1
|
Muntaha SN, Fettke J. Protein targeting to Starch 2 and the plastidial phosphorylase 1 revealed protein-protein interactions with photosynthesis proteins in yeast two-hybrid screenings. PLANT SIGNALING & BEHAVIOR 2025; 20:2470775. [PMID: 40008471 DOI: 10.1080/15592324.2025.2470775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
Starch metabolism in plants involves a complex network of interacting proteins that work together to ensure the efficient synthesis and degradation of starch. These interactions are crucial for regulating the balance between energy storage and release, adapting to the plant's developmental stage and environmental conditions. Several studies have been performed to investigate protein-protein interactions (PPIs) in starch metabolism complexes, yet it remains impossible to unveil all of the PPIs in this highly regulated process. This study uses yeast-two-hybrid (Y2H) screening against the Arabidopsis leaf cDNA library to explore PPIs, focusing on the starch-granule-initiating protein named Protein Targeting to Starch 2 (PTST2, At1g27070) and the protein involved in starch and maltodextrin metabolism, namely, plastidial phosphorylase 1 (PHS1, EC 2.4.1.1). More than 100 positive interactions were sequenced, and we found chloroplastidial proteins to be putative interacting partners of PTST2 and PHS1. Among them, photosynthetic proteins were discovered. These novel interactions could reveal new roles of PTST2 and PHS1 in the connection between starch metabolism and photosynthesis. This dynamic interplay between starch metabolism and other chloroplast functions highlights the importance of starch as both an energy reservoir and a regulatory component in the broader context of plant physiology and adaptation.
Collapse
Affiliation(s)
- Sidratul Nur Muntaha
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| |
Collapse
|
2
|
Gombeau K, Hoffmann SA, Cai Y. A new set of mutations in the second transmembrane helix of the Cox2p-W56R substantially improves its allotopic expression in Saccharomyces cerevisiae. Genetics 2025; 229:iyaf037. [PMID: 40178993 PMCID: PMC12005268 DOI: 10.1093/genetics/iyaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/23/2025] [Indexed: 04/05/2025] Open
Abstract
The dual genetic control of mitochondrial respiratory function, combined with the high mutation rate of the mitochondrial genome (mtDNA), makes mitochondrial diseases among the most frequent genetic diseases in humans (1 in 5,000 in adults). With no effective treatments available, gene therapy approaches have been proposed. Notably, several studies have demonstrated the potential for nuclear expression of a healthy copy of a dysfunctional mitochondrial gene, referred to as allotopic expression, to help recover respiratory function. However, allotopic expression conditions require significant optimization. We harnessed engineering biology tools to improve the allotopic expression of the COX2-W56R gene in the budding yeast Saccharomyces cerevisiae. Through conducting random mutagenesis and screening of the impact of vector copy number, promoter, and mitochondrial targeting sequence, we substantially increased the mitochondrial incorporation of the allotopic protein and significantly increased recovery of mitochondrial respiration. Moreover, CN-PAGE analyses revealed that our optimized allotopic protein does not impact cytochrome c oxidase assembly, or the biogenesis of respiratory chain supercomplexes. Importantly, the most beneficial amino acid substitutions found in the second transmembrane helix (L93S and I102K) are conserved residues in the corresponding positions of human MT-CO2 (L73 and L75), and we propose that mirroring these changes could potentially help improve allotopic Cox2p expression in human cells. To conclude, this study demonstrates the effectiveness of using engineering biology approaches to optimise allotopic expression of mitochondrial genes in the baker's yeast.
Collapse
Affiliation(s)
- Kewin Gombeau
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- Generative and Synthetic Genomics, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Stefan A Hoffmann
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, Netherlands
| | - Yizhi Cai
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- Generative and Synthetic Genomics, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| |
Collapse
|
3
|
Guo Z, Sun J, Chen X, Li H, Liang S, Liu F, Qu T, Wang H, Li X, Ou Z, Feng H, Ma J, Wang S, Wang L, Tang B, Wang G, Qin Y, Cheng Y. Comparative analysis of HKT genes in Ipomoea pes-caprae unveils conserved Na +/K + symporter functions within the gene family. FRONTIERS IN PLANT SCIENCE 2025; 16:1538669. [PMID: 40247947 PMCID: PMC12005088 DOI: 10.3389/fpls.2025.1538669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/26/2025] [Indexed: 04/19/2025]
Abstract
The HKT protein family plays a vital role in plant responses to salt stress by mediating sodium (Na+) and potassium (K+) transport and maintaining Na+-K+ balance. Ipomoea pes-caprae (IPC), a pantropical creeping plant distributed along coastal regions in tropical and subtropical zones, exhibits exceptional salt tolerance. Understanding its salt tolerance mechanisms provides valuable insights for developing salt-tolerant crops and identifying candidate genes for genetic engineering. In this study, we identified two HKT genes, IpcHKT1;1 and IpcHKT1;2, in IPC. Phylogenetic analysis with HKT genes from other Ipomoea species revealed that all analyzed species contain two HKT genes located adjacently on the same chromosome. Comparative analysis of conserved motifs and intron-exon structures indicated that, despite their close evolutionary relationship, the HKT genes in IPC may exhibit functional divergence. Promoter analysis showed that their regulatory regions are enriched with cis-elements associated with responses to biotic and abiotic stresses, hormonal signaling, and growth, highlighting functional diversity within the HKT family. Subcellular localization experiments demonstrated that IpcHKT1;1 and IpcHKT1;2 are ion transporters localized to the plasma membrane. Heterologous expression in yeast confirmed their role in Na+/K+ symporter. Furthermore, RT-qPCR analysis revealed distinct expression patterns under salt stress: IpcHKT1;2 was significantly upregulated in roots, while IpcHKT1;1 expression was transitionally downregulated at 400 mM NaCl treatment. Prolonged high expression of IpcHKT1;2 in roots suggests its critical role in sustained salt stress tolerance. These findings provide new insights into the molecular mechanisms of salt tolerance in IPC. The identification of IpcHKT1;1 and IpcHKT1;2 as key players in salt stress responses offers promising genetic resources for enhancing crop resilience to soil salinity, addressing challenges associated with global salinization.
Collapse
Affiliation(s)
- Zhonghua Guo
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jin Sun
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingguang Chen
- Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Li
- Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sisi Liang
- Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fengying Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tong Qu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huaer Wang
- Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueli Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zitong Ou
- Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, China
| | - Haoran Feng
- Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinbiao Ma
- Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, China
| | - Sheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lulu Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Boping Tang
- Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, China
| | - Gang Wang
- Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, China
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Cheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Li Z, Kim M, da Silva Nascimento JR, Legeret B, Jorge GL, Bertrand M, Beisson F, Thelen JJ, Li‐Beisson Y. Knocking out the carboxyltransferase interactor 1 (CTI1) in Chlamydomonas boosted oil content by fivefold without affecting cell growth. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1230-1242. [PMID: 39887606 PMCID: PMC11933832 DOI: 10.1111/pbi.14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/03/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025]
Abstract
The first step in chloroplast de novo fatty acid synthesis is catalysed by acetyl-CoA carboxylase (ACCase). As the rate-limiting step for this pathway, ACCase is subject to both positive and negative regulation. In this study, we identify a Chlamydomonas homologue of the plant carboxyltransferase interactor 1 (CrCTI1) and show that this protein interacts with the Chlamydomonas α-carboxyltransferase (Crα-CT) subunit of the ACCase by yeast two-hybrid protein-protein interaction assay. Three independent CRISPR-Cas9 mediated knockout mutants for CrCTI1 each produced an 'enhanced oil' phenotype, accumulating 25% more total fatty acids and storing up to fivefold more triacylglycerols (TAGs) in lipid droplets. The TAG phenotype of the crcti1 mutants was not influenced by light but was affected by trophic growth conditions. By growing cells under heterotrophic conditions, we observed a crucial function of CrCTI1 in balancing lipid accumulation and cell growth. Mutating a previously mapped in vivo phosphorylation site (CrCTI1 Ser108 to either Ala or to Asp), did not affect the interaction with Crα-CT. However, mutating all six predicted phosphorylation sites within Crα-CT to create a phosphomimetic mutant reduced this pairwise interaction significantly. Comparative proteomic analyses of the crcti1 mutants and WT suggested a role for CrCTI1 in regulating carbon flux by coordinating carbon metabolism, antioxidant and fatty acid β-oxidation pathways, to enable cells to adapt to carbon availability. Taken together, this study identifies CrCTI1 as a negative regulator of fatty acid synthesis in algae and provides a new molecular brick for the genetic engineering of microalgae for biotechnology purposes.
Collapse
Affiliation(s)
- Zhongze Li
- Aix‐Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix‐Marseille, UMR 7265CEA CadaracheSaint‐Paul‐lez DuranceFrance
| | - Minjae Kim
- Aix‐Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix‐Marseille, UMR 7265CEA CadaracheSaint‐Paul‐lez DuranceFrance
- Library of Marine SamplesKorea Institute of Ocean Science & TechnologyGeojeRepublic of Korea
| | - Jose Roberto da Silva Nascimento
- Department of Biochemistry and Interdisciplinary Plant GroupChristopher S. Bond Life Sciences Center, University of MissouriColumbiaMissouriUSA
| | - Bertrand Legeret
- Aix‐Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix‐Marseille, UMR 7265CEA CadaracheSaint‐Paul‐lez DuranceFrance
| | - Gabriel Lemes Jorge
- Department of Biochemistry and Interdisciplinary Plant GroupChristopher S. Bond Life Sciences Center, University of MissouriColumbiaMissouriUSA
| | - Marie Bertrand
- Aix‐Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix‐Marseille, UMR 7265CEA CadaracheSaint‐Paul‐lez DuranceFrance
| | - Fred Beisson
- Aix‐Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix‐Marseille, UMR 7265CEA CadaracheSaint‐Paul‐lez DuranceFrance
| | - Jay J. Thelen
- Department of Biochemistry and Interdisciplinary Plant GroupChristopher S. Bond Life Sciences Center, University of MissouriColumbiaMissouriUSA
| | - Yonghua Li‐Beisson
- Aix‐Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix‐Marseille, UMR 7265CEA CadaracheSaint‐Paul‐lez DuranceFrance
| |
Collapse
|
5
|
Chen W, Sasse C, Köhler AM, Wang D, Popova B, Strohdiek A, Braus GH. Resolving the fungal velvet domain architecture by Aspergillus nidulans VelB. mBio 2025:e0026125. [PMID: 40162796 DOI: 10.1128/mbio.00261-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Velvet transcription factors are found throughout the fungal kingdom and share a common velvet domain with a fold similar to that of animal NF-κB. They act as homodimeric or heterodimeric master regulators of fungal secondary metabolism, development, and differentiation. A comparison of velvet domains from 4,999 fungal velvet proteins revealed a conserved overall architecture, including an N-terminal DNA-binding region of approximately 30 amino acids and a C-terminal dimerization region of about 100 amino acids. The dimerization region comprises α- and β-subunits separated by a linker region. A detailed analysis of the velvet domain in Aspergillus nidulans VelB identified glycine (glycine 240) and leucine (leucine 331) residues in the dimerization region as critical for interactions with velvet proteins. These core amino acid residues are conserved and also essential for the function of VeA or VosA, which corroborates their general importance in functional fungal velvet domains. Functional studies of VelB dimerization linkers suggest its tolerance for length shortening. These findings enhance our understanding of the working mechanisms of fungal velvet regulators.IMPORTANCEFungi, as relatives of animals within Opisthokonta, are closely connected to human life through interactions such as food, pathogenicity, and medicines. Similar to animals, fungi have developed NF-κB-like velvet family regulators to respond to various environmental and internal signals. Velvet regulators form homo- or heterodimers in implementing different functional roles. However, the molecular mechanism by which velvet proteins interact remains incompletely understood. In this study, we found a common architecture of fungal velvet domains and resolved the dimerization region using Aspergillus nidulans VelB as a paradigm. The growing understanding of the fungal velvet regulatory network may help to control fungi for pathogenic and industrial purposes and shed light on the general mechanisms shared with the animal NF-κB system in cellular responses to stimuli.
Collapse
Affiliation(s)
- Wanping Chen
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August University, Göttingen, Germany
| | - Christoph Sasse
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August University, Göttingen, Germany
| | - Anna M Köhler
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August University, Göttingen, Germany
| | - Dan Wang
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August University, Göttingen, Germany
| | - Blagovesta Popova
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August University, Göttingen, Germany
| | - Anja Strohdiek
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August University, Göttingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August University, Göttingen, Germany
| |
Collapse
|
6
|
Ahmad I, Sun X, Yu Y, Jia F, Li Y, Lv Q, Hu Y, Bao F, He Y. PpBOR1 is critical for the excess borate tolerance of Physcomitrium patens. PLANT CELL REPORTS 2025; 44:81. [PMID: 40121589 DOI: 10.1007/s00299-025-03473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
KEY MESSAGE Functional analysis of BORs in Physcomitrium patens indicates that both PpBOR1 and PpBOR2 possess boron efflux transporter activity, and PpBOR1 is essential for the plant's tolerance to excessive boron stress. Boron (B), an essential plant micronutrient, is crucial for achieving optimal agricultural yield. Although the function of the BOR family proteins as borate efflux transporters has been established in tracheophytes, the role of their counterparts in non-vascular plants has not been thoroughly investigated. Our phylogenetic analysis reveals that bryophyte BOR proteins originated from the basal bryophytes Takakia and Sphagnum, and can be classified into two subclasses. There are two BOR homologs in P. patens: PpBOR1 and PpBOR2, which belong to different subclades. The PpBOR1 and PpBOR2 genes are predominantly expressed in gametophores, with PpBOR1 exhibiting significantly higher expression levels than PpBOR2. Both proteins localize at the plasma membrane and can export borate from yeast cells. Disruption of PpBOR2 expression does not affect plant growth under normal conditions. However, PpBOR1-knockout gametophores exhibit stunted growth under excess boron conditions, whereas PpBOR1-overexpressing plants show enhanced tolerance compared to wild-type plants. In summary, our research suggests that BOR homologous proteins in P. patens have borate efflux activities similar to those of the BOR family members in angiosperms. PpBOR1 is critical in conferring tolerance to excessive boron stress in P. patens.
Collapse
Affiliation(s)
- Ishfaq Ahmad
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xuejia Sun
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yangyang Yu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Fangni Jia
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yizuo Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Qiang Lv
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yong Hu
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Fang Bao
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
7
|
Sun Y, Bock R, Li Z. A hidden intrinsic ability of bicistronic expression based on a novel translation reinitiation mechanism in yeast. Nucleic Acids Res 2025; 53:gkaf220. [PMID: 40156854 PMCID: PMC11952965 DOI: 10.1093/nar/gkaf220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Gene organization in operons and co-expression as polycistronic transcripts is characteristic of prokaryotes. With the evolution of the eukaryotic translation machinery, operon structure and expression of polycistrons were largely abandoned. Whether eukaryotes still possess the ability to express polycistrons, and how they functionally activate bacterial operons acquired by horizontal DNA transfer is unknown. Here, we demonstrate that a polycistron can be rapidly activated in yeast by induction of bicistronic expression under selection. We show that induced translation of the downstream cistron in a bicistronic transcript is based on a novel type of reinitiation mediated by the 80S ribosome and triggered by inefficient stop codon recognition, and that induced bicistronic expression is stable and independent of cis-elements. These results provide key insights into the epigenetic mechanism of the pathway of activation. We also developed a yeast strain that efficiently expresses bicistronic constructs, but does not carry any genomic DNA sequence change, and utilized this strain to synthesize a high-value metabolite from a bicistronic expression construct. Together, our results reveal the capacity of yeast to express bicistrons in a previously unrecognized pathway. While this capacity is normally hidden, it can be rapidly induced by selection to improve fitness.
Collapse
Affiliation(s)
- Yiwen Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Zhichao Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
8
|
Kadouch M, Gaspin P, Marchal C, Castano S, Cullin C. Enhancing Yeast Transformation: Achieving up to a Tenfold Increase Through a Single Adjustment in the Lithium Acetate-Polyethylene Glycol Method. Yeast 2025. [PMID: 40088047 DOI: 10.1002/yea.3999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
The Lithium-PEG method for transforming yeast cells is a standard procedure used in most yeast laboratories. After several optimizations, this method can yield up to 106 transformants per µg of plasmid. Some applications, such as library screening or complex transformations, necessitate maximizing transformation yield. Here, we demonstrate that the addition of a sorbitol solution serves as an osmo-protectant during and after heat shock, resulting in up to a tenfold increase in transformation efficiency. This optimization requires only one additional pipetting step compared to the original protocol, making it practical for routine use.
Collapse
Affiliation(s)
- Mathilde Kadouch
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, France
| | - Pierre Gaspin
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, France
| | | | - Sabine Castano
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, France
| | | |
Collapse
|
9
|
Guerriero CJ, Carattino MD, Sharp KG, Kantz LJ, Gresko NP, Caplan MJ, Brodsky JL. Identification of polycystin 2 missense mutants targeted for endoplasmic reticulum-associated degradation. Am J Physiol Cell Physiol 2025; 328:C483-C499. [PMID: 39714991 DOI: 10.1152/ajpcell.00776.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder leading to end-stage renal disease. ADPKD arises from mutations in the PKD1 and PKD2 genes, which encode polycystin 1 (PC1) and polycystin 2 (PC2), respectively. PC2 is a nonselective cation channel, and disease-linked mutations disrupt normal cellular processes, including signaling and fluid secretion. In this study, we investigate whether disease-causing missense mutations compromise PC2 folding, an event that can lead to endoplasmic reticulum-associated degradation (ERAD). To this end, we first developed a new yeast PC2 expression system. We show that the yeast system provides a tractable model to investigate PC2 biogenesis and that a disease-associated PC2 mutant, D511V, exhibits increased polyubiquitination and accelerated proteasome-dependent degradation compared with wild-type PC2. In contrast to wild-type PC2, the PC2 D511V variant also failed to improve the growth of yeast strains that lack endogenous potassium transporters, highlighting a loss of channel function at the cell surface and a new assay for loss-of-function PKD2 variants. In HEK293 cells, both D511V along with another disease-associated mutant, R322Q, were targeted for ERAD. Consistent with defects in protein folding, the surface localization of these PC2 variants was increased by incubation at low-temperature in HEK293 cells, underscoring the potential to pharmacologically rescue these and perhaps other misfolded PC2 alleles. Together, our study supports the hypothesis that select PC2 missense variants are degraded by ERAD, the potential for screening PKD2 alleles in a new genetic system, and the possibility that chemical chaperone-based therapeutic interventions might be used to treat ADPKD.NEW & NOTEWORTHY This study indicates that select missense mutations in PC2, a protein that when mutated leads to ADPKD, result in protein misfolding and degradation via the ERAD pathway. Our work leveraged a new yeast model and an HEK293 cell model to discover the mechanism underlying PC2 instability and demonstrates the potential for pharmacological rescue. We also suggest that targeting the protein misfolding phenotype with chemical chaperones may offer new therapeutic strategies to manage ADPKD-related protein dysfunction.
Collapse
Affiliation(s)
- Christopher J Guerriero
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Marcelo D Carattino
- Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Katherine G Sharp
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Luke J Kantz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Nikolay P Gresko
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
10
|
Shoji T, Tanaka Y, Nakashima Y, Mizohata E, Komaki M, Sugawara S, Takaya J, Yonekura-Sakakibara K, Morita H, Saito K, Hirai T. Enhanced Production of Rebaudioside D and Rebaudioside M through V155T Substitution in the Glycosyltransferase UGT91D2 from Stevia rebaudiana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2019-2032. [PMID: 39783863 PMCID: PMC11760145 DOI: 10.1021/acs.jafc.4c09392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025]
Abstract
Steviol glycosides (SGs) are noncaloric natural sweeteners found in the leaves of stevia (Stevia rebaudiana). These diterpene glycosides are biosynthesized by attaching varying numbers of monosaccharides, primarily glucose, to steviol aglycone. Rebaudioside (Reb) D and Reb M are highly glucosylated SGs that are valued for their superior sweetness and organoleptic properties, yet they are present in limited quantities in stevia leaves. This study aims to improve the substrate preference and catalytic efficiency of UDP-sugar-dependent glycosyltransferase UGT91D2 from stevia, which acts as a bottleneck in the biosynthesis of Reb D and Reb M. We modeled the structure of UGT91D2 and substituted two amino acid residues, Y134 and V155, which are located near the glycosyl acceptor and donor, respectively. Expression of the UGT91D2V155T in budding yeast significantly enhanced the production of Reb D and Reb M. Furthermore, transient expression in Nicotiana benthamiana revealed that the V155T substitution improved the glucosylation activity of UGT91D2, suggesting that this substitution enhances UDP-glucose binding and reduces side reactions involving nonglucose donors. By coexpressing multiple stevia UGT genes in N. benthamiana, we successfully produced highly glucosylated SGs from steviol. Our results provide insights into the substrate specificity of UGT91D2 and contribute to the engineering of SG biosynthesis.
Collapse
Affiliation(s)
- Tsubasa Shoji
- Institute
of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
- RIKEN
Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshikazu Tanaka
- Research
Institute, Suntory Global Innovation Center Ltd., 8-1-1 Seikadai, Seika-cho, Sorakugun, Kyoto 618-8504, Japan
| | - Yu Nakashima
- Institute
of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Eiichi Mizohata
- Graduate
School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Maki Komaki
- Research
Institute, Suntory Global Innovation Center Ltd., 8-1-1 Seikadai, Seika-cho, Sorakugun, Kyoto 618-8504, Japan
| | - Satoko Sugawara
- RIKEN
Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Junichiro Takaya
- Research
Institute, Suntory Global Innovation Center Ltd., 8-1-1 Seikadai, Seika-cho, Sorakugun, Kyoto 618-8504, Japan
| | - Keiko Yonekura-Sakakibara
- RIKEN
Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroyuki Morita
- Institute
of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Kazuki Saito
- RIKEN
Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tadayoshi Hirai
- Research
Institute, Suntory Global Innovation Center Ltd., Kyoto 618-8504, Japan
| |
Collapse
|
11
|
So KK, Alvarado FAH, Han GH, Kim JW, Kim TG, Kim DH. Heterologous Expression of Laccase1 from Cryphonectria parasitica in Saccharomyces cerevisiae. MYCOBIOLOGY 2025; 53:36-46. [PMID: 39895930 PMCID: PMC11780702 DOI: 10.1080/12298093.2024.2439646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 02/04/2025]
Abstract
Laccases are enzymes capable of oxidizing phenolic compounds and are important tools in different industrial processes. Heterologous expression of laccases is of great interest in biotechnological applications but achieving high expression levels is challenging. Three different laccases have been identified in the chestnut blight fungus Cryphonectria parasitica, among which a tannic acid-inducible laccase (laccase3) was successfully expressed using Saccharomyces cerevisiae. To obtain high and stable expression of fungal laccases, we cloned the gene encoding an extracellular laccase (Laccase1) of C. parasitica into a yeast episomal vector, used the resulting vectors to transform S. cerevisiae, and optimized the culture conditions of the selected transformants for Laccase1 production. We also tested the significance of the signal peptide of Laccase1 in the secretion of expressed Laccase1 and compared it with the widely used rice amylase signal peptide. Among the four constructs tested using a yeast episomal vector, full-length Laccase1 containing an endogenous signal peptide, showed the highest laccase activity. Interestingly, the stability of the recombinant vector expressing laccase was lower than that of the mock transformant, suggesting a detrimental effect of the Laccase1-expressing vector on host cells. Thus, we optimized the culture conditions to produce Laccase1 and the resulting optimum culture conditions identified through one-factor-at-a -time (OFAT) were 2% sucrose; 3% yeast nitrogen base without amino acid; pH 5.0; and 30 °C. The laccase activity was found to be 2.2 U/mL in optimal culture conditions, resulting in a 6.5-fold increase compared to the conventional culture medium.
Collapse
Affiliation(s)
- Kum-Kang So
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
| | | | - Gui-Hwan Han
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup, Republic of Korea
| | - Jeong-Won Kim
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup, Republic of Korea
| | - Tae-Geum Kim
- Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup, Republic of Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, Jeonbuk National University, Jeonju, Republic of Korea
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup, Republic of Korea
- Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup, Republic of Korea
| |
Collapse
|
12
|
Fernández-Golbano IM, García P, Rebollo E, Geli MI, Encinar Del Dedo J. Use of the D4H Probe to Track Sterols in Yeast. Methods Mol Biol 2025; 2888:35-52. [PMID: 39699723 DOI: 10.1007/978-1-0716-4318-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Cholesterol is a fundamental component of cellular membranes, and its organization, distribution, and recycling are tightly regulated. Cholesterol can form, together with other lipids and proteins, membrane nanodomains, which play important roles in membrane trafficking, the spatiotemporal organization of signal transduction, or the modulation of plasma membrane transporters, among others. Not surprisingly then, the misregulation of cholesterol biosynthetic and transport pathways has been related to numerous diseases, including neurodegenerative and metabolic disorders. Here, we focus on the cholesterol-binding domain 4 (D4) of perfringolysin O (PFO, theta toxin) and its use as a probe to define the dynamics and subcellular localization of yeast sterols using time-lapse live-cell fluorescence microscopy. In combination with drugs that acutely interfere with sterol synthesis, such as terbinafine, the probe can also be used to monitor in real-time the extraction of sterols from specialized endoplasmic reticulum subdomains named ERSES (endoplasmic reticulum sterol exit sites) by the OSBP-related protein Osh2.
Collapse
Affiliation(s)
| | - Patricia García
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain
| | - Elena Rebollo
- Institute for Molecular Biology of Barcelona, CSIC, Barcelona, Spain
| | - María Isabel Geli
- Institute for Molecular Biology of Barcelona, CSIC, Barcelona, Spain.
| | - Javier Encinar Del Dedo
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
13
|
Cooper DG, Liu S, Grunkemeyer E, Fassler JS. The Role of Med15 Sequence Features in Transcription Factor Interactions. Mol Cell Biol 2024; 45:59-78. [PMID: 39717019 DOI: 10.1080/10985549.2024.2436672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Med15 is a general transcriptional regulator and tail module subunit within the RNA Pol II mediator complex. The Saccharomyces cerevisiae Med15 protein has a well-structured N-terminal KIX domain, three activator binding domains (ABDs) and several naturally variable polyglutamine (poly-Q) tracts (Q1, Q2, Q3) embedded in an intrinsically disordered central region, and a C-terminal mediator association domain (MAD). We investigated how the presence of ABDs and changes in length and composition of poly-Q tracts influences Med15 activity using phenotypic, gene expression, transcription factor interaction and phase separation assays of truncation, deletion, and synthetic alleles. We found that individual Med15 activities were influenced by the number of activator binding domains (ABDs) and adjacent polyglutamine tract composition. Robust Med15 activity required at least the Q1 tract and the length of that tract modulated activity in a context-dependent manner. Reduced Msn2-dependent transcriptional activation due to Med15 Q1 tract variation correlated with reduced Msn2:Med15 interaction strength, but interaction strength did not always mirror phase separation propensity. We also observed that distant glutamine tracts and Med15 phosphorylation affected the activities of the KIX domain, and interaction studies revealed that intramolecular interactions may affect some Med15-transcription factor interactions.
Collapse
Affiliation(s)
- David G Cooper
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, Indiana, USA
| | - Shulin Liu
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| | | | - Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
14
|
Jog R, Han GS, Carman GM. The CTR hydrophobic residues of Nem1 catalytic subunit are required to form a protein phosphatase complex with Spo7 to activate yeast Pah1 PA phosphatase. J Biol Chem 2024; 300:108003. [PMID: 39551141 DOI: 10.1016/j.jbc.2024.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024] Open
Abstract
The Nem1-Spo7 phosphatase complex plays a key role in lipid metabolism as an activator of Pah1 phosphatidate phosphatase, which produces diacylglycerol for the synthesis of triacylglycerol and membrane phospholipids. For dephosphorylation of Pah1, the Nem1 catalytic subunit requires Spo7 for the recruitment of the protein substrate and interacts with the regulatory subunit through its conserved region (residues 251-446). In this work, we found that the Nem1 C-terminal region (CTR) (residues 414-436), which flanks the haloacid dehalogenase-like catalytic domain (residues 251-413), contains the conserved hydrophobic residues (L414, L415, L417, L418, L421, V430, L434, and L436) that are necessary for the complex formation with Spo7. AlphaFold predicts that some CTR residues of Nem1 interact with Spo7 conserved regions, whereas some residues interact with the haloacid dehalogenase-like domain. By site-directed mutagenesis, Nem1 variants were constructed to lack (Δ(414-446)) or substitute alanines (8A) and arginines (8R) for the hydrophobic residues. When co-expressed with Spo7, the CTR variants of Nem1 did not form a complex with Spo7. In addition, the Nem1 variants were incapable of catalyzing the dephosphorylation of Pah1 in the presence of Spo7. Moreover, the Nem1 variants expressed in nem1Δ cells did not complement the phenotypes characteristic of a defect in the Nem1-Spo7/Pah1 phosphatase cascade function (e.g., lipid synthesis, lipid droplet formation, and phospholipid biosynthetic gene expression). These findings support that Nem1 interacts with Spo7 through its CTR hydrophobic residues to form a phosphatase complex for catalytic activity and physiological functions.
Collapse
Affiliation(s)
- Ruta Jog
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
15
|
Pereira de Castro KL, Abril JM, Liao KC, Hao H, Donohue JP, Russell WK, Fagg WS. An ancient competition for the conserved branchpoint sequence influences physiological and evolutionary outcomes in splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617384. [PMID: 39416098 PMCID: PMC11483029 DOI: 10.1101/2024.10.09.617384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Recognition of the intron branchpoint during spliceosome assembly is a multistep process that defines both mRNA structure and amount. A branchpoint sequence motif UACUAAC is variably conserved in eukaryotic genomes, but in some organisms more than one protein can recognize it. Here we show that SF1 and Quaking (QKI) compete for a subset of intron branchpoints with the sequence ACUAA. SF1 activates exon inclusion through this sequence, but QKI represses the inclusion of alternatively spliced exons with this intron branchpoint sequence. Using mutant reporters derived from a natural intron with two branchpoint-like sequences, we find that when either branchpoint sequence is mutated, the other is used as a branchpoint, but when both are present, neither is used due to high affinity binding and strong splicing repression by QKI. QKI occupancy at the dual branchpoint site directly prevents SF1 binding and subsequent recruitment of spliceosome-associated factors. Finally, the ectopic expression of QKI in budding yeast (which lacks QKI) is lethal, due at least in part to widespread splicing repression. In conclusion, QKI can function as a splicing repressor by directly competing with SF1/BBP for a subset of branchpoint sequences that closely mirror its high affinity binding site. This suggests that QKI and degenerate branchpoint sequences may have co-evolved as a means through which specific gene expression patterns could be maintained in QKI-expressing or non-expressing cells in metazoans, plants, and animals.
Collapse
Affiliation(s)
| | - Jose M. Abril
- Transplant Division, Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Kuo-Chieh Liao
- RNA Genomics and Structure, Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR) Singapore
| | - Haiping Hao
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - John Paul Donohue
- Sinsheimer Labs, RNA Center for Molecular Biology, Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - W. Samuel Fagg
- Transplant Division, Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
16
|
Wirshing AC, Petrucco CA, Lew DJ. Chemical transformation of the multibudding yeast, Aureobasidium pullulans. J Cell Biol 2024; 223:e202402114. [PMID: 38935076 PMCID: PMC11211067 DOI: 10.1083/jcb.202402114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Aureobasidium pullulans is a ubiquitous polymorphic black yeast with industrial and agricultural applications. It has recently gained attention amongst cell biologists for its unconventional mode of proliferation in which multinucleate yeast cells make multiple buds within a single cell cycle. Here, we combine a chemical transformation method with genome-targeted homologous recombination to yield ∼60 transformants/μg of DNA in just 3 days. This protocol is simple, inexpensive, and requires no specialized equipment. We also describe vectors with codon-optimized green and red fluorescent proteins for A. pullulans and use these tools to explore novel cell biology. Quantitative imaging of a strain expressing cytosolic and nuclear markers showed that although the nuclear number varies considerably among cells of similar volume, total nuclear volume scales with cell volume over an impressive 70-fold size range. The protocols and tools described here expand the toolkit for A. pullulans biologists and will help researchers address the many other puzzles posed by this polyextremotolerant and morphologically plastic organism.
Collapse
Affiliation(s)
- Alison C.E. Wirshing
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Claudia A. Petrucco
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Daniel J. Lew
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
17
|
Tong D, Wu F, Chen X, Du Z, Zhou J, Zhang J, Yang Y, Du A, Ma G. The mrp-3 gene is involved in haem efflux and detoxification in a blood-feeding nematode. BMC Biol 2024; 22:199. [PMID: 39256727 PMCID: PMC11389519 DOI: 10.1186/s12915-024-02001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Haem is essential but toxic for metazoan organisms. Auxotrophic nematodes can acquire sufficient haem from the environment or their hosts in the meanwhile eliminate or detoxify excessive haem through tightly controlled machinery. In previous work, we reported a role of the unique transporter protein HRG-1 in the haem acquisition and homeostasis of parasitic nematodes. However, little is known about the haem efflux and detoxification via ABC transporters, particularly the multiple drug resistance proteins (MRPs). RESULTS Here, we further elucidate that a member of the mrp family (mrp-3) is involved in haem efflux and detoxification in a blood-feeding model gastrointestinal parasite, Haemonchus contortus. This gene is haem-responsive and dominantly expressed in the intestine and inner membrane of the hypodermis of this parasite. RNA interference of mrp-3 resulted in a disturbance of genes (e.g. hrg-1, hrg-2 and gst-1) that are known to be involved in haem homeostasis and an increased formation of haemozoin in the treated larvae and lethality in vitro, particularly when exposed to exogenous haem. Notably, the nuclear hormone receptor NHR-14 appears to be associated the regulation of mrp-3 expression for haem homeostasis and detoxification. Gene knockdown of nhr-14 and/or mrp-3 increases the sensitivity of treated larvae to exogenous haem and consequently a high death rate (> 80%). CONCLUSIONS These findings demonstrate that MRP-3 and the associated molecules are essential for haematophagous nematodes, suggesting novel intervention targets for these pathogens in humans and animals.
Collapse
Affiliation(s)
- Danni Tong
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Fei Wu
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhendong Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingru Zhou
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Jingju Zhang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Aifang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
18
|
Deo A, Ghosh R, Ahire S, Marathe S, Majumdar A, Bose T. Two novel DnaJ chaperone proteins CG5001 and P58IPK regulate the pathogenicity of Huntington's disease related aggregates. Sci Rep 2024; 14:20867. [PMID: 39242711 PMCID: PMC11379882 DOI: 10.1038/s41598-024-71065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Huntington's disease (HD) is a rare neurodegenerative disease caused due to aggregation of Huntingtin (HTT) protein. This study involves the cloning of 40 DnaJ chaperones from Drosophila, and overexpressing them in yeasts and fly models of HD. Accordingly, DnaJ chaperones were catalogued as enhancers or suppressors based on their growth phenotypes and aggregation properties. 2 of the chaperones that came up as targets were CG5001 and P58IPK. Protein aggregation and slow growth phenotype was rescued in yeasts, S2 cells, and Drosophila transgenic lines of HTT103Q with these overexpressed chaperones. Since DnaJ chaperones have protein sequence similarity across species, they can be used as possible tools to combat the effects of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ankita Deo
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Rishita Ghosh
- Indian Institute of Science and Educational Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Snehal Ahire
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Sayali Marathe
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Amitabha Majumdar
- National Centre for Cell Sciences, Inside Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411007, India.
| | - Tania Bose
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
19
|
Du Y, Ma C, Moore SA, Xiao W. Zinc finger 4 negatively controls the transcriptional activator Fzf1 in Saccharomyces cerevisiae. MLIFE 2024; 3:391-402. [PMID: 39359679 PMCID: PMC11442136 DOI: 10.1002/mlf2.12141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 10/04/2024]
Abstract
Fzf1 is a Saccharomyces cerevisiae transcription factor containing five zinc fingers (ZFs). It regulates the expression of at least five downstream genes, including SSU1, YHB1, DDI2/3, and YNR064c, by recognizing a consensus sequence, CS2, found in these gene promoters. These gene products are involved in cellular responses to various chemical stresses. For example, SSU1 encodes a sodium sulfite efflux protein that confers sulfite resistance. However, the underlying molecular mechanism through which Fzf1 responds to chemical stress and coordinates target gene activation remains elusive. Interestingly, several mutations in the fourth ZF (ZF4) of Fzf1 have previously been reported to confer either sulfite resistance or elevated basal-level expression of YHB1, indicating that ZF4 negatively impacts Fzf1 activity. Since ZF4 is dispensable for CS2 binding in vitro, we hypothesized that ZF4 is a negative regulator of Fzf1 and that chemically induced Fzf1-regulated gene expression occurs via de-repression. All five genes examined were cross-induced by corresponding chemicals in an Fzf1-dependent manner, and all three ZF4 mutations and a ZF4 deletion conferred increased basal-level expression and SSU1-dependent sulfite resistance. A ZF4 deletion did not alter the target DNA binding, consistent with the observed codominant phenotype. These observations collectively reveal that Fzf1 remains inactive by default at the target promoters and that its activation is at least partially achieved by self-derepression through chemical modification and/or a conformational change.
Collapse
Affiliation(s)
- Ying Du
- Department of Biochemistry, Microbiology and Immunology University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Chaoqun Ma
- Department of Biochemistry, Microbiology and Immunology University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Stanley A Moore
- Department of Biochemistry, Microbiology and Immunology University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Wei Xiao
- Department of Biochemistry, Microbiology and Immunology University of Saskatchewan Saskatoon Saskatchewan Canada
| |
Collapse
|
20
|
Nguyen NH, Sheng S, Banerjee A, Guerriero CJ, Chen J, Wang X, Mackie TD, Welling PA, Kleyman TR, Bahar I, Carlson AE, Brodsky JL. Characterization of hyperactive mutations in the renal potassium channel ROMK uncovers unique effects on channel biogenesis and ion conductance. Mol Biol Cell 2024; 35:ar119. [PMID: 39024255 PMCID: PMC11449386 DOI: 10.1091/mbc.e23-12-0494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Hypertension affects one billion people worldwide and is the most common risk factor for cardiovascular disease, yet a comprehensive picture of its underlying genetic factors is incomplete. Amongst regulators of blood pressure is the renal outer medullary potassium (ROMK) channel. While select ROMK mutants are prone to premature degradation and lead to disease, heterozygous carriers of some of these same alleles are protected from hypertension. Therefore, we hypothesized that gain-of-function (GoF) ROMK variants which increase potassium flux may predispose people to hypertension. To begin to test this hypothesis, we employed genetic screens and a candidate-based approach to identify six GoF variants in yeast. Subsequent functional assays in higher cells revealed two variant classes. The first group exhibited greater stability in the endoplasmic reticulum, enhanced channel assembly, and/or increased protein at the cell surface. The second group of variants resided in the PIP2-binding pocket, and computational modeling coupled with patch-clamp studies demonstrated lower free energy for channel opening and slowed current rundown, consistent with an acquired PIP2-activated state. Together, these findings advance our understanding of ROMK structure-function, suggest the existence of hyperactive ROMK alleles in humans, and establish a system to facilitate the development of ROMK-targeted antihypertensives.
Collapse
Affiliation(s)
- Nga H. Nguyen
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| | - Shaohu Sheng
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Anupam Banerjee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA 15260
| | | | - Jingxin Chen
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Xueqi Wang
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Timothy D. Mackie
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| | - Paul A. Welling
- Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA 15260
| | - Anne E. Carlson
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| |
Collapse
|
21
|
Ramos M, Martín-García R, Curto MÁ, Gómez-Delgado L, Moreno MB, Sato M, Portales E, Osumi M, Rincón SA, Pérez P, Ribas JC, Cortés JC. Fission yeast Bgs1 glucan synthase participates in the control of growth polarity and membrane traffic. iScience 2024; 27:110477. [PMID: 39156640 PMCID: PMC11326927 DOI: 10.1016/j.isci.2024.110477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 07/05/2024] [Indexed: 08/20/2024] Open
Abstract
Rod-shaped fission yeast grows through cell wall expansion at poles and septum, synthesized by essential glucan synthases. Bgs1 synthesizes the linear β(1,3)glucan of primary septum at cytokinesis. Linear β(1,3)glucan is also present in the wall poles, suggesting additional Bgs1 roles in growth polarity. Our study reveals an essential collaboration between Bgs1 and Tea1-Tea4, but not other polarity factors, in controlling growth polarity. Simultaneous absence of Bgs1 function and Tea1-Tea4 causes complete loss of growth polarity, spread of other glucan synthases, and spherical cell formation, indicating this defect is specifically due to linear β(1,3)glucan absence. Furthermore, linear β(1,3)glucan absence induces actin patches delocalization and sterols spread, which are ultimately responsible for the growth polarity loss without Tea1-Tea4. This suggests strong similarities in Bgs1 functions controlling actin structures during cytokinesis and polarized growth. Collectively, our findings unveil that cell wall β(1,3)glucan regulates polarized growth, like the equivalent extracellular matrix in neuronal cells.
Collapse
Affiliation(s)
- Mariona Ramos
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - M. Ángeles Curto
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Laura Gómez-Delgado
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - M. Belén Moreno
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Mamiko Sato
- Laboratory of Electron Microscopy and Bio-imaging Center, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, Japan
| | - Elvira Portales
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Masako Osumi
- Laboratory of Electron Microscopy and Bio-imaging Center, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, Japan
- Integrated Imaging Research Support (IIRS), Villa Royal Hirakawa 103, 1-7-5 Hirakawa-cho, Chiyoda-ku, Tokyo, Japan
| | - Sergio A. Rincón
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Juan C. Ribas
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Juan C.G. Cortés
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
22
|
Protacio RU, Dixon S, Davidson MK, Wahls WP. Creating Meiotic Recombination-Regulating DNA Sites by SpEDIT in Fission Yeast Reveals Inefficiencies, Target-Site Duplications, and Ectopic Insertions. Biomolecules 2024; 14:1016. [PMID: 39199403 PMCID: PMC11352267 DOI: 10.3390/biom14081016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Recombination hotspot-activating DNA sites (e.g., M26, CCAAT, Oligo-C) and their binding proteins (e.g., Atf1-Pcr1 heterodimer; Php2-Php3-Php5 complex, Rst2, Prdm9) regulate the distribution of Spo11 (Rec12)-initiated meiotic recombination. We sought to create 14 different candidate regulatory DNA sites via bp substitutions in the ade6 gene of Schizosaccharomyces pombe. We used a fission yeast-optimized CRISPR-Cas9 system (SpEDIT) and 196 bp-long dsDNA templates with centrally located bp substitutions designed to ablate the genomic PAM site, create specific 15 bp-long DNA sequences, and introduce a stop codon. After co-transformation with a plasmid that encoded both the guide RNA and Cas9 enzyme, about one-third of colonies had a phenotype diagnostic for DNA sequence changes at ade6. PCR diagnostics and DNA sequencing revealed a diverse collection of alterations at the target locus, including: (A) complete or (B) partial template-directed substitutions; (C) non-homologous end joinings; (D) duplications; (E) bp mutations, and (F) insertions of ectopic DNA. We concluded that SpEDIT can be used successfully to generate a diverse collection of DNA sequence elements within a reporter gene of interest. However, its utility is complicated by low efficiency, incomplete template-directed repair events, and undesired alterations to the target locus.
Collapse
Affiliation(s)
| | | | | | - Wayne P. Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA; (R.U.P.); (M.K.D.)
| |
Collapse
|
23
|
Khondker S, Han GS, Carman GM. Protein kinase Hsl1 phosphorylates Pah1 to inhibit phosphatidate phosphatase activity and regulate lipid synthesis in Saccharomyces cerevisiae. J Biol Chem 2024; 300:107572. [PMID: 39009344 PMCID: PMC11342776 DOI: 10.1016/j.jbc.2024.107572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024] Open
Abstract
In Saccharomyces cerevisiae, Pah1 phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, plays a key role in utilizing PA for the synthesis of the neutral lipid triacylglycerol and thereby controlling the PA-derived membrane phospholipids. The enzyme function is controlled by its subcellular location as regulated by phosphorylation and dephosphorylation. Pah1 is initially inactivated in the cytosol through phosphorylation by multiple protein kinases and then activated via its recruitment and dephosphorylation by the protein phosphatase Nem1-Spo7 at the nuclear/endoplasmic reticulum membrane where the PA phosphatase reaction occurs. Many of the protein kinases that phosphorylate Pah1 have yet to be characterized with the identification of the target residues. Here, we established Pah1 as a bona fide substrate of septin-associated Hsl1, a protein kinase involved in mitotic morphogenesis checkpoint signaling. The Hsl1 activity on Pah1 was dependent on reaction time and the amounts of protein kinase, Pah1, and ATP. The Hsl1 phosphorylation of Pah1 occurred on Ser-748 and Ser-773, and the phosphorylated protein exhibited a 5-fold reduction in PA phosphatase catalytic efficiency. Analysis of cells expressing the S748A and S773A mutant forms of Pah1 indicated that Hsl1-mediated phosphorylation of Pah1 promotes membrane phospholipid synthesis at the expense of triacylglycerol, and ensures the dependence of Pah1 function on the Nem1-Spo7 protein phosphatase. This work advances the understanding of how Hsl1 facilitates membrane phospholipid synthesis through the phosphorylation-mediated regulation of Pah1.
Collapse
Affiliation(s)
- Shoily Khondker
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
24
|
Kumawat R, Tomar RS. Dissecting the role of mitogen-activated protein kinase Hog1 in yeast flocculation. FEBS J 2024; 291:3080-3103. [PMID: 38648231 DOI: 10.1111/febs.17137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/25/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Living organisms are frequently exposed to multiple biotic and abiotic stress forms during their lifetime. Organisms cope with stress conditions by regulating their gene expression programs. In response to different environmental stress conditions, yeast cells activate different tolerance mechanisms, many of which share common signaling pathways. Flocculation is one of the key mechanisms underlying yeast survival under unfavorable environmental conditions, and the Tup1-Cyc8 corepressor complex is a major regulator of this process. Additionally, yeast cells can utilize different mitogen-activated protein kinase (MAPK) pathways to modulate gene expression during stress conditions. Here, we show that the high osmolarity glycerol (HOG) MAPK pathway is involved in the regulation of yeast flocculation. We observed that the HOG MAPK pathway was constitutively activated in flocculating cells, and found that the interaction between phosphorylated Hog1 and the FLO genes promoter region increased significantly upon sodium chloride exposure. We found that treatment of cells with cantharidin decreased Hog1 phosphorylation, causing a sharp reduction in the expression of FLO genes and the flocculation phenotype. Similarly, deletion of HOG1 in yeast cells reduced flocculation. Altogether, our results suggest a role for HOG MAPK signaling in the regulation of FLO genes and yeast flocculation.
Collapse
Affiliation(s)
- Ramesh Kumawat
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| |
Collapse
|
25
|
Goh AR, Kim YN, Oh JH, Choi SK. A Novel Inhibitor of Translation Initiation Factor eIF5B in Saccharomyces cerevisiae. J Microbiol Biotechnol 2024; 34:1348-1355. [PMID: 38755008 PMCID: PMC11239407 DOI: 10.4014/jmb.2404.04015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
The eukaryotic translation initiation factor eIF5B is a bacterial IF2 ortholog that plays an important role in ribosome joining and stabilization of the initiator tRNA on the AUG start codon during the initiation of translation. We identified the fluorophenyl oxazole derivative 2,2-dibromo-1-(2-(4-fluorophenyl)benzo[d]oxazol-5-yl)ethanone quinolinol as an inhibitor of fungal protein synthesis using an in vitro translation assay in a fungal system. Mutants resistant to this compound were isolated in Saccharomyces cerevisiae and were demonstrated to contain amino acid substitutions in eIF5B that conferred the resistance. These results suggest that eIF5B is a target of potential antifungal compound and that mutation of eIF5B can confer resistance. Subsequent identification of 16 other mutants revealed that primary mutations clustered mainly on domain 2 of eIF5B and secondarily mainly on domain 4. Domain 2 has been implicated in the interaction with the small ribosomal subunit during initiation of translation. The tested translation inhibitor could act by weakening the functional contact between eIF5B and the ribosome complex. This data provides the basis for the development of a new family of antifungals.
Collapse
Affiliation(s)
- Ah-Ra Goh
- Department of Biomedical Sciences, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Yi-Na Kim
- Department of Biomedical Sciences, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Jae Hyeun Oh
- Department of Biomedical Sciences, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Sang Ki Choi
- Department of Biomedical Sciences, Sunchon National University, Sunchon 57922, Republic of Korea
| |
Collapse
|
26
|
Miyaji S, Ito T, Kitaiwa T, Nishizono K, Agake SI, Harata H, Aoyama H, Umahashi M, Sato M, Inaba J, Fushinobu S, Yokoyama T, Maruyama-Nakashita A, Hirai MY, Ohkama-Ohtsu N. N 2-Acetylornithine deacetylase functions as a Cys-Gly dipeptidase in the cytosolic glutathione degradation pathway in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1603-1618. [PMID: 38441834 DOI: 10.1111/tpj.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 05/31/2024]
Abstract
Glutathione (GSH) is required for various physiological processes in plants, including redox regulation and detoxification of harmful compounds. GSH also functions as a repository for assimilated sulfur and is actively catabolized in plants. In Arabidopsis, GSH is mainly degraded initially by cytosolic enzymes, γ-glutamyl cyclotransferase, and γ-glutamyl peptidase, which release cysteinylglycine (Cys-Gly). However, the subsequent enzyme responsible for catabolizing this dipeptide has not been identified to date. In the present study, we identified At4g17830 as a Cys-Gly dipeptidase, namely cysteinylglycine peptidase 1 (CGP1). CGP1 complemented the phenotype of the yeast mutant that cannot degrade Cys-Gly. The Arabidopsis cgp1 mutant had lower Cys-Gly degradation activity than the wild type and showed perturbed concentrations of thiol compounds. Recombinant CGP1 showed reasonable Cys-Gly degradation activity in vitro. Metabolomic analysis revealed that cgp1 exhibited signs of severe sulfur deficiency, such as elevated accumulation of O-acetylserine (OAS) and the decrease in sulfur-containing metabolites. Morphological changes observed in cgp1, including longer primary roots of germinating seeds, were also likely associated with sulfur starvation. Notably, At4g17830 has previously been reported to encode an N2-acetylornithine deacetylase (NAOD) that functions in the ornithine biosynthesis. The cgp1 mutant did not show a decrease in ornithine content, whereas the analysis of CGP1 structure did not rule out the possibility that CGP1 has Cys-Gly dipeptidase and NAOD activities. Therefore, we propose that CGP1 is a Cys-Gly dipeptidase that functions in the cytosolic GSH degradation pathway and may play dual roles in GSH and ornithine metabolism.
Collapse
Affiliation(s)
- Shunsuke Miyaji
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Takehiro Ito
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Taisuke Kitaiwa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Kosuke Nishizono
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Shin-Ichiro Agake
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Hiroki Harata
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Haruna Aoyama
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Minori Umahashi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Muneo Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Jun Inaba
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Tadashi Yokoyama
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, 960-1296, Japan
| | - Akiko Maruyama-Nakashita
- Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
27
|
Gwon Y, So KK, Chun J, Kim DH. Metabolic engineering of Saccharomyces cerevisiae for the biosynthesis of a fungal pigment from the phytopathogenic fungus Cladosporium phlei. J Biol Eng 2024; 18:33. [PMID: 38741106 DOI: 10.1186/s13036-024-00429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Cladosporium phlei is a phytopathogenic fungus that produces a pigment called phleichrome. This fungal perylenequinone plays an important role in the production of a photosensitizer that is a necessary component of photodynamic therapy. We applied synthetic biology to produce phleichrome using Saccharomyces cerevisiae. RESULTS The gene Cppks1, which encodes a non-reducing polyketide synthase (NR-PKS) responsible for the biosynthesis of phleichrome in C. phlei, was cloned into a yeast episomal vector and used to transform S. cerevisiae. In addition, a gene encoding a phosphopantetheinyl transferase (PPTase) of Aspergillus nidulans was cloned into a yeast integrative vector and also introduced into S. cerevisiae for the enzymatic activation of the protein product of Cppks1. Co-transformed yeasts were screened on a leucine/uracil-deficient selective medium and the presence of both integrative as well as episomal recombinant plasmids in the yeast were confirmed by colony PCR. The episomal vector for Cppks1 expression was so dramatically unstable during cultivation that most cells lost their episomal vector rapidly in nonselective media. This loss was also observed to a less degree in selective media. This data strongly suggests that the presence of the Cppks1 gene exerts a significant detrimental effect on the growth of transformed yeast cells and that selection pressure is required to maintain the Cppks1-expressing vector. The co-transformants on the selective medium showed the distinctive changes in pigmentation after a period of prolonged cultivation at 20 °C and 25 °C, but not at 30 °C. Furthermore, thin layer chromatography (TLC) revealed the presence of a spot corresponding with the purified phleichrome in the extract from the cells of the co-transformants. Liquid chromatography (LC/MS/MS) verified that the newly expressed pigment was indeed phleichrome. CONCLUSION Our results indicate that metabolic engineering by multiple gene expression is possible and capable of producing fungal pigment phleichrome in S. cerevisiae. This result adds to our understanding of the characteristics of fungal PKS genes, which exhibit complex structures and diverse biological activities.
Collapse
Affiliation(s)
- Yeji Gwon
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Kum-Kang So
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Department of Molecular Biology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jeesun Chun
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Department of Molecular Biology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dae-Hyuk Kim
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Department of Molecular Biology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
28
|
Moradi A, Lung SC, Chye ML. Interaction of Soybean ( Glycine max (L.) Merr.) Class II ACBPs with MPK2 and SAPK2 Kinases: New Insights into the Regulatory Mechanisms of Plant ACBPs. PLANTS (BASEL, SWITZERLAND) 2024; 13:1146. [PMID: 38674555 PMCID: PMC11055065 DOI: 10.3390/plants13081146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/06/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Plant acyl-CoA-binding proteins (ACBPs) function in plant development and stress responses, with some ACBPs interacting with protein partners. This study tested the interaction between two Class II GmACBPs (Glycine max ACBPs) and seven kinases, using yeast two-hybrid (Y2H) assays and bimolecular fluorescence complementation (BiFC). The results revealed that both GmACBP3.1 and GmACBP4.1 interact with two soybean kinases, a mitogen-activated protein kinase MPK2, and a serine/threonine-protein kinase SAPK2, highlighting the significance of the ankyrin-repeat (ANK) domain in facilitating protein-protein interactions. Moreover, an in vitro kinase assay and subsequent Phos-tag SDS-PAGE determined that GmMPK2 and GmSAPK2 possess the ability to phosphorylate Class II GmACBPs. Additionally, the kinase-specific phosphosites for Class II GmACBPs were predicted using databases. The HDOCK server was also utilized to predict the binding models of Class II GmACBPs with these two kinases, and the results indicated that the affected residues were located in the ANK region of Class II GmACBPs in both docking models, aligning with the findings of the Y2H and BiFC experiments. This is the first report describing the interaction between Class II GmACBPs and kinases, suggesting that Class II GmACBPs have potential as phospho-proteins that impact signaling pathways.
Collapse
Affiliation(s)
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China;
| |
Collapse
|
29
|
Reinhard J, Starke L, Klose C, Haberkant P, Hammarén H, Stein F, Klein O, Berhorst C, Stumpf H, Sáenz JP, Hub J, Schuldiner M, Ernst R. MemPrep, a new technology for isolating organellar membranes provides fingerprints of lipid bilayer stress. EMBO J 2024; 43:1653-1685. [PMID: 38491296 PMCID: PMC11021466 DOI: 10.1038/s44318-024-00063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
Biological membranes have a stunning ability to adapt their composition in response to physiological stress and metabolic challenges. Little is known how such perturbations affect individual organelles in eukaryotic cells. Pioneering work has provided insights into the subcellular distribution of lipids in the yeast Saccharomyces cerevisiae, but the composition of the endoplasmic reticulum (ER) membrane, which also crucially regulates lipid metabolism and the unfolded protein response, remains insufficiently characterized. Here, we describe a method for purifying organelle membranes from yeast, MemPrep. We demonstrate the purity of our ER membrane preparations by proteomics, and document the general utility of MemPrep by isolating vacuolar membranes. Quantitative lipidomics establishes the lipid composition of the ER and the vacuolar membrane. Our findings provide a baseline for studying membrane protein biogenesis and have important implications for understanding the role of lipids in regulating the unfolded protein response (UPR). The combined preparative and analytical MemPrep approach uncovers dynamic remodeling of ER membranes in stressed cells and establishes distinct molecular fingerprints of lipid bilayer stress.
Collapse
Affiliation(s)
- John Reinhard
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Leonhard Starke
- Saarland University, Theoretical Physics and Center for Biophysics, Saarbrücken, Germany
| | | | - Per Haberkant
- EMBL Heidelberg, Proteomics Core Facility, Heidelberg, Germany
| | | | - Frank Stein
- EMBL Heidelberg, Proteomics Core Facility, Heidelberg, Germany
| | - Ofir Klein
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Charlotte Berhorst
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Heike Stumpf
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - James P Sáenz
- Technische Universität Dresden, B CUBE, Dresden, Germany
| | - Jochen Hub
- Saarland University, Theoretical Physics and Center for Biophysics, Saarbrücken, Germany
| | - Maya Schuldiner
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Robert Ernst
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany.
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany.
| |
Collapse
|
30
|
Kamoun H, Feki K, Tounsi S, Jrad O, Brini F. The thioredoxin h-type TdTrxh2 protein of durum wheat confers abiotic stress tolerance of the transformant Arabidopsis plants through its protective role and the regulation of redox homoeostasis. PROTOPLASMA 2024; 261:317-331. [PMID: 37837550 DOI: 10.1007/s00709-023-01899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
The thioredoxins (Trxs) are ubiquitous and they play a crucial role in various biological processes like growth and stress response. Although the functions of Trxs proteins are described in several previous reports, the function of the isoform Trxh2 of durum wheat (Triticum durum L.), designated as TdTrxh2, in abiotic stress response still unknown. Thus, we aimed in this study the functional characterization of TdTrxh2 through its expression in yeast cells and Arabidopsis plants. Sequence analysis revealed that TdTrxh2 protein shared the conserved redox site with the other Trxh from other plant species. Under various abiotic stresses, TdTrxh2 was up-regulated in leaves and roots of durum wheat. Interestingly, we demonstrated that TdTrxh2 exhibit protective effect on LDH activity against various treatments. Besides, the expression of TdTrxh2 in yeast cells conferred their tolerance to multiple stresses. Moreover, transgenic Arabidopsis expressing TdTrxh2 showed tolerance phenotype to several abiotic stresses. This tolerance was illustrated by high rate of proline accumulation, root proliferation, low accumulation of reactive oxygen species like H2O2 and O2·-, and high antioxidant CAT and POD enzymes activities. All these findings suggested that TdTrxh2 promotes abiotic stress tolerance through the redox homoeostasis regulation and its protective role.
Collapse
Affiliation(s)
- Hanen Kamoun
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), BP1177, 3018, Sfax, Tunisia
| | - Kaouthar Feki
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), BP1177, 3018, Sfax, Tunisia
| | - Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), BP1177, 3018, Sfax, Tunisia
| | - Olfa Jrad
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), BP1177, 3018, Sfax, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), BP1177, 3018, Sfax, Tunisia.
| |
Collapse
|
31
|
Kobashi Y, Yoshizaki Y, Okutsu K, Futagami T, Tamaki H, Takamine K. THI3 contributes to isoamyl alcohol biosynthesis through thiamine diphosphate homeostasis. J Biosci Bioeng 2024; 137:108-114. [PMID: 38102023 DOI: 10.1016/j.jbiosc.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Isoamyl alcohol is a precursor of isoamyl acetate, an aromatic compound that imparts the ginjo aroma to sake. The isoamyl alcohol biosynthesis pathway in yeasts involves the genes PDC1, PDC5, PDC6, ARO10, and THI3 encoding enzymes that decarboxylate α-ketoisocaproic acid to isovaleraldehyde. Among these genes, THI3 is the main gene involved in isoamyl alcohol biosynthesis. Decreased production of isoamyl alcohol has been reported in yeast strains with disrupted THI3 (Δthi3). However, it has also been reported that high THI3 expression did not enhance decarboxylase activity. Therefore, the involvement of THI3 in isoamyl alcohol biosynthesis remains unclear. In this study, we investigated the role of THI3 in isoamyl alcohol biosynthesis. While reproducing previous reports of reduced isoamyl alcohol production by the Δthi3 strain, we observed that the decrease in isoamyl alcohol production occurred only at low yeast nitrogen base concentrations in the medium. Upon investigating individual yeast nitrogen base components, we found that the isoamyl alcohol production by the Δthi3 strain reduced when thiamine concentrations in the medium were low. Under low-thiamine conditions, both thiamine and thiamine diphosphate (TPP) levels decreased in Δthi3 cells. We also found that the decarboxylase activity of cell-free extracts of the Δthi3 strain cultured in a low-thiamine medium was lower than that of the wild-type strain, but was restored to the level of the wild-type strain when TPP was added. These results indicate that the loss of THI3 lowers the supply of TPP, a cofactor for decarboxylases, resulting in decreased isoamyl alcohol production.
Collapse
Affiliation(s)
- Yuki Kobashi
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Yumiko Yoshizaki
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kayu Okutsu
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Taiki Futagami
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Hisanori Tamaki
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kazunori Takamine
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
32
|
Gaikwad SR, Punekar NS, Pathan EK. Characterization of a novel 4-guanidinobutyrase from Candida parapsilosis. FEMS Yeast Res 2024; 24:foae003. [PMID: 38242845 PMCID: PMC10833137 DOI: 10.1093/femsyr/foae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/07/2023] [Accepted: 01/17/2024] [Indexed: 01/21/2024] Open
Abstract
Enzymes of the ureohydrolase superfamily are specific in recognizing their substrates. While looking to broaden the substrate specificity of 4-guanidinobutyrase (GBase), we isolated a yeast, typed as Candida parapsilosis (NCIM 3689), that efficiently utilized both 4-guanidinobutyrate (GB) and 3-guanidinopropionate (GP) as a sole source of nitrogen. A putative GBase sequence was identified from its genome upon pBLAST query using the GBase sequence from Aspergillus niger (AnGBase). The C. parapsilosis GBase (CpGBase) ORF was PCR amplified, cloned, and sequenced. Further, the functional CpGBase protein expressed in Saccharomyces cerevisiae functioned as GBase and 3-guanidinopropionase (GPase). S. cerevisiae cannot grow on GB or GP. However, the transformants expressing CpGBase acquired the ability to utilize and grow on both GB and GP. The expressed CpGBase protein was enriched and analyzed for substrate saturation and product inhibition by γ-aminobutyric acid and β-alanine. In contrast to the well-characterized AnGBase, CpGBase from C. parapsilosis is a novel ureohydrolase and showed hyperbolic saturation for GB and GP with comparable efficiency (Vmax/KM values of 3.4 and 2.0, respectively). With the paucity of structural information and limited active site data available on ureohydrolases, CpGBase offers an excellent paradigm to explore this class of enzymes.
Collapse
Affiliation(s)
- Santoshkumar R Gaikwad
- Molecular Enzymology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Narayan S Punekar
- Molecular Enzymology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad 580011, Karnataka, India
| | - Ejaj K Pathan
- Molecular Enzymology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, Maharashtra, India
| |
Collapse
|
33
|
Daicho KM, Hirono-Hara Y, Kikukawa H, Tamura K, Hara KY. Engineering yeast with a light-driven proton pump system in the vacuolar membrane. Microb Cell Fact 2024; 23:4. [PMID: 38172917 PMCID: PMC10763269 DOI: 10.1186/s12934-023-02273-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The supply of ATP is a limiting factor for cellular metabolism. Therefore, cell factories require a sufficient ATP supply to drive metabolism for efficient bioproduction. In the current study, a light-driven proton pump in the vacuolar membrane was constructed in yeast to reduce the ATP consumption required by V-ATPase to maintain the acidification of the vacuoles and increase the intracellular ATP supply for bioproduction. RESULTS Delta rhodopsin (dR), a microbial light-driven proton-pumping rhodopsin from Haloterrigena turkmenica, was expressed and localized in the vacuolar membrane of Saccharomyces cerevisiae by conjugation with a vacuolar membrane-localized protein. Vacuoles with dR were isolated from S. cerevisiae, and the light-driven proton pumping activity was evaluated based on the pH change outside the vacuoles. A light-induced increase in the intracellular ATP content was observed in yeast harboring vacuoles with dR. CONCLUSIONS Yeast harboring the light-driven proton pump in the vacuolar membrane developed in this study are a potential optoenergetic cell factory suitable for various bioproduction applications.
Collapse
Affiliation(s)
- Kaoru M Daicho
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Yoko Hirono-Hara
- 396Bio, Inc., University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Hiroshi Kikukawa
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Kentaro Tamura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Kiyotaka Y Hara
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan.
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
34
|
Kobashi Y, Nakayama E, Fukumori N, Shimojima A, Tabira M, Nishimura Y, Mukae M, Muto A, Nakashima N, Okutsu K, Yoshizaki Y, Futagami T, Takamine K, Tamaki H. Homozygous gene disruption in diploid yeast through a single transformation. J Biosci Bioeng 2024; 137:31-37. [PMID: 37981488 DOI: 10.1016/j.jbiosc.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/13/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
As industrial shochu yeast is a diploid strain, obtaining a strain with mutations in both allelic genes was considered difficult. We investigated a method for disrupting two copies of a homozygous gene with a single transformation. We designed a disruption cassette containing an intact LYS5 flanked by nonfunctional ura3 gene fragments divided into the 5'- and 3'-regions. These fragments had overlapping sequences that enabled LYS5 removal as well as URA3 regeneration through loop-out. Furthermore, both ends of the disruption cassette had an additional repeat sequence that allowed the cassette to be removed from the chromosome through loop-out. First, 45 bases of 5'- and 3'-regions of target gene sequences were added on both ends of this cassette using polymerase chain reaction; the resultant disruption cassette was introduced into a shochu yeast strain (ura3/ura3 lys5/lys5); then, single allele disrupted strains were selected on Lys drop-out plates; and after cultivation in YPD medium, double-disrupted strains, in which replacement of another allelic gene with disruption cassette by loss of heterozygosity and regeneration of URA3 in one of the cassettes by loop-out, were obtained by selection on Ura and Lys drop-out plates. The disruption cassettes were removed from the double-disrupted strain via loop-out between repeat sequences in the disruption cassette. The strains that lost either URA3 or LYS5 were counter-selected on 5-fluoroorotic acid or α-amino adipic acid plates, respectively. Using this method, we obtained leu2/leu2 and leu2/leu2 his3/his3 strains in shochu yeast, demonstrating the effectiveness and repeatability of this gene disruption technique in diploid yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Yuki Kobashi
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Eri Nakayama
- Graduate School of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Naoki Fukumori
- Graduate School of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Ayane Shimojima
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Manami Tabira
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Yuki Nishimura
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Manami Mukae
- Graduate School of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Ai Muto
- Graduate School of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Naoto Nakashima
- Graduate School of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kayu Okutsu
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Yumiko Yoshizaki
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Taiki Futagami
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kazunori Takamine
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Hisanori Tamaki
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
35
|
Hotta N, Kotaka A, Matsumura K, Sasano Y, Hata Y, Harada T, Sugiyama M, Harashima S, Ishida H. Effect of yeast chromosome II aneuploidy on malate production in sake brewing. J Biosci Bioeng 2024; 137:24-30. [PMID: 37989703 DOI: 10.1016/j.jbiosc.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Chromosome aneuploidy is a common phenomenon in industrial yeast. Aneuploidy is considered one of the strategies to enhance the industrial properties of Saccharomyces cerevisiae strains. However, the effects of chromosomal aneuploidy on the brewing properties of sake have not been extensively studied. In this study, sake brewing was performed using a series of genome-wide segmental duplicated laboratory S. cerevisiae strains, and the effects of each segmentally duplicated region on sake brewing were investigated. We found that the duplication of specific chromosomal regions affected the production of organic acids and aromatic compounds in sake brewing. As organic acids significantly influence the taste of sake, we focused on the segmental duplication of chromosome II that alters malate levels. Sake yeast Kyokai No. 901 strains with segmental chromosome II duplication were constructed using a polymerase chain reaction-mediated chromosomal duplication method, and sake was brewed using the resultant aneuploid sake yeast strains. The results showed the possibility of developing sake yeast strains exhibiting low malate production without affecting ethanol production capacity. Our study revealed that aneuploidy in yeast alters the brewing properties; in particular, the aneuploidy of chromosome II alters malate production in sake brewing. In conclusion, aneuploidization can be a novel and useful tool to breed sake yeast strains with improved traits, possessing industrial significance.
Collapse
Affiliation(s)
- Natsuki Hotta
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan.
| | - Atsushi Kotaka
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Kengo Matsumura
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Yu Sasano
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Yoji Hata
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Tomoka Harada
- Department of Food Sciences and Biotechnology, Faculty of Life Sciences, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
| | - Minetaka Sugiyama
- Department of Food Sciences and Biotechnology, Faculty of Life Sciences, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
| | - Satoshi Harashima
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Hiroki Ishida
- Research Institute, Gekkeikan Sake Co., Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| |
Collapse
|
36
|
Lin JS, Lai EM. Protein-Protein Interactions: Yeast Two Hybrid. Methods Mol Biol 2024; 2715:235-246. [PMID: 37930532 DOI: 10.1007/978-1-0716-3445-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The yeast two-hybrid system is a powerful and commonly used genetic tool to investigate the interaction between artificial fusion proteins inside the nucleus of yeast. Here, we describe how to use the Matchmaker GAL4-based yeast two-hybrid system to detect the interaction of the Agrobacterium type VI secretion system (T6SS) sheath components TssB and TssC41. The bait and prey gene are expressed as a fusion to the GAL4 DNA-binding domain (DNA-BD) and GAL4 activation domain (AD, prey/library fusion protein), respectively. When bait and prey fusion proteins interact in yeast nucleus, the DNA-BD and AD are brought into proximity, thus activating transcription of reporter genes. This technology can be widely used to identify interacting partners, confirm suspected interactions, and define interacting domains.
Collapse
Affiliation(s)
- Jer-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
37
|
Lamb AK, Fernandez AN, Eadaim A, Johnson K, Di Pietro SM. Mechanism of actin capping protein recruitment and turnover during clathrin-mediated endocytosis. J Cell Biol 2024; 223:e202306154. [PMID: 37966720 PMCID: PMC10651396 DOI: 10.1083/jcb.202306154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Clathrin-mediated endocytosis depends on polymerization of a branched actin network to provide force for membrane invagination. A key regulator in branched actin network formation is actin capping protein (CP), which binds to the barbed end of actin filaments to prevent the addition or loss of actin subunits. CP was thought to stochastically bind actin filaments, but recent evidence shows CP is regulated by a group of proteins containing CP-interacting (CPI) motifs. Importantly, how CPI motif proteins function together to regulate CP is poorly understood. Here, we show Aim21 and Bsp1 work synergistically to recruit CP to the endocytic actin network in budding yeast through their CPI motifs, which also allosterically modulate capping strength. In contrast, twinfilin works downstream of CP recruitment, regulating the turnover of CP through its CPI motif and a non-allosteric mechanism. Collectively, our findings reveal how three CPI motif proteins work together to regulate CP in a stepwise fashion during endocytosis.
Collapse
Affiliation(s)
- Andrew K. Lamb
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Andres N. Fernandez
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Abdunaser Eadaim
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Katelyn Johnson
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Santiago M. Di Pietro
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
38
|
Launhardt L, Uhlenberg J, Stellmach H, Schomburg M, Hause B, Heilmann I, Heilmann M. Association of the Arabidopsis oleoyl Δ12-desaturase FAD2 with pre-cis-Golgi stacks at endoplasmic reticulum-Golgi-exit sites. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:242-263. [PMID: 37805827 DOI: 10.1111/tpj.16492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/26/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
The unsaturation of phospholipids influences the function of membranes. In Arabidopsis thaliana, the oleoyl Δ12-desaturase FAD2 converts oleic (18:1Δ9 ) to linoleic acid (18:2Δ9,12 ) and influences phospholipid unsaturation in different cellular membranes. Despite its importance, the precise localization of Arabidopsis FAD2 has not been unambiguously described. As FAD2 is thought to modify phospholipid-associated fatty acids at the endoplasmic reticulum (ER), from where unsaturates are distributed to other cellular sites, we hypothesized that FAD2 locates to ER subdomains enabling trafficking of lipid intermediates through the secretory pathway. Fluorescent FAD2 fusions used to test this hypothesis were first assessed for functionality by heterologous expression in yeast (Saccharomyces cerevisiae), and in planta by Arabidopsis fad2 mutant rescue upon ectopic expression from an intrinsic FAD2 promoter fragment. Light sheet fluorescence, laser scanning confocal or spinning disc microscopy of roots, leaves, or mesophyll protoplasts showed the functional fluorescence-tagged FAD2 variants in flattened donut-shaped structures of ~0.5-1 μm diameter, in a pattern not resembling mere ER association. High-resolution imaging of coexpressed organellar markers showed fluorescence-tagged FAD2 in a ring-shaped pattern surrounding ER-proximal Golgi particles, colocalizing with pre-cis-Golgi markers. This localization required the unusual C-terminal retention signal of FAD2, and deletion or substitutions in this protein region resulted in relaxed distribution and diffuse association with the ER. The distinct association of FAD2 with pre-cis-Golgi stacks in Arabidopsis root and leaf tissue is consistent with a contribution of FAD2 to membrane lipid homeostasis through the secretory pathway, as verified by an increased plasma membrane liquid phase order in the fad2 mutant.
Collapse
Affiliation(s)
- Larissa Launhardt
- Department of Plant Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Johanna Uhlenberg
- Department of Plant Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Hagen Stellmach
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Marie Schomburg
- Department of Plant Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Mareike Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| |
Collapse
|
39
|
Jog R, Han GS, Carman GM. The Saccharomyces cerevisiae Spo7 basic tail is required for Nem1-Spo7/Pah1 phosphatase cascade function in lipid synthesis. J Biol Chem 2024; 300:105587. [PMID: 38141768 PMCID: PMC10820825 DOI: 10.1016/j.jbc.2023.105587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023] Open
Abstract
The Saccharomyces cerevisiae Nem1-Spo7 protein phosphatase complex dephosphorylates and thereby activates Pah1 at the nuclear/endoplasmic reticulum membrane. Pah1, a phosphatidate phosphatase catalyzing the dephosphorylation of phosphatidate to produce diacylglycerol, is one of the most highly regulated enzymes in lipid metabolism. The diacylglycerol produced in the lipid phosphatase reaction is utilized for the synthesis of triacylglycerol that is stored in lipid droplets. Disruptions of the Nem1-Spo7/Pah1 phosphatase cascade cause a plethora of physiological defects. Spo7, the regulatory subunit of the Nem1-Spo7 complex, is required for the Nem1 catalytic function and interacts with the acidic tail of Pah1. Spo7 contains three conserved homology regions (CR1-3) that are important for the interaction with Nem1, but its region for the interaction with Pah1 is unknown. Here, by deletion and site-specific mutational analyses of Spo7, we revealed that the C-terminal basic tail (residues 240-259) containing five arginine and two lysine residues is important for the Nem1-Spo7 complex-mediated dephosphorylation of Pah1 and its cellular function (triacylglycerol synthesis, lipid droplet formation, maintenance of nuclear/endoplasmic reticulum membrane morphology, and cell growth at elevated temperatures). The glutaraldehyde cross-linking analysis of synthetic peptides indicated that the Spo7 basic tail interacts with the Pah1 acidic tail. This work advances our understanding of the Spo7 function and the Nem1-Spo7/Pah1 phosphatase cascade in yeast lipid synthesis.
Collapse
Affiliation(s)
- Ruta Jog
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
40
|
Flagg MP, Lam B, Lam DK, Le TM, Kao A, Slaiwa YI, Hampton RY. Exploring the "misfolding problem" by systematic discovery and analysis of functional-but-degraded proteins. Mol Biol Cell 2023; 34:ar125. [PMID: 37729018 PMCID: PMC10848938 DOI: 10.1091/mbc.e23-06-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
In both health and disease, the ubiquitin-proteasome system (UPS) degrades point mutants that retain partial function but have decreased stability compared with their wild-type counterparts. This class of UPS substrate includes routine translational errors and numerous human disease alleles, such as the most common cause of cystic fibrosis, ΔF508-CFTR. Yet, there is no systematic way to discover novel examples of these "minimally misfolded" substrates. To address that shortcoming, we designed a genetic screen to isolate functional-but-degraded point mutants, and we used the screen to study soluble, monomeric proteins with known structures. These simple parent proteins yielded diverse substrates, allowing us to investigate the structural features, cytotoxicity, and small-molecule regulation of minimal misfolding. Our screen can support numerous lines of inquiry, and it provides broad access to a class of poorly understood but biomedically critical quality-control substrates.
Collapse
Affiliation(s)
- Matthew P. Flagg
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Breanna Lam
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Darren K. Lam
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Tiffany M. Le
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Andy Kao
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Yousif I. Slaiwa
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Randolph Y. Hampton
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
41
|
Ishibashi Y, Sadamitsu S, Fukahori Y, Yamamoto Y, Tanogashira R, Watanabe T, Hayashi M, Ito M, Okino N. Characterization of thraustochytrid-specific sterol O-acyltransferase: modification of DGAT2-like enzyme to increase the sterol production in Aurantiochytrium limacinum mh0186. Appl Environ Microbiol 2023; 89:e0100123. [PMID: 37874286 PMCID: PMC10686087 DOI: 10.1128/aem.01001-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/04/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Since the global market for sterols and vitamin D are grown with a high compound annual growth rate, a sustainable source of these compounds is required to keep up with the increasing demand. Thraustochytrid is a marine oleaginous microorganism that can synthesize several sterols, which are stored as SE in lipid droplets. DGAT2C is an unconventional SE synthase specific to thraustochytrids. Although the primary structure of DGAT2C shows high similarities with that of DGAT, DGAT2C utilizes sterol as an acceptor substrate instead of diacylglycerol. In this study, we examined more detailed enzymatic properties, intracellular localization, and structure-activity relationship of DGAT2C. Furthermore, we successfully developed a method to increase sterol and provitamin D3 productivity of thraustochytrid by more than threefold in the process of elucidating the function of the DGAT2C-specific N-terminal region. Our findings could lead to sustainable sterol and vitamin D production using thraustochytrid.
Collapse
Affiliation(s)
- Yohei Ishibashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Shohei Sadamitsu
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitomo Fukahori
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Yamamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Rin Tanogashira
- Kyushu University Future Creators in Science Project (QFC-SP), Fukuoka, Japan
| | - Takashi Watanabe
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Hayashi
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
42
|
Sugimura M, Seike T, Okahashi N, Izumi Y, Bamba T, Ishii J, Matsuda F. Improved 2,3-Butanediol Production Rate of Metabolically Engineered Saccharomyces cerevisiae by Deletion of RIM15 and Activation of Pyruvate Consumption Pathway. Int J Mol Sci 2023; 24:16378. [PMID: 38003568 PMCID: PMC10671664 DOI: 10.3390/ijms242216378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Saccharomyces cerevisiae is a promising host for the bioproduction of higher alcohols, such as 2,3-butanediol (2,3-BDO). Metabolically engineered S. cerevisiae strains that produce 2,3-BDO via glycolysis have been constructed. However, the specific 2,3-BDO production rates of engineered strains must be improved. To identify approaches to improving the 2,3-BDO production rate, we investigated the factors contributing to higher ethanol production rates in certain industrial strains of S. cerevisiae compared to laboratory strains. Sequence analysis of 11 industrial strains revealed the accumulation of many nonsynonymous substitutions in RIM15, a negative regulator of high fermentation capability. Comparative metabolome analysis suggested a positive correlation between the rate of ethanol production and the activity of the pyruvate-consuming pathway. Based on these findings, RIM15 was deleted, and the pyruvate-consuming pathway was activated in YHI030, a metabolically engineered S. cerevisiae strain that produces 2,3-BDO. The titer, specific production rate, and yield of 2,3-BDO in the test tube-scale culture using the YMS106 strain reached 66.4 ± 4.4 mM, 1.17 ± 0.017 mmol (g dry cell weight h)-1, and 0.70 ± 0.03 mol (mol glucose consumed)-1. These values were 2.14-, 2.92-, and 1.81-fold higher than those of the vector control, respectively. These results suggest that bioalcohol production via glycolysis can be enhanced in a metabolically engineered S. cerevisiae strain by deleting RIM15 and activating the pyruvate-consuming pathway.
Collapse
Affiliation(s)
- Masahiko Sugimura
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Taisuke Seike
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Fukuoka, Japan
| | - Takeshi Bamba
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Fukuoka, Japan
| | - Jun Ishii
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Hyogo, Japan
| | - Fumio Matsuda
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
43
|
Petrosillo G, De Stradis A, Marzulli D, Rubino L, Giannattasio S. Carnation Italian Ringspot Virus p36 Expression Induces Mitochondrial Fission and Respiratory Chain Complex Impairment in Yeast. Int J Mol Sci 2023; 24:16166. [PMID: 38003356 PMCID: PMC10670935 DOI: 10.3390/ijms242216166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Positive-strand RNA virus replication invariably occurs in association with host cell membranes, which are induced to proliferate and rearrange to form vesicular structures where the virus replication complex is assembled. In particular, carnation Italian ringspot virus (CIRV) replication takes place on the mitochondrial outer membrane in plant and yeast cells. In this work, the model host Saccharomyces cerevisiae was used to investigate the effects of CIRV p36 expression on the mitochondrial structure and function through the determination of mitochondrial morphology, mitochondrial respiratory parameters, and respiratory chain complex activities in p36-expressing cells. CIRV p36 ectopic expression was shown to induce alterations in the mitochondrial network associated with a decrease in mitochondrial respiration and the activities of NADH-cyt c, succinate-cyt c (C II-III), and cytochrome c oxidase (C IV) complexes. Our results suggest that the decrease in respiratory complex activity could be due, at least in part, to alterations in mitochondrial dynamics. This yeast-based model will be a valuable tool for identifying molecular targets to develop new anti-viral strategies.
Collapse
Affiliation(s)
- Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 122/O, 70126 Bari, Italy; (G.P.); (D.M.)
| | - Angelo De Stradis
- Institute for Sustainable Plant Protection, CNR, UOS Bari, Via Amendola 165/A, 70126 Bari, Italy;
| | - Domenico Marzulli
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 122/O, 70126 Bari, Italy; (G.P.); (D.M.)
| | - Luisa Rubino
- Institute for Sustainable Plant Protection, CNR, UOS Bari, Via Amendola 165/A, 70126 Bari, Italy;
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 122/O, 70126 Bari, Italy; (G.P.); (D.M.)
| |
Collapse
|
44
|
Koh H, Joo H, Lim CW, Lee SC. Roles of the pepper JAZ protein CaJAZ1-03 and its interacting partner RING-type E3 ligase CaASRF1 in regulating ABA signaling and drought responses. PLANT, CELL & ENVIRONMENT 2023; 46:3242-3257. [PMID: 37563998 DOI: 10.1111/pce.14692] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Plants have developed various defense mechanisms against environmental stresses by regulating hormone signaling. Jasmonic acid (JA) is a major phytohormone associated with plant defense responses. JASMONATE ZIM-DOMAIN (JAZ) proteins play a regulatory role in repressing JA signaling, impacting plant responses to both biotic and abiotic stresses. Here, we isolated 7 JAZ genes in pepper and selected CA03g31030, a Capsicum annuum JAZ1-03 (CaJAZ1-03) gene, for further study based on its expression level in response to abiotic stresses. Through virus-induced gene silencing (VIGS) in pepper and overexpression in transgenic Arabidopsis plants, we established the functional role of CaJAZ1-03. Functional studies revealed that CaJAZ1-03 dampens abscisic acid (ABA) signaling and drought stress responses. The cell-free degradation assay showed faster degradation of CaJAZ1-03 in drought- or ABA-treated pepper leaves compared to healthy leaves. Conversely, CaJAZ1-03 was completely preserved under MG132 treatment, indicating that CaJAZ1-03 stability is modulated via the ubiquitin-26s proteasome pathway. We also found that the pepper RING-type E3 ligase CaASRF1 interacts with and ubiquitinates CaJAZ1-03. Additional cell-free degradation assays revealed a negative correlation between CaJAZ1-03 and CaASRF1 expression levels. Collectively, these findings suggest that CaJAZ1-03 negatively regulates ABA signaling and drought responses and that its protein stability is modulated by CaASRF1.
Collapse
Affiliation(s)
- Haeji Koh
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, Korea
| | - Hyunhee Joo
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, Korea
| |
Collapse
|
45
|
Nakanishi A, Mori M, Yamamoto N, Nemoto S, Kanamaru N, Yomogita M, Omino N, Matsumoto R. Evaluation of Cell Responses of Saccharomyces cerevisiae under Cultivation Using Wheat Bran as a Nutrient Resource by Analyses of Growth Activities and Comprehensive Gene Transcription Levels. Microorganisms 2023; 11:2674. [PMID: 38004686 PMCID: PMC10673363 DOI: 10.3390/microorganisms11112674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Wheat bran has high nutritional values and is also cheaper than yeast nitrogen base as an important component of a medium. Although its use in microbial cultivations is expected, research and development has hardly progressed so far. In this study, with experimental Saccharomyces cerevisiae BY4741, the cell responses to wheat bran as a nutrient were evaluated by analyses of cell growth, ethanol production, and comprehensive gene transcription levels. Comparing wheat bran and yeast nitrogen base, BY4741 showed specific growth rates of 0.277 ± 0.002 and 0.407 ± 0.035 as a significant difference. Additionally, wheat bran could be used as a restricted media component like yeast nitrogen base. However, in 24 h of cultivation with wheat bran and yeast nitrogen base, although conversion ratios of ethanol productions showed no significant difference at 63.0 ± 7.2% and 62.5 ± 8.2%, the ratio of cell production displayed a significant difference at 7.31 ± 0.04% and 4.90 ± 0.16%, indicating a different cell response. In fact, the comprehensive evaluation of transcription levels strongly suggested major changes in glucose metabolism. This study indicated that BY4741 could switch transcription levels efficiently to use wheat bran.
Collapse
Affiliation(s)
- Akihito Nakanishi
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan; (M.M.); (N.K.); (N.O.)
- Graduate School of Bionics, Tokyo University of Technology, Tokyo 192-0982, Japan; (N.Y.); (S.N.); (M.Y.)
| | - Minori Mori
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan; (M.M.); (N.K.); (N.O.)
| | - Naotaka Yamamoto
- Graduate School of Bionics, Tokyo University of Technology, Tokyo 192-0982, Japan; (N.Y.); (S.N.); (M.Y.)
| | - Shintaro Nemoto
- Graduate School of Bionics, Tokyo University of Technology, Tokyo 192-0982, Japan; (N.Y.); (S.N.); (M.Y.)
| | - Nono Kanamaru
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan; (M.M.); (N.K.); (N.O.)
| | - Misaki Yomogita
- Graduate School of Bionics, Tokyo University of Technology, Tokyo 192-0982, Japan; (N.Y.); (S.N.); (M.Y.)
| | - Natsumi Omino
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan; (M.M.); (N.K.); (N.O.)
| | - Riri Matsumoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan; (M.M.); (N.K.); (N.O.)
| |
Collapse
|
46
|
Farley FW, McCully RR, Maslo PB, Yu L, Sheff MA, Sadeghi H, Elion EA. Effects of HSP70 chaperones Ssa1 and Ssa2 on Ste5 scaffold and the mating mitogen-activated protein kinase (MAPK) pathway in Saccharomyces cerevisiae. PLoS One 2023; 18:e0289339. [PMID: 37851593 PMCID: PMC10584130 DOI: 10.1371/journal.pone.0289339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 07/17/2023] [Indexed: 10/20/2023] Open
Abstract
Ste5 is a prototype of scaffold proteins that regulate activation of mitogen-activated protein kinase (MAPK) cascades in all eukaryotes. Ste5 associates with many proteins including Gβγ (Ste4), Ste11 MAPKKK, Ste7 MAPKK, Fus3 and Kss1 MAPKs, Bem1, Cdc24. Here we show that Ste5 also associates with heat shock protein 70 chaperone (Hsp70) Ssa1 and that Ssa1 and its ortholog Ssa2 are together important for Ste5 function and efficient mating responses. The majority of purified overexpressed Ste5 associates with Ssa1. Loss of Ssa1 and Ssa2 has deleterious effects on Ste5 abundance, integrity, and localization particularly when Ste5 is expressed at native levels. The status of Ssa1 and Ssa2 influences Ste5 electrophoresis mobility and formation of high molecular weight species thought to be phosphorylated, ubiquitinylated and aggregated and lower molecular weight fragments. A Ste5 VWA domain mutant with greater propensity to form punctate foci has reduced predicted propensity to bind Ssa1 near the mutation sites and forms more punctate foci when Ssa1 Is overexpressed, supporting a dynamic protein quality control relationship between Ste5 and Ssa1. Loss of Ssa1 and Ssa2 reduces activation of Fus3 and Kss1 MAPKs and FUS1 gene expression and impairs mating shmoo morphogenesis. Surprisingly, ssa1, ssa2, ssa3 and ssa4 single, double and triple mutants can still mate, suggesting compensatory mechanisms exist for folding. Additional analysis suggests Ssa1 is the major Hsp70 chaperone for the mating and invasive growth pathways and reveals several Hsp70-Hsp90 chaperone-network proteins required for mating morphogenesis.
Collapse
Affiliation(s)
- Francis W. Farley
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Ryan R. McCully
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Paul B. Maslo
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Lu Yu
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Mark A. Sheff
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Homayoun Sadeghi
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Elaine A. Elion
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
47
|
Lai CC, Chiu WY, Chen YT, Wu CL, Lee FJS. The SNARE-associated protein Sft2 functions in Imh1-mediated SNARE recycling transport upon ER stress. Mol Biol Cell 2023; 34:ar112. [PMID: 37610835 PMCID: PMC10559307 DOI: 10.1091/mbc.e23-01-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Vesicular trafficking involving SNARE proteins play a crucial role in the delivery of cargo to the target membrane. Arf-like protein 1 (Arl1) is an important regulator of the endosomal trans-Golgi network (TGN) and secretory trafficking. In yeast, ER stress-enhances Arl1 activation and Golgin Imh1 recruitment to the late-Golgi. Although Arl1 and Imh1 are critical for GARP-mediated endosomal SNARE-recycling transport in response to ER stress, their downstream effectors are unknown. Here, we report that the SNARE-associated protein Sft2 acts downstream of the Arl1-Imh1 axis to regulate SNARE recycling upon ER stress. We first demonstrated that Sft2 is required for Tlg1/Snc1 SNARE-recycling transport under tunicamycin-induced ER stress. Interestingly, we found that Imh1 regulates Tlg2 retrograde transport to the late-Golgi under ER stress, which in turn is required for Sft2 targeting to the late-Golgi. We further showed that Sft2 with 40 amino acids deleted from the N-terminus exhibits defective mediation of SNARE recycling and decreased association with Tlg1 under ER stress. Finally, we demonstrated that Sft2 is required for GARP-dependent endosome-to-Golgi transport in the absence of Rab protein Ypt6. This study highlights Sft2 as a critical downstream effector of the Arl1-Imh1 axis, mediating the endosome-to-Golgi transport of SNAREs.
Collapse
Affiliation(s)
- Chun-Chi Lai
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Wan-Yun Chiu
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Yan-Ting Chen
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chia-Lu Wu
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Fang-Jen S. Lee
- Institute of Molecular Medicine, National Taiwan University, Taipei 10002, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
48
|
Madhawan A, Bhunia RK, Kumar P, Sharma V, Sinha K, Fandade V, Rahim MS, Parveen A, Mishra A, Roy J. Interaction between long noncoding RNA (lnc663) and microRNA (miR1128) regulates PDAT-like gene activity in bread wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108040. [PMID: 37738867 DOI: 10.1016/j.plaphy.2023.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Amylose, a starch subcomponent, can bind lipids within its helical groove and form an amylose-lipid complex, known as resistant starch type 5 (RS-5). RS contributes to lower glycaemic index of grain with health benefits. Unfortunately, genes involved in lipid biosynthesis in wheat grain remain elusive. Our study aims to characterize the lipid biosynthesis gene and its post-transcriptional regulation using the parent bread wheat variety 'C 306' and its EMS-induced mutant line 'TAC 75' varying in amylose content. Quantitative analyses of starch-bound lipids showed that 'TAC 75' has significantly higher lipid content in grains than 'C 306' variety. Furthermore, expression analyses revealed the higher expression of wheat phospholipid: diacylglycerol acyltransferase-like (PDAT-like) in the 'TAC 75' compared to the 'C 306'. Overexpression and ectopic expression of TaPDAT in yeast and tobacco leaf confirmed its ability to accumulate lipids in vivo. Enzyme activity assay showed that TaPDAT catalyzes the triacylglycerol synthesis by acylating 1,2-diacylglycerol. Interestingly, the long non-coding RNA, lnc663, was upregulated with the TaPDAT gene, while the miRNA, miR1128, downregulated in the 'TAC 75', indicating a regulatory relationship. The GFP reporter assay confirmed that the lnc663 acts as a positive regulator, and the miR1128 as a negative regulator of the TaPDAT gene, which controls lipid accumulation in wheat grain. Our findings outline TaPDAT-mediated biosynthesis of lipid accumulation and reveal the molecular mechanism of the lnc663 and miR1128 mediated regulation of the TaPDAT gene in wheat grain.
Collapse
Affiliation(s)
- Akansha Madhawan
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| | - Rupam Kumar Bhunia
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Plant Biotechnology Department, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India.
| | - Prashant Kumar
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| | - Vinita Sharma
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| | - Kshitija Sinha
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| | - Vikas Fandade
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| | - Mohammed Saba Rahim
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| | - Afsana Parveen
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| | - Ankita Mishra
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| | - Joy Roy
- Agri-Food Biotechnology Division, National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| |
Collapse
|
49
|
Stukey GJ, Han GS, Carman GM. Phosphatidate phosphatase Pah1 contains a novel RP domain that regulates its phosphorylation and function in yeast lipid synthesis. J Biol Chem 2023; 299:105025. [PMID: 37423305 PMCID: PMC10406625 DOI: 10.1016/j.jbc.2023.105025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023] Open
Abstract
The Saccharomyces cerevisiae PAH1-encoded phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, is one of the most highly regulated enzymes in lipid metabolism. The enzyme controls whether cells utilize PA to produce membrane phospholipids or the major storage lipid triacylglycerol. PA levels, which are regulated by the enzyme reaction, also control the expression of UASINO-containing phospholipid synthesis genes via the Henry (Opi1/Ino2-Ino4) regulatory circuit. Pah1 function is largely controlled by its cellular location, which is mediated by phosphorylation and dephosphorylation. Multiple phosphorylations sequester Pah1 in the cytosol and protect it from 20S proteasome-mediated degradation. The endoplasmic reticulum-associated Nem1-Spo7 phosphatase complex recruits and dephosphorylates Pah1 allowing the enzyme to associate with and dephosphorylate its membrane-bound substrate PA. Pah1 contains domains/regions that include the N-LIP and haloacid dehalogenase-like catalytic domains, N-terminal amphipathic helix for membrane binding, C-terminal acidic tail for Nem1-Spo7 interaction, and a conserved tryptophan within the WRDPLVDID domain required for enzyme function. Through bioinformatics, molecular genetics, and biochemical approaches, we identified a novel RP (regulation of phosphorylation) domain that regulates the phosphorylation state of Pah1. We showed that the ΔRP mutation results in a 57% reduction in the endogenous phosphorylation of the enzyme (primarily at Ser-511, Ser-602, and Ser-773/Ser-774), an increase in membrane association and PA phosphatase activity, but reduced cellular abundance. This work not only identifies a novel regulatory domain within Pah1 but emphasizes the importance of the phosphorylation-based regulation of Pah1 abundance, location, and function in yeast lipid synthesis.
Collapse
Affiliation(s)
- Geordan J Stukey
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
50
|
Kiyokawa K, Yamamoto S, Moriguchi K, Sugiyama M, Hisatomi T, Suzuki K. Construction of versatile yeast plasmid vectors transferable by Agrobacterium-mediated transformation and their application to bread-making yeast strains. J Biosci Bioeng 2023; 136:142-151. [PMID: 37263830 DOI: 10.1016/j.jbiosc.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023]
Abstract
Agrobacterium-mediated transformation (AMT) potentially has great advantages over other DNA introduction methods: e.g., long DNA and numerous recipient strains can be dealt with at a time merely by co-cultivation with donor Agrobacterium cells. However, AMT was applied only to several laboratory yeast strains, and has never been considered as a standard gene-introduction method for yeast species. To disseminate the AMT method in yeast species, it is necessary to develop versatile AMT plasmid vectors including shuttle type ones, which have been unavailable yet for yeasts. In this study, we constructed a series of AMT plasmid vectors that consist of replicative (shuttle)- and integrative-types and harbor a gene conferring resistance to either G418 or aureobasidin A for application to prototrophic yeast strains. The vectors were successfully applied to five industrial yeast strains belonging to Saccharomyces cerevisiae after a modification of a previous AMT protocol, i.e., simply inputting a smaller number of yeast cells to the co-cultivation than that in the previous protocol. The revised protocol enabled all five yeast strains to generate recombinant colonies not only at high efficiency using replicative-type vectors, but also readily at an efficiency around 10-5 using integrative one. Further modification of the protocol demonstrated AMT for multiple yeast strains at a time with less labor. Therefore, AMT would facilitate molecular genetic approaches to many yeast strains in basic and applied sciences.
Collapse
Affiliation(s)
- Kazuya Kiyokawa
- Basic Biology Program, Graduate School of Integrated Sciences for Life, Higashi- Hiroshima, Hiroshima 739-8526, Japan; Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi- Hiroshima, Hiroshima 739-8526, Japan.
| | - Shinji Yamamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi- Hiroshima, Hiroshima 739-8526, Japan.
| | - Kazuki Moriguchi
- Basic Biology Program, Graduate School of Integrated Sciences for Life, Higashi- Hiroshima, Hiroshima 739-8526, Japan; Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi- Hiroshima, Hiroshima 739-8526, Japan.
| | - Minetaka Sugiyama
- Department of Food Sciences and Biotechnology, Faculty of Life Sciences, Hiroshima Institute of Technology, Hiroshima City, Hiroshima 731-519, Japan.
| | - Taisuke Hisatomi
- Department of Biotechnology, Faculty of Life Sciences and Biotechnology, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan.
| | - Katsunori Suzuki
- Basic Biology Program, Graduate School of Integrated Sciences for Life, Higashi- Hiroshima, Hiroshima 739-8526, Japan; Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi- Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|