1
|
Mahindroo J, Thanh DP, Kaur H, Nguyen THT, Carey ME, Verma R, Mohan B, Thakur S, Baker S, Taneja N. The genomic diversity and antimicrobial resistance of Non-typhoidal Salmonella in humans and food animals in Northern India. One Health 2024; 19:100892. [PMID: 39345727 PMCID: PMC11439553 DOI: 10.1016/j.onehlt.2024.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Non-typhoidal Salmonella (NTS) serovars are the leading global cause of gastroenteritis and have established reservoirs in food animals. Gap statement Due to a lack of surveillance, there is limited information on the distribution of NTS serovars in India. Aim Here, we investigated the epidemiology, sequence types, serovar distribution, phylogenetic relatedness, and antimicrobial resistance patterns of NTS in humans and animals across a large geographic area in Northern India. Methodology We collected stool samples from patients with diarrhea who presented to 14 laboratories in Chandigarh and from five states in India (Punjab, Haryana, Uttarakhand, Himachal Pradesh, and Rajasthan). We sequenced the genomes and analyzed 117 NTS organisms isolated from humans and animals. Minimum inhibitory concentrations (MICs) were estimated using a Vitek2 system. Results The prevalence of NTS in participants presenting to our study with diarrhea was 1.28 %, affecting all age groups. All NTS caused moderate to severe diarrhea. We found a high diversity of serovars with considerable serovar and sequence types (STs) overlap and phylogenetic closeness between isolates from human infections and food animals. We report serovars such as S. Agona, S. Bareilly, S. Kentucky, S. Saintpaul, and S. Virchow, causing human infections from north India for the first time. Among the different food-producing animals, pigs appeared to be a key source of human infections. Twenty-eight percent (28 %) of the NTS isolates were multi-drug resistant (MDR), and human isolates showed a higher proportion of resistance. A higher level of contamination of meat samples in our study (8.4 %) potentially suggests a close association of NTS serovars with the food chain and high transmission risk in north India. Conclusions This study provides information on AMR genes and plasmid replicons associated with different serovars and highlights the role of food animals in AMR dissemination in our region.
Collapse
Affiliation(s)
- Jaspreet Mahindroo
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Duy Pham Thanh
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Viet Nam
| | - Harpreet Kaur
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - To Nguyen Thi Nguyen
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Viet Nam
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Trang Hoang Thu Nguyen
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Viet Nam
| | - Megan E. Carey
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
- IAVI, Chelsea & Westminster Hospital, London, UK
| | - Ritu Verma
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Balvinder Mohan
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Siddhartha Thakur
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- IAVI, Chelsea & Westminster Hospital, London, UK
| | - Neelam Taneja
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
2
|
Caro-Castro J, Quino W, Flores-León D, Guzmán F, Garcia-de-la-Guarda R, Gavilan RG. Comparative genomic analysis provides new insights into non-typhoidal Salmonella population structure in Peru. Sci Rep 2024; 14:27316. [PMID: 39516510 PMCID: PMC11549418 DOI: 10.1038/s41598-024-78331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Non-typhoidal Salmonella (NTS) is one of the leading causes of foodborne outbreaks worldwide, especially in low- and middle-income countries such as Peru. To understand the dynamics of NTS serotypes circulating in the country, the whole genomes of 1122 NTS strains from 1998 to 2018 were analyzed using phylogenomic and comparative genomics tools. A total of 40 different Sequences Type (STs) were identified, the five most frequent being ST-32 (S. Infantis, 37.25%), ST-11 (S. Enteritidis, 23.8%), ST-19 (S. Typhimurium, 14.17%), ST-31 (S. Newport, 6.77%), and ST-413 (S. Mbandaka, 4.72%). Furthermore, the maximum likelihood phylogeny showed high clonality between strains from the same ST recovered from different isolation sources, as well as a variable recombination rate, when comparing each ST individually. Moreover, several virulence factors involved in adherence and invasion, as well as plasmids and prophages, are strongly associated with the most frequent STs, while multidrug resistance markers are mostly linked to ST-32. This work provides an overview of the main genomic characteristics linked to the high-frequency ST, which have undergone few genetic modifications over time, suggesting a high adaptation of these NTS circulating clones in Peru.
Collapse
Affiliation(s)
- Junior Caro-Castro
- Laboratorio de Referencia Nacional de Bacteriología Clínica, Instituto Nacional de Salud, Lima, Peru
- Grupo de Investigación Genómica Funcional de Microorganismos y Biorremediación, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Willi Quino
- Laboratorio de Referencia Nacional de Bacteriología Clínica, Instituto Nacional de Salud, Lima, Peru
| | - Diana Flores-León
- Laboratorio de Referencia Nacional de Bacteriología Clínica, Instituto Nacional de Salud, Lima, Peru
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Frank Guzmán
- Grupo de Investigación en Epidemiología y Diseminación de la Resistencia a Antimicrobianos-"One Health", Universidad Científica del Sur, Lima, Peru
| | - Ruth Garcia-de-la-Guarda
- Grupo de Investigación Genómica Funcional de Microorganismos y Biorremediación, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Ronnie G Gavilan
- Laboratorio de Referencia Nacional de Bacteriología Clínica, Instituto Nacional de Salud, Lima, Peru.
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru.
| |
Collapse
|
3
|
Shen Y, Zhou Y, Gong J, Li G, Liu Y, Xu X, Chen M. Genomic investigation of Salmonella enterica Serovar Welikade from a pediatric diarrhea case first time in Shanghai, China. BMC Genomics 2024; 25:604. [PMID: 38886668 PMCID: PMC11181664 DOI: 10.1186/s12864-024-10489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Salmonella, an important foodborne pathogen, was estimated to be responsible for 95.1 million cases and 50,771 deaths worldwide. Sixteen serovars were responsible for approximately 80% of Salmonella infections in humans in China, and infections caused by a few uncommon serovars have been reported in recent years, though not with S. Welikade. This study reports the first clinical case caused by S. Welikade in China and places Chinese S. Welikade isolates in the context of global isolates via genomic analysis. For comparison, S. Welikade isolates were also screened in the Chinese Local Surveillance System for Salmonella (CLSSS). The minimum inhibitory concentrations (MICs) of 28 antimicrobial agents were determined using the broth microdilution method. The isolates were sequenced on an Illumina platform to identify antimicrobial resistance genes, virulence genes, and phylogenetic relationships. RESULTS The S. Welikade isolate (Sal097) was isolated from a two-year-old boy with acute gastroenteritis in 2021. Along with the other two isolates found in CLSSS, the three Chinese isolates were susceptible to all the examined antimicrobial agents, and their sequence types (STs) were ST5123 (n = 2) and ST3774 (n = 1). Single nucleotide polymorphism (SNP)-based phylogenetic analysis revealed that global S. Welikade strains can be divided into four groups, and these three Chinese isolates were assigned to B (n = 2; Sal097 and XXB1016) and C (n = 1; XXB700). In Group B, the two Chinese ST5123 isolates were closely clustered with three UK ST5123 isolates. In Group C, the Chinese isolate was closely related to the other 12 ST3774 isolates. The number of virulence genes in the S. Welikade isolates ranged from 59 to 152. The galF gene was only present in Group A, the pipB2 gene was only absent from Group A, the avrA gene was only absent from Group B, and the allB, sseK1, sspH2, STM0287, and tlde1 were found only within Group C and D isolates. There were 15 loci unique to the Sal097 isolate. CONCLUSION This study is the first to characterize and investigate clinical S. Welikade isolates in China. Responsible for a pediatric case of gastroenteritis in 2021, the clinical isolate harbored no antimicrobial resistance and belonged to phylogenetic Group B of global S. Welikade genomes.
Collapse
Affiliation(s)
- Yinfang Shen
- Department of Pediatrics, Meilong Community Health Center of Minhang District, Shanghai, China
| | - Yibin Zhou
- Department of Infectious Disease Control, Center for Disease Control and Prevention of Minhang District, Shanghai, China
| | - Jingyu Gong
- Jinshan Hospital, Fudan University, Shanghai, China
| | - Gang Li
- Jinshan Hospital, Fudan University, Shanghai, China
| | - Yue Liu
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xuebin Xu
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| | - Mingliang Chen
- Research and Translational Laboratory of Acute Injury and Secondary Infection, and, Department of Laboratory Medicine , Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Chen Z, Toro M, Moreno-Switt AI, Adell AD, Delgado-Suárez EJ, Bonelli RR, Oliveira CJB, Reyes-Jara A, Huang X, Albee B, Grim CJ, Allard M, Tallent SM, Brown EW, Bell RL, Meng J. Unveiling the genomic landscape of Salmonella enterica serotypes Typhimurium, Newport, and Infantis in Latin American surface waters: a comparative analysis. Microbiol Spectr 2024; 12:e0004724. [PMID: 38546218 PMCID: PMC11064523 DOI: 10.1128/spectrum.00047-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/06/2024] [Indexed: 05/03/2024] Open
Abstract
Surface waters are considered ecological habitats where Salmonella enterica can persist and disseminate to fresh produce production systems. This study aimed to explore the genomic profiles of S. enterica serotypes Typhimurium, Newport, and Infantis from surface waters in Chile, Mexico, and Brazil collected between 2019 and 2022. We analyzed the whole genomes of 106 S. Typhimurium, 161 S. Newport, and 113 S. Infantis isolates. Our phylogenetic analysis exhibited distinct groupings of isolates by their respective countries except for a notable case involving a Chilean S. Newport isolate closely related to two Mexican isolates, showing 4 and 13 single nucleotide polymorphisms of difference, respectively. The patterns of the most frequently detected antimicrobial resistance genes varied across countries and serotypes. A strong correlation existed between integron carriage and genotypic multidrug resistance (MDR) across serotypes in Chile and Mexico (R > 0.90, P < 0.01), while integron(s) were not detected in any of the Brazilian isolates. By contrast, we did not identify any strong correlation between plasmid carriage and genotypic MDR across diverse countries and serotypes.IMPORTANCEUnveiling the genomic landscape of S. enterica in Latin American surface waters is pivotal for ensuring public health. This investigation sheds light on the intricate genomic diversity of S. enterica in surface waters across Chile, Mexico, and Brazil. Our research also addresses critical knowledge gaps, pioneering a comprehensive understanding of surface waters as a reservoir for multidrug-resistant S. enterica. By integrating our understanding of integron carriage as biomarkers into broader MDR control strategies, we can also work toward targeted interventions that mitigate the emergence and dissemination of MDR in S. enterica in surface waters. Given its potential implications for food safety, this study emphasizes the critical need for informed policies and collaborative initiatives to address the risks associated with S. enterica in surface waters.
Collapse
Affiliation(s)
- Zhao Chen
- Joint Institute for Food Safety and Applied Nutrition and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
| | - Magaly Toro
- Joint Institute for Food Safety and Applied Nutrition and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Andrea I. Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Aiko D. Adell
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Facultad de Agronomía y Sistemas Naturales, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Enrique J. Delgado-Suárez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad de Nacional Autónoma de México, Mexico City, Mexico
| | - Raquel R. Bonelli
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Angélica Reyes-Jara
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Xinyang Huang
- Joint Institute for Food Safety and Applied Nutrition and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Brett Albee
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA
| | - Christopher J. Grim
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA
| | - Marc Allard
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA
| | - Sandra M. Tallent
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA
| | - Eric W. Brown
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA
| | - Rebecca L. Bell
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
5
|
Cheong Y, Lee JB, Kim SK, Yoon JW. Characterization of Salmonella species from poultry slaughterhouses in South Korea: carry-over transmission of Salmonella Thompson ST292 in slaughtering process. J Vet Sci 2024; 25:e39. [PMID: 38834509 PMCID: PMC11156591 DOI: 10.4142/jvs.24053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
IMPORTANCE Salmonella outbreaks linked to poultry meat have been reported continuously worldwide. Therefore, Salmonella contamination of poultry meats in slaughterhouses is one of the critical control points for reducing disease outbreaks in humans. OBJECTIVE This study examined the carry-over contamination of Salmonella species through the entire slaughtering process in South Korea. METHODS From 2018 to 2019, 1,097 samples were collected from the nine slaughterhouses distributed nationwide. One hundred and seventeen isolates of Salmonella species were identified using the invA gene-specific polymerase chain reaction, as described previously. The serotype, phylogeny, and antimicrobial resistance of isolates were examined. RESULTS Among the 117 isolates, 93 were serotyped into Salmonella Mbandaka (n = 36 isolates, 30.8%), Salmonella Thompson (n = 33, 28.2%), and Salmonella Infantis (n = 24, 20.5%). Interestingly, allelic profiling showed that all S. Mbandaka isolates belonged to the lineage of the sequence type (ST) 413, whereas all S. Thompson isolates were ST292. Moreover, almost all S. Thompson isolates (97.0%, 32/33 isolates) belonging to ST292 were multidrug-resistant and possessed the major virulence genes whose products are required for full virulence. Both serotypes were distributed widely throughout the slaughtering process. Pulsed-field gel electrophoretic analysis demonstrated that seven S. Infantis showed 100% identities in their phylogenetic relatedness, indicating that they were sequentially transmitted along the slaughtering processes. CONCLUSIONS AND RELEVANCE This study provides more evidence of the carry-over transmission of Salmonella species during the slaughtering processes. ST292 S. Thompson is a potential pathogenic clone of Salmonella species possibly associated with foodborne outbreaks in South Korea.
Collapse
Affiliation(s)
- Yewon Cheong
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jun Bong Lee
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Se Kye Kim
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jang Won Yoon
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
- The YOON Healthtech Co., Ltd, Chuncheon 24341, Korea.
| |
Collapse
|
6
|
Gómez-Baltazar A, Godínez-Oviedo A, Vázquez-Marrufo G, Vázquez-Garcidueñas MS, Hernández-Iturriaga M. Genomic analysis of the MLST population structure and antimicrobial resistance genes associated with Salmonella enterica in Mexico. Genome 2023; 66:319-332. [PMID: 37478495 DOI: 10.1139/gen-2023-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Salmonella enterica is one of the most commonly reported foodborne pathogens by public health agencies worldwide. In this study, the multilocus sequence typing (MLST) population structure and frequency of antimicrobial resistance (AMR) genes were evaluated in S. enterica strains from Mexico (n = 2561). The most common sources of isolation were food (44.28%), environment (27.41%), animal-related (24.83%), and human (3.48%). The most prevalent serovars were Newport (8.51%), Oranienburg (7.03%), Anatum (5.78%), Typhimurium (5.12%), and Infantis (4.57%). As determined by the 7-gene MLST scheme, the most frequent sequence types were ST23, ST64, and ST32. The core genome MLST scheme identified 132 HC2000 and 195 HC900 hierarchical clusters, with the HC2000_2 cluster being the most prevalent in Mexico (n = 256). A total of 78 different AMR genes belonging to 13 antimicrobial classes were detected in 638 genomic assemblies of S. enterica. The most frequent class was aminoglycosides (31.76%), followed by tetracyclines (12.53%) and sulfonamides (11.91%). These results can help public health agencies in Mexico prioritize their efforts and resources to increase the genomic sequencing of circulating Salmonella strains. Additionally, they provide valuable information for local and global public health efforts to reduce the impact of foodborne diseases and AMR.
Collapse
Affiliation(s)
- Adrián Gómez-Baltazar
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro C.P. 76010, Querétaro, Mexico
| | - Angélica Godínez-Oviedo
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro C.P. 76010, Querétaro, Mexico
| | - Gerardo Vázquez-Marrufo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro C.P. 58893, Michoacán, Mexico
| | - Ma Soledad Vázquez-Garcidueñas
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez," Universidad Michoacana de San Nicolás de Hidalgo, Morelia C.P. 58020, Michoacán, Mexico
| | - Montserrat Hernández-Iturriaga
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro C.P. 76010, Querétaro, Mexico
| |
Collapse
|
7
|
Bhandari M, Poelstra JW, Kauffman M, Varghese B, Helmy YA, Scaria J, Rajashekara G. Genomic Diversity, Antimicrobial Resistance, Plasmidome, and Virulence Profiles of Salmonella Isolated from Small Specialty Crop Farms Revealed by Whole-Genome Sequencing. Antibiotics (Basel) 2023; 12:1637. [PMID: 37998839 PMCID: PMC10668983 DOI: 10.3390/antibiotics12111637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
Salmonella is the leading cause of death associated with foodborne illnesses in the USA. Difficulty in treating human salmonellosis is attributed to the development of antimicrobial resistance and the pathogenicity of Salmonella strains. Therefore, it is important to study the genetic landscape of Salmonella, such as the diversity, plasmids, and presence antimicrobial resistance genes (AMRs) and virulence genes. To this end, we isolated Salmonella from environmental samples from small specialty crop farms (SSCFs) in Northeast Ohio from 2016 to 2021; 80 Salmonella isolates from 29 Salmonella-positive samples were subjected to whole-genome sequencing (WGS). In silico serotyping revealed the presence of 15 serotypes. AMR genes were detected in 15% of the samples, with 75% exhibiting phenotypic and genotypic multidrug resistance (MDR). Plasmid analysis demonstrated the presence of nine different types of plasmids, and 75% of AMR genes were located on plasmids. Interestingly, five Salmonella Newport isolates and one Salmonella Dublin isolate carried the ACSSuT gene cassette on a plasmid, which confers resistance to ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline. Overall, our results show that SSCFs are a potential reservoir of Salmonella with MDR genes. Thus, regular monitoring is needed to prevent the transmission of MDR Salmonella from SSCFs to humans.
Collapse
Affiliation(s)
- Menuka Bhandari
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.B.); (M.K.)
| | - Jelmer W. Poelstra
- Molecular and Cellular Imaging Center, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Michael Kauffman
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.B.); (M.K.)
| | - Binta Varghese
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74074, USA; (B.V.); (J.S.)
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA;
| | - Joy Scaria
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74074, USA; (B.V.); (J.S.)
| | - Gireesh Rajashekara
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.B.); (M.K.)
| |
Collapse
|
8
|
Richards AK, Kue S, Norris CG, Shariat NW. Genomic and phenotypic characterization of Salmonella enterica serovar Kentucky. Microb Genom 2023; 9:001089. [PMID: 37750759 PMCID: PMC10569734 DOI: 10.1099/mgen.0.001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/27/2023] [Indexed: 09/27/2023] Open
Abstract
Non-typhoidal Salmonella are extremely diverse and different serovars can exhibit varied phenotypes, including host adaptation and the ability to cause clinical illness in animals and humans. In the USA, Salmonella enterica serovar Kentucky is infrequently found to cause human illness, despite being the top serovar isolated from broiler chickens. Conversely, in Europe, this serovar falls in the top 10 serovars linked to human salmonellosis. Serovar Kentucky is polyphyletic and has two lineages, Kentucky-I and Kentucky-II; isolates belonging to Kentucky-I are frequently isolated from poultry in the USA, while Kentucky-II isolates tend to be associated with human illness. In this study, we analysed whole-genome sequences and associated metadata deposited in public databases between 2017 and 2021 by federal agencies to determine serovar Kentucky incidence across different animal and human sources. Of 5151 genomes, 90.3 % were from isolates that came from broilers, while 5.9 % were from humans and 3.0 % were from cattle. Kentucky-I isolates were associated with broilers, while isolates belonging to Kentucky-II and a new lineage, Kentucky-III, were more commonly associated with cattle and humans. Very few serovar Kentucky isolates were associated with turkey and swine sources. Phylogenetic analyses showed that Kentucky-III genomes were more closely related to Kentucky-I, and this was confirmed by CRISPR-typing and multilocus sequence typing (MLST). In a macrophage assay, serovar Kentucky-II isolates were able to replicate over eight times better than Kentucky-I isolates. Analysis of virulence factors showed unique patterns across these three groups, and these differences may be linked to their association with different hosts.
Collapse
Affiliation(s)
- Amber K. Richards
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Song Kue
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Connor G. Norris
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Nikki W. Shariat
- Department of Population Health, University of Georgia, Athens, GA, USA
- Center for Food Safety, University of Georgia, Griffin, GA, USA
| |
Collapse
|
9
|
Sánchez-Serrano A, Mejía L, Camaró ML, Ortolá-Malvar S, Llácer-Luna M, García-González N, González-Candelas F. Genomic Surveillance of Salmonella from the Comunitat Valenciana (Spain). Antibiotics (Basel) 2023; 12:antibiotics12050883. [PMID: 37237786 DOI: 10.3390/antibiotics12050883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Salmonella enterica subspecies enterica is one of the most important foodborne pathogens and the causative agent of salmonellosis, which affects both humans and animals producing numerous infections every year. The study and understanding of its epidemiology are key to monitoring and controlling these bacteria. With the development of whole-genome sequencing (WGS) technologies, surveillance based on traditional serotyping and phenotypic tests of resistance is being replaced by genomic surveillance. To introduce WGS as a routine methodology for the surveillance of food-borne Salmonella in the region, we applied this technology to analyze a set of 141 S. enterica isolates obtained from various food sources between 2010 and 2017 in the Comunitat Valenciana (Spain). For this, we performed an evaluation of the most relevant Salmonella typing methods, serotyping and sequence typing, using both traditional and in silico approaches. We extended the use of WGS to detect antimicrobial resistance determinants and predicted minimum inhibitory concentrations (MICs). Finally, to understand possible contaminant sources in this region and their relationship to antimicrobial resistance (AMR), we performed cluster detection combining single-nucleotide polymorphism (SNP) pairwise distances and phylogenetic and epidemiological data. The results of in silico serotyping with WGS data were highly congruent with those of serological analyses (98.5% concordance). Multi-locus sequence typing (MLST) profiles obtained with WGS information were also highly congruent with the sequence type (ST) assignment based on Sanger sequencing (91.9% coincidence). In silico identification of antimicrobial resistance determinants and minimum inhibitory concentrations revealed a high number of resistance genes and possible resistant isolates. A combined phylogenetic and epidemiological analysis with complete genome sequences revealed relationships among isolates indicative of possible common sources for isolates with separate sampling in time and space that had not been detected from epidemiological information. As a result, we demonstrate the usefulness of WGS and in silico methods to obtain an improved characterization of S. enterica enterica isolates, allowing better surveillance of the pathogen in food products and in potential environmental and clinical samples of related interest.
Collapse
Affiliation(s)
- Andrea Sánchez-Serrano
- Joint Research Unit "Infection and Public Health", FISABIO-University of Valencia, 46020 Valencia, Spain
| | - Lorena Mejía
- Joint Research Unit "Infection and Public Health", FISABIO-University of Valencia, 46020 Valencia, Spain
- Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, 46980 Valencia, Spain
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | | | | | | | - Neris García-González
- Joint Research Unit "Infection and Public Health", FISABIO-University of Valencia, 46020 Valencia, Spain
- Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, 46980 Valencia, Spain
| | - Fernando González-Candelas
- Joint Research Unit "Infection and Public Health", FISABIO-University of Valencia, 46020 Valencia, Spain
- Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, 46980 Valencia, Spain
- CIBER in Epidemiology and Public Health, 28029 Madrid, Spain
| |
Collapse
|
10
|
Casaux ML, D'Alessandro B, Vignoli R, Fraga M. Phenotypic and genotypic survey of antibiotic resistance in Salmonella enterica isolates from dairy farms in Uruguay. Front Vet Sci 2023; 10:1055432. [PMID: 36968467 PMCID: PMC10033963 DOI: 10.3389/fvets.2023.1055432] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
Salmonella enterica is an important zoonotic pathogen that is frequently identified in dairy farming systems. An increase in antibiotic resistance has led to inadequate results of treatments, with impacts on animal and human health. Here, the phenotypic and genotypic susceptibility patterns of Salmonella isolates from dairy cattle and dairy farm environments were evaluated and compared. A collection of 75 S. enterica isolates were evaluated, and their phenotypic susceptibility was determined. For genotypic characterization, the whole genomes of the isolates were sequenced, and geno-serotypes, sequence types (STs) and core-genome-sequence types were determined using the EnteroBase pipeline. To characterize antibiotic resistance genes and gene mutations, tools from the Center for Genomic Epidemiology were used. Salmonella Dublin (SDu), S. Typhimurium (STy), S. Anatum (SAn), S. Newport (SNe), S. Agona (Sag), S. Montevideo (SMo) and IIIb 61:i:z53 were included in the collection. A single sequence type was detected per serovar. Phenotypic non-susceptibility to streptomycin and tetracycline was very frequent in the collection, and high non-susceptibility to ciprofloxacin was also observed. Multidrug resistance (MDR) was observed in 42 isolates (56.0%), with SAn and STy presenting higher MDR than the other serovars, showing non-susceptibility to up to 6 groups of antibiotics. Genomic analysis revealed the presence of 21 genes associated with antimicrobial resistance (AMR) in Salmonella isolates. More than 60% of the isolates carried some gene associated with resistance to aminoglycosides and tetracyclines. Only one gene associated with beta-lactam resistance was found, in seven isolates. Two different mutations were identified, parC_T57S and acrB_R717Q, which confer resistance to quinolones and azithromycin, respectively. The accuracy of predicting antimicrobial resistance phenotypes based on AMR genotypes was 83.7%. The genomic approach does not replace the phenotypic assay but offers valuable information for the survey of circulating antimicrobial resistance. This work represents one of the first studies evaluating phenotypic and genotypic AMR in Salmonella from dairy cattle in South America.
Collapse
Affiliation(s)
- María Laura Casaux
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA La Estanzuela, Colonia, Uruguay
| | - Bruno D'Alessandro
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Vignoli
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Martín Fraga
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA La Estanzuela, Colonia, Uruguay
| |
Collapse
|
11
|
Hudson LK, Andershock WE, Qian X, Gibbs PL, Orejuela K, Garman KN, Dunn JR, Denes TG. Phylogeny and Genomic Characterization of Clinical Salmonella enterica Serovar Newport Collected in Tennessee. Microbiol Spectr 2023; 11:e0387622. [PMID: 36602313 PMCID: PMC9927352 DOI: 10.1128/spectrum.03876-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/21/2022] [Indexed: 01/06/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar Newport (S. Newport) is a clinically and epidemiologically significant serovar in the United States. It is the second most prevalent clinically isolated Salmonella serovar in the United States, and it can contaminate a wide variety of food products. In this study, we evaluated the population structure of S. Newport clinical isolates obtained by the Tennessee Department of Health during routine surveillance (n = 346), along with a diverse set of other global clinical isolates obtained from EnteroBase (n = 271). Most of these clinical isolates belonged to established lineages II and III. Additionally, we performed lineage-specific phylogenetic analyses and were able to identify 18 potential epidemiological clusters among the isolates from Tennessee, which represented a greater proportion of Tennessee isolates belonging to putative epidemiological clusters than the proportion of isolates of this serovar that are outbreak related. IMPORTANCE This study provides insight on the genomic diversity of one of the Salmonella serovars that most frequently cause human illness. Specifically, we explored the diversity of human clinical isolates from a localized region (Tennessee) and compared this level of diversity with the global context. Additionally, we showed that a greater proportion of isolates were associated with potential epidemiological clusters (based on genomic relatedness) than historical estimates. We also identified that one potential cluster was predicted to be multidrug resistant. Taken together, these findings provide insight on Salmonella enterica serovar Newport that can impact public health surveillance and responses and serve as a foundational context for the Salmonella research community.
Collapse
Affiliation(s)
- Lauren K. Hudson
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| | | | - Xiaorong Qian
- Division of Laboratory Services, Tennessee Department of Health, Nashville, Tennessee, USA
| | - Paula L. Gibbs
- Division of Laboratory Services, Tennessee Department of Health, Nashville, Tennessee, USA
| | - Kelly Orejuela
- Tennessee Department of Health, Nashville, Tennessee, USA
| | | | - John R. Dunn
- Tennessee Department of Health, Nashville, Tennessee, USA
| | - Thomas G. Denes
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
12
|
Cherchame E, Ilango G, Noël V, Cadel-Six S. Polyphyly in widespread Salmonella enterica serovars and using genomic proximity to choose the best reference genome for bioinformatics analyses. Front Public Health 2022; 10:963188. [PMID: 36159272 PMCID: PMC9493441 DOI: 10.3389/fpubh.2022.963188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023] Open
Abstract
Salmonella is the most common cause of gastroenteritis in the world. Over the past 5 years, whole-genome analysis has led to the high-resolution characterization of clinical and foodborne Salmonella responsible for typhoid fever, foodborne illness or contamination of the agro-food chain. Whole-genome analyses are simplified by the availability of high-quality, complete genomes for mapping analysis and for calculating the pairwise distance between genomes, but unfortunately some difficulties may still remain. For some serovars, the complete genome is not available, or some serovars are polyphyletic and knowing the serovar alone is not sufficient for choosing the most appropriate reference genome. For these serovars, it is essential to identify the genetically closest complete genome to be able to carry out precise genome analyses. In this study, we explored the genomic proximity of 650 genomes of the 58 Salmonella enterica subsp. enterica serovars most frequently isolated in humans and from the food chain in the United States (US) and in Europe (EU), with a special focus on France. For each serovar, to take into account their genomic diversity, we included all the multilocus sequence type (MLST) profiles represented in EnteroBase with 10 or more genomes (on 19 July 2021). A phylogenetic analysis using both core- and pan-genome approaches was carried out to identify the genomic proximity of all the Salmonella studied and 20 polyphyletic serovars that have not yet been described in the literature. This study determined the genetic proximity between all 58 serovars studied and revealed polyphyletic serovars, their genomic lineages and MLST profiles. Finally, we enhanced the open-access databases with 73 new genomes and produced a list of high-quality complete reference genomes for 48 S. enterica subsp. enterica serovars among the most isolated in the US, EU, and France.
Collapse
|
13
|
Mellor KC, Blackwell GA, Cawthraw SA, Mensah NE, Reid SWJ, Thomson NR, Petrovska L, Mather AE. Contrasting long-term dynamics of antimicrobial resistance and virulence plasmids in Salmonella Typhimurium from animals. Microb Genom 2022; 8. [PMID: 35997596 PMCID: PMC9484752 DOI: 10.1099/mgen.0.000826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmids are mobile elements that can carry genes encoding traits of clinical concern, including antimicrobial resistance (AMR) and virulence. Population-level studies of Enterobacterales, including Escherichia coli, Shigella and Klebsiella, indicate that plasmids are important drivers of lineage expansions and dissemination of AMR genes. Salmonella Typhimurium is the second most common cause of salmonellosis in humans and livestock in the UK and Europe. The long-term dynamics of plasmids between S. Typhimurium were investigated using isolates collected through national surveillance of animals in England and Wales over a 25-year period. The population structure of S. Typhimurium and its virulence plasmid (where present) were inferred through phylogenetic analyses using whole-genome sequence data for 496 isolates. Antimicrobial resistance genes and plasmid markers were detected in silico. Phenotypic plasmid characterization, using the Kado and Liu method, was used to confirm the number and size of plasmids. The differences in AMR and plasmids between clades were striking, with livestock clades more likely to carry one or more AMR plasmid and be multi-drug-resistant compared to clades associated with wildlife and companion animals. Multiple small non-AMR plasmids were distributed across clades. However, all hybrid AMR–virulence plasmids and most AMR plasmids were highly clade-associated and persisted over decades, with minimal evidence of horizontal transfer between clades. This contrasts with the role of plasmids in the short-term dissemination of AMR between diverse strains in other Enterobacterales in high-antimicrobial-use settings, with implications for predicting plasmid dissemination amongst S. Typhimurium.
Collapse
Affiliation(s)
- Kate C Mellor
- Royal Veterinary College, Hatfield, UK.,London School of Hygiene and Tropical Medicine, London, UK
| | - Grace A Blackwell
- European Bioinformatics Institute, Hinxton, UK.,Wellcome Trust Sanger Institute, Hinxton, UK
| | | | | | | | - Nicholas R Thomson
- London School of Hygiene and Tropical Medicine, London, UK.,Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Alison E Mather
- Quadram Institute Bioscience, Norwich, UK.,University of East Anglia, Norwich, UK
| |
Collapse
|
14
|
Murphy CM, Weller DL, Reiter MS, Bardsley CA, Eifert J, Ponder M, Rideout SL, Strawn LK. Anaerobic soil disinfestation, amendment-type, and irrigation regimen influence Salmonella survival and die-off in agricultural soils. J Appl Microbiol 2022; 132:2342-2354. [PMID: 34637586 PMCID: PMC8860855 DOI: 10.1111/jam.15324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
AIMS This study investigated Salmonella concentrations following combinations of horticultural practices including anaerobic soil disinfestation (ASD), soil amendment type and irrigation regimen. METHODS AND RESULTS Sandy-loam soil was inoculated with a five-serovar Salmonella cocktail (5.5 ± 0.2 log CFU per gram) and subjected to one of six treatments: (i) no soil amendment, ASD (ASD control), (ii) no soil amendment, no-ASD (non-ASD control) and (iii-vi) soil amended with pelletized poultry litter, rye, rapeseed or hairy vetch with ASD. The effect of irrigation regimen was determined by collecting samples 3 and 7 days after irrigation. Twenty-five-gram soil samples were collected pre-ASD, post-soil saturation (i.e. ASD-process), and at 14 time-points post-ASD, and Salmonella levels enumerated. Log-linear models examined the effect of amendment type and irrigation regimen on Salmonella die-off during and post-ASD. During ASD, Salmonella concentrations significantly decreased in all treatments (range: -0.2 to -2.7 log CFU per gram), albeit the smallest decrease (-0.2 log CFU per gram observed in the pelletized poultry litter) was of negligible magnitude. Salmonella die-off rates varied by amendment with an average post-ASD rate of -0.05 log CFU per gram day (CI = -0.05, -0.04). Salmonella concentrations remained highest over the 42 days post-ASD in pelletized poultry litter, followed by rapeseed, and hairy vetch treatments. Findings suggested ASD was not able to eliminate Salmonella in soil, and certain soil amendments facilitated enhanced Salmonella survival. Salmonella serovar distribution differed by treatment with pelletized poultry litter supporting S. Newport survival, compared with other serovars. Irrigation appeared to assist Salmonella survival with concentrations being 0.14 log CFU per gram (CI = 0.05, 0.23) greater 3 days, compared with 7 days post-irrigation. CONCLUSIONS ASD does not eliminate Salmonella in soil, and may in fact, depending on the soil amendment used, facilitate Salmonella survival. SIGNIFICANCE AND IMPACT OF THE STUDY Synergistic and antagonistic effects on food safety hazards of implementing horticultural practices should be considered.
Collapse
Affiliation(s)
- Claire M. Murphy
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Daniel L. Weller
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Mark S. Reiter
- Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, VA 23420, USA
| | - Cameron A. Bardsley
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joseph Eifert
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Monica Ponder
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Steve L. Rideout
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Laura K. Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA,Author for correspondence. Laura K. Strawn, Department of Food Science and Technology, Virginia Tech, 1230 Washington Street, SW, Blacksburg, VA 24061, USA. Tel: 540-231-6806; Fax: 540-231-9293;
| |
Collapse
|
15
|
Obe T, Richards AK, Shariat NW. Differences in biofilm formation of Salmonella serovars on two surfaces under two temperature conditions. J Appl Microbiol 2021; 132:2410-2420. [PMID: 34821433 DOI: 10.1111/jam.15381] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022]
Abstract
AIMS Salmonella is extremely diverse, with >2500 serovars that are genetically and phenotypically diverse. The aim of this study was to build a collection of Salmonella isolates that are genetically diverse and to evaluate their ability to form biofilm under different conditions relevant to a processing environment. METHODS AND RESULTS Twenty Salmonella isolates representative of 10 serovars were subtyped using Clustered regularly interspaced short palindromic repeats (CRISPR)-typing to assess the genetic diversity between isolates of each serovar. Biofilm formation of the isolates on both plastic and stainless-steel surfaces at 25 and 15°C was assessed. At 25°C, 8/20 isolates each produced strong and moderate biofilm on plastic surface compared to stainless-steel (3/20 and 13/20 respectively). At 15°C, 5/20 produced strong biofilm on plastic surface and none on stainless-steel. Several isolates produced weak biofilm on plastic (11/20) and stainless-steel (16/20) surfaces. Serovar Schwarzengrund consistently produced strong biofilm while serovars Heidelberg and Newport produced weak biofilm. CONCLUSION These results suggest that Salmonellae differ in their attachment depending on the surface and temperature conditions encountered, which may influence persistence in the processing environment. SIGNIFICANCE AND IMPACT OF STUDY These differences in biofilm formation could provide useful information for mitigation of Salmonella in processing environments.
Collapse
Affiliation(s)
- Tomi Obe
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Amber K Richards
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Nikki W Shariat
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
16
|
AT Homopolymer Strings in Salmonella enterica Subspecies I Contribute to Speciation and Serovar Diversity. Microorganisms 2021; 9:microorganisms9102075. [PMID: 34683396 PMCID: PMC8538453 DOI: 10.3390/microorganisms9102075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/08/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Adenine and thymine homopolymer strings of at least 8 nucleotides (AT 8+mers) were characterized in Salmonella enterica subspecies I. The motif differed between other taxonomic classes but not between Salmonella enterica serovars. The motif in plasmids was possibly associated with serovar. Approximately 12.3% of the S. enterica motif loci had mutations. Mutability of AT 8+mers suggests that genomes undergo frequent repair to maintain optimal gene content, and that the motif facilitates self-recognition; in addition, serovar diversity is associated with plasmid content. A theory that genome regeneration accounts for both persistence of predominant Salmonella serovars and serovar diversity provides a new framework for investigating root causes of foodborne illness.
Collapse
|
17
|
High-Resolution Genomic Comparisons within Salmonella enterica Serotypes Derived from Beef Feedlot Cattle: Parsing the Roles of Cattle Source, Pen, Animal, Sample Type, and Production Period. Appl Environ Microbiol 2021; 87:e0048521. [PMID: 33863705 DOI: 10.1128/aem.00485-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica is a major foodborne pathogen, and contaminated beef products have been identified as one of the primary sources of Salmonella-related outbreaks. Pathogenicity and antibiotic resistance of Salmonella are highly serotype and subpopulation specific, which makes it essential to understand high-resolution Salmonella population dynamics in cattle. Time of year, source of cattle, pen, and sample type (i.e., feces, hide, or lymph nodes) have previously been identified as important factors influencing the serotype distribution of Salmonella (e.g., Anatum, Lubbock, Cerro, Montevideo, Kentucky, Newport, and Norwich) that were isolated from a longitudinal sampling design in a research feedlot. In this study, we performed high-resolution genomic comparisons of Salmonella isolates within each serotype using both single-nucleotide polymorphism-based maximum-likelihood phylogeny and hierarchical clustering of core-genome multilocus sequence typing. The importance of the aforementioned features in clonal Salmonella expansion was further explored using a supervised machine learning algorithm. In addition, we identified and compared the resistance genes, plasmids, and pathogenicity island profiles of the isolates within each subpopulation. Our findings indicate that clonal expansion of Salmonella strains in cattle was mainly influenced by the randomization of block and pen, as well as the origin/source of the cattle, i.e., regardless of sampling time and sample type (i.e., feces, lymph node, or hide). Further research is needed concerning the role of the feedlot pen environment prior to cattle placement to better understand carryover contributions of existing strains of Salmonella and their bacteriophages. IMPORTANCE Salmonella serotypes isolated from outbreaks in humans can also be found in beef cattle and feedlots. Virulence factors and antibiotic resistance are among the primary defense mechanisms of Salmonella, and are often associated with clonal expansion. This makes understanding the subpopulation dynamics of Salmonella in cattle critical for effective mitigation. There remains a gap in the literature concerning subpopulation dynamics within Salmonella serotypes in feedlot cattle from the beginning of feeding up until slaughter. Here, we explore Salmonella population dynamics within each serotype using core-genome phylogeny and hierarchical classifications. We used machine learning to quantitatively parse the relative importance of both hierarchical and longitudinal clustering among cattle host samples. Our results reveal that Salmonella populations in cattle are highly clonal over a 6-month study period and that clonal dissemination of Salmonella in cattle is mainly influenced spatially by experimental block and pen, as well by the geographical origin of the cattle.
Collapse
|
18
|
Shariat NW, Timme RE, Walters AT. Phylogeny of Salmonella enterica subspecies arizonae by whole-genome sequencing reveals high incidence of polyphyly and low phase 1 H antigen variability. Microb Genom 2021; 7. [PMID: 33539276 PMCID: PMC8208698 DOI: 10.1099/mgen.0.000522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Salmonella enterica subspecies arizonae is frequently associated with animal reservoirs, particularly reptiles, and can cause illness in some mammals, including humans. Using whole-genome sequencing data, core genome phylogenetic analyses were performed using 112 S. enterica subsp. arizonae isolates, representing 46 of 102 described serovars. Nearly one-third of these are polyphyletic, including two serovars that appear in four and five distinct evolutionary lineages. Subspecies arizonae has a monophasic H antigen. Among the 46 serovars investigated, only 8 phase 1 H antigens were identified, demonstrating high conservation for this antigen. Prophages and plasmids were found throughout this subspecies, including five novel prophages. Polyphyly was also reflected in prophage content, although some clade-specific enrichment for some phages was observed. IncFII(S) was the most frequent plasmid replicon identified and was found in a quarter of S. enterica subsp. arizonae genomes. Salmonella pathogenicity islands (SPIs) 1 and 2 are present across all Salmonella, including this subspecies, although effectors sipA, sptP and arvA in SPI-1 and sseG and ssaI in SPI-2 appear to be lost in this lineage. SPI-20, encoding a type VI secretion system, is exclusive to this subspecies and is well maintained in all genomes sampled. A number of fimbral operons were identified, including the sas operon that appears to be a synapomorphy for this subspecies, while others exhibited more clade-specific patterns. This work reveals evolutionary patterns in S. enterica subsp. arizonae that make this subspecies a unique lineage within this very diverse species.
Collapse
Affiliation(s)
- Nikki W. Shariat
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- *Correspondence: Nikki W. Shariat,
| | - Ruth E. Timme
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, USA
| | - Abigail T. Walters
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
19
|
Hudson LK, Constantine-Renna L, Thomas L, Moore C, Qian X, Garman K, Dunn JR, Denes TG. Genomic characterization and phylogenetic analysis of Salmonella enterica serovar Javiana. PeerJ 2020; 8:e10256. [PMID: 33240617 PMCID: PMC7682435 DOI: 10.7717/peerj.10256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023] Open
Abstract
Salmonella enterica serovar Javiana is the fourth most reported serovar of laboratory-confirmed human Salmonella infections in the U.S. and in Tennessee (TN). Although Salmonella ser. Javiana is a common cause of human infection, the majority of cases are sporadic in nature rather than outbreak-associated. To better understand Salmonella ser. Javiana microbial population structure in TN, we completed a phylogenetic analysis of 111 Salmonella ser. Javiana clinical isolates from TN collected from Jan. 2017 to Oct. 2018. We identified mobile genetic elements and genes known to confer antibiotic resistance present in the isolates, and performed a pan-genome-wide association study (pan-GWAS) to compare gene content between clades identified in this study. The population structure of TN Salmonella ser. Javiana clinical isolates consisted of three genetic clades: TN clade I (n = 54), TN clade II (n = 4), and TN clade III (n = 48). Using a 5, 10, and 25 hqSNP distance threshold for cluster identification, nine, 12, and 10 potential epidemiologically-relevant clusters were identified, respectively. The majority of genes that were found to be over-represented in specific clades were located in mobile genetic element (MGE) regions, including genes encoding integrases and phage structures (91.5%). Additionally, a large portion of the over-represented genes from TN clade II (44.9%) were located on an 87.5 kb plasmid containing genes encoding a toxin/antitoxin system (ccdAB). Additionally, we completed phylogenetic analyses of global Salmonella ser. Javiana datasets to gain a broader insight into the population structure of this serovar. We found that the global phylogeny consisted of three major clades (one of which all of the TN isolates belonged to) and two cgMLST eBurstGroups (ceBGs) and that the branch length between the two Salmonella ser. Javiana ceBGs (1,423 allelic differences) was comparable to those from other serovars that have been reported as polyphyletic (929–2,850 allelic differences). This study demonstrates the population structure of TN and global Salmonella ser. Javiana isolates, a clinically important Salmonella serovar and can provide guidance for phylogenetic cluster analyses for public health surveillance and response.
Collapse
Affiliation(s)
- Lauren K Hudson
- Department of Food Science, University of Tennessee, Knoxville, TN, United States of America
| | | | - Linda Thomas
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN, United States of America
| | - Christina Moore
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN, United States of America
| | - Xiaorong Qian
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN, United States of America
| | - Katie Garman
- Tennessee Department of Health, Nashville, TN, United States of America
| | - John R Dunn
- Tennessee Department of Health, Nashville, TN, United States of America
| | - Thomas G Denes
- Department of Food Science, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
20
|
Elnekave E, Hong SL, Lim S, Johnson TJ, Perez A, Alvarez J. Comparing serotyping with whole-genome sequencing for subtyping of non-typhoidal Salmonella enterica: a large-scale analysis of 37 serotypes with a public health impact in the USA. Microb Genom 2020; 6:mgen000425. [PMID: 32845830 PMCID: PMC7643971 DOI: 10.1099/mgen.0.000425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/03/2020] [Indexed: 01/21/2023] Open
Abstract
Serotyping has traditionally been used for subtyping of non-typhoidal Salmonella (NTS) isolates. However, its discriminatory power is limited, which impairs its use for epidemiological investigations of source attribution. Whole-genome sequencing (WGS) analysis allows more accurate subtyping of strains. However, because of the relative newness and cost of routine WGS, large-scale studies involving NTS WGS are still rare. We aimed to revisit the big picture of subtyping NTS with a public health impact by using traditional serotyping (i.e. reaction between antisera and surface antigens) and comparing the results with those obtained using WGS. For this purpose, we analysed 18 282 sequences of isolates belonging to 37 serotypes with a public health impact that were recovered in the USA between 2006 and 2017 from multiple sources, and were available at the National Center for Biotechnology Information (NCBI). Phylogenetic trees were reconstructed for each serotype using the core genome for the identification of genetic subpopulations. We demonstrated that WGS-based subtyping allows better identification of sources potentially linked with human infection and emerging subpopulations, along with providing information on the risk of dissemination of plasmids and acquired antimicrobial resistance genes (AARGs). In addition, by reconstructing a phylogenetic tree with representative isolates from all serotypes (n=370), we demonstrated genetic variability within and between serotypes, which formed monophyletic, polyphyletic and paraphyletic clades. Moreover, we found (in the entire data set) an increased detection rate for AARGs linked to key antimicrobials (such as quinolones and extended-spectrum cephalosporins) over time. The outputs of this large-scale analysis reveal new insights into the genetic diversity within and between serotypes; the polyphyly and paraphyly of certain serotypes may suggest that the subtyping of NTS to serotypes may not be sufficient. Moreover, the results and the methods presented here, leading to differentiation between genetic subpopulations based on their potential risk to public health, as well as narrowing down the possible sources of these infections, may be used as a baseline for subtyping of future NTS infections and help efforts to mitigate and prevent infections in the USA and globally.
Collapse
Affiliation(s)
- Ehud Elnekave
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Samuel L. Hong
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, University of Leuven, Leuven, Belgium
| | - Seunghyun Lim
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
- Bioinformatics and Computational Biology Program, University of Minnesota, Rochester, Minnesota, USA
| | - Timothy J. Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Andres Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Julio Alvarez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
- VISAVET Health Surveillance Center, Universidad Complutense, Madrid, Spain
- Department of Animal Health, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| |
Collapse
|
21
|
Whole-Genome-Based Survey for Polyphyletic Serovars of Salmonella enterica subsp. enterica Provides New Insights into Public Health Surveillance. Int J Mol Sci 2020; 21:ijms21155226. [PMID: 32718035 PMCID: PMC7432358 DOI: 10.3390/ijms21155226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Serotyping has traditionally been considered the basis for surveillance of Salmonella, but it cannot distinguish distinct lineages sharing the same serovar that vary in host range, pathogenicity and epidemiology. However, polyphyletic serovars have not been extensively investigated. Public health microbiology is currently being transformed by whole-genome sequencing (WGS) data, which promote the lineage determination using a more powerful and accurate technique than serotyping. The focus in this study is to survey and analyze putative polyphyletic serovars. The multi-locus sequence typing (MLST) phylogenetic analysis identified four putative polyphyletic serovars, namely, Montevideo, Bareilly, Saintpaul, and Muenchen. Whole-genome-based phylogeny and population structure highlighted the polyphyletic nature of Bareilly and Saintpaul and the multi-lineage nature of Montevideo and Muenchen. The population of these serovars was defined by extensive genetic diversity, the open pan genome and the small core genome. Source niche metadata revealed putative existence of lineage-specific niche adaptation (host-preference and environmental-preference), exhibited by lineage-specific genomic contents associated with metabolism and transport. Meanwhile, differences in genetic profiles relating to virulence and antimicrobial resistance within each lineage may contribute to pathogenicity and epidemiology. The results also showed that recombination events occurring at the H1-antigen loci may be an important reason for polyphyly. The results presented here provide the genomic basis of simple, rapid, and accurate identification of phylogenetic lineages of these serovars, which could have important implications for public health.
Collapse
|
22
|
Liao J, Orsi RH, Carroll LM, Wiedmann M. Comparative genomics reveals different population structures associated with host and geographic origin in antimicrobial-resistant Salmonella enterica. Environ Microbiol 2020; 22:2811-2828. [PMID: 32337816 DOI: 10.1111/1462-2920.15014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/04/2020] [Accepted: 04/06/2020] [Indexed: 01/24/2023]
Abstract
Genetic variation in a pathogen, including the causative agent of salmonellosis, Salmonella enterica, can occur as a result of eco-evolutionary forces triggered by dissimilarities of ecological niches. Here, we applied comparative genomics to study 90 antimicrobial resistant (AMR) S. enterica isolates from bovine and human hosts in New York and Washington states to understand host- and geographic-associated population structure. Results revealed distinct presence/absence profiles of functional genes and pseudogenes (e.g., virulence genes) associated with bovine and human isolates. Notably, bovine isolates contained significantly more transposase genes but fewer transposase pseudogenes than human isolates, suggesting the occurrence of large-scale transposition in genomes of bovine and human isolates at different times. The high correlation between transposase genes and AMR genes, as well as plasmid replicons, highlights the potential role of horizontally transferred transposons in promoting adaptation to antibiotics. By contrast, a number of potentially geographic-associated single-nucleotide polymorphisms (SNPs), rather than geographic-associated genes, were identified. Interestingly, 38% of these SNPs were in genes annotated as cell surface protein-encoding genes, including some essential for antibiotic resistance and host colonization. Overall, different evolutionary forces and limited recent inter-population transmission appear to shape AMR S. enterica population structure in different hosts and geographic origins.
Collapse
Affiliation(s)
- Jingqiu Liao
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.,Graduate Field of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Renato Hohl Orsi
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Laura M Carroll
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
23
|
Mastrorilli E, Petrin S, Orsini M, Longo A, Cozza D, Luzzi I, Ricci A, Barco L, Losasso C. Comparative genomic analysis reveals high intra-serovar plasticity within Salmonella Napoli isolated in 2005-2017. BMC Genomics 2020; 21:202. [PMID: 32131727 PMCID: PMC7057659 DOI: 10.1186/s12864-020-6588-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/18/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Salmonella enterica subsp. enterica serovar Napoli (S. Napoli) is among the top serovars causing human infections in Italy, although it is relatively uncommon in other European countries; it is mainly isolated from humans and the environment, but neither the reservoir nor its route of infection are clearly defined. This serovar is characterized by high genomic diversity, and molecular evidences revealed important similarities with typhoidal serovars. RESULTS 179 S. Napoli genomes as well as 239 genomes of typhoidal and non-typhoidal serovars were analyzed in a comparative genomic study. Phylogenetic analysis and draft genome characterization in terms of Multi Locus Sequence Typing (MLST), plasmid replicons, Salmonella Pathogenicity Islands (SPIs), antimicrobial resistance genes (ARGs), phages, biocide and metal-tolerance genes confirm the high genetic variability of S. Napoli, also revealing a within-serovar phylogenetic structure more complex than previously known. Our work also confirms genomic similarity of S. Napoli to typhoidal serovars (S. Typhi and S. Paratyphi A), with S. Napoli samples clustering primarily according to ST, each being characterized by specific genomic traits. Moreover, two major subclades of S. Napoli can be clearly identified, with ST-474 being biphyletic. All STs span among isolation sources and years of isolation, highlighting the challenge this serovar poses to define its epidemiology and evolution. Altogether, S. Napoli strains carry less SPIs and less ARGs than other non-typhoidal serovars and seldom acquire plasmids. However, we here report the second case of an extended-spectrum β-lactamases (ESBLs) producing S. Napoli strain and the first cases of multidrug resistant (MDR) S. Napoli strains, all isolated from humans. CONCLUSIONS Our results provide evidence of genomic plasticity of S. Napoli, highlighting genomic similarity with typhoidal serovars and genomic features typical of non-typhoidal serovars, supporting the possibility of survival in different niches, both enteric and non-enteric. Presence of horizontally acquired ARGs and MDR profiles rises concerns regarding possible selective pressure exerted by human environment on this pathogen.
Collapse
Affiliation(s)
- Eleonora Mastrorilli
- Istituto Zooprofilattico Sperimentale delle Venezie, Microbial Ecology Unit, Legnaro, Italy
- Present address: European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Sara Petrin
- Istituto Zooprofilattico Sperimentale delle Venezie, Microbial Ecology Unit, Legnaro, Italy
| | - Massimiliano Orsini
- Istituto Zooprofilattico Sperimentale delle Venezie, Microbial Ecology Unit, Legnaro, Italy.
| | - Alessandra Longo
- Istituto Zooprofilattico Sperimentale delle Venezie, Microbial Ecology Unit, Legnaro, Italy
| | - Debora Cozza
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Ida Luzzi
- Istituto Superiore di Sanità, Rome, Italy
| | - Antonia Ricci
- Istituto Zooprofilattico Sperimentale delle Venezie, Food Safety Department, Legnaro, Italy
| | - Lisa Barco
- Istituto Zooprofilattico Sperimentale delle Venezie, Food Safety Department, Legnaro, Italy
| | - Carmen Losasso
- Istituto Zooprofilattico Sperimentale delle Venezie, Microbial Ecology Unit, Legnaro, Italy
| |
Collapse
|
24
|
Pearce ME, Chattaway MA, Grant K, Maiden MCJ. A proposed core genome scheme for analyses of the Salmonella genus. Genomics 2020; 112:371-378. [PMID: 30905613 PMCID: PMC6978875 DOI: 10.1016/j.ygeno.2019.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/03/2022]
Abstract
The salmonellae are found in a wide range of animal hosts and many food products for human consumption. Most cases of human disease are caused by S. enterica subspecies I; however as opportunistic pathogens the other subspecies (II-VI) and S. bongori are capable of causing disease. Loci that were not consistently present in all of the species and subspecies were removed from a previously proposed core genome scheme (EBcgMLSTv2.0), the removal of these 252 loci resulted in a core genus scheme (SalmcgMLSTv1.0). SalmcgMLSTv1.0 clustered isolates from the same subspecies more rapidly and more accurately grouped isolates from different subspecies when compared with EBcgMLSTv2.0. All loci within the EBcgMLSTv2.0 scheme were present in over 98% of S. enterica subspecies I isolates and should, therefore, continue to be used for subspecies I analyses, while the SalmcgMLSTv1.0 scheme is more appropriate for cross genus investigations.
Collapse
Affiliation(s)
- Madison E Pearce
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom; National Institute for Health Research, Health Protection Research Unit, Gastrointestinal Infections, University of Oxford, United Kingdom.
| | - Marie A Chattaway
- Public Health England, Gastrointestinal Bacteria Reference Unit, 61 Colindale Avenue, London NW9 5EQ, United Kingdom.
| | - Kathie Grant
- Public Health England, Gastrointestinal Bacteria Reference Unit, 61 Colindale Avenue, London NW9 5EQ, United Kingdom.
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom; National Institute for Health Research, Health Protection Research Unit, Gastrointestinal Infections, University of Oxford, United Kingdom.
| |
Collapse
|
25
|
Gymoese P, Kiil K, Torpdahl M, Østerlund MT, Sørensen G, Olsen JE, Nielsen EM, Litrup E. WGS based study of the population structure of Salmonella enterica serovar Infantis. BMC Genomics 2019; 20:870. [PMID: 31730461 PMCID: PMC6858691 DOI: 10.1186/s12864-019-6260-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella Infantis (S. Infantis) is one of the most frequent Salmonella serovars isolated from human cases of salmonellosis and the most detected serovar from animal and food sources in Europe. The serovar is commonly associated with poultry and there is increasing concern over multidrug resistant clones spreading worldwide, as the dominating clones are characterized by presence of large plasmids carrying multiple resistance genes. Increasing the knowledge of the S. Infantis population and evolution is important for understanding and preventing further spread. In this study, we analysed a collection of strains representing different decades, sources and geographic locations. We analysed the population structure and the accessory genome, in particular we identified prophages with a view to understand the role of prophages in relation to the evolution of this serovar. RESULTS We sequenced a global collection of 100 S. Infantis strains. A core-genome SNP analysis separated five strains in e-Burst Group (eBG) 297 with a long branch. The remaining strains, all in eBG31, were divided into three lineages that were estimated to have separated approximately 150 years ago. One lineage contained the vast majority of strains. In five of six clusters, no obvious correlation with source or geographical locations was seen. However, one cluster contained mostly strains from human and avian sources, indicating a clone with preference for these sources. The majority of strains within this cluster harboured a pESI-like plasmid with multiple resistance genes. Another lineage contained three genetic clusters with more rarely isolated strains of mainly animal origin, possibly less sampled or less infectious clones. Conserved prophages were identified in all strains, likely representing bacteriophages which integrated into the chromosome of a common ancestor to S. Infantis. We also saw that some prophages were specific to clusters and were probably introduced when the clusters were formed. CONCLUSIONS This study analysed a global S. Infantis population and described its genetic structure. We hypothesize that the population has evolved in three separate lineages, with one more successfully emerging lineage. We furthermore detected conserved prophages present in the entire population and cluster specific prophages, which probably shaped the population structure.
Collapse
Affiliation(s)
- Pernille Gymoese
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Artillerivej 5 Denmark
| | - Kristoffer Kiil
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Artillerivej 5 Denmark
| | - Mia Torpdahl
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Artillerivej 5 Denmark
| | - Mark T. Østerlund
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Artillerivej 5 Denmark
| | - Gitte Sørensen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Artillerivej 5 Denmark
| | - John E. Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, Frederiksberg C, Denmark
| | - Eva M. Nielsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Artillerivej 5 Denmark
| | - Eva Litrup
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Artillerivej 5 Denmark
| |
Collapse
|
26
|
Criscuolo A, Issenhuth-Jeanjean S, Didelot X, Thorell K, Hale J, Parkhill J, Thomson NR, Weill FX, Falush D, Brisse S. The speciation and hybridization history of the genus Salmonella. Microb Genom 2019; 5. [PMID: 31347998 PMCID: PMC6755497 DOI: 10.1099/mgen.0.000284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bacteria and archaea make up most of natural diversity, but the mechanisms that underlie the origin and maintenance of prokaryotic species are poorly understood. We investigated the speciation history of the genus Salmonella, an ecologically diverse bacterial lineage, within which S. enterica subsp. enterica is responsible for important human food-borne infections. We performed a survey of diversity across a large reference collection using multilocus sequence typing, followed by genome sequencing of distinct lineages. We identified 11 distinct phylogroups, 3 of which were previously undescribed. Strains assigned to S. enterica subsp. salamae are polyphyletic, with two distinct lineages that we designate Salamae A and B. Strains of the subspecies houtenae are subdivided into two groups, Houtenae A and B, and are both related to Selander’s group VII. A phylogroup we designate VIII was previously unknown. A simple binary fission model of speciation cannot explain observed patterns of sequence diversity. In the recent past, there have been large-scale hybridization events involving an unsampled ancestral lineage and three distantly related lineages of the genus that have given rise to Houtenae A, Houtenae B and VII. We found no evidence for ongoing hybridization in the other eight lineages, but detected subtler signals of ancient recombination events. We are unable to fully resolve the speciation history of the genus, which might have involved additional speciation-by-hybridization or multi-way speciation events. Our results imply that traditional models of speciation by binary fission and divergence are not sufficient to account for Salmonella evolution.
Collapse
Affiliation(s)
- Alexis Criscuolo
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Sylvie Issenhuth-Jeanjean
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, World Health Organization Collaborating Centre for Reference and Research on Salmonella, Paris, France
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK
| | - Kaisa Thorell
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - James Hale
- Environmental Research Institute, University College Cork, Cork, Ireland
| | | | | | - François-Xavier Weill
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, World Health Organization Collaborating Centre for Reference and Research on Salmonella, Paris, France
| | - Daniel Falush
- The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Sylvain Brisse
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| |
Collapse
|
27
|
Ferrari RG, Rosario DKA, Cunha-Neto A, Mano SB, Figueiredo EES, Conte-Junior CA. Worldwide Epidemiology of Salmonella Serovars in Animal-Based Foods: a Meta-analysis. Appl Environ Microbiol 2019; 85:e00591-19. [PMID: 31053586 PMCID: PMC6606869 DOI: 10.1128/aem.00591-19] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/25/2019] [Indexed: 01/27/2023] Open
Abstract
Salmonella spp. are among the most important foodborne pathogens and the third leading cause of human death among diarrheal diseases worldwide. Animals are the primary source of this pathogen, and animal-based foods are the main transmission route to humans. Thus, understanding the global epidemiology of Salmonella serovars is key to controlling and monitoring this bacterium. In this context, this study aimed to evaluate the prevalence and diversity of Salmonella enterica serovars in animal-based foods (beef, pork, poultry, and seafood) throughout the five continents (Africa, the Americas [North and Latin America], Asia, Europe, and Oceania). The meta-analysis consisted of a chemometric assessment (hierarchical cluster analysis and principal component analysis) to identify the main epidemiological findings, including the prevalence and diversity of the Salmonella serovars in each matrix. Regarding the serovar distribution, S Typhimurium presented a cosmopolitan distribution, reported in all four assessed matrices and continents; poultry continues to play a central role in the dissemination of the Enteritidis serovar to humans, and Anatum and Weltevreden were the most frequently found in beef and seafood, respectively. Additionally, we recommended careful monitoring of certain serovars, such as Derby, Agona, Infantis, and Kentucky. Finally, given the scientific data regarding the most frequently reported serovars and which matrices constitute the main vehicles for the transmission of this pathogen, control programs may be improved, and specific interventions may be implemented in an attempt to reduce the risk of this pathogen reaching humans.IMPORTANCE Salmonellosis is caused by Salmonella spp. and is the third leading cause of death among food-transmitted diseases. This pathogen is commonly disseminated in domestic and wild animals, and the infection's symptoms are characterized by acute fever, nausea, abdominal pain, and diarrhea. The animals are the primary source of salmonellae, and animal-based foods are the main transmission route to humans. Therefore, data collected from these sources could contribute to future global interventions for effective control and surveillance of Salmonella along the food chain. In light of this, the importance of our research is in identifying the prevalence of Salmonella serovars in four animal-based food matrices (pork, poultry, beef, and seafood) and to evaluate the importance that each matrix has as the primary source of this pathogen to humans.
Collapse
Affiliation(s)
- Rafaela G Ferrari
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Federal Fluminense University, Niterói, Brazil
- Post Graduate Program in Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denes K A Rosario
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Federal Fluminense University, Niterói, Brazil
- Post Graduate Program in Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adelino Cunha-Neto
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Federal Fluminense University, Niterói, Brazil
- Nutrition, Food and Metabolism Program, Nutrition Faculty, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Sérgio B Mano
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Federal Fluminense University, Niterói, Brazil
| | - Eduardo E S Figueiredo
- Animal Science Program, Faculty of Agronomy and Animal Science, Federal University of Mato Grosso, Cuiabá, Brazil
- Nutrition, Food and Metabolism Program, Nutrition Faculty, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Carlos A Conte-Junior
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Federal Fluminense University, Niterói, Brazil
- Post Graduate Program in Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Tang S, Orsi RH, Luo H, Ge C, Zhang G, Baker RC, Stevenson A, Wiedmann M. Assessment and Comparison of Molecular Subtyping and Characterization Methods for Salmonella. Front Microbiol 2019; 10:1591. [PMID: 31354679 PMCID: PMC6639432 DOI: 10.3389/fmicb.2019.01591] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/26/2019] [Indexed: 01/26/2023] Open
Abstract
The food industry is facing a major transition regarding methods for confirmation, characterization, and subtyping of Salmonella. Whole-genome sequencing (WGS) is rapidly becoming both the method of choice and the gold standard for Salmonella subtyping; however, routine use of WGS by the food industry is often not feasible due to cost constraints or the need for rapid results. To facilitate selection of subtyping methods by the food industry, we present: (i) a comparison between classical serotyping and selected widely used molecular-based subtyping methods including pulsed-field gel electrophoresis, multilocus sequence typing, and WGS (including WGS-based serovar prediction) and (ii) a scoring system to evaluate and compare Salmonella subtyping assays. This literature-based assessment supports the superior discriminatory power of WGS for source tracking and root cause elimination in food safety incident; however, circumstances in which use of other subtyping methods may be warranted were also identified. This review provides practical guidance for the food industry and presents a starting point for further comparative evaluation of Salmonella characterization and subtyping methods.
Collapse
Affiliation(s)
- Silin Tang
- Mars Global Food Safety Center, Beijing, China
| | - Renato H. Orsi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Hao Luo
- Mars Global Food Safety Center, Beijing, China
| | - Chongtao Ge
- Mars Global Food Safety Center, Beijing, China
| | | | | | | | - Martin Wiedmann
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
29
|
Liao J, Orsi RH, Carroll LM, Kovac J, Ou H, Zhang H, Wiedmann M. Serotype-specific evolutionary patterns of antimicrobial-resistant Salmonella enterica. BMC Evol Biol 2019; 19:132. [PMID: 31226931 PMCID: PMC6588947 DOI: 10.1186/s12862-019-1457-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/11/2019] [Indexed: 12/28/2022] Open
Abstract
Background The emergence of antimicrobial-resistant (AMR) strains of the important human and animal pathogen Salmonella enterica poses a growing threat to public health. Here, we studied the genome-wide evolution of 90 S. enterica AMR isolates, representing one host adapted serotype (S. Dublin) and two broad host range serotypes (S. Newport and S. Typhimurium). Results AMR S. Typhimurium had a large effective population size, a large and diverse genome, AMR profiles with high diversity, and frequent positive selection and homologous recombination. AMR S. Newport showed a relatively low level of diversity and a relatively clonal population structure. AMR S. Dublin showed evidence for a recent population bottleneck, and the genomes were characterized by a larger number of genes and gene ontology terms specifically absent from this serotype and a significantly higher number of pseudogenes as compared to other two serotypes. Approximately 50% of accessory genes, including specific AMR and putative prophage genes, were significantly over- or under-represented in a given serotype. Approximately 65% of the core genes showed phylogenetic clustering by serotype, including the AMR gene aac (6′)-Iaa. While cell surface proteins were shown to be the main target of positive selection, some proteins with possible functions in AMR and virulence also showed evidence for positive selection. Homologous recombination mainly acted on prophage-associated proteins. Conclusions Our data indicates a strong association between genome content of S. enterica and serotype. Evolutionary patterns observed in S. Typhimurium are consistent with multiple emergence events of AMR strains and/or ecological success of this serotype in different hosts or habitats. Evolutionary patterns of S. Newport suggested that antimicrobial resistance emerged in one single lineage, Lineage IIC. A recent population bottleneck and genome decay observed in AMR S. Dublin are congruent with its narrow host range. Finally, our results suggest the potentially important role of positive selection in the evolution of antimicrobial resistance, host adaptation and serotype diversification in S. enterica. Electronic supplementary material The online version of this article (10.1186/s12862-019-1457-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingqiu Liao
- Department of Food Science, 341 Stocking Hall, Cornell University, Ithaca, NY, 14853, USA.,Graduate Field of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Renato Hohl Orsi
- Department of Food Science, 341 Stocking Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Laura M Carroll
- Department of Food Science, 341 Stocking Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hongyu Ou
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hailong Zhang
- Department of Computer Science & Engineering, Ohio State University, Columbus, OH, 43210, USA
| | - Martin Wiedmann
- Department of Food Science, 341 Stocking Hall, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
30
|
Rakov AV, Mastriani E, Liu SL, Schifferli DM. Association of Salmonella virulence factor alleles with intestinal and invasive serovars. BMC Genomics 2019; 20:429. [PMID: 31138114 PMCID: PMC6540521 DOI: 10.1186/s12864-019-5809-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The role of Salmonella virulence factor (VF) allelic variation in modulating pathogenesis or host specificity has only been demonstrated in a few cases, mostly through serendipitous findings. Virulence factor (VF) alleles from Salmonella enterica subsp. enterica genomes were compared to identify potential associations with the host-adapted invasive serovars Typhi, Dublin, Choleraesuis, and Gallinarum, and with the broad host-range intestinal serovars Typhimurium, Enteritidis, and Newport. RESULTS Through a bioinformatics analysis of 500 Salmonella genomes, we have identified allelic variants of 70 VFs, many of which are associated with either one of the four host-adapted invasive Salmonella serovars or one of the three broad host-range intestinal serovars. In addition, associations between specific VF alleles and intra-serovar clusters, sequence types (STs) and/or host-adapted FimH adhesins were identified. Moreover, new allelic VF associations with non-typhoidal S. Enteritidis and S. Typhimurium (NTS) or invasive NTS (iNTS) were detected. CONCLUSIONS By analogy to the previously shown association of specific FimH adhesin alleles with optimal binding by host adapted Salmonella serovars, lineages or strains, we predict that some of the identified association of other VF alleles with host-adapted serovars, lineages or strains will reflect specific contributions to host adaptation and/or pathogenesis. The identification of these allelic associations will support investigations of the biological impact of VF alleles and better characterize the role of allelic variation in Salmonella pathogenesis. Most relevant functional experiments will test the potential causal contribution of the detected FimH-associated VF variants in host adapted virulence.
Collapse
Affiliation(s)
- Alexey V. Rakov
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania USA
- Present Address: Somov Institute of Epidemiology and Microbiology, Vladivostok, Russia
| | - Emilio Mastriani
- Systemomics Center, College of Pharmacy, Genomics Research Center, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shu-Lin Liu
- Systemomics Center, College of Pharmacy, Genomics Research Center, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Dieter M. Schifferli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania USA
| |
Collapse
|
31
|
El-Dougdoug N, Cucic S, Abdelhamid A, Brovko L, Kropinski A, Griffiths M, Anany H. Control of Salmonella Newport on cherry tomato using a cocktail of lytic bacteriophages. Int J Food Microbiol 2019; 293:60-71. [DOI: 10.1016/j.ijfoodmicro.2019.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/11/2022]
|
32
|
Pan H, Zhou X, Chai W, Paudyal N, Li S, Zhou X, Zhou K, Wu Q, Wu B, Li G, Rajkovic A, Fang W, Rankin SC, Li Y, Xu X, Schifferli DM, Yue M. Diversified sources for human infections by Salmonella enterica serovar newport. Transbound Emerg Dis 2019; 66:1044-1048. [PMID: 30548172 PMCID: PMC6634944 DOI: 10.1111/tbed.13099] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/28/2018] [Accepted: 12/01/2018] [Indexed: 11/30/2022]
Abstract
Salmonella enterica Newport (S. Newport), with phylogenetic diversity feature, contributes to significant public health concerns. Our previous study suggested that S. Newport from multiple animal-borne routes, with distinct antibiotic resistant pattern, might transmit to human. However, their genetic information was lacking. As a complement to the earlier finding, we investigate the relationship between each other among the hosts, sources, genotype and antibiotic resistance in S. Newport. We used the multilocus sequence typing (MLST) in conjunction with minimum inhibitory concentration of 16 antibiotics of globally sampled 1842 S. Newport strains, including 282 newly contributed Chinese strains, to evaluate this association. Our analysis reveals that sequence types (STs) are significantly associated with different host sources, including livestock (ST45), birds (ST5), contaminated water and soil (ST118), reptiles (ST46) and seafood (ST31). Importantly, ST45 contained most of (344/553) the multi-drug resistance (MDR) strains, which were believed to be responsible for human MDR bacterial infections. Chinese isolates were detected to form two unique lineages of avian (ST808 group) and freshwater animal (ST2364 group) origin. Taken together, genotyping information of S. Newport could serve to improve Salmonella source-originated diagnostics and guide better selection of antibiotic therapy against Salmonella infections.
Collapse
Affiliation(s)
- Hang Pan
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xin Zhou
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Wenqin Chai
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Narayan Paudyal
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Shuning Li
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xiao Zhou
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Kun Zhou
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Qingqing Wu
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Beibei Wu
- Zhejiang Province Center for Disease Control and Prevention, Hangzhou, China
| | - Guogang Li
- Dongyang People’s Hospital, Dongyang, China
| | - Andreja Rajkovic
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Weihuan Fang
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Shelley C. Rankin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yan Li
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Dieter M. Schifferli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Min Yue
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
33
|
Wang YU, Pettengill JB, Pightling A, Timme R, Allard M, Strain E, Rand H. Genetic Diversity of Salmonella and Listeria Isolates from Food Facilities. J Food Prot 2018; 81:2082-2089. [PMID: 30485763 DOI: 10.4315/0362-028x.jfp-18-093] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Food production-related facilities (farms, packing houses, etc.) are monitored for foodborne pathogens, and data from these facilities can provide a rich source of information about the population structure and genetic diversity of Salmonella and Listeria. This information is of both academic interest for understanding the evolutionary forces acting on these organisms and of practical interest to those responsible for controlling pathogens in facilities and to those analyzing data from facilities in the context of public health decision making. We have collected information about all positive isolates from facility inspections performed by the U.S. Food and Drug Administration for which whole genome sequencing data are available. The within- and between-facilities observed genetic diversity of isolates was computed and related to the common origin of isolates (as the common collected facility). This relationship provides quantification for assessing the relationship between isolates based on their genetic similarity quantified by single-nucleotide polymorphisms (SNPs). Our results show that if the genetic distance ( D) between two isolates is low, then more likely than not they are from the same facility or have some overlap in their supply chain. For example, if the genetic distance is no more than 20 SNPs, the probability ( P) that two isolates come from the same facility = 0.66 for Salmonella and 0.70 for Listeria. However, if two isolates come from different facilities, their genetic distance is likely large (for Salmonella, P( D > 20 SNPs) = 0.99982; for Listeria, P( D > 20 SNPs) = 0.99949); even if two isolates come from the same facility, their genetic distance is also very likely large (for Salmonella, P( D > 20 SNPs) = 0.794; for Listeria, P( D > 20 SNPs) = 0.692). These results provide insight into what SNP thresholds might be appropriate when determining whether two isolates are from the same facility and thus would be of interest to those investigating foodborne outbreaks and conducting traceback investigations.
Collapse
Affiliation(s)
- Y U Wang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740, USA
| | - James B Pettengill
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740, USA
| | - Arthur Pightling
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740, USA
| | - Ruth Timme
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740, USA
| | - Marc Allard
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740, USA
| | - Errol Strain
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740, USA
| | - Hugh Rand
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 20740, USA
| |
Collapse
|
34
|
Salmonella enterica Phylogeny Based on Whole-Genome Sequencing Reveals Two New Clades and Novel Patterns of Horizontally Acquired Genetic Elements. mBio 2018; 9:mBio.02303-18. [PMID: 30482836 PMCID: PMC6282209 DOI: 10.1128/mbio.02303-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rapid improvements in nucleotide sequencing access and affordability have led to a drastic increase in availability of genetic information. This information will improve the accuracy of molecular descriptions, including serovars, within S. enterica. Although the concept of serovars continues to be useful, it may have more significant limitations than previously understood. Furthermore, the discrete absence or presence of specific genes can be an unstable indicator of phylogenetic identity. Whole-genome sequencing provides more rigorous tools for assessing the distributions of these genes. Our phylogenetic and genetic content analyses reveal how active genetic elements are dynamically distributed within a species, allowing us to better understand genetic reservoirs and underlying bacterial evolution. Using whole-genome sequence (WGS) data from the GenomeTrakr network, a globally distributed network of laboratories sequencing foodborne pathogens, we present a new phylogeny of Salmonella enterica comprising 445 isolates from 266 distinct serovars and originating from 52 countries. This phylogeny includes two previously unidentified S. enterica subsp. enterica clades. Serovar Typhi is shown to be nested within clade A. Our findings are supported by both phylogenetic support, based on a core genome alignment, and Bayesian approaches, based on single-nucleotide polymorphisms. Serovar assignments were refined by in silico analysis using SeqSero. More than 10% of serovars were either polyphyletic or paraphyletic. We found variable genetic content in these isolates relating to gene mobilization and virulence factors which have different distributions within clades. Gifsy-1- and Gifsy-2-like phages appear more prevalent in clade A; other viruses are more evenly distributed. Our analyses reveal IncFII is the predominant plasmid replicon in S. enterica. Few core or clade-defining virulence genes are observed, and their distributions appear probabilistic in nature. Together, these patterns demonstrate that genetic exchange within S. enterica is more extensive and frequent than previously realized, which significantly alters how we view the genetic structure of the bacterial species.
Collapse
|
35
|
Antunes P, Campos J, Mourão J, Pereira J, Novais C, Peixe L. Inflow water is a major source of trout farming contamination with Salmonella and multidrug resistant bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:1163-1171. [PMID: 30045498 DOI: 10.1016/j.scitotenv.2018.06.143] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
The impact of European aquaculture, namely trout farms, in the spread of antibiotic resistance and/or zoonotic pathogens has been scarcely addressed. Moreover, aquaculture contamination sources and bacterial dissemination routes have been barely explored. In this study, we assessed the contribution of Portuguese land-based intensive rainbow trout farms and retailed market trout to the spread of Salmonella and bacteria carrying clinically-relevant antibiotic resistance genes (ARGs) as well as inflow water and feed as possible sources of those contaminants. Cultural and molecular methods were used to analyse 53 fish farm samples (upstream/downstream water and sediments, tanks and trout) and 25 marketed trout. Plasmid-mediated quinolone resistance (PMQR) genes were found in 21% (n = 11/53) of samples (water/sediment/feed/trout), from all collection points (upstream/within/downstream tanks) and seasons, as well as in 12% (n = 3/25) of marketed trout (3 supermarkets). PMQR genes (qnrS1-S2-S3, qnrB7-B19, qnrD1, oqxAB) were detected in Enterobacteriaceae or Aeromonas hydrophila. An E. coli strain producing extended-spectrum-beta-lactamase SHV-12 was detected in all sampled points of a fish farm. Salmonella (4 serotypes, including S. Newport-ST118) was detected in 26% (n = 14/53) of the samples from both farms (water/sediment upstream/within tanks). The clinically-relevant plasmid-mediated colistin resistance mcr genes were not detected. However, colistin resistant S. Abony with new mutations in the chromosomal pmrA and pmrB genes was observed. Identical Salmonella and SHV-12-producing E. coli strains (by PFGE/MLST) in water upstream and within trout tanks points to inflow-water of trout farms as an important source of pathogenic bacteria and ARG contamination. These results highlight the need to define microbiological standards for water supplying fish farms in the EU and to establish surveillance and control strategies to limit bacterial transmission associated with this fastest growing food sector worldwide.
Collapse
Affiliation(s)
- Patrícia Antunes
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Porto, Portugal; UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Joana Campos
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Joana Mourão
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Joana Pereira
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Porto, Portugal
| | - Carla Novais
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal.
| |
Collapse
|
36
|
Delgado-Suárez EJ, Selem-Mojica N, Ortiz-López R, Gebreyes WA, Allard MW, Barona-Gómez F, Rubio-Lozano MS. Whole genome sequencing reveals widespread distribution of typhoidal toxin genes and VirB/D4 plasmids in bovine-associated nontyphoidal Salmonella. Sci Rep 2018; 8:9864. [PMID: 29959369 PMCID: PMC6026178 DOI: 10.1038/s41598-018-28169-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/23/2018] [Indexed: 01/23/2023] Open
Abstract
Nontyphoidal Salmonella (NTS) is a common pathogen in food-producing animals and a public health concern worldwide. Various NTS serovars may be present in apparently healthy animals. This could result in carcass contamination during the slaughter process leading to human exposure. While most genomic research has focused on Salmonella pathogenesis, little is known on the factors associated with subclinical infections and environmental persistence. We report here the widespread distribution of typhoidal toxin genes (i. e. the cdtB islet, hlyE, taiA), among NTS strains from a beef slaughter operation (n = 39) and from epidemiologically unconnected ground beef (n = 20). These genes were present in 76% of the strains, regardless of serovar, isolation source or geographical location. Moreover, strains that predominated in the slaughterhouse carry plasmid-borne type IV secretion systems (T4SS), which have been linked to persistent infections in numerous pathogens. Population genomics supports clonal dissemination of NTS along the food production chain, highlighting its role as reservoir of genetic variability in the environment. Overall, the study provides a thorough characterization of serovar diversity and genomic features of beef-associated NTS in Mexico. Furthermore, it reveals how common genetic factors could partially explain the emergence and persistence of certain NTS serovars in the beef industry.
Collapse
Affiliation(s)
- Enrique Jesús Delgado-Suárez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Nelly Selem-Mojica
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, 36821, Mexico
| | - Rocío Ortiz-López
- Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, 66460, Mexico
- Tecnológico de Monterrey, School of Medicine and Health Sciences, Monterrey, 64710, Mexico
| | | | - Marc W Allard
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, College Park, 20740, USA
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, 36821, Mexico.
| | - María Salud Rubio-Lozano
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
37
|
Cao G, Allard M, Hoffmann M, Muruvanda T, Luo Y, Payne J, Meng K, Zhao S, McDermott P, Brown E, Meng J. Sequence Analysis of IncA/C and IncI1 Plasmids Isolated from Multidrug-Resistant Salmonella Newport Using Single-Molecule Real-Time Sequencing. Foodborne Pathog Dis 2018; 15:361-371. [DOI: 10.1089/fpd.2017.2385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Guojie Cao
- Department of Nutrition and Food Science, Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, Maryland
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Marc Allard
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Tim Muruvanda
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Yan Luo
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Justin Payne
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Kevin Meng
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford University, Palo Alto, California
| | - Shaohua Zhao
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Patrick McDermott
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Eric Brown
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Jianghong Meng
- Department of Nutrition and Food Science, Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, Maryland
| |
Collapse
|
38
|
de Moraes MH, Soto EB, Salas González I, Desai P, Chu W, Porwollik S, McClelland M, Teplitski M. Genome-Wide Comparative Functional Analyses Reveal Adaptations of Salmonella sv. Newport to a Plant Colonization Lifestyle. Front Microbiol 2018; 9:877. [PMID: 29867794 PMCID: PMC5968271 DOI: 10.3389/fmicb.2018.00877] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/16/2018] [Indexed: 11/24/2022] Open
Abstract
Outbreaks of salmonellosis linked to the consumption of vegetables have been disproportionately associated with strains of serovar Newport. We tested the hypothesis that strains of sv. Newport have evolved unique adaptations to persistence in plants that are not shared by strains of other Salmonella serovars. We used a genome-wide mutant screen to compare growth in tomato fruit of a sv. Newport strain from an outbreak traced to tomatoes, and a sv. Typhimurium strain from animals. Most genes in the sv. Newport strain that were selected during persistence in tomatoes were shared with, and similarly selected in, the sv. Typhimurium strain. Many of their functions are linked to central metabolism, including amino acid biosynthetic pathways, iron acquisition, and maintenance of cell structure. One exception was a greater need for the core genes involved in purine metabolism in sv. Typhimurium than in sv. Newport. We discovered a gene, papA, that was unique to sv. Newport and contributed to the strain’s fitness in tomatoes. The papA gene was present in about 25% of sv. Newport Group III genomes and generally absent from other Salmonella genomes. Homologs of papA were detected in the genomes of Pantoea, Dickeya, and Pectobacterium, members of the Enterobacteriacea family that can colonize both plants and animals.
Collapse
Affiliation(s)
- Marcos H de Moraes
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, United States
| | - Emanuel Becerra Soto
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - Isai Salas González
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico.,Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Prerak Desai
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Weiping Chu
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Max Teplitski
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
39
|
Pearce ME, Alikhan NF, Dallman TJ, Zhou Z, Grant K, Maiden MCJ. Comparative analysis of core genome MLST and SNP typing within a European Salmonella serovar Enteritidis outbreak. Int J Food Microbiol 2018; 274:1-11. [PMID: 29574242 PMCID: PMC5899760 DOI: 10.1016/j.ijfoodmicro.2018.02.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 01/10/2023]
Abstract
Multi-country outbreaks of foodborne bacterial disease present challenges in their detection, tracking, and notification. As food is increasingly distributed across borders, such outbreaks are becoming more common. This increases the need for high-resolution, accessible, and replicable isolate typing schemes. Here we evaluate a core genome multilocus typing (cgMLST) scheme for the high-resolution reproducible typing of Salmonella enterica (S. enterica) isolates, by its application to a large European outbreak of S. enterica serovar Enteritidis. This outbreak had been extensively characterised using single nucleotide polymorphism (SNP)-based approaches. The cgMLST analysis was congruent with the original SNP-based analysis, the epidemiological data, and whole genome MLST (wgMLST) analysis. Combination of the cgMLST and epidemiological data confirmed that the genetic diversity among the isolates predated the outbreak, and was likely present at the infection source. There was consequently no link between country of isolation and genetic diversity, but the cgMLST clusters were congruent with date of isolation. Furthermore, comparison with publicly available Enteritidis isolate data demonstrated that the cgMLST scheme presented is highly scalable, enabling outbreaks to be contextualised within the Salmonella genus. The cgMLST scheme is therefore shown to be a standardised and scalable typing method, which allows Salmonella outbreaks to be analysed and compared across laboratories and jurisdictions. cgMLST is proposed as a universal typing scheme for Salmonella. cgMLST is congruent with SNP analyses and easier to implement across laboratories. Genomic data are consistent with the epidemiology of the outbreak.
Collapse
Affiliation(s)
- Madison E Pearce
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom; National Institute for Health Research, Health Protection Research Unit, Gastrointestinal Infections, University of Oxford, United Kingdom.
| | - Nabil-Fareed Alikhan
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | - Timothy J Dallman
- Public Health England, Gastrointestinal Bacteria Reference Unit, 61 Colindale Avenue, London NW9 5EQ, United Kingdom.
| | - Zhemin Zhou
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | - Kathie Grant
- Public Health England, Gastrointestinal Bacteria Reference Unit, 61 Colindale Avenue, London NW9 5EQ, United Kingdom.
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom; National Institute for Health Research, Health Protection Research Unit, Gastrointestinal Infections, University of Oxford, United Kingdom.
| |
Collapse
|
40
|
Vosik D, Tewari D, Dettinger L, M'ikanatha NM, Shariat NW. CRISPR Typing and Antibiotic Resistance Correlates with Polyphyletic Distribution in Human Isolates of Salmonella Kentucky. Foodborne Pathog Dis 2018; 15:101-108. [PMID: 29394097 DOI: 10.1089/fpd.2017.2298] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although infrequently associated with reported salmonellosis in humans, Salmonella enterica, subsp. enterica serovar Kentucky (ser. Kentucky) is the most common nonclinical, nonhuman serovar reported in the United States. The goal of this study was to use Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-multi-virulence-locus sequence typing (MVLST) to subtype a collection of human clinical isolates of ser. Kentucky submitted to the Pennsylvania Department of Health and to determine the extent of antibiotic resistance in these strains. This analysis highlighted the polyphyletic nature of ser. Kentucky, and separated our isolates into two groups, Group I and Group II, which were equally represented in our collection. Furthermore, antimicrobial susceptibility testing on all isolates using a National Antimicrobial Resistance Monitoring System (NARMS) panel of antibiotics demonstrated that resistance profiles could be divided into two groups. Group I isolates were resistant to cephems and penicillins, whereas Group II isolates were resistant to quinolones, gentamicin, and sulfisoxazole. Collectively, 50% of isolates were resistant to three or more classes of antibiotics and 30% were resistant to five or more classes. The correlation of antibiotic resistance with the two different lineages may reflect adaptation within two distinct reservoirs of ser. Kentucky, with differential exposure to antimicrobials.
Collapse
Affiliation(s)
- Dorothy Vosik
- 1 Department of Biology, Gettysburg College , Gettysburg, Pennsylvania
| | - Deepanker Tewari
- 2 Pennsylvania Veterinary Laboratory , Pennsylvania Department of Agriculture, Harrisburg, Pennsylvania
| | - Lisa Dettinger
- 3 Bureau of Laboratories , Pennsylvania Department of Health, Exton, Pennsylvania
| | - Nkuchia M M'ikanatha
- 4 Division of Infectious Disease Epidemiology , Pennsylvania Department of Health, Harrisburg, Pennsylvania.,5 Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Nikki W Shariat
- 1 Department of Biology, Gettysburg College , Gettysburg, Pennsylvania
| |
Collapse
|
41
|
Pan H, Paudyal N, Li X, Fang W, Yue M. Multiple Food-Animal-Borne Route in Transmission of Antibiotic-Resistant Salmonella Newport to Humans. Front Microbiol 2018; 9:23. [PMID: 29410657 PMCID: PMC5787089 DOI: 10.3389/fmicb.2018.00023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/05/2018] [Indexed: 12/21/2022] Open
Abstract
Characterization of transmission routes of Salmonella among various food-animal reservoirs and their antibiogram is crucial for appropriate intervention and medical treatment. Here, we analyzed 3728 Salmonella enterica serovar Newport (S. Newport) isolates collected from various food-animals, retail meats and humans in the United States between 1996 and 2015, based on their minimum inhibitory concentration (MIC) toward 27 antibiotics. Random Forest and Hierarchical Clustering statistic was used to group the isolates according to their MICs. Classification and Regression Tree (CART) analysis was used to identify the appropriate antibiotic and its cut-off value between human- and animal-population. Two distinct populations were revealed based on the MICs of individual strain by both methods, with the animal population having significantly higher MICs which correlates to antibiotic-resistance (AR) phenotype. Only ∼9.7% (267/2763) human isolates could be attributed to food-animal origins. Furthermore, the isolates of animal origin had less diverse antibiogram than human isolates (P < 0.001), suggesting multiple sources involved in human infections. CART identified trimethoprim-sulfamethoxazole to be the best classifier for differentiating the animal and human isolates. Additionally, two typical AR patterns, MDR-Amp and Tet-SDR dominant in bovine- or turkey-population, were identified, indicating that distinct food-animal sources could be involved in human infections. The AR analysis suggested fluoroquinolones (i.e., ciprofloxacin), but not extended-spectrum cephalosporins (i.e., ceftriaxone, cefoxitin), is the adaptive choice for empirical therapy. Antibiotic-resistant S. Newport from humans has multiple origins, with distinct food-animal-borne route contributing to a significant proportion of heterogeneous isolates.
Collapse
Affiliation(s)
- Hang Pan
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, Hangzhou, China
| | - Narayan Paudyal
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, Hangzhou, China
| | - Xiaoliang Li
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Weihuan Fang
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Min Yue
- CATG Microbiology & Food Safety Laboratory, Institute of Preventive Veterinary Medicine, College of Animal Sciences of Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
42
|
Furukawa M, Goji N, Janzen TW, Thomas MC, Ogunremi D, Blais B, Misawa N, Amoako KK. Rapid detection and serovar identification of common Salmonella enterica serovars in Canada using a new pyrosequencing assay. Can J Microbiol 2017; 64:75-86. [PMID: 29088546 DOI: 10.1139/cjm-2017-0496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Serotyping of Salmonella enterica subsp. enterica is a critical step for foodborne salmonellosis investigation. To identify Salmonella enterica subsp. enterica serovars, we have developed a new assay based on a triplex polymerase chain reaction (PCR) with pyrosequencing for amplicon confirmation and phylogenetic discrimination of strains. The top 54 most prevalent serovars of S. enterica in Canada were examined with a total of 23 single-nucleotide polymorphisms (SNPs) and (or) single-nucleotide variations (SNVs) located on 3 genes (fliD, sopE2, and spaO). Seven of the most common serovars, Newport, Typhi, Javiana, Infantis, Thompson, Heidelberg, and Enteritidis, were successfully distinguished from the other serovars based on their unique SNP-SNV combinations. The remaining serovars, including Typhimurium, ssp I:4,[5],12:i:-, and Saintpaul, were further divided into 47 subgroups that demonstrate the relatedness to phylogenetic classifications of each serovar. This pyrosequencing assay is not only cost-effective, rapid, and user-friendly, but also provides phylogenetic information by analyzing 23 selected SNPs. With the added layer of confidence in the PCR results and the accuracy and speed of pyrosequencing, this novel method would benefit the food industry and provides a tool for rapid outbreak investigation through quick detection and identification of common S. enterica serovars in Canada.
Collapse
Affiliation(s)
- Maika Furukawa
- a Canadian Food Inspection Agency (CFIA) National Centres for Animal Disease, Lethbridge Laboratory, P.O. Box 640, Township Road 9-1, Lethbridge, AB T1J 3Z4, Canada.,b Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Noriko Goji
- a Canadian Food Inspection Agency (CFIA) National Centres for Animal Disease, Lethbridge Laboratory, P.O. Box 640, Township Road 9-1, Lethbridge, AB T1J 3Z4, Canada
| | - Timothy W Janzen
- a Canadian Food Inspection Agency (CFIA) National Centres for Animal Disease, Lethbridge Laboratory, P.O. Box 640, Township Road 9-1, Lethbridge, AB T1J 3Z4, Canada
| | - Matthew C Thomas
- a Canadian Food Inspection Agency (CFIA) National Centres for Animal Disease, Lethbridge Laboratory, P.O. Box 640, Township Road 9-1, Lethbridge, AB T1J 3Z4, Canada
| | - Dele Ogunremi
- c Canadian Food Inspection Agency (CFIA) Ontario Laboratory Network, 3851 Fallowfield Road, Ottawa, ON K2H 8P9, Canada
| | - Burton Blais
- d Canadian Food Inspection Agency (CFIA) Ontario Laboratory Network, Building 22, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Naoaki Misawa
- b Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan.,e Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Kingsley K Amoako
- a Canadian Food Inspection Agency (CFIA) National Centres for Animal Disease, Lethbridge Laboratory, P.O. Box 640, Township Road 9-1, Lethbridge, AB T1J 3Z4, Canada
| |
Collapse
|
43
|
Jia K, Wang G, Liang L, Wang M, Wang H, Xu X. Preliminary Transcriptome Analysis of Mature Biofilm and Planktonic Cells of Salmonella Enteritidis Exposure to Acid Stress. Front Microbiol 2017; 8:1861. [PMID: 29018430 PMCID: PMC5622974 DOI: 10.3389/fmicb.2017.01861] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/12/2017] [Indexed: 11/13/2022] Open
Abstract
Salmonella has emerged as a well-recognized food-borne pathogen, with many strains able to form biofilms and thus cause cross-contamination in food processing environments where acid-based disinfectants are widely encountered. In the present study, RNA sequencing was employed to establish complete transcriptome profiles of Salmonella Enteritidis in the forms of planktonic and biofilm-associated cells cultured in Tryptic Soytone Broth (TSB) and acidic TSB (aTSB). The gene expression patterns of S. Enteritidis significantly differed between biofilm-associated and planktonic cells cultivated under the same conditions. The assembled transcriptome of S. Enteritidis in this study contained 5,442 assembled transcripts, including 3,877 differentially expressed genes (DEGs) identified in biofilm and planktonic cells. These DEGs were enriched in terms such as regulation of biological process, metabolic process, macromolecular complex, binding and transferase activity, which may play crucial roles in the biofilm formation of S. Enteritidis cultivated in aTSB. Three significant pathways were observed to be enriched under acidic conditions: bacterial chemotaxis, porphyrin-chlorophyll metabolism and sulfur metabolism. In addition, 15 differentially expressed novel non-coding small RNAs (sRNAs) were identified, and only one was found to be up-regulated in mature biofilms. This preliminary study of the S. Enteritidis transcriptome serves as a basis for future investigations examining the complex network systems that regulate Salmonella biofilm in acidic environments, which provide information on biofilm formation and acid stress interaction that may facilitate the development of novel disinfection procedures in the food processing industry.
Collapse
Affiliation(s)
- Kun Jia
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Guangyu Wang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Lijiao Liang
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Meng Wang
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Huhu Wang
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Xinglian Xu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
44
|
Whole-Genome Sequencing of Drug-Resistant Salmonella enterica Isolates from Dairy Cattle and Humans in New York and Washington States Reveals Source and Geographic Associations. Appl Environ Microbiol 2017; 83:AEM.00140-17. [PMID: 28389536 DOI: 10.1128/aem.00140-17] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/27/2017] [Indexed: 01/09/2023] Open
Abstract
Multidrug-resistant (MDR) Salmonella enterica can be spread from cattle to humans through direct contact with animals shedding Salmonella as well as through the food chain, making MDR Salmonella a serious threat to human health. The objective of this study was to use whole-genome sequencing to compare antimicrobial-resistant (AMR) Salmonella enterica serovars Typhimurium, Newport, and Dublin isolated from dairy cattle and humans in Washington State and New York State at the genotypic and phenotypic levels. A total of 90 isolates were selected for the study (37 S Typhimurium, 32 S Newport, and 21 S Dublin isolates). All isolates were tested for phenotypic antibiotic resistance to 12 drugs using Kirby-Bauer disk diffusion. AMR genes were detected in the assembled genome of each isolate using nucleotide BLAST and ARG-ANNOT. Genotypic prediction of phenotypic resistance resulted in a mean sensitivity of 97.2 and specificity of 85.2. Sulfamethoxazole-trimethoprim resistance was observed only in human isolates (P < 0.05), while resistance to quinolones and fluoroquinolones was observed only in 6 S Typhimurium isolates from humans in Washington State. S Newport isolates showed a high degree of AMR profile similarity, regardless of source. S Dublin isolates from New York State differed from those from Washington State based on the presence/absence of plasmid replicons, as well as phenotypic AMR susceptibility/nonsusceptibility (P < 0.05). The results of this study suggest that distinct factors may contribute to the emergence and dispersal of AMR S. enterica in humans and farm animals in different regions.IMPORTANCE The use of antibiotics in food-producing animals has been hypothesized to select for AMR Salmonella enterica and associated AMR determinants, which can be transferred to humans through different routes. Previous studies have sought to assess the degree to which AMR livestock- and human-associated Salmonella strains overlap, as well as the spatial distribution of Salmonella's associated AMR determinants, but have often been limited by the degree of resolution at which isolates can be compared. Here, a comparative genomics study of livestock- and human-associated Salmonella strains from different regions of the United States shows that while many AMR genes and phenotypes were confined to human isolates, overlaps between the resistomes of bovine and human-associated Salmonella isolates were observed on numerous occasions, particularly for S Newport. We have also shown that whole-genome sequencing can be used to reliably predict phenotypic resistance across Salmonella isolated from bovine sources.
Collapse
|
45
|
Ziebell K, Chui L, King R, Johnson S, Boerlin P, Johnson RP. Subtyping of Canadian isolates of Salmonella Enteritidis using Multiple Locus Variable Number Tandem Repeat Analysis (MLVA) alone and in combination with Pulsed-Field Gel Electrophoresis (PFGE) and phage typing. J Microbiol Methods 2017; 139:29-36. [PMID: 28456552 DOI: 10.1016/j.mimet.2017.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
Salmonella enterica subspecies enterica serovar Enteritidis (SE) is one of the most common causes of human salmonellosis and in Canada currently accounts for over 40% of human cases. Reliable subtyping of isolates is required for outbreak detection and source attribution. However, Pulsed-Field Gel Electrophoresis (PFGE), the current standard subtyping method for Salmonella spp., is compromised by the high genetic homogeneity of SE. Multiple Locus Variable Number Tandem Repeat Analysis (MLVA) was introduced to supplement PFGE, although there is a lack of data on the ability of MLVA to subtype Canadian isolates of SE. Three subtyping methods, PFGE, MLVA and phage typing were compared for their discriminatory power when applied to three panels of Canadian SE isolates: Panel 1: 70 isolates representing the diversity of phage types (PTs) and PFGE subtypes within these PTs; Panel 2: 214 apparently unrelated SE isolates of the most common PTs; and Panel 3: 27 isolates from 10 groups of epidemiologically related strains. For Panel 2 isolates, four MLVA subtypes were shared among 74% of unrelated isolates and in Panel 3 isolates, one MLVA subtype accounted for 62% of the isolates. For all panels, combining results from PFGE, MLVA and PT gave the best discrimination, except in Panel 1, where the combination of PT and PFGE was equally as high, due to the selection criteria for this panel. However, none of these methods is sufficiently discriminatory alone for reliable outbreak detection or source attribution, and must be applied together to achieve sufficient discrimination for practical purposes. Even then, some large clusters were not differentiated adequately. More discriminatory methods are required for reliable subtyping of this genetically highly homogeneous serovar. This need will likely be met by whole genome sequence analysis given the recent promising reports and as more laboratories implement this tool for outbreak response and surveillance.
Collapse
Affiliation(s)
- Kim Ziebell
- National Microbiology Laboratory at Guelph, PHAC, Guelph, ON, Canada
| | - Linda Chui
- Alberta Provincial Laboratory for Public Health, Edmonton, AB, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Robin King
- Alberta Agriculture and Forestry, Edmonton, AB, Canada
| | - Suzanne Johnson
- National Microbiology Laboratory at Guelph, PHAC, Guelph, ON, Canada
| | - Patrick Boerlin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Roger P Johnson
- National Microbiology Laboratory at Guelph, PHAC, Guelph, ON, Canada.
| |
Collapse
|
46
|
Zheng J, Luo Y, Reed E, Bell R, Brown EW, Hoffmann M. Whole-Genome Comparative Analysis of Salmonella enterica Serovar Newport Strains Reveals Lineage-Specific Divergence. Genome Biol Evol 2017; 9:1047-1050. [PMID: 28379364 PMCID: PMC5405337 DOI: 10.1093/gbe/evx065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2017] [Indexed: 12/25/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Newport has been associated with various foodborne outbreaks in humans and animals. Phylogenetically, serovar Newport is one of several Salmonella serovars that are polyphyletic. To understand more about the polyphyletic nature of this serovar, six food, environment, and human isolates from different Newport lineages were selected for genome comparison analyses. Whole genome comparisons demonstrated that heterogeneity mostly occurred in the prophage regions. Lineage-specific characteristics were also present in the Salmonella pathogenicity islands and fimbrial operons.
Collapse
Affiliation(s)
- Jie Zheng
- Center for Food Safety and Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Yan Luo
- Center for Food Safety and Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Elizabeth Reed
- Center for Food Safety and Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Rebecca Bell
- Center for Food Safety and Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Eric W Brown
- Center for Food Safety and Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Maria Hoffmann
- Center for Food Safety and Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| |
Collapse
|
47
|
Helke KL, McCrackin MA, Galloway AM, Poole AZ, Salgado CD, Marriott BP. Effects of antimicrobial use in agricultural animals on drug-resistant foodborne salmonellosis in humans: A systematic literature review. Crit Rev Food Sci Nutr 2017; 57:472-488. [PMID: 27602884 DOI: 10.1080/10408398.2016.1230088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Controversy continues concerning antimicrobial use in food animals and its relationship to drug-resistant infections in humans. We systematically reviewed published literature for evidence of a relationship between antimicrobial use in agricultural animals and drug-resistant meat or dairy-borne non-typhoidal salmonellosis in humans. Based on publications from the United States (U.S.), Canada, and Denmark from January 2010 to July 2014, 858 articles received title and abstract review, 104 met study criteria for full article review with 68 retained for which data are presented. Antibiotic exposure in both cattle and humans found an increased likelihood of Salmonella colonization, whereas in chickens, animals not exposed to antibiotics (organic) were more likely to be Salmonella positive and those that had antibiotic exposure were more likely to harbor antimicrobial resistant Salmonella organisms. In swine literature, only tylosin exposure was examined and no correlation was found among exposure, Salmonella colonization, or antimicrobial resistance. No studies that identified farm antimicrobial use also traced antimicrobial-resistant Salmonella from farm to fork.
Collapse
Affiliation(s)
- Kristi L Helke
- a Department of Comparative Medicine , Medical University of South Carolina , Charleston , South Carolina , USA
| | - M A McCrackin
- a Department of Comparative Medicine , Medical University of South Carolina , Charleston , South Carolina , USA.,b Ralph H. Johnson VA Medical Center Department of Research Service , Charleston , South Carolina , USA
| | - Ashley M Galloway
- c Department of Medicine , Nutrition Section, Division of Gastroenterology, Medical University of South Carolina , Charleston , South Carolina , USA
| | - Ann Z Poole
- c Department of Medicine , Nutrition Section, Division of Gastroenterology, Medical University of South Carolina , Charleston , South Carolina , USA
| | - Cassandra D Salgado
- d Department of Medicine , Infectious Disease Division, Medical University of South Carolina , Charleston , South Carolina , USA
| | - Bernadette P Marriott
- c Department of Medicine , Nutrition Section, Division of Gastroenterology, Medical University of South Carolina , Charleston , South Carolina , USA.,e Department of Psychiatry , Nutrition Section, Division of Gastroenterology, Medical University of South Carolina , Charleston , South Carolina , USA
| |
Collapse
|
48
|
Cooperation of Adhesin Alleles in Salmonella-Host Tropism. mSphere 2017; 2:mSphere00066-17. [PMID: 28289725 PMCID: PMC5343171 DOI: 10.1128/msphere.00066-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/21/2017] [Indexed: 12/30/2022] Open
Abstract
Salmonella enterica remains a leading foodborne bacterial pathogen in the United States; infected livestock serve often as the source of contaminated food products. A study estimated that over a billion Salmonella gastroenteritis cases and up to 33 million typhoid cases occur annually worldwide, with 3.5 million deaths. Although many Salmonella strains with a broad host range present preferential associations with certain host species, it is not clear what determines the various levels of host adaptation. Here, causal properties of host associations were determined with allelic variants of three colonization factors of S. enterica serovar Newport, a most frequent zoonotic serovar. This is the first study that related not only individual but also a small group of host-associated gene variants with functional properties that cooperate to determine the level of host-adapted virulence. The detected associations should help to identify sources of Salmonella infections in both humans and animals. Allelic combinations and host specificities for three fimbrial adhesins, FimH, BcfD, and StfH, were compared for 262 strains of Salmonella enterica serovar Newport, a frequent human and livestock pathogen. Like FimH, BcfD had two major alleles (designated A and B), whereas StfH had two allelic groups, each with two alleles (subgroup A1 and A2 and subgroup B1 and B2). The most prevalent combinations of FimH/BcfD/StfH alleles in S. Newport were A/A/A1 and B/B/B1. The former set was most frequently found in bovine and porcine strains, whereas the latter combination was most frequently found in environmental and human isolates. Bacteria genetically engineered to express Fim, Bcf, or Stf fimbriae on their surface were tested with the different alleles for binding to human, porcine, and bovine intestinal epithelial cells. The major allelic combinations with bovine and porcine strains (A/A/A1) or with human isolates (B/B/B1) provided at least two alleles capable of binding significantly better than the other alleles to an intestinal epithelial cell line from the respective host(s). However, each combination of alleles kept at least one allele mediating binding to an intestinal epithelial cell from another host. These findings indicated that allelic variation in multiple adhesins of S. Newport contributes to bacterial adaptation to certain preferential hosts without losing the capacity to maintain a broad host range. IMPORTANCESalmonella enterica remains a leading foodborne bacterial pathogen in the United States; infected livestock serve often as the source of contaminated food products. A study estimated that over a billion Salmonella gastroenteritis cases and up to 33 million typhoid cases occur annually worldwide, with 3.5 million deaths. Although many Salmonella strains with a broad host range present preferential associations with certain host species, it is not clear what determines the various levels of host adaptation. Here, causal properties of host associations were determined with allelic variants of three colonization factors of S. enterica serovar Newport, a most frequent zoonotic serovar. This is the first study that related not only individual but also a small group of host-associated gene variants with functional properties that cooperate to determine the level of host-adapted virulence. The detected associations should help to identify sources of Salmonella infections in both humans and animals.
Collapse
|
49
|
Molecular detection assay of five Salmonella serotypes of public interest: Typhimurium, Enteritidis, Newport, Heidelberg, and Hadar. J Microbiol Methods 2016; 134:14-20. [PMID: 27993596 DOI: 10.1016/j.mimet.2016.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 01/14/2023]
Abstract
Foodborne illnesses due to Salmonella represent an important public-health concern worldwide. In the United States, a majority of Salmonella infections are associated with a small number of serotypes. Furthermore, some serotypes that are overrepresented among human disease are also associated with multi-drug resistance phenotypes. Rapid detection of serotypes of public-health concern might help reduce the burden of salmonellosis cases and limit exposure to multi-drug resistant Salmonella. We developed a two-step real-time PCR-based rapid method for the identification and detection of five Salmonella serotypes that are either overrepresented in human disease or frequently associated with multi-drug resistance, including serotypes Enteritidis, Typhimurium, Newport, Hadar, and Heidelberg. Two sets of four markers were developed to detect and differentiate the five serotypes. The first set of markers was developed as a screening step to detect the five serotypes; whereas, the second set was used to further distinguish serotypes Heidelberg, Newport and Hadar. The utilization of these markers on a two-step investigation strategy provides a diagnostic specificity of 97% for the detection of Typhimurium, Enteritidis, Heidelberg, Infantis, Newport and Hadar. The diagnostic sensitivity of the detection makers is >96%. The availability of this two-step rapid method will facilitate specific detection of Salmonella serotypes that contribute to a significant proportion of human disease and carry antimicrobial resistance.
Collapse
|
50
|
Ronholm J, Nasheri N, Petronella N, Pagotto F. Navigating Microbiological Food Safety in the Era of Whole-Genome Sequencing. Clin Microbiol Rev 2016; 29:837-57. [PMID: 27559074 PMCID: PMC5010751 DOI: 10.1128/cmr.00056-16] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The epidemiological investigation of a foodborne outbreak, including identification of related cases, source attribution, and development of intervention strategies, relies heavily on the ability to subtype the etiological agent at a high enough resolution to differentiate related from nonrelated cases. Historically, several different molecular subtyping methods have been used for this purpose; however, emerging techniques, such as single nucleotide polymorphism (SNP)-based techniques, that use whole-genome sequencing (WGS) offer a resolution that was previously not possible. With WGS, unlike traditional subtyping methods that lack complete information, data can be used to elucidate phylogenetic relationships and disease-causing lineages can be tracked and monitored over time. The subtyping resolution and evolutionary context provided by WGS data allow investigators to connect related illnesses that would be missed by traditional techniques. The added advantage of data generated by WGS is that these data can also be used for secondary analyses, such as virulence gene detection, antibiotic resistance gene profiling, synteny comparisons, mobile genetic element identification, and geographic attribution. In addition, several software packages are now available to generate in silico results for traditional molecular subtyping methods from the whole-genome sequence, allowing for efficient comparison with historical databases. Metagenomic approaches using next-generation sequencing have also been successful in the detection of nonculturable foodborne pathogens. This review addresses state-of-the-art techniques in microbial WGS and analysis and then discusses how this technology can be used to help support food safety investigations. Retrospective outbreak investigations using WGS are presented to provide organism-specific examples of the benefits, and challenges, associated with WGS in comparison to traditional molecular subtyping techniques.
Collapse
Affiliation(s)
- J Ronholm
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada
| | - Neda Nasheri
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada
| | - Nicholas Petronella
- Biostatistics and Modelling Division, Bureau of Food Surveillance and Science Integration, Food Directorate, Health Canada, Ottawa, ON, Canada
| | - Franco Pagotto
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada Listeriosis Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada
| |
Collapse
|