
Affiliation(s)
- Bo Tang
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Susanne E. Pors
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Bodil M. Kristensen
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Ragnhild Bager J. Skjerning
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Rikke H. Olsen
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| | - Anders M. Bojesen
- grid.5254.60000 0001 0674 042XDepartment of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, 1870 Frederiksberg C, Denmark
| |
Collapse
|
25
|
Toll-like receptor ligands and their combinations as adjuvants - current research and its relevance in chickens. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933915000094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
|
27
|
Effects of IBDV infection on expression of chTLRs in chicken bursa. Microb Pathog 2019; 135:103632. [PMID: 31325569 DOI: 10.1016/j.micpath.2019.103632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/24/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Abstract
Infectious bursal disease virus (IBDV) is the etiological agent of a highly contagious and immunosuppressive disease that affects domestic chickens. Toll-like receptors (TLRs), a kind of pattern recognition receptors, help the host to detect invading pathogens. To date, few systematic studies have been reported about the expression changes of TLR in chickens infected with pathogens. In the present study, layer chickens were infected with IBDV and the expression of chicken TLRs (chTLRs) was assayed by quantitative real-time PCR. The results showed that the expression of chTLR1a, 1b, 2a, 3, 4 and 15 was upregulated in the bursa of chickens infected with IBDV compared with noninfected chickens, while chTLR2b, 5, 7 and 21 expression was downregulated. Correlation analysis showed that chTLR3 expressions was directly associated with IBDV VP2 mRNA expression in bursa. These results suggested that different TLRs have different responses to the same viral infection. Some TLRs were activated early on, some later, and some were suppressed. This is the first study to report on the response of all chTLRs to one virus. This provids a valuable overview of the expression pattern of chTLRs when chickens are challenged by pathogens.
Collapse
|
28
|
Zoidis E, Papadomichelakis G, Pappas AC, Theodorou G, Fegeros K. Effects of Selenium and Cadmium on Breast Muscle Fatty-Acid Composition and Gene Expression of Liver Antioxidant Proteins in Broilers. Antioxidants (Basel) 2019; 8:antiox8050147. [PMID: 31137881 PMCID: PMC6562737 DOI: 10.3390/antiox8050147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
The present work was part of a project intended to evaluate whether organic selenium (Se) has the potential to protect against toxic effects exerted by cadmium (Cd). For this reason, 300 as-hatched, one-day-old broiler chickens were randomly allocated in four dietary treatments with five replicate pens per treatment. Chickens in T1 treatment, were offered a diet supplemented with 0.3 ppm Se (as Se-yeast), without added Cd; in T2 treatment, they were offered a diet with 0.3 ppm Se and 10 ppm Cd; in T3 treatment, they were offered a diet with 0.3 ppm Se and 100 ppm Cd; in T4 treatment, chickens were offered a diet supplemented with 3 ppm Se and 100 ppm Cd. Cadmium was added to the diets in T2, T3, and T4 as CdCl2. On the fourth and sixth weeks, liver and breast samples were obtained from two broilers per replicate pen. Relative gene expression levels of catalase (CAT), superoxide dismutase 1 (SOD1) and 2 (SOD2), methionine sulfoxide reductase A (MSRA) and B3 (MSRB3), iodothyronine deiodinase 1 (DIO1), 2 (DIO2), and 3 (DIO3), glutathione peroxidase 1 (GPX1) and 4 (GPX4), thioredoxin reductase 1 (TXNRD1) and 3 (TXNRD3), and metallothionein 3 (MT3) were analyzed by real-time quantitative PCR in liver, whereas the fatty-acid (FA) profile of breast muscle was determined by gas chromatography. Broilers supplemented with 0.3 ppm Se could tolerate low levels of Cd present in the diets, as there were no significant changes in the breast muscle FA profile, whereas excess Cd led to decreased polyunsaturated fatty acids (PUFAs), and in particular n-6 PUFA. Furthermore, treatments mainly affected the messenger RNA (mRNA) expression of SOD2, TXNRD3, and MT3, while age affected CAT, MSRB3, DIO2, DIO3, GPX4, TXNRD1, and MT3. In conclusion, dietary Se may help against the negative effects of Cd, but cannot be effective when Cd is present at excessive amounts in the diet.
Collapse
Affiliation(s)
- Evangelos Zoidis
- Department of Nutritional Physiology and Feeding, Faculty of Animal Science, Agricultural University of Athens, 11855 Athens, Greece.
| | - George Papadomichelakis
- Department of Nutritional Physiology and Feeding, Faculty of Animal Science, Agricultural University of Athens, 11855 Athens, Greece.
| | - Athanasios C Pappas
- Department of Nutritional Physiology and Feeding, Faculty of Animal Science, Agricultural University of Athens, 11855 Athens, Greece.
| | - Georgios Theodorou
- Department of Animal Breeding and Husbandry, Faculty of Animal Science, Agricultural University of Athens, 11855 Athens, Greece.
| | - Kostas Fegeros
- Department of Nutritional Physiology and Feeding, Faculty of Animal Science, Agricultural University of Athens, 11855 Athens, Greece.
| |
Collapse
|
29
|
Host⁻Microbe Interactions and Gut Health in Poultry-Focus on Innate Responses. Microorganisms 2019; 7:microorganisms7050139. [PMID: 31100860 PMCID: PMC6560434 DOI: 10.3390/microorganisms7050139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 01/14/2023] Open
Abstract
Commercial poultry are continually exposed to, frequently pathogenic, microorganisms, usually via mucosal surfaces such as the intestinal mucosa. Thus, understanding host–microbe interactions is vital. Many of these microorganisms may have no or limited contact with the host, while most of those interacting more meaningfully with the host will be dealt with by the innate immune response. Fundamentally, poultry have evolved to have immune responses that are generally appropriate and adequate for their acquired microbiomes, although this is challenged by commercial production practices. Innate immune cells and their functions, encompassing inflammatory responses, create the context for neutralising the stimulus and initiating resolution. Dysregulated inflammatory responses can be detrimental but, being a highly conserved biological process, inflammation is critical for host defence. Heterogeneity and functional plasticity of innate immune cells is underappreciated and offers the potential for (gut) health interventions, perhaps including exogenous opportunities to influence immune cell metabolism and thus function. New approaches could focus on identifying and enhancing decisive but less harmful immune processes, improving the efficiency of innate immune cells (e.g., targeted, efficient microbial killing) and promoting phenotypes that drive resolution of inflammation. Breeding strategies and suitable exogenous interventions offer potential solutions to enhance poultry gut health, performance and welfare.
Collapse
|
30
|
Walugembe M, Bertolini F, Dematawewa CMB, Reis MP, Elbeltagy AR, Schmidt CJ, Lamont SJ, Rothschild MF. Detection of Selection Signatures Among Brazilian, Sri Lankan, and Egyptian Chicken Populations Under Different Environmental Conditions. Front Genet 2019; 9:737. [PMID: 30693019 PMCID: PMC6339939 DOI: 10.3389/fgene.2018.00737] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022] Open
Abstract
Extreme environmental conditions are a major challenge in livestock production. Changes in climate, particularly those that contribute to weather extremes like drought or excessive humidity, may result in reduced performance and reproduction and could compromise the animal's immune function. Animal survival within extreme environmental conditions could be in response to natural selection and to artificial selection for production traits that over time together may leave selection signatures in the genome. The aim of this study was to identify selection signatures that may be involved in the adaptation of indigenous chickens from two different climatic regions (Sri Lanka = Tropical; Egypt = Arid) and in non-indigenous chickens that derived from human migration events to the generally tropical State of São Paulo, Brazil. To do so, analyses were conducted using fixation index (Fst) and hapFLK analyses. Chickens from Brazil (n = 156), Sri Lanka (n = 92), and Egypt (n = 96) were genotyped using the Affymetrix Axiom®600k Chicken Genotyping Array. Pairwise Fst analyses among countries did not detect major regions of divergence between chickens from Sri Lanka and Brazil, with ecotypes/breeds from Brazil appearing to be genetically related to Asian-Indian (Sri Lanka) ecotypes. However, several differences were detected in comparisons of Egyptian with either Sri Lankan or Brazilian populations, and common regions of difference on chromosomes 2, 3 and 8 were detected. The hapFLK analyses for the three separate countries suggested unique regions that are potentially under selection on chromosome 1 for all three countries, on chromosome 4 for Sri Lankan, and on chromosomes 3, 5, and 11 for the Egyptian populations. Some of identified regions under selection with hapFLK analyses contained genes such as TLR3, SOCS2, EOMES, and NFAT5 whose biological functions could provide insights in understanding adaptation mechanisms in response to arid and tropical environments.
Collapse
Affiliation(s)
- Muhammed Walugembe
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Francesca Bertolini
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | | - Matheus P Reis
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, Brazil
| | - Ahmed R Elbeltagy
- Department of Animal Biotechnology, Animal Production Research Institute, Giza, Egypt
| | - Carl J Schmidt
- Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Max F Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
31
|
Świderská Z, Šmídová A, Buchtová L, Bryjová A, Fabiánová A, Munclinger P, Vinkler M. Avian Toll-like receptor allelic diversity far exceeds human polymorphism: an insight from domestic chicken breeds. Sci Rep 2018; 8:17878. [PMID: 30552359 PMCID: PMC6294777 DOI: 10.1038/s41598-018-36226-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023] Open
Abstract
Immune genes show remarkable levels of adaptive variation shaped by pathogen-mediated selection. Compared to humans, however, population polymorphism in animals has been understudied. To provide an insight into immunogenetic diversity in birds, we sequenced complete protein-coding regions of all Toll-like receptor (TLR) genes with direct orthology between mammals and birds (TLR3, TLR4, TLR5 and TLR7) in 110 domestic chickens from 25 breeds and compared their variability with a corresponding human dataset. Chicken TLRs (chTLRs) exhibit on average nine-times higher nucleotide diversity than human TLRs (hTLRs). Increased potentially functional non-synonymous variability is found in chTLR ligand-binding ectodomains. While we identified seven sites in chTLRs under positive selection and found evidence for convergence between alleles, no selection or convergence was detected in hTLRs. Up to six-times more alleles were identified in fowl (70 chTLR4 alleles vs. 11 hTLR4 alleles). In chTLRs, high numbers of alleles are shared between the breeds and the allelic frequencies are more equal than in hTLRs. These differences may have an important impact on infectious disease resistance and host-parasite co-evolution. Though adaptation through high genetic variation is typical for acquired immunity (e.g. MHC), our results show striking levels of intraspecific polymorphism also in poultry innate immune receptors.
Collapse
Grants
- 504214 Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
- 504214 Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
- 204069 Univerzita Karlova v Praze (Charles University)
- 204069 Univerzita Karlova v Praze (Charles University)
- PRIMUS/17/SCI/12 Univerzita Karlova v Praze (Charles University)
- SVV 260434/2018 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- INTER-COST LTC18060 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- SVV 260434/2018 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- P502/12/P179 Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
- Grantov&#x00E1; Agentura, Univerzita Karlova (Charles University Grant Agency)
- Ministerstvo &#x0160;kolstv&#x00ED;, Ml&#x00E1;de&#x017E;e a T&#x011B;lov&#x00FD;chovy (Ministry of Education, Youth and Sports)
- Grantov&#x00E1; Agentura &#x010C;esk&#x00E9; Republiky (Grant Agency of the Czech Republic)
Collapse
Affiliation(s)
- Zuzana Świderská
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic
- Charles University, Faculty of Science, Department of Cell Biology, Viničná 7, Prague, 12843, Czech Republic
| | - Adéla Šmídová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic
| | - Lucie Buchtová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic
| | - Anna Bryjová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic
- The Czech Academy of Sciences, Institute of Vertebrate Biology, v.v.i., Květná 8, Brno, 60365, Czech Republic
| | - Anežka Fabiánová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic
| | - Pavel Munclinger
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic
| | - Michal Vinkler
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic.
| |
Collapse
|
32
|
Xiong D, Song L, Pan Z, Jiao X. Molecular cloning, characterization, and functional analysis of pigeon (Columba livia) Toll-like receptor 5. Poult Sci 2018; 97:4031-4039. [PMID: 29945253 DOI: 10.3382/ps/pey244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors that are vital for the recognition of pathogen-associated molecular patterns. TLR5 is responsible for the recognition of bacterial flagellin to induce the NF-κB activation and innate immune responses. In this study, we cloned and identified the TLR5 gene from the King pigeon (Columba livia) designated as PiTLR5. Full-length PiTLR5 cDNA (2583 bp) encoded an 860-amino acid protein containing a signal peptide sequence, 10 leucine-rich repeat domains, a leucine-rich repeat C-terminal domain, a transmembrane domain, and an intracellular Toll-interleukin-1 receptor domain. Pigeon TLR5 mRNA expression was quantified by performing quantitative real-time PCR (qRT-PCR), which showed that PiTLR5 was broadly expressed in all examined tissues, with the highest expression in the liver, peripheral blood mononuclear cells, and spleen. PiTLR5-mediated innate immune responses were measured by determining its effects on NF-κB activation and cytokine expression. The results showed that HEK293T cells transfected with PiTLR5 robustly activated the NF-κB response to flagellin, but not other TLR stimuli, and induced significant upregulation of IL-1β, IL-8, TNF-α, and IFN-γ, indicating that PiTLR5 is a functional TLR5 homolog. Additionally, following flagellin stimulation of pigeon splenic lymphocytes, the levels of TLR5, NF-κB, IL-6, IL-8, CCL5, and IFN-γ mRNA, assessed using qRT-PCR, were significantly upregulated. Besides, TLR5 knockdown resulted in the significantly downregulated expression of NF-κB and related cytokines/chemokines. Triggering pigeon TLR5 contributes to significant upregulation of inflammatory cytokines and chemokines, suggesting that pigeon TLR5 plays an important role in the innate immune responses.
Collapse
Affiliation(s)
- Dan Xiong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Li Song
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
33
|
Bagheri M, Zahmatkesh A. Evolution and species-specific conservation of toll-like receptors in terrestrial vertebrates. Int Rev Immunol 2018; 37:217-228. [DOI: 10.1080/08830185.2018.1506780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masoumeh Bagheri
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Azadeh Zahmatkesh
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
34
|
Velová H, Gutowska-Ding MW, Burt DW, Vinkler M. Toll-Like Receptor Evolution in Birds: Gene Duplication, Pseudogenization, and Diversifying Selection. Mol Biol Evol 2018; 35:2170-2184. [PMID: 29893911 PMCID: PMC6107061 DOI: 10.1093/molbev/msy119] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are key sensor molecules in vertebrates triggering initial phases of immune responses to pathogens. The avian TLR family typically consists of ten receptors, each adapted to distinct ligands. To understand the complex evolutionary history of each avian TLR, we analyzed all members of the TLR family in the whole genome assemblies and target sequence data of 63 bird species covering all major avian clades. Our results indicate that gene duplication events most probably occurred in TLR1 before synapsids diversified from sauropsids. Unlike mammals, ssRNA-recognizing TLR7 has duplicated independently in several avian taxa, while flagellin-sensing TLR5 has pseudogenized multiple times in bird phylogeny. Our analysis revealed stronger positive, diversifying selection acting in TLR5 and the three-domain TLRs (TLR10 [TLR1A], TLR1 [TLR1B], TLR2A, TLR2B, TLR4) that face the extracellular space and bind complex ligands than in single-domain TLR15 and endosomal TLRs (TLR3, TLR7, TLR21). In total, 84 out of 306 positively selected sites were predicted to harbor substitutions dramatically changing the amino acid physicochemical properties. Furthermore, 105 positively selected sites were located in the known functionally relevant TLR regions. We found evidence for convergent evolution acting between birds and mammals at 54 of these sites. Our comparative study provides a comprehensive insight into the evolution of avian TLR genetic variability. Besides describing the history of avian TLR gene gain and gene loss, we also identified candidate positions in the receptors that have been likely shaped by direct molecular host-pathogen coevolutionary interactions and most probably play key functional roles in birds.
Collapse
Affiliation(s)
- Hana Velová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Maria W Gutowska-Ding
- Department of Genomics and Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The Roslin Institute Building, University of Edinburgh, Midlothian, United Kingdom
| | - David W Burt
- Office of DVC (Research), University of Queensland, St. Lucia, QLD, Australia
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
35
|
Characterizaton of gamma delta T cells in Marek’s disease virus (Gallid herpesvirus 2) infection of chickens. Virology 2018; 522:56-64. [DOI: 10.1016/j.virol.2018.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022]
|
36
|
Vaezirad MM, Koene MG, Wagenaar JA, van Putten JPM. Chicken immune response following in ovo delivery of bacterial flagellin. Vaccine 2018. [PMID: 29530633 DOI: 10.1016/j.vaccine.2018.02.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In ovo immunization of chicken embryos with live vaccines is an effective strategy to protect chickens against several viral pathogens. We investigated the immune response of chicken embryos to purified recombinant protein. In ovo delivery of Salmonella flagellin to 18-day old embryonated eggs resulted in elevated pro-inflammatory chIL-6 and chIL-8 (CXCL8-CXCLi2) cytokine transcript levels in the intestine but not in the spleen at 24 h post-injection. Analysis of the chicken Toll-like receptor (TLR) repertoire in 19-day old embryos revealed gene transcripts in intestinal and spleen tissue for most chicken TLRs, including TLR5 which recognizes Salmonella flagellin (FliC). The in ovo administration of FliC did not alter TLR transcript levels, except for an increase in intestinal chTLR15 expression. Measurement of the antibody response in sera collected at day 11 and day 21 post-hatch demonstrated high titers of FliC-specific antibodies for the animals immunized at the late-embryonic stage in contrast to the mock-treated controls. The successful in ovo immunization with purified bacterial antigen indicates that the immune system of the chicken embryo is sufficiently mature to yield a strong humoral immune response after single exposure to purified protein. This finding strengthens the basis for the development of in ovo protein-based subunit vaccines.
Collapse
Affiliation(s)
- M M Vaezirad
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands; University of Birjand, Birjand, Iran
| | - M G Koene
- Central Veterinary Institute of Wageningen University, Lelystad, The Netherlands
| | - J A Wagenaar
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands; Central Veterinary Institute of Wageningen University, Lelystad, The Netherlands
| | - J P M van Putten
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
37
|
A Naturally Occurring Deletion in FliE from Salmonella enterica Serovar Dublin Results in an Aflagellate Phenotype and Defective Proinflammatory Properties. Infect Immun 2017; 86:IAI.00517-17. [PMID: 29061704 DOI: 10.1128/iai.00517-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/10/2017] [Indexed: 01/28/2023] Open
Abstract
Salmonella enterica serovar Dublin is adapted to cattle but is able to infect humans with high invasiveness. An acute inflammatory response at the intestine helps to prevent Salmonella dissemination to systemic sites. Flagella contribute to this response by providing motility and FliC-mediated signaling through pattern recognition receptors. In a previous work, we reported a high frequency (11 out of 25) of S Dublin isolates lacking flagella in a collection obtained from humans and cattle. The aflagellate strains were impaired in their proinflammatory properties in vitro and in vivo The aim of this work was to elucidate the underlying cause of the absence of flagella in S Dublin isolates. We report here that class 3 flagellar genes are repressed in the human aflagellate isolates, due to impaired secretion of FliA anti-sigma factor FlgM. This phenotype is due to an in-frame 42-nucleotide deletion in the fliE gene, which codes for a protein located in the flagellar basal body. The deletion is predicted to produce a protein lacking amino acids 18 to 31. The aflagellate phenotype was highly stable; revertants were obtained only when fliA was artificially overexpressed combined with several successive passages in motility agar. DNA sequence analysis revealed that motile revertants resulted from duplications of DNA sequences in fliE adjacent to the deleted region. These duplications produced a FliE protein of similar length to the wild type and demonstrate that amino acids 18 to 31 of FliE are not essential. The same deletion was detected in S Dublin isolates obtained from cattle, indicating that this mutation circulates in nature.
Collapse
|
38
|
Ammendola S, D'Amico Y, Chirullo B, Drumo R, Ciavardelli D, Pasquali P, Battistoni A. Zinc is required to ensure the expression of flagella and the ability to form biofilms in Salmonella enterica sv Typhimurium. Metallomics 2017; 8:1131-1140. [PMID: 27730246 DOI: 10.1039/c6mt00108d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Zinc is known to play a central role in bacterial physiology and pathogenesis. Here, we report that the accumulation of FliC, the structural subunit of Salmonella phase 1 flagella, is sharply reduced in a znuABC Salmonella enterica sv. Typhimurium strain grown in zinc-poor media. Consequently, this mutant strain lacks motility, unless it grows in zinc-replete environments. This phenotype is the consequence of a general downregulation of all the genes involved in the biosynthesis of flagella, suggesting that zinc is the cofactor of proteins involved in the initiation of the transcriptional regulatory cascade leading to flagella assembly. Competition experiments in mice demonstrated that aflagellated (fliBfljC) and znuABC strains are outcompeted by the wild type strain in the gastrointestinal tract. The fliBfljC strain overgrows a fliCfljBznuABC mutant strain, but the difference in gut colonization between these two strains is less striking than that between the wild type and the znuABC strains, suggesting that the downregulation of flagella contributes to the loss of virulence of Salmonella znuABC. The absence of either flagella or ZnuABC also impairs the ability of S. Typhimurium to produce biofilms. Zinc suppresses this defect in the znuABC mutant but not in the aflagellated strains, highlighting the role of flagella in biofilm organization. We have also observed an increased production of the quorum sensing signal AI-2 in the znuABC strain sensing zinc deprivation, that may further contribute to the reduced ability to form biofilms. On the whole, our study reveals novel roles of zinc in Salmonella motility and intercellular communication.
Collapse
Affiliation(s)
- Serena Ammendola
- Dipartimento di Biologia, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.
| | - Ylenia D'Amico
- Dipartimento di Biologia, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.
| | - Barbara Chirullo
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Rosanna Drumo
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | | | - Paolo Pasquali
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Battistoni
- Dipartimento di Biologia, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy. and Interuniversity Consortium, National Institute Biostructures and Biosystems (INBB), Rome, Italy
| |
Collapse
|
39
|
Negahdaripour M, Eslami M, Nezafat N, Hajighahramani N, Ghoshoon MB, Shoolian E, Dehshahri A, Erfani N, Morowvat MH, Ghasemi Y. A novel HPV prophylactic peptide vaccine, designed by immunoinformatics and structural vaccinology approaches. INFECTION GENETICS AND EVOLUTION 2017; 54:402-416. [DOI: 10.1016/j.meegid.2017.08.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 12/19/2022]
|
40
|
Reyes-Becerril M, Alamillo E, Rosales-Mendoza S, Ascencio F, Esteban MA, Angulo C. Molecular characterization and expression analyses of toll like receptor-5 induced by Vibrio parahaemolyticus antigens in Pacific red snapper. FISH & SHELLFISH IMMUNOLOGY 2017; 68:180-189. [PMID: 28698126 DOI: 10.1016/j.fsi.2017.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/04/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Toll-like receptor 5 (TLR5) is a member of TLRs family responsible for the bacterial flagellin recognition in vertebrates. Herein, the TLR5M gene structure of Pacific red snapper (Lutjanus peru) was characterized. The full-length cDNA of LpTLR5M comprises an open reading frame (ORF) of 2715 bp, encoding a polypeptide of 904 amino acids including 9 LRRs (residues 119-562) and one LRR-CT domain (residues 593-646) at the extracellular region, and a TIR domain (residues 710-904) in the cytoplasmic region. The amino acid sequence in L. peru TLR5 showed high identity (66-69%) with TLR5 from Paralichthys olivaceus and Scophthalmus maximus. Quantitative real-time PCR (qPCR) analysis demonstrated the constitutive expression of LpTLR5M mRNA in all the examined tissues, with higher levels in intestine, liver, and head-kidney. Furthermore, expression of LpTLR5M and five cytokine genes was also investigated 24 h and one week post-stimulation in fish intraperitoneally injected with ToxA, live V. parahaemolyticus (Vp) or V. parahaemolyticus Lysate antigens. TLR5M was significantly induced in fish infected with Vp. The pro-inflammatory cytokines IL-6, IL8 and IL-12 were significantly up-regulated in head-kidney in fish stimulated with Vp, while in intestine upregulation was observed following ToxA or Lysate injection. In contrast, IL-17 mRNA was significantly up-regulated in the intestine from fish infected with live Vp at 24 h post-injection. The results indicate that Lysate and Vp antigens can induce an immune response via TLR5M and that cytokines have an important role in the defense mechanisms against V. parahaemolyticus.
Collapse
Affiliation(s)
- Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas Del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23090, México
| | - Erika Alamillo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas Del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23090, México
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, México
| | - Felipe Ascencio
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas Del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23090, México
| | - M Angeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology & Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Spain
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas Del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz B.C.S. 23090, México.
| |
Collapse
|
41
|
Alan E, Liman N. Toll-like receptor expression patterns in the rat uterus during post partum involution. Reprod Fertil Dev 2017; 30:330-348. [PMID: 28701256 DOI: 10.1071/rd16431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/12/2017] [Indexed: 11/23/2022] Open
Abstract
Toll-like receptors (TLRs) belong to a family of pathogen recognition receptors and play critical roles in detecting and responding to invading pathogens. TLR expression could be significant because, in the uterus, the reproductive tract is an important site of exposure to and infection by pathogens during the post partum involution period. To clarify the expression and localisation patterns of TLRs in the rat uterus on Days 1, 3, 5 and 10 post partum (PP1, PP3, PP5 and PP10 respectively), immunohistochemistry and western blotting were used to analyse TLR1-7, TLR9 and TLR10. The immunohistochemistry results indicated that TLR1-7, TLR9 and TLR10 were localised in both the cytoplasm and nuclei of luminal and glandular epithelium, stromal fibroblasts and myometrial cells in the rat uterus. In the luminal epithelium, TLR4-7 were also found in lateral membranes, whereas TLR10 was present in apical membranes. Western blot analysis revealed that the expression of TLR proteins increased with the number of days post partum, reaching a maximum on PP10, although levels did not differ significantly from those on PP1 (P>0.05). These findings confirm that TLR1-7, TLR9 and TLR10 are constitutively expressed in uterine cells and that localisation pattern of TLRs in the endometrium varies with structural changes in the uterus on different days of involution. These results suggest that TLRs may play a role in uterine repair and remodelling during physiological involution.
Collapse
Affiliation(s)
- Emel Alan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Turkey
| | - Narin Liman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
42
|
Balan KV, Babu US. Comparative responses of chicken macrophages to infection with Salmonella enterica serovars. Poult Sci 2017; 96:1849-1854. [DOI: 10.3382/ps/pew477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022] Open
|
43
|
Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev 2017; 277:61-75. [PMID: 28462526 PMCID: PMC5416822 DOI: 10.1111/imr.12534] [Citation(s) in RCA: 1113] [Impact Index Per Article: 159.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell death is a fundamental biological phenomenon that is essential for the survival and development of an organism. Emerging evidence also indicates that cell death contributes to immune defense against infectious diseases. Pyroptosis is a form of inflammatory programmed cell death pathway activated by human and mouse caspase-1, human caspase-4 and caspase-5, or mouse caspase-11. These inflammatory caspases are used by the host to control bacterial, viral, fungal, or protozoan pathogens. Pyroptosis requires cleavage and activation of the pore-forming effector protein gasdermin D by inflammatory caspases. Physical rupture of the cell causes release of the pro-inflammatory cytokines IL-1β and IL-18, alarmins and endogenous danger-associated molecular patterns, signifying the inflammatory potential of pyroptosis. Here, we describe the central role of inflammatory caspases and pyroptosis in mediating immunity to infection and clearance of pathogens.
Collapse
Affiliation(s)
- Si Ming Man
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
44
|
Park M, Kim S, Adelman JS, Leon AE, Hawley DM, Dalloul RA. Identification and functional characterization of the house finch interleukin-1β. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 69:41-50. [PMID: 27998740 DOI: 10.1016/j.dci.2016.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
Interleukin-1β (IL-1β), an inflammatory cytokine of the IL-1 family, is primarily produced as a precursor protein by monocytes and macrophages, then matures and becomes activated through proteolytic catalysis. Although the biological characteristics of avian IL-1β are well known, little information is available about its biological role in songbird species such as house finches that are vulnerable to naturally-occurring inflammatory diseases. In this study, house finch IL-1β (HfIL-1β) was cloned, expressed, and its biological function examined. Both precursor and mature forms of HfIL-1β consisting of 269 and 162 amino acids, respectively, were amplified from total RNA of spleen and cloned into expression vectors. HfIL-1β showed high sequential and tertiary structural similarity to chicken homologue that allowed detection of the expressed mature recombinant HfIL-1β (rHfIL-1β) with anti-ChIL-1β antibody by immunoblot analysis. For further characterization, we used primary splenocytes and hepatocytes that are predominant sources of IL-1β upon stimulation, as well as suitable targets to stimulation by IL-1β. Isolated house finch splenocytes were stimulated with rHfIL-1β in the presence and absence of concanavalin A (Con A), RNA was extracted and transcript levels of Th1/Th2 cytokines and a chemokine were measured by qRT-PCR. The addition of rHfIL-1β induced significant enhancement of IL-2 transcript, a Th1 cytokine, while transcription of IL-1β and the Th2 cytokine IL-10 was slightly enhanced by rHfIL-1β treatment. rHfIL-1β also led to elevated levels of the chemokine CXCL1 and nitric oxide production regardless of co-stimulation with Con A. In addition, the production of the acute phase protein serum amyloid A and the antimicrobial peptide LEAP2 was observed in HfIL-1β-stimulated hepatocytes. Taken together, these observations revealed the basic functions of HfIL-1β including the stimulatory effect on cell proliferation, production of Th1/Th2 cytokines and acute phase proteins by immune cells, thus providing valuable insight into how HfIL-1β is involved in regulating inflammatory response.
Collapse
Affiliation(s)
- Myeongseon Park
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sungwon Kim
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA; The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - James S Adelman
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA 50011, USA
| | - Ariel E Leon
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rami A Dalloul
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
45
|
Wigley P. Salmonella enterica serovar Gallinarum: addressing fundamental questions in bacteriology sixty years on from the 9R vaccine. Avian Pathol 2017; 46:119-124. [DOI: 10.1080/03079457.2016.1240866] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Paul Wigley
- Department of Infection Biology, Institute for Infection & Global Health and School of Veterinary Science, University of Liverpool, Neston, UK
| |
Collapse
|
46
|
Experimental infection of chickens by a flagellated motile strain of Salmonella enterica serovar Gallinarum biovar Gallinarum. Vet J 2016; 214:40-6. [PMID: 27387725 DOI: 10.1016/j.tvjl.2016.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum biovar Gallinarum (SG) causes fowl typhoid (FT), a septicaemic disease which can result in high mortality in poultry flocks. The absence of flagella in SG is thought to favour systemic invasion, since bacterial recognition via Toll-like receptor (TLR)-5 does not take place during the early stages of FT. In the present study, chicks susceptible to FT were inoculated with a wild type SG (SG) or its flagellated motile derivative (SG Fla(+)). In experiment 1, mortality and clinical signs were assessed, whereas in experiment 2, gross pathology, histopathology, systemic invasion and immune responses were evaluated. SG Fla(+) infection resulted in later development of clinical signs, lower mortality, lower bacterial numbers in the liver and spleen, and less severe pathological changes compared to SG. The CD8(+) T lymphocyte population was higher in the livers of chicks infected with SG at 4 days post-inoculation (dpi). Chicks infected with SG had increased expression of interleukin (IL)-6 mRNA in the caecal tonsil at 1 dpi and increased expression of IL-18 mRNA in the spleen at 4 dpi. In contrast, the CD4(+) T lymphocyte population was higher at 6 dpi in the livers of birds infected with SG Fla(+). Therefore, flagella appeared to modulate the chicken immune response towards a CD4(+) T profile, resulting in more efficient bacterial clearance from systemic sites and milder infection.
Collapse
|
47
|
Lee HY, Biswas D, Ahn J. In-Vitro Adhesion and Invasion Properties of Salmonella Typhimurium Competing with Bacteriophage in Epithelial Cells and Chicken Macrophages. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2015. [DOI: 10.1590/1516-635x1704427-432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- HY Lee
- Seowon University, South Korea
| | | | - J Ahn
- Kangwon National University, South Korea
| |
Collapse
|
48
|
Bryant CE, Orr S, Ferguson B, Symmons MF, Boyle JP, Monie TP. International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease. Pharmacol Rev 2015; 67:462-504. [PMID: 25829385 DOI: 10.1124/pr.114.009928] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the discovery of Toll, in the fruit fly Drosophila melanogaster, as the first described pattern recognition receptor (PRR) in 1996, many families of these receptors have been discovered and characterized. PRRs play critically important roles in pathogen recognition to initiate innate immune responses that ultimately link to the generation of adaptive immunity. Activation of PRRs leads to the induction of immune and inflammatory genes, including proinflammatory cytokines and chemokines. It is increasingly clear that many PRRs are linked to a range of inflammatory, infectious, immune, and chronic degenerative diseases. Several drugs to modulate PRR activity are already in clinical trials and many more are likely to appear in the near future. Here, we review the different families of mammalian PRRs, the ligands they recognize, the mechanisms of activation, their role in disease, and the potential of targeting these proteins to develop the anti-inflammatory therapeutics of the future.
Collapse
Affiliation(s)
- Clare E Bryant
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Selinda Orr
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Brian Ferguson
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Martyn F Symmons
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Joseph P Boyle
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Tom P Monie
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| |
Collapse
|
49
|
Penha Filho RAC, Díaz SJA, Fernando FS, Chang YF, Andreatti Filho RL, Berchieri Junior A. Immunomodulatory activity and control of Salmonella Enteritidis colonization in the intestinal tract of chickens by Lactobacillus based probiotic. Vet Immunol Immunopathol 2015; 167:64-9. [DOI: 10.1016/j.vetimm.2015.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 05/29/2015] [Accepted: 06/09/2015] [Indexed: 12/17/2022]
|
50
|
Identification and characterization of regions of difference between the Salmonella Gallinarum biovar Gallinarum and the Salmonella Gallinarum biovar Pullorum genomes. INFECTION GENETICS AND EVOLUTION 2015; 30:74-81. [DOI: 10.1016/j.meegid.2014.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 11/18/2022]
|