1
|
Dharamshi JE, Köstlbacher S, Schön ME, Collingro A, Ettema TJG, Horn M. Gene gain facilitated endosymbiotic evolution of Chlamydiae. Nat Microbiol 2023; 8:40-54. [PMID: 36604515 PMCID: PMC9816063 DOI: 10.1038/s41564-022-01284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/07/2022] [Indexed: 01/07/2023]
Abstract
Chlamydiae is a bacterial phylum composed of obligate animal and protist endosymbionts. However, other members of the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum are primarily free living. How Chlamydiae transitioned to an endosymbiotic lifestyle is still largely unresolved. Here we reconstructed Planctomycetes-Verrucomicrobia-Chlamydiae species relationships and modelled superphylum genome evolution. Gene content reconstruction from 11,996 gene families suggests a motile and facultatively anaerobic last common Chlamydiae ancestor that had already gained characteristic endosymbiont genes. Counter to expectations for genome streamlining in strict endosymbionts, we detected substantial gene gain within Chlamydiae. We found that divergence in energy metabolism and aerobiosis observed in extant lineages emerged later during chlamydial evolution. In particular, metabolic and aerobic genes characteristic of the more metabolically versatile protist-infecting chlamydiae were gained, such as respiratory chain complexes. Our results show that metabolic complexity can increase during endosymbiont evolution, adding an additional perspective for understanding symbiont evolutionary trajectories across the tree of life.
Collapse
Affiliation(s)
- Jennah E Dharamshi
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stephan Köstlbacher
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
- University of Vienna, Doctoral School in Microbiology and Environmental Science, Vienna, Austria
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Max E Schön
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Astrid Collingro
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Matthias Horn
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria.
| |
Collapse
|
2
|
Formate hydrogenlyase, formic acid translocation and hydrogen production: dynamic membrane biology during fermentation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148919. [PMID: 36152681 DOI: 10.1016/j.bbabio.2022.148919] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/19/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Formate hydrogenlyase-1 (FHL-1) is a complex-I-like enzyme that is commonly found in gram-negative bacteria. The enzyme comprises a peripheral arm and a membrane arm but is not involved in quinone reduction. Instead, FHL-1 couples formate oxidation to the reduction of protons to molecular hydrogen (H2). Escherichia coli produces FHL-1 under fermentative conditions where it serves to detoxify formic acid in the environment. The membrane biology and bioenergetics surrounding E. coli FHL-1 have long held fascination. Here, we review recent work on understanding the molecular basis of formic acid efflux and influx. We also consider the structure and function of E. coli FHL-1, its relationship with formate transport, and pay particular attention to the molecular interface between the peripheral arm and the membrane arm. Finally, we highlight the interesting phenotype of genetic mutation of the ND1 Loop, which is located at that interface.
Collapse
|
3
|
The Production of Pyruvate in Biological Technology: A Critical Review. Microorganisms 2022; 10:microorganisms10122454. [PMID: 36557706 PMCID: PMC9783380 DOI: 10.3390/microorganisms10122454] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Pyruvic acid has numerous applications in the food, chemical, and pharmaceutical industries. The high costs of chemical synthesis have prevented the extensive use of pyruvate for many applications. Metabolic engineering and traditional strategies for mutation and selection have been applied to microorganisms to enhance their ability to produce pyruvate. In the past decades, different microbial strains were generated to enhance their pyruvate production capability. In addition to the development of genetic engineering and metabolic engineering in recent years, the metabolic transformation of wild-type yeast, E. coli, and so on to produce high-yielding pyruvate strains has become a hot spot. The strategy and the understanding of the central metabolism directly related to pyruvate production could provide valuable information for improvements in fermentation products. One of the goals of this review was to collect information regarding metabolically engineered strains and the microbial fermentation processes used to produce pyruvate in high yield and productivity.
Collapse
|
4
|
Kammel M, Pinske C, Sawers RG. FocA and its central role in fine-tuning pH homeostasis of enterobacterial formate metabolism. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36197793 DOI: 10.1099/mic.0.001253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During enterobacterial mixed-acid fermentation, formate is generated from pyruvate by the glycyl-radical enzyme pyruvate formate-lyase (PflB). In Escherichia coli, especially at low pH, formate is then disproportionated to CO2 and H2 by the cytoplasmically oriented, membrane-associated formate hydrogenlyase (FHL) complex. If electron acceptors are available, however, formate is oxidized by periplasmically oriented, respiratory formate dehydrogenases. Formate translocation across the cytoplasmic membrane is controlled by the formate channel, FocA, a member of the formate-nitrite transporter (FNT) family of homopentameric anion channels. This review highlights recent advances in our understanding of how FocA helps to maintain intracellular formate and pH homeostasis during fermentation. Efflux and influx of formate/formic acid are distinct processes performed by FocA and both are controlled through protein interaction between FocA's N-terminal domain with PflB. Formic acid efflux by FocA helps to maintain cytoplasmic pH balance during exponential-phase growth. Uptake of formate against the electrochemical gradient (inside negative) is energetically and mechanistically challenging for a fermenting bacterium unless coupled with proton/cation symport. Translocation of formate/formic acid into the cytoplasm necessitates an active FHL complex, whose synthesis also depends on formate. Thus, FocA, FHL and PflB function together to govern formate homeostasis. We explain how FocA achieves efflux of formic acid and propose mechanisms for pH-dependent uptake of formate both with and without proton symport. We propose that FocA displays both channel- and transporter-like behaviour. Whether this translocation behaviour is shared by other members of the FNT family is also discussed.
Collapse
Affiliation(s)
- Michelle Kammel
- Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Constanze Pinske
- Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - R Gary Sawers
- Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
5
|
The Autonomous Glycyl Radical Protein GrcA Restores Activity to Inactive Full-Length Pyruvate Formate-Lyase In Vivo. J Bacteriol 2022; 204:e0007022. [PMID: 35377165 DOI: 10.1128/jb.00070-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During glucose fermentation, Escherichia coli and many other microorganisms employ the glycyl radical enzyme (GRE) pyruvate formate-lyase (PflB) to catalyze the coenzyme A-dependent cleavage of pyruvate to formate and acetyl-coenzyme A (CoA). Due to its extreme reactivity, the radical in PflB must be controlled carefully and, once generated, is particularly susceptible to dioxygen. Exposure to oxygen of the radical on glycine residue 734 of PflB results in cleavage of the polypeptide chain and consequent inactivation of the enzyme. Two decades ago, a small 14-kDa protein called YfiD (now called autonomous glycyl radical cofactor [GrcA]) was shown to be capable of restoring activity to O2-inactivated PflB in vitro; however, GrcA has never been shown to have this function in vivo. By constructing a strain with a chromosomally encoded PflB enzyme variant with a G734A residue exchange, we could show that cells retained near-wild type fermentative growth, as well as formate and H2 production; H2 is derived by enzymatic disproportionation of formate. Introducing a grcA deletion mutation into this strain completely prevented formate and H2 generation and reduced anaerobic growth. We could show that the conserved glycine at position 102 on GrcA was necessary for GrcA to restore PflB activity and that this recovered activity depended on the essential cysteine residues 418 and 419 in the active site of PflB. Together, our findings demonstrate that GrcA is capable of restoring in vivo activity to inactive full-length PflB and support a model whereby GrcA displaces the C-terminal glycyl radical domain to rescue the catalytic function of PflB. IMPORTANCE Many facultative anaerobic microorganisms use glycyl radical enzymes (GREs) to catalyze chemically challenging reactions under anaerobic conditions. Pyruvate formate-lyase (PflB) is a GRE that catalyzes cleavage of the carbon-carbon bond of pyruvate during glucose fermentation. The problem is that glycyl radicals are destroyed readily, especially by oxygen. To protect and restore activity to inactivated PflB, bacteria like Escherichia coli have a small autonomous glycyl radical cofactor protein called GrcA, which functions to rescue inactivated PflB. To date, this proposed function of GrcA has only been demonstrated in vitro. Our data reveal that GrcA rescues and restores enzyme activity to an inactive full-length form of PflB in vivo. These results have important implications for the evolution of radical-based enzyme mechanisms.
Collapse
|
6
|
Mol V, Bennett M, Sánchez BJ, Lisowska BK, Herrgård MJ, Nielsen AT, Leak DJ, Sonnenschein N. Genome-scale metabolic modeling of P. thermoglucosidasius NCIMB 11955 reveals metabolic bottlenecks in anaerobic metabolism. Metab Eng 2021; 65:123-134. [PMID: 33753231 DOI: 10.1016/j.ymben.2021.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
Parageobacillus thermoglucosidasius represents a thermophilic, facultative anaerobic bacterial chassis, with several desirable traits for metabolic engineering and industrial production. To further optimize strain productivity, a systems level understanding of its metabolism is needed, which can be facilitated by a genome-scale metabolic model. Here, we present p-thermo, the most complete, curated and validated genome-scale model (to date) of Parageobacillus thermoglucosidasius NCIMB 11955. It spans a total of 890 metabolites, 1175 reactions and 917 metabolic genes, forming an extensive knowledge base for P. thermoglucosidasius NCIMB 11955 metabolism. The model accurately predicts aerobic utilization of 22 carbon sources, and the predictive quality of internal fluxes was validated with previously published 13C-fluxomics data. In an application case, p-thermo was used to facilitate more in-depth analysis of reported metabolic engineering efforts, giving additional insight into fermentative metabolism. Finally, p-thermo was used to resolve a previously uncharacterised bottleneck in anaerobic metabolism, by identifying the minimal required supplemented nutrients (thiamin, biotin and iron(III)) needed to sustain anaerobic growth. This highlights the usefulness of p-thermo for guiding the generation of experimental hypotheses and for facilitating data-driven metabolic engineering, expanding the use of P. thermoglucosidasius as a high yield production platform.
Collapse
Affiliation(s)
- Viviënne Mol
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martyn Bennett
- The Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom; The Centre for Sustainable Chemical Technologies (CSCT), University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Benjamín J Sánchez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Beata K Lisowska
- The Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark; BioInnovation Institute, Copenhagen N, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - David J Leak
- The Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom; The Centre for Sustainable Chemical Technologies (CSCT), University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.
| | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
7
|
Kammel M, Hunger D, Sawers RG. The soluble cytoplasmic N-terminal domain of the FocA channel gates bidirectional formate translocation. Mol Microbiol 2020; 115:758-773. [PMID: 33169422 DOI: 10.1111/mmi.14641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/05/2020] [Indexed: 11/28/2022]
Abstract
FocA belongs to the pentameric FNT (formate-nitrite transporter) superfamily of anion channels, translocating formate bidirectionally across the cytoplasmic membrane of Escherichia coli and other microorganisms. While the membrane-integral core of FocA shares considerable amino acid sequence conservation with other FNT family members, the soluble cytoplasmic N-terminal domain does not. To analyze the potential biochemical function of FocA's N-terminal domain in vivo, we constructed truncation derivatives and amino acid-exchange variants, and determined their ability to translocate formate across the membrane of E. coli cells by monitoring intracellular formate levels using a formate-sensitive reporter system. Analysis of strains synthesizing these FocA variants provided insights into formate efflux. Strains lacking the ability to generate formate intracellularly allowed us to determine whether these variants could import formate or its toxic chemical analog hypophosphite. Our findings reveal that the N-terminal domain of FocA is crucial for bidirectional FocA-dependent permeation of formate across the membrane. Moreover, we show that an amino acid sequence motif and secondary structural features of the flexible N-terminal domain are important for formate translocation, and efflux/influx is influenced by pyruvate formate-lyase. The soluble N-terminal domain is, therefore, essential for bidirectional formate translocation by FocA, suggesting a "gate-keeper" function controlling anion accessibility.
Collapse
Affiliation(s)
- Michelle Kammel
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Doreen Hunger
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Robert Gary Sawers
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
8
|
Beblawy S, Philipp LA, Gescher J. Accelerated Electro-Fermentation of Acetoin in Escherichia coli by Identifying Physiological Limitations of the Electron Transfer Kinetics and the Central Metabolism. Microorganisms 2020; 8:microorganisms8111843. [PMID: 33238546 PMCID: PMC7700339 DOI: 10.3390/microorganisms8111843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 11/16/2022] Open
Abstract
Anode-assisted fermentations offer the benefit of an anoxic fermentation routine that can be applied to produce end-products with an oxidation state independent from the substrate. The whole cell biocatalyst transfers the surplus of electrons to an electrode that can be used as a non-depletable electron acceptor. So far, anode-assisted fermentations were shown to provide high carbon efficiencies but low space-time yields. This study aimed at increasing space-time yields of an Escherichia coli-based anode-assisted fermentation of glucose to acetoin. The experiments build on an obligate respiratory strain, that was advanced using selective adaptation and targeted strain development. Several transfers under respiratory conditions led to point mutations in the pfl, aceF and rpoC gene. These mutations increased anoxic growth by three-fold. Furthermore, overexpression of genes encoding a synthetic electron transport chain to methylene blue increased the electron transfer rate by 2.45-fold. Overall, these measures and a medium optimization increased the space-time yield in an electrode-assisted fermentation by 3.6-fold.
Collapse
Affiliation(s)
- Sebastian Beblawy
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany; (S.B.); (L.-A.P.)
| | - Laura-Alina Philipp
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany; (S.B.); (L.-A.P.)
| | - Johannes Gescher
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany; (S.B.); (L.-A.P.)
- Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence:
| |
Collapse
|
9
|
Combining metabolic engineering and evolutionary adaptation in Klebsiella oxytoca KMS004 to significantly improve optically pure D-(-)-lactic acid yield and specific productivity in low nutrient medium. Appl Microbiol Biotechnol 2020; 104:9565-9579. [PMID: 33009939 DOI: 10.1007/s00253-020-10933-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/15/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
In this study, K. oxytoca KMS004 (ΔadhE Δpta-ackA) was further reengineered by the deletion of frdABCD and pflB genes to divert carbon flux through D-(-)-lactate production. During fermentation of high glucose concentration, the resulted strain named K. oxytoca KIS004 showed poor in growth and glucose consumption due to its insufficient capacity to generate acetyl-CoA for biosynthesis. Evolutionary adaptation was thus employed with the strain to overcome impaired growth and acetate auxotroph. The evolved K. oxytoca KIS004-91T strain exhibited significantly higher glucose-utilizing rate and D-(-)-lactate production as a primary route to regenerate NAD+. D-(-)-lactate at concentration of 133 g/L (1.48 M), with yield and productivity of 0.98 g/g and 2.22 g/L/h, respectively, was obtained by the strain. To the best of our knowledge, this strain provided a relatively high specific productivity of 1.91 g/gCDW/h among those of other previous works. Cassava starch was also used to demonstrate a potential low-cost renewable substrate for D-(-)-lactate production. Production cost of D-(-)-lactate was estimated at $3.72/kg. Therefore, it is possible for the KIS004-91T strain to be an alternative biocatalyst offering a more economically competitive D-(-)-lactate production on an industrial scale. KEY POINTS: • KIS004-91T produced optically pure D-(-)-lactate up to 1.48 M in a low salts medium. • It possessed the highest specific D-(-)-lactate productivity than other reported strains. • Cassava starch as a cheap and renewable substrate was used for D-(-)-lactate production. • Costs related to media, fermentation, purification, and waste disposal were reduced.
Collapse
|
10
|
Schütze A, Benndorf D, Püttker S, Kohrs F, Bettenbrock K. The Impact of ackA, pta, and ackA-pta Mutations on Growth, Gene Expression and Protein Acetylation in Escherichia coli K-12. Front Microbiol 2020; 11:233. [PMID: 32153530 PMCID: PMC7047895 DOI: 10.3389/fmicb.2020.00233] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/31/2020] [Indexed: 01/06/2023] Open
Abstract
Acetate is a characteristic by-product of Escherichia coli K-12 growing in batch cultures with glucose, both under aerobic as well as anaerobic conditions. While the reason underlying aerobic acetate production is still under discussion, during anaerobic growth acetate production is important for ATP generation by substrate level phosphorylation. Under both conditions, acetate is produced by a pathway consisting of the enzyme phosphate acetyltransferase (Pta) producing acetyl-phosphate from acetyl-coenzyme A, and of the enzyme acetate kinase (AckA) producing acetate from acetyl-phosphate, a reaction that is coupled to the production of ATP. Mutants in the AckA-Pta pathway differ from each other in the potential to produce and accumulate acetyl-phosphate. In the publication at hand, we investigated different mutants in the acetate pathway, both under aerobic as well as anaerobic conditions. While under aerobic conditions only small changes in growth rate were observed, all acetate mutants showed severe reduction in growth rate and changes in the by-product pattern during anaerobic growth. The AckA- mutant showed the most severe growth defect. The glucose uptake rate and the ATP concentration were strongly reduced in this strain. This mutant exhibited also changes in gene expression. In this strain, the atoDAEB operon was significantly upregulated under anaerobic conditions hinting to the production of acetoacetate. During anaerobic growth, protein acetylation increased significantly in the ackA mutant. Acetylation of several enzymes of glycolysis and central metabolism, of aspartate carbamoyl transferase, methionine synthase, catalase and of proteins involved in translation was increased. Supplementation of methionine and uracil eliminated the additional growth defect of the ackA mutant. The data show that anaerobic, fermentative growth of mutants in the AckA-Pta pathway is reduced but still possible. Growth reduction can be explained by the lack of an important ATP generating pathway of mixed acid fermentation. An ackA deletion mutant is more severely impaired than pta or ackA-pta deletion mutants. This is most probably due to the production of acetyl-P in the ackA mutant, leading to increased protein acetylation.
Collapse
Affiliation(s)
- Andrea Schütze
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Dirk Benndorf
- Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany
| | - Sebastian Püttker
- Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany
| | - Fabian Kohrs
- Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany
| | - Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
11
|
Dragomirova N, Rothe P, Schwoch S, Hartwig S, Pinske C, Sawers RG. Insights Into the Redox Sensitivity of Chloroflexi Hup-Hydrogenase Derived From Studies in Escherichia coli: Merits and Pitfalls of Heterologous [NiFe]-Hydrogenase Synthesis. Front Microbiol 2018; 9:2837. [PMID: 30519233 PMCID: PMC6258894 DOI: 10.3389/fmicb.2018.02837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
The highly oxygen-sensitive hydrogen uptake (Hup) hydrogenase from Dehalococcoides mccartyi forms part of a protein-based respiratory chain coupling hydrogen oxidation with organohalide reduction on the outside of the cell. The HupXSL proteins were previously shown to be synthesized and enzymatically active in Escherichia coli. Here we examined the growth conditions that deliver active Hup enzyme that couples H2 oxidation to benzyl viologen (BV) reduction, and identified host factors important for this process. In a genetic background lacking the three main hydrogenases of E. coli we could show that additional deletion of genes necessary for selenocysteine biosynthesis resulted in inactive Hup enzyme, suggesting requirement of a formate dehydrogenase for Hup activity. Hup activity proved to be dependent on the presence of formate dehydrogenase (Fdh-H), which is typically associated with the H2-evolving formate hydrogenlyase (FHL) complex in the cytoplasm. Further analyses revealed that heterologous Hup activity could be recovered if the genes encoding the ferredoxin-like electron-transfer protein HupX, as well as the related HycB small subunit of Fdh-H were also deleted. These findings indicated that the catalytic HupL and electron-transferring HupS subunits were sufficient for enzyme activity with BV. The presence of the HupX or HycB proteins in the absence of Fdh-H therefore appears to cause inactivation of the HupSL enzyme. This is possibly because HupX or HycB aided transfer of electrons to the quinone pool or other oxidoreductase complexes, thus maintaining the HupSL heterodimer in a continuously oxidized state causing its inactivation. This proposal was supported by the observation that growth under either aerobic or anaerobic respiratory conditions did not yield an active HupSL. These studies thus provide a system to understand the redox sensitivity of this heterologously synthesized hydrogenase.
Collapse
Affiliation(s)
- Nadya Dragomirova
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Patricia Rothe
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Stefan Schwoch
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Stefanie Hartwig
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Constanze Pinske
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - R Gary Sawers
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
12
|
Hunger D, Röcker M, Falke D, Lilie H, Sawers RG. The C-terminal Six Amino Acids of the FNT Channel FocA Are Required for Formate Translocation But Not Homopentamer Integrity. Front Microbiol 2017; 8:1616. [PMID: 28878762 PMCID: PMC5572259 DOI: 10.3389/fmicb.2017.01616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/08/2017] [Indexed: 01/27/2023] Open
Abstract
FocA is the archetype of the pentameric formate-nitrite transporter (FNT) superfamily of channels, members of which translocate small organic and inorganic anions across the cytoplasmic membrane of microorganisms. The N- and C-termini of each protomer are cytoplasmically oriented. A Y-L-R motif is found immediately after transmembrane helix 6 at the C-terminus of FNT proteins related to FocA, or those with a role in formate translocation. Previous in vivo studies had revealed that formate translocation through FocA was controlled by interaction with the formate-producing glycyl-radical enzyme pyruvate formate-lyase (PflB) or its structural and functional homolog, TdcE. In this study we analyzed the effect on in vivo formate export and import, as well as on the stability of the homopentamer in the membrane, of successively removing amino acid residues from the C-terminus of FocA. Removal of up to five amino acids was without consequence for either formate translocation or oligomer stability. Removal of a sixth residue (R280) prevented formate uptake by FocA in a strain lacking PflB and significantly reduced, but did not prevent, formate export. Sensitivity to the toxic formate analog hypophosphite, which is also transported into the cell by FocA, was also relieved. Circular dichroism spectroscopy and blue-native PAGE analysis revealed, however, that this variant had near identical secondary and quaternary structural properties to those of native FocA. Interaction with the glycyl radical enzyme, TdcE, was also unaffected by removal of the C-terminal 6 amino acid residues, indicating that impaired interaction with TdcE was not the reason for impaired formate translocation. Removal of a further residue (L279) severely restricted formate export, the stability of the protein and its ability to form homopentamers. Together, these studies revealed that the Y278-L279-R280 motif at the C-terminus is essential for bidirectional formate translocation by FocA, but that L279 is both necessary and sufficient for homopentamer integrity.
Collapse
Affiliation(s)
- Doreen Hunger
- Institute of Microbiology, Martin-Luther University Halle-WittenbergHalle, Germany
| | - Marie Röcker
- Institute of Microbiology, Martin-Luther University Halle-WittenbergHalle, Germany
| | - Dörte Falke
- Institute of Microbiology, Martin-Luther University Halle-WittenbergHalle, Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-WittenbergHalle, Germany
| | - R Gary Sawers
- Institute of Microbiology, Martin-Luther University Halle-WittenbergHalle, Germany
| |
Collapse
|
13
|
Jaroschinsky M, Pinske C, Gary Sawers R. Differential effects of isc operon mutations on the biosynthesis and activity of key anaerobic metalloenzymes in Escherichia coli. MICROBIOLOGY-SGM 2017. [PMID: 28640740 DOI: 10.1099/mic.0.000481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Escherichia coli has two machineries for the synthesis of FeS clusters, namely Isc (iron-sulfur cluster) and Suf (sulfur formation). The Isc machinery, encoded by the iscRSUA-hscBA-fdx-iscXoperon, plays a crucial role in the biogenesis of FeS clusters for the oxidoreductases of aerobic metabolism. Less is known, however, about the role of ISC in the maturation of key multi-subunit metalloenzymes of anaerobic metabolism. Here, we determined the contribution of each iscoperon gene product towards the functionality of the major anaerobic oxidoreductases in E. coli, including three [NiFe]-hydrogenases (Hyd), two respiratory formate dehydrogenases (FDH) and nitrate reductase (NAR). Mutants lacking the cysteine desulfurase, IscS, lacked activity of all six enzymes, as well as the activity of fumaratereductase, and this was due to deficiencies in enzyme biosynthesis, maturation or FeS cluster insertion into electron-transfer components. Notably, based on anaerobic growth characteristics and metabolite patterns, the activity of the radical-S-adenosylmethionine enzyme pyruvate formate-lyase activase was independent of IscS, suggesting that FeS biogenesis for this ancient enzyme has different requirements. Mutants lacking either the scaffold protein IscU, the ferredoxin Fdx or the chaperones HscA or HscB had similar enzyme phenotypes: five of the oxidoreductases were essentially inactive, with the exception being the Hyd-3 enzyme, which formed part of the H2-producing formate hydrogenlyase (FHL) complex. Neither the frataxin-homologue CyaY nor the IscX protein was essential for synthesis of the three Hyd enzymes. Thus, while IscS is essential for H2 production in E. coli, the other ISC components are non-essential.
Collapse
Affiliation(s)
- Monique Jaroschinsky
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str 3, 06120 Halle (Saale), Germany.,Present address: ICP Analytik GmbH & Co. KG, Brandenburger Platz 1, 24211 Preetz, Germany
| | - Constanze Pinske
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str 3, 06120 Halle (Saale), Germany
| | - R Gary Sawers
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str 3, 06120 Halle (Saale), Germany
| |
Collapse
|
14
|
Effect of acetate as a co-feedstock on the production of poly(lactate-co-3-hydroxyalkanoate) by pflA-deficient Escherichia coli RSC10. J Biosci Bioeng 2017; 123:547-554. [DOI: 10.1016/j.jbiosc.2016.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/14/2016] [Indexed: 11/23/2022]
|
15
|
Lara AR, Jaén KE, Sigala JC, Mühlmann M, Regestein L, Büchs J. Characterization of Endogenous and Reduced Promoters for Oxygen-Limited Processes Using Escherichia coli. ACS Synth Biol 2017; 6:344-356. [PMID: 27715021 DOI: 10.1021/acssynbio.6b00233] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxygen limitation can be used as a simple environmental inducer for the expression of target genes. However, there is scarce information on the characteristics of microaerobic promoters potentially useful for cell engineering and synthetic biology applications. Here, we characterized the Vitreoscilla hemoglobin promoter (Pvgb) and a set of microaerobic endogenous promoters in Escherichia coli. Oxygen-limited cultures at different maximum oxygen transfer rates were carried out. The FMN-binding fluorescent protein (FbFP), which is a nonoxygen dependent marker protein, was used as a reporter. Fluorescence and fluorescence emission rates under oxygen-limited conditions were the highest when FbFP was under transcriptional control of PadhE, Ppfl and Pvgb. The lengths of the E. coli endogenous promoters were shortened by 60%, maintaining their key regulatory elements. This resulted in improved promoter activity in most cases, particularly for PadhE, Ppfl and PnarK. Selected promoters were also evaluated using an engineered E. coli strain expressing Vitreoscilla hemoglobin (VHb). The presence of the VHb resulted in a better repression using these promoters under aerobic conditions, and increased the specific growth and fluorescence emission rates under oxygen-limited conditions. These results are useful for the selection of promoters for specific applications and for the design of modified artificial promoters.
Collapse
Affiliation(s)
- Alvaro R. Lara
- Departamento
de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa. Av. Vasco de Quiroga 4871, Santa
Fe, C.P. 05348, Mexico City, México
| | - Karim E. Jaén
- Departamento
de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa. Av. Vasco de Quiroga 4871, Santa
Fe, C.P. 05348, Mexico City, México
| | - Juan-Carlos Sigala
- Departamento
de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa. Av. Vasco de Quiroga 4871, Santa
Fe, C.P. 05348, Mexico City, México
| | - Martina Mühlmann
- RWTH Aachen University, AVT - Biochemical Engineering, Worringer Weg 1, 52074 Aachen, Germany
| | - Lars Regestein
- RWTH Aachen University, AVT - Biochemical Engineering, Worringer Weg 1, 52074 Aachen, Germany
| | - Jochen Büchs
- RWTH Aachen University, AVT - Biochemical Engineering, Worringer Weg 1, 52074 Aachen, Germany
| |
Collapse
|
16
|
Genomic reconstruction of multiple lineages of uncultured benthic archaea suggests distinct biogeochemical roles and ecological niches. ISME JOURNAL 2017; 11:1118-1129. [PMID: 28085154 DOI: 10.1038/ismej.2016.189] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/10/2016] [Accepted: 11/19/2016] [Indexed: 01/14/2023]
Abstract
Genomic bins belonging to multiple archaeal lineages were recovered from distinct redox regimes in sediments of the White Oak River estuary. The reconstructed archaeal genomes were identified as belonging to the rice cluster subgroups III and V (RC-III, RC-V), the Marine Benthic Group D (MBG-D), and a newly described archaeal class, the Theionarchaea. The metabolic capabilities of these uncultured archaea were inferred and indicated a common capability for extracellular protein degradation, supplemented by other pathways. The multiple genomic bins within the MBG-D archaea shared a nearly complete reductive acetyl-CoA pathway suggesting acetogenic capabilities. In contrast, the RC-III metabolism appeared centered on the degradation of detrital proteins and production of H2, whereas the RC-V archaea lacked capabilities for protein degradation and uptake, and appeared to be specialized on carbohydrate fermentation. The Theionarchaea appeared as complex metabolic hybrids; encoding a complete tricarboxylic acid cycle permitting carbon (acetyl-CoA) oxidation, together with a complete reductive acetyl-CoA pathway and sulfur reduction by a sulfhydrogenase. The differentiated inferred capabilities of these uncultured archaeal lineages indicated lineage-specific linkages with the nitrogen, carbon and sulfur cycles. The predicted metabolisms of these archaea suggest preferences for distinct geochemical niches within the estuarine sedimentary environment.
Collapse
|
17
|
The MarR-Type Regulator Rdh2R Regulates rdh Gene Transcription in Dehalococcoides mccartyi Strain CBDB1. J Bacteriol 2016; 198:3130-3141. [PMID: 27621279 DOI: 10.1128/jb.00419-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/24/2016] [Indexed: 11/20/2022] Open
Abstract
Reductive dehalogenases are essential enzymes in organohalide respiration and consist of a catalytic subunit A and a membrane protein B, encoded by rdhAB genes. Thirty-two rdhAB genes exist in the genome of Dehalococcoides mccartyi strain CBDB1. To gain a first insight into the regulation of rdh operons, the control of gene expression of two rdhAB genes (cbdbA1453/cbdbA1452 and cbdbA1455/cbdbA1454) by the MarR-type regulator Rdh2R (cbdbA1456) encoded directly upstream was studied using heterologous expression and in vitro studies. Promoter-lacZ reporter fusions were generated and integrated into the genome of the Escherichia coli host. The lacZ reporter activities of both rdhA promoters decreased upon transformation of the cells with a plasmid carrying the rdh2R gene, suggesting that Rdh2R acts as repressor, whereas the lacZ reporter activity of the rdh2R promoter was not affected. The transcriptional start sites of both rdhA genes in strain CBDB1 and/or the heterologous host mapped to a conserved direct repeat with 11- to 13-bp half-sites. DNase I footprinting revealed binding of Rdh2R to a ∼30-bp sequence covering the complete direct repeat in both promoters, including the transcriptional start sites. Equilibrium sedimentation ultracentrifugation revealed that Rdh2R binds as tetramer to the direct-repeat motif of the rdhA (cbdbA1455) promoter. Using electrophoretic mobility shift assays, a similar binding affinity was found for both rdhA promoters. In the presence of only one half-site of the direct repeat, the interaction was strongly reduced, suggesting a positive cooperativity of binding, for which unusual short palindromes within the direct-repeat half-sites might play an important role. IMPORTANCE Dehalococcoides mccartyi strains are obligate anaerobes that grow by organohalide respiration. They have an important bioremediation potential because they are capable of reducing a multitude of halogenated compounds to less toxic products. We are now beginning to understand how these organisms make use of this large catabolic potential, whereby D. mccartyi expresses dehalogenases in a compound-specific fashion. MarR-type regulators are often encoded in the vicinity of reductive dehalogenase genes. In this study, we made use of heterologous expression and in vitro studies to demonstrate that the MarR-type transcription factor Rdh2R acts as a negative regulator. We identify its binding site on the DNA, which suggests a mechanism by which it controls the expression of two adjacent reductive dehalogenase operons.
Collapse
|
18
|
Dzien P, Fages A, Jona G, Brindle KM, Schwaiger M, Frydman L. Following Metabolism in Living Microorganisms by Hyperpolarized (1)H NMR. J Am Chem Soc 2016; 138:12278-86. [PMID: 27556338 DOI: 10.1021/jacs.6b07483] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dissolution dynamic nuclear polarization (dDNP) is used to enhance the sensitivity of nuclear magnetic resonance (NMR), enabling monitoring of metabolism and specific enzymatic reactions in vivo. dDNP involves rapid sample dissolution and transfer to a spectrometer/scanner for subsequent signal detection. So far, most biologically oriented dDNP studies have relied on hyperpolarizing long-lived nuclear spin species such as (13)C in small molecules. While advantages could also arise from observing hyperpolarized (1)H, short relaxation times limit the utility of prepolarizing this sensitive but fast relaxing nucleus. Recently, it has been reported that (1)H NMR peaks in solution-phase experiments could be hyperpolarized by spontaneous magnetization transfers from bound (13)C nuclei following dDNP. This work demonstrates the potential of this sensitivity-enhancing approach to probe the enzymatic process that could not be suitably resolved by (13)C dDNP MR. Here we measured, in microorganisms, the action of pyruvate decarboxylase (PDC) and pyruvate formate lyase (PFL)-enzymes that catalyze the decarboxylation of pyruvate to form acetaldehyde and formate, respectively. While (13)C NMR did not possess the resolution to distinguish the starting pyruvate precursor from the carbonyl resonances in the resulting products, these processes could be monitored by (1)H NMR at 500 MHz. These observations were possible in both yeast and bacteria in minute-long kinetic measurements where the hyperpolarized (13)C enhanced, via (13)C → (1)H cross-relaxation, the signals of protons binding to the (13)C over the course of enzymatic reactions. In addition to these spontaneous heteronuclear enhancement experiments, single-shot acquisitions based on J-driven (13)C → (1)H polarization transfers were also carried out. These resulted in higher signal enhancements of the (1)H resonances but were not suitable for multishot kinetic studies. The potential of these (1)H-based approaches for measurements in vivo is briefly discussed.
Collapse
Affiliation(s)
- Piotr Dzien
- Klinik und Poliklinik für Nuklearmedizin, Technische Universität München , München 81675, Germany
- Cancer Research UK Cancer Institute , Cambridge CB2 0RE, United Kingdom
| | | | | | - Kevin M Brindle
- Cancer Research UK Cancer Institute , Cambridge CB2 0RE, United Kingdom
| | - Markus Schwaiger
- Klinik und Poliklinik für Nuklearmedizin, Technische Universität München , München 81675, Germany
| | | |
Collapse
|
19
|
Abstract
Pyruvate and acetyl-CoA form the backbone of central metabolism. The nonoxidative cleavage of pyruvate to acetyl-CoA and formate by the glycyl radical enzyme pyruvate formate lyase is one of the signature reactions of mixed-acid fermentation in enterobacteria. Under these conditions, formic acid accounts for up to one-third of the carbon derived from glucose. The further metabolism of acetyl-CoA to acetate via acetyl-phosphate catalyzed by phosphotransacetylase and acetate kinase is an exemplar of substrate-level phosphorylation. Acetyl-CoA can also be used as an acceptor of the reducing equivalents generated during glycolysis, whereby ethanol is formed by the polymeric acetaldehyde/alcohol dehydrogenase (AdhE) enzyme. The metabolism of acetyl-CoA via either the acetate or the ethanol branches is governed by the cellular demand for ATP and the necessity to reoxidize NADH. Consequently, in the absence of an electron acceptor mutants lacking either branch of acetyl-CoA metabolism fail to cleave pyruvate, despite the presence of PFL, and instead reduce it to D-lactate by the D-lactate dehydrogenase. The conversion of PFL to the active, radical-bearing species is controlled by a radical-SAM enzyme, PFL-activase. All of these reactions are regulated in response to the prevalent cellular NADH:NAD+ ratio. In contrast to Escherichia coli and Salmonella species, some genera of enterobacteria, e.g., Klebsiella and Enterobacter, produce the more neutral product 2,3-butanediol and considerable amounts of CO2 as fermentation products. In these bacteria, two molecules of pyruvate are converted to α-acetolactate (AL) by α-acetolactate synthase (ALS). AL is then decarboxylated and subsequently reduced to the product 2,3-butandiol.
Collapse
|
20
|
Munjal N, Jawed K, Wajid S, Yazdani SS. A constitutive expression system for cellulase secretion in Escherichia coli and its use in bioethanol production. PLoS One 2015; 10:e0119917. [PMID: 25768292 PMCID: PMC4358894 DOI: 10.1371/journal.pone.0119917] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/18/2015] [Indexed: 02/05/2023] Open
Abstract
The production of biofuels from lignocellulosic biomass appears to be attractive and viable due to the abundance and availability of this biomass. The hydrolysis of this biomass, however, is challenging because of the complex lignocellulosic structure. The ability to produce hydrolytic cellulase enzymes in a cost-effective manner will certainly accelerate the process of making lignocellulosic ethanol production a commercial reality. These cellulases may need to be produced aerobically to generate large amounts of protein in a short time or anaerobically to produce biofuels from cellulose via consolidated bioprocessing. Therefore, it is important to identify a promoter that can constitutively drive the expression of cellulases under both aerobic and anaerobic conditions without the need for an inducer. Using lacZ as reporter gene, we analyzed the strength of the promoters of four genes, namely lacZ, gapA, ldhA and pflB, and found that the gapA promoter yielded the maximum expression of the β-galactosidase enzyme under both aerobic and anaerobic conditions. We further cloned the genes for two cellulolytic enzymes, β-1,4-endoglucanase and β-1,4-glucosidase, under the control of the gapA promoter, and we expressed these genes in Escherichia coli, which secreted the products into the extracellular medium. An ethanologenic E. colistrain transformed with the secretory β-glucosidase gene construct fermented cellobiose in both defined and complex medium. This recombinant strain also fermented wheat straw hydrolysate containing glucose, xylose and cellobiose into ethanol with an 85% efficiency of biotransformation. An ethanologenic strain that constitutively secretes a cellulolytic enzyme is a promising platform for producing lignocellulosic ethanol.
Collapse
Affiliation(s)
- Neha Munjal
- Synthetic Biology and Biofuels Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Kamran Jawed
- Synthetic Biology and Biofuels Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Saima Wajid
- Centre for Biotechnology, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Syed Shams Yazdani
- Synthetic Biology and Biofuels Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
21
|
Vivijs B, Haberbeck LU, Baiye Mfortaw Mbong V, Bernaerts K, Geeraerd AH, Aertsen A, Michiels CW. Formate hydrogen lyase mediates stationary-phase deacidification and increases survival during sugar fermentation in acetoin-producing enterobacteria. Front Microbiol 2015; 6:150. [PMID: 25762991 PMCID: PMC4340222 DOI: 10.3389/fmicb.2015.00150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/09/2015] [Indexed: 12/02/2022] Open
Abstract
Two fermentation types exist in the Enterobacteriaceae family. Mixed-acid fermenters produce substantial amounts of lactate, formate, acetate, and succinate, resulting in lethal medium acidification. On the other hand, 2,3-butanediol fermenters switch to the production of the neutral compounds acetoin and 2,3-butanediol and even deacidify the environment after an initial acidification phase, thereby avoiding cell death. We equipped three mixed-acid fermenters (Salmonella Typhimurium, S. Enteritidis and Shigella flexneri) with the acetoin pathway from Serratia plymuthica to investigate the mechanisms of deacidification. Acetoin production caused attenuated acidification during exponential growth in all three bacteria, but stationary-phase deacidification was only observed in Escherichia coli and Salmonella, suggesting that it was not due to the consumption of protons accompanying acetoin production. To identify the mechanism, 34 transposon mutants of acetoin-producing E. coli that no longer deacidified the culture medium were isolated. The mutations mapped to 16 genes, all involved in formate metabolism. Formate is an end product of mixed-acid fermentation that can be converted to H2 and CO2 by the formate hydrogen lyase (FHL) complex, a reaction that consumes protons and thus can explain medium deacidification. When hycE, encoding the large subunit of hydrogenase 3 that is part of the FHL complex, was deleted in acetoin-producing E. coli, deacidification capacity was lost. Metabolite analysis in E. coli showed that introduction of the acetoin pathway reduced lactate and acetate production, but increased glucose consumption and formate and ethanol production. Analysis of a hycE mutant in S. plymuthica confirmed that medium deacidification in this organism is also mediated by FHL. These findings improve our understanding of the physiology and function of fermentation pathways in Enterobacteriaceae.
Collapse
Affiliation(s)
- Bram Vivijs
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | - Leticia U Haberbeck
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium ; Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | - Victor Baiye Mfortaw Mbong
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | - Kristel Bernaerts
- Chemical and Biochemical Process Technology and Control Section, Department of Chemical Engineering, Faculty of Engineering Science KU Leuven, Leuven, Belgium
| | - Annemie H Geeraerd
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| | - Chris W Michiels
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven Leuven, Belgium
| |
Collapse
|
22
|
One-carbon metabolic pathway rewiring in Escherichia coli reveals an evolutionary advantage of 10-formyltetrahydrofolate synthetase (Fhs) in survival under hypoxia. J Bacteriol 2014; 197:717-26. [PMID: 25448816 DOI: 10.1128/jb.02365-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In cells, N(10)-formyltetrahydrofolate (N(10)-fTHF) is required for formylation of eubacterial/organellar initiator tRNA and purine nucleotide biosynthesis. Biosynthesis of N(10)-fTHF is catalyzed by 5,10-methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (FolD) and/or 10-formyltetrahydrofolate synthetase (Fhs). All eubacteria possess FolD, but some possess both FolD and Fhs. However, the reasons for possessing Fhs in addition to FolD have remained unclear. We used Escherichia coli, which naturally lacks fhs, as our model. We show that in E. coli, the essential function of folD could be replaced by Clostridium perfringens fhs when it was provided on a medium-copy-number plasmid or integrated as a single-copy gene in the chromosome. The fhs-supported folD deletion (ΔfolD) strains grow well in a complex medium. However, these strains require purines and glycine as supplements for growth in M9 minimal medium. The in vivo levels of N(10)-fTHF in the ΔfolD strain (supported by plasmid-borne fhs) were limiting despite the high capacity of the available Fhs to synthesize N(10)-fTHF in vitro. Auxotrophy for purines could be alleviated by supplementing formate to the medium, and that for glycine was alleviated by engineering THF import into the cells. The ΔfolD strain (harboring fhs on the chromosome) showed a high NADP(+)-to-NADPH ratio and hypersensitivity to trimethoprim. The presence of fhs in E. coli was disadvantageous for its aerobic growth. However, under hypoxia, E. coli strains harboring fhs outcompeted those lacking it. The computational analysis revealed a predominant natural occurrence of fhs in anaerobic and facultative anaerobic bacteria.
Collapse
|
23
|
The class III ribonucleotide reductase from Neisseria bacilliformis can utilize thioredoxin as a reductant. Proc Natl Acad Sci U S A 2014; 111:E3756-65. [PMID: 25157154 DOI: 10.1073/pnas.1414396111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The class III anaerobic ribonucleotide reductases (RNRs) studied to date couple the reduction of ribonucleotides to deoxynucleotides with the oxidation of formate to CO2. Here we report the cloning and heterologous expression of the Neisseria bacilliformis class III RNR and show that it can catalyze nucleotide reduction using the ubiquitous thioredoxin/thioredoxin reductase/NADPH system. We present a structural model based on a crystal structure of the homologous Thermotoga maritima class III RNR, showing its architecture and the position of conserved residues in the active site. Phylogenetic studies suggest that this form of class III RNR is present in bacteria and archaea that carry out diverse types of anaerobic metabolism.
Collapse
|
24
|
Morishige Y, Tanda M, Fujimori K, Mino Y, Amano F. Induction of Viable but Non-culturable (VBNC) State in Salmonella Cultured in M9 Minimal Medium Containing High Glucose. Biol Pharm Bull 2014; 37:1617-25. [DOI: 10.1248/bpb.b14-00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuta Morishige
- Laboratory of Biodefense & Regulation, Osaka University of Pharmaceutical Sciences
| | - Masaaki Tanda
- Laboratory of Biodefense & Regulation, Osaka University of Pharmaceutical Sciences
| | - Ko Fujimori
- Laboratory of Biodefense & Regulation, Osaka University of Pharmaceutical Sciences
| | - Yoshiki Mino
- Laboratory of Analytical Pharmacology, Osaka University of Pharmaceutical Sciences
| | - Fumio Amano
- Laboratory of Biodefense & Regulation, Osaka University of Pharmaceutical Sciences
| |
Collapse
|
25
|
Lo A, Weiner JH, Li L. Analytical performance of reciprocal isotope labeling of proteome digests for quantitative proteomics and its application for comparative studies of aerobic and anaerobic Escherichia coli proteomes. Anal Chim Acta 2013; 795:25-35. [DOI: 10.1016/j.aca.2013.07.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/14/2013] [Accepted: 07/29/2013] [Indexed: 12/18/2022]
|
26
|
Pinske C, Jaroschinsky M, Sawers RG. Levels of control exerted by the Isc iron-sulfur cluster system on biosynthesis of the formate hydrogenlyase complex. MICROBIOLOGY-SGM 2013; 159:1179-1189. [PMID: 23558265 DOI: 10.1099/mic.0.066142-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The membrane-associated formate hydrogenlyase (FHL) complex of bacteria like Escherichia coli is responsible for the disproportionation of formic acid into the gaseous products carbon dioxide and dihydrogen. It comprises minimally seven proteins including FdhF and HycE, the catalytic subunits of formate dehydrogenase H and hydrogenase 3, respectively. Four proteins of the FHL complex have iron-sulphur cluster ([Fe-S]) cofactors. Biosynthesis of [Fe-S] is principally catalysed by the Isc or Suf systems and each comprises proteins for assembly and for delivery of [Fe-S]. This study demonstrates that the Isc system is essential for biosynthesis of an active FHL complex. In the absence of the IscU assembly protein no hydrogen production or activity of FHL subcomponents was detected. A deletion of the iscU gene also resulted in reduced intracellular formate levels partially due to impaired synthesis of pyruvate formate-lyase, which is dependent on the [Fe-S]-containing regulator FNR. This caused reduced expression of the formate-inducible fdhF gene. The A-type carrier (ATC) proteins IscA and ErpA probably deliver [Fe-S] to specific apoprotein components of the FHL complex because mutants lacking either protein exhibited strongly reduced hydrogen production. Neither ATC protein could compensate for the lack of the other, suggesting that they had independent roles in [Fe-S] delivery to complex components. Together, the data indicate that the Isc system modulates FHL complex biosynthesis directly by provision of [Fe-S] as well as indirectly by influencing gene expression through the delivery of [Fe-S] to key regulators and enzymes that ultimately control the generation and oxidation of formate.
Collapse
Affiliation(s)
- Constanze Pinske
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.,Institute of Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Monique Jaroschinsky
- Institute of Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - R Gary Sawers
- Institute of Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| |
Collapse
|
27
|
Wagner A, Segler L, Kleinsteuber S, Sawers G, Smidt H, Lechner U. Regulation of reductive dehalogenase gene transcription in Dehalococcoides mccartyi. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120317. [PMID: 23479747 DOI: 10.1098/rstb.2012.0317] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The remarkable capacity of the genus Dehalococcoides to dechlorinate a multitude of different chlorinated organic compounds reflects the number and diversity of genes in the genomes of Dehalococcoides species encoding reductive dehalogenase homologues (rdh). Most of these genes are located in the vicinity of genes encoding multiple antibiotic resistance regulator (MarR)-type or two-component system regulators. Here, the transcriptional response of rdhA genes (coding for the catalytic subunit) to 2,3- and 1,3-dichlorodibenzo-p-dioxin (DCDD) was studied in Dehalococcoides mccartyi strain CBDB1. Almost all rdhA genes were transcribed in the presence of 2,3-DCDD, albeit at different levels as shown for the transcripts of cbrA, cbdbA1453, cbdbA1624 and cbdbA1588. By contrast, 1,3-DCDD did not induce rdhA transcription. The putative MarR CbdbA1625 was heterologously produced and its ability to bind in vitro to the overlapping promoter regions of the genes cbdbA1624 and cbdbA1625 was demonstrated. To analyse regulation in vivo, single-copy transcriptional promoter-lacZ fusions of different rdhA genes and of cbdbA1625 were constructed and introduced into the heterologous host Escherichia coli, and expression levels of the fusions were measured. The cbdbA1625 gene was cloned into a vector allowing a regulation of expression by arabinose and it was transformed into the strains containing the rdh-promoter-lacZ fusion derivatives. CbdbA1625 was shown to downregulate transcription from its own promoter resulting in a 40-50% reduction in the β-galactosidase activity, giving the first hint that it acts as a repressor.
Collapse
Affiliation(s)
- Anke Wagner
- Institute of Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Halle 06099, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Coordination of FocA and pyruvate formate-lyase synthesis in Escherichia coli demonstrates preferential translocation of formate over other mixed-acid fermentation products. J Bacteriol 2013; 195:1428-35. [PMID: 23335413 DOI: 10.1128/jb.02166-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterobacteria such as Escherichia coli generate formate, lactate, acetate, and succinate as major acidic fermentation products. Accumulation of these products in the cytoplasm would lead to uncoupling of the membrane potential, and therefore they must be either metabolized rapidly or exported from the cell. E. coli has three membrane-localized formate dehydrogenases (FDHs) that oxidize formate. Two of these have their respective active sites facing the periplasm, and the other is in the cytoplasm. The bidirectional FocA channel translocates formate across the membrane delivering substrate to these FDHs. FocA synthesis is tightly coupled to synthesis of pyruvate formate-lyase (PflB), which generates formate. In this study, we analyze the consequences on the fermentation product spectrum of altering FocA levels, uncoupling FocA from PflB synthesis or blocking formate metabolism. Changing the focA translation initiation codon from GUG to AUG resulted in a 20-fold increase in FocA during fermentation and an ∼3-fold increase in PflB. Nevertheless, the fermentation product spectrum throughout the growth phase remained similar to that of the wild type. Formate, acetate, and succinate were exported, but only formate was reimported by these cells. Lactate accumulated in the growth medium only in mutants lacking FocA, despite retaining active PflB, or when formate could not be metabolized intracellularly. Together, these results indicate that FocA has a strong preference for formate as a substrate in vivo and not other acidic fermentation products. The tight coupling between FocA and PflB synthesis ensures adequate substrate delivery to the appropriate FDH.
Collapse
|
29
|
Ruiz JA, de Almeida A, Godoy MS, Mezzina MP, Bidart GN, Méndez BS, Pettinari MJ, Nikel PI. Escherichia coli redox mutants as microbial cell factories for the synthesis of reduced biochemicals. Comput Struct Biotechnol J 2013; 3:e201210019. [PMID: 24688679 PMCID: PMC3962086 DOI: 10.5936/csbj.201210019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/09/2012] [Accepted: 12/13/2012] [Indexed: 11/23/2022] Open
Abstract
Bioprocesses conducted under conditions with restricted O2 supply are increasingly exploited for the synthesis of reduced biochemicals using different biocatalysts. The model facultative aerobe Escherichia coli, the microbial cell factory par excellence, has elaborate sensing and signal transduction mechanisms that respond to the availability of electron acceptors and alternative carbon sources in the surrounding environment. In particular, the ArcBA and CreBC two-component signal transduction systems are largely responsible for the metabolic regulation of redox control in response to O2 availability and carbon source utilization, respectively. Significant advances in the understanding of the biochemical, genetic, and physiological duties of these regulatory systems have been achieved in recent years. This situation allowed to rationally-design novel engineering approaches that ensure optimal carbon and energy flows within central metabolism, as well as to manipulate redox homeostasis, in order to optimize the production of industrially-relevant metabolites. In particular, metabolic flux analysis provided new clues to understand the metabolic regulation mediated by the ArcBA and CreBC systems. Genetic manipulation of these regulators proved useful for designing microbial cells factories tailored for the synthesis of reduced biochemicals with added value, such as poly(3-hydroxybutyrate), under conditions with restricted O2 supply. This network-wide strategy is in contrast with traditional metabolic engineering approaches, that entail direct modification of the pathway(s) at stake, and opens new avenues for the targeted modulation of central catabolic pathways at the transcriptional level.
Collapse
Affiliation(s)
- Jimena A Ruiz
- Departamento de Química Biológica (IQUIBICEN-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ; Instituto de Biociencias Agrícolas y Ambientales (INBA-CONICET), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra de Almeida
- Departamento de Química Biológica (IQUIBICEN-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Manuel S Godoy
- Departamento de Química Biológica (IQUIBICEN-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela P Mezzina
- Departamento de Química Biológica (IQUIBICEN-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gonzalo N Bidart
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde" (IIB-CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Beatriz S Méndez
- Departamento de Química Biológica (IQUIBICEN-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Julia Pettinari
- Departamento de Química Biológica (IQUIBICEN-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo I Nikel
- Departamento de Química Biológica (IQUIBICEN-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ; Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde" (IIB-CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
30
|
Nikel PI, de Lorenzo V. Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene. Metab Eng 2013; 15:98-112. [DOI: 10.1016/j.ymben.2012.09.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/21/2012] [Indexed: 11/29/2022]
|
31
|
Zhu Y, Song J, Xu Z, Sun J, Zhang Y, Li Y, Ma Y. Development of thermodynamic optimum searching (TOS) to improve the prediction accuracy of flux balance analysis. Biotechnol Bioeng 2012; 110:914-23. [DOI: 10.1002/bit.24739] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/31/2012] [Accepted: 09/26/2012] [Indexed: 11/09/2022]
|
32
|
Rydzak T, McQueen PD, Krokhin OV, Spicer V, Ezzati P, Dwivedi RC, Shamshurin D, Levin DB, Wilkins JA, Sparling R. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression. BMC Microbiol 2012; 12:214. [PMID: 22994686 PMCID: PMC3492117 DOI: 10.1186/1471-2180-12-214] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/11/2012] [Indexed: 01/21/2023] Open
Abstract
Background Clostridium thermocellum produces H2 and ethanol, as well as CO2, acetate, formate, and lactate, directly from cellulosic biomass. It is therefore an attractive model for biofuel production via consolidated bioprocessing. Optimization of end-product yields and titres is crucial for making biofuel production economically feasible. Relative protein expression profiles may provide targets for metabolic engineering, while understanding changes in protein expression and metabolism in response to carbon limitation, pH, and growth phase may aid in reactor optimization. We performed shotgun 2D-HPLC-MS/MS on closed-batch cellobiose-grown exponential phase C. thermocellum cell-free extracts to determine relative protein expression profiles of core metabolic proteins involved carbohydrate utilization, energy conservation, and end-product synthesis. iTRAQ (isobaric tag for relative and absolute quantitation) based protein quantitation was used to determine changes in core metabolic proteins in response to growth phase. Results Relative abundance profiles revealed differential levels of putative enzymes capable of catalyzing parallel pathways. The majority of proteins involved in pyruvate catabolism and end-product synthesis were detected with high abundance, with the exception of aldehyde dehydrogenase, ferredoxin-dependent Ech-type [NiFe]-hydrogenase, and RNF-type NADH:ferredoxin oxidoreductase. Using 4-plex 2D-HPLC-MS/MS, 24% of the 144 core metabolism proteins detected demonstrated moderate changes in expression during transition from exponential to stationary phase. Notably, proteins involved in pyruvate synthesis decreased in stationary phase, whereas proteins involved in glycogen metabolism, pyruvate catabolism, and end-product synthesis increased in stationary phase. Several proteins that may directly dictate end-product synthesis patterns, including pyruvate:ferredoxin oxidoreductases, alcohol dehydrogenases, and a putative bifurcating hydrogenase, demonstrated differential expression during transition from exponential to stationary phase. Conclusions Relative expression profiles demonstrate which proteins are likely utilized in carbohydrate utilization and end-product synthesis and suggest that H2 synthesis occurs via bifurcating hydrogenases while ethanol synthesis is predominantly catalyzed by a bifunctional aldehyde/alcohol dehydrogenase. Differences in expression profiles of core metabolic proteins in response to growth phase may dictate carbon and electron flux towards energy storage compounds and end-products. Combined knowledge of relative protein expression levels and their changes in response to physiological conditions may aid in targeted metabolic engineering strategies and optimization of fermentation conditions for improvement of biofuels production.
Collapse
Affiliation(s)
- Thomas Rydzak
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nam H, Lewis NE, Lerman JA, Lee DH, Chang RL, Kim D, Palsson BO. Network context and selection in the evolution to enzyme specificity. Science 2012; 337:1101-4. [PMID: 22936779 DOI: 10.1126/science.1216861] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Enzymes are thought to have evolved highly specific catalytic activities from promiscuous ancestral proteins. By analyzing a genome-scale model of Escherichia coli metabolism, we found that 37% of its enzymes act on a variety of substrates and catalyze 65% of the known metabolic reactions. However, it is not apparent why these generalist enzymes remain. Here, we show that there are marked differences between generalist enzymes and specialist enzymes, known to catalyze a single chemical reaction on one particular substrate in vivo. Specialist enzymes (i) are frequently essential, (ii) maintain higher metabolic flux, and (iii) require more regulation of enzyme activity to control metabolic flux in dynamic environments than do generalist enzymes. Furthermore, these properties are conserved in Archaea and Eukarya. Thus, the metabolic network context and environmental conditions influence enzyme evolution toward high specificity.
Collapse
Affiliation(s)
- Hojung Nam
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093-0412, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
The formate channel FocA exports the products of mixed-acid fermentation. Proc Natl Acad Sci U S A 2012; 109:13254-9. [PMID: 22847446 DOI: 10.1073/pnas.1204201109] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Formate is a major metabolite in the anaerobic fermentation of glucose by many enterobacteria. It is translocated across cellular membranes by the pentameric ion channel/transporter FocA that, together with the nitrite channel NirC, forms the formate/nitrite transporter (FNT) family of membrane transport proteins. Here we have carried out an electrophysiological analysis of FocA from Salmonella typhimurium to characterize the channel properties and assess its specificity toward formate and other possible permeating ions. Single-channel currents for formate, hypophosphite and nitrite revealed two mechanistically distinct modes of gating that reflect different types of structural rearrangements in the transport channel of each FocA protomer. Moreover, FocA did not conduct cations or divalent anions, but the chloride anion was identified as further transported species, along with acetate, lactate and pyruvate. Formate, acetate and lactate are major end products of anaerobic mixed-acid fermentation, the pathway where FocA is predominantly required, so that this channel is ideally adapted to act as a multifunctional export protein to prevent their intracellular accumulation. Because of the high degree of conservation in the residues forming the transport channel among FNT family members, the flexibility in conducting multiple molecules is most likely a general feature of these proteins.
Collapse
|
35
|
Pinske C, Bönn M, Krüger S, Lindenstrauß U, Sawers RG. Metabolic deficiences revealed in the biotechnologically important model bacterium Escherichia coli BL21(DE3). PLoS One 2011; 6:e22830. [PMID: 21826210 PMCID: PMC3149613 DOI: 10.1371/journal.pone.0022830] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/01/2011] [Indexed: 11/26/2022] Open
Abstract
The Escherichia coli B strain BL21(DE3) has had a profound impact on biotechnology through its use in the production of recombinant proteins. Little is understood, however, regarding the physiology of this important E. coli strain. We show here that BL21(DE3) totally lacks activity of the four [NiFe]-hydrogenases, the three molybdenum- and selenium-containing formate dehydrogenases and molybdenum-dependent nitrate reductase. Nevertheless, all of the structural genes necessary for the synthesis of the respective anaerobic metalloenzymes are present in the genome. However, the genes encoding the high-affinity molybdate transport system and the molybdenum-responsive transcriptional regulator ModE are absent from the genome. Moreover, BL21(DE3) has a nonsense mutation in the gene encoding the global oxygen-responsive transcriptional regulator FNR. The activities of the two hydrogen-oxidizing hydrogenases, therefore, could be restored to BL21(DE3) by supplementing the growth medium with high concentrations of Ni²⁺ (Ni²⁺-transport is FNR-dependent) or by introducing a wild-type copy of the fnr gene. Only combined addition of plasmid-encoded fnr and high concentrations of MoO₄²⁻ ions could restore hydrogen production to BL21(DE3); however, to only 25-30% of a K-12 wildtype. We could show that limited hydrogen production from the enzyme complex responsible for formate-dependent hydrogen evolution was due solely to reduced activity of the formate dehydrogenase (FDH-H), not the hydrogenase component. The activity of the FNR-dependent formate dehydrogenase, FDH-N, could not be restored, even when the fnr gene and MoO₄²⁻ were supplied; however, nitrate reductase activity could be recovered by combined addition of MoO₄²⁻ and the fnr gene. This suggested that a further component specific for biosynthesis or activity of formate dehydrogenases H and N was missing. Re-introduction of the gene encoding ModE could only partially restore the activities of both enzymes. Taken together these results demonstrate that BL21(DE3) has major defects in anaerobic metabolism, metal ion transport and metalloprotein biosynthesis.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus Bönn
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sara Krüger
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ute Lindenstrauß
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - R. Gary Sawers
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
36
|
Jozefczuk S, Klie S, Catchpole G, Szymanski J, Cuadros-Inostroza A, Steinhauser D, Selbig J, Willmitzer L. Metabolomic and transcriptomic stress response of Escherichia coli. Mol Syst Biol 2010; 6:364. [PMID: 20461071 PMCID: PMC2890322 DOI: 10.1038/msb.2010.18] [Citation(s) in RCA: 339] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 03/05/2010] [Indexed: 12/14/2022] Open
Abstract
GC-MS-based analysis of the metabolic response of Escherichia coli exposed to four different stress conditions reveals reduction of energy expensive pathways. Time-resolved response of E. coli to changing environmental conditions is more specific on the metabolite as compared with the transcript level. Cease of growth during stress response as compared with stationary phase response invokes similar transcript but dissimilar metabolite responses. Condition-dependent associations between metabolites and transcripts are revealed applying co-clustering and canonical correlation analysis.
The response of biological systems to environmental perturbations is characterized by a fast and appropriate adjusting of physiology on every level of the cellular and molecular network. Stress response is usually represented by a combination of both specific responses, aimed at minimizing deleterious effects or repairing damage (e.g. protein chaperones under temperature stress) and general responses which, in part, comprise the downregulation of genes related to translation and ribosome biogenesis. This in turn is reflected by growth cessation or reduction observed under essentially all stress conditions and is an important strategy to adjust cellular physiology to the new condition. E. coli has been intensively investigated in relation to stress responses. Thus far, however, the majority of global analyses of E. coli stress responses have been limited to just one level, gene expression. To better understand system response to perturbation, we designed a time-resolved experiment to compare and integrate metabolic and transcript changes of E. coli using four stress conditions including non-lethal temperature shifts, oxidative stress, and carbon starvation relative to cultures grown under optimal conditions covering both states before and directly after stress application, resumption of growth after stress-induced lag phase, and finally the stationary phase. Metabolic changes occurring after stress application were characterized by a reduction in metabolites of central metabolism (TCA cycle and glycolysis) as well as an increase in free amino acids. Whereas the latter is probably due to protein degradation and stalling of translation, the former supports and extends conclusions based on transcriptome data demonstrating a major decrease in energy-consuming processes as a general stress response. Further comparative analysis of the response on the metabolome and transcriptome, however, revealed in addition to these similarities major differences. Thus, the response on the metabolome displayed a significantly higher specificity towards the specific stress as compared with the transcriptome. Further, when comparing the metabolome of cells ceasing growth due to stress application with cells ceasing growth due to reaching stationary phase the metabolome response differed to a significant extent between both growth arrest phases, whereas the transcriptome response showed significant overlap again, suggesting that the response of E. coli on the metabolome level displays a higher level of significance as compared with the transcriptome level. Subsequently, both data sets were jointly analyzed using co-clustering and canonical correlation approaches to identify coordinated changes on the transcriptome and the metabolite level indicative metabolite–transcript associations. A first outcome of this study was that no association was preserved during all conditions analyzed but rather condition-specific associations were observed. One set of associations found was between metabolites from the oxidative pentose phosphate pathway such as glc-6-P, 6-P-gluconic acid, ribose-5-P, and E-4-P and metabolites from the glycolytic pathway (3PGA and PEP in addition to glc-6-P with two genes encoding pathway enzymes, that is rpe encoding ribulose phosphate 3-epimerase and pps encoding PEP synthase. A second example comprises metabolites of the TCA cycle such as pyruvic acid, 2-ketoglutaric acid, fumaric acid, malic acid, and succinic acid and the mqo gene encoding malate-quinone oxidoreductase (MQO). MQO catalyses the irreversible oxidation of malate to oxaloacetate that in turn regulates the activity of citrate synthase, which is a major rate determining enzyme of the TCA cycle. The strong association between mqo gene expression and multiple members of the TCA cycle as well as pyruvate suggest mqo expression to have a major function for the regulation of the TCA cycle, which need to be experimentally validated. Multiple further associations identified show on the one hand the power of integrative systems oriented approaches for developing new hypothesis, on the other hand their condition-dependent behavior shows the extreme flexibility of the biological systems studied thus requesting a much more intense effort toward parallel analysis of biological systems under several environmental conditions. Environmental fluctuations lead to a rapid adjustment of the physiology of Escherichia coli, necessitating changes on every level of the underlying cellular and molecular network. Thus far, the majority of global analyses of E. coli stress responses have been limited to just one level, gene expression. Here, we incorporate the metabolite composition together with gene expression data to provide a more comprehensive insight on system level stress adjustments by describing detailed time-resolved E. coli response to five different perturbations (cold, heat, oxidative stress, lactose diauxie, and stationary phase). The metabolite response is more specific as compared with the general response observed on the transcript level and is reflected by much higher specificity during the early stress adaptation phase and when comparing the stationary phase response to other perturbations. Despite these differences, the response on both levels still follows the same dynamics and general strategy of energy conservation as reflected by rapid decrease of central carbon metabolism intermediates coinciding with downregulation of genes related to cell growth. Application of co-clustering and canonical correlation analysis on combined metabolite and transcript data identified a number of significant condition-dependent associations between metabolites and transcripts. The results confirm and extend existing models about co-regulation between gene expression and metabolites demonstrating the power of integrated systems oriented analysis.
Collapse
Affiliation(s)
- Szymon Jozefczuk
- Molecular Plant Physiology, Max-Planck-Institute for Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Diaz-Ricci JC, Regan L, Bailey JE. Effect of alteration of the acetic acid synthesis pathway on the fermentation pattern of escherichia coli. Biotechnol Bioeng 2010; 38:1318-24. [PMID: 18600733 DOI: 10.1002/bit.260381109] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The glucose metabolism of an Escherichia coli strain bearing mutations abolishing both acetyl phosphotransferase (PTA) and acetate kinase (ACK) activities was studied under aerobic and anaerobic conditions. These studies were conducted in a complex medium with the mutant carrying no plasmid, the mutant carrying the common cloning vector pUC19, and the mutant carrying a plasmid bearing the "pet" operon that encodes Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase activities. The mutant carrying no plasmid showed lower specific growth and glucose uptake rates relative to the parent wild-type strain (K-12), Lactic acid was produced at higher levels than the wild type, and considerable amounts of pyruvic acid were secreted as an unusual byproduct. Analysis of other fermentation products showed low but significant amounts of acetic acid, no accumulation of formic acid, and lower secretion of succinate and ethanol. The maintenance of the plasmid pUC19 in the mutant negatively affected metabolism. Expression of the pet operon overcame the metabolic stress caused by the plasmid, enhancing growth and glucose uptake rates to the values observed in the plasmidfree mutant. Also, expression of the pet operon allowed consumption of pyruvate accumulated during the first hours of fermentation.
Collapse
Affiliation(s)
- J C Diaz-Ricci
- Department of Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
38
|
Orencio-Trejo M, Utrilla J, Fernández-Sandoval MT, Huerta-Beristain G, Gosset G, Martinez A. Engineering the Escherichia coli fermentative metabolism. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 121:71-107. [PMID: 20182928 DOI: 10.1007/10_2009_61] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fermentative metabolism constitutes a fundamental cellular capacity for industrial biocatalysis. Escherichia coli is an important microorganism in the field of metabolic engineering for its well-known molecular characteristics and its rapid growth. It can adapt to different growth conditions and is able to grow in the presence or absence of oxygen. Through the use of metabolic pathway engineering and bioprocessing techniques, it is possible to explore the fundamental cellular properties and to exploit its capacity to be applied as industrial biocatalysts to produce a wide array of chemicals. The objective of this chapter is to review the metabolic engineering efforts carried out with E. coli by manipulating the central carbon metabolism and fermentative pathways to obtain strains that produce metabolites with high titers, such as ethanol, alanine, lactate and succinate.
Collapse
Affiliation(s)
- M Orencio-Trejo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 510-3, Cuernavaca, Morelos, 62250, México
| | | | | | | | | | | |
Collapse
|
39
|
Yang J, Naik SG, Ortillo DO, García-Serres R, Li M, Broderick WE, Huynh BH, Broderick JB. The iron-sulfur cluster of pyruvate formate-lyase activating enzyme in whole cells: cluster interconversion and a valence-localized [4Fe-4S]2+ state. Biochemistry 2009; 48:9234-41. [PMID: 19711960 DOI: 10.1021/bi9010286] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyruvate formate-lyase activating enzyme (PFL-AE) catalyzes the generation of a catalytically essential glycyl radical on pyruvate formate-lyase (PFL). Purified PFL-AE contains an oxygen-sensitive, labile [4Fe-4S] cluster that undergoes cluster interconversions in vitro, with only the [4Fe-4S](+) cluster state being catalytically active. Such cluster interconversions could play a role in regulating the activity of PFL-AE, and thus of PFL, in response to oxygen levels in vivo. Here we report a Mossbauer investigation on whole cells overexpressing PFL-AE following incubation under aerobic and/or anaerobic conditions and provide evidence that PFL-AE undergoes cluster interconversions in vivo. After 2 h aerobic induction of PFL-AE expression, approximately 44% of the total iron is present in [4Fe-4S](2+) clusters, 6% in [2Fe-2S](2+) clusters, and the remainder as noncluster Fe(III) (29%) and Fe(II) (21%) species. Subsequent anaerobic incubation of the culture results in approximately 75% of the total iron being present as [4Fe-4S](2+) clusters, with no detectable [2Fe-2S](2+). Ensuing aerobic incubation of the culture converts the iron species nearly back to the original composition (42% [4Fe-4S](2+), 10% [2Fe-2S](2+), 19% Fe(III), and 29% Fe(II)). The results provide evidence for changes in cluster composition of PFL-AE in response to the redox state of the cell. Furthermore, the Mossbauer spectra reveal that the [4Fe-4S](2+) cluster of PFL-AE in whole cells contains a valence-localized Fe(III)Fe(II) pair which has not been previously observed in the purified enzyme. Addition of certain small molecules containing adenosyl moieties, including 5'-deoxyadenosine, AMP, ADP, and methylthioadenosine, to purified PFL-AE reproduces the valence-localized state of the [4Fe-4S](2+) cluster. It is speculated that the [4Fe-4S](2+) cluster of PFL-AE in whole cells may be coordinated by a small molecule, probably AMP, and that such coordination may protect this labile cluster from oxidative damage.
Collapse
Affiliation(s)
- Jian Yang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen PR, Nishida S, Poor CB, Cheng A, Bae T, Kuechenmeister L, Dunman PM, Missiakas D, He C. A new oxidative sensing and regulation pathway mediated by the MgrA homologue SarZ in Staphylococcus aureus. Mol Microbiol 2008; 71:198-211. [PMID: 19007410 DOI: 10.1111/j.1365-2958.2008.06518.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative stress serves as an important host/environmental signal that triggers a wide range of responses from the human pathogen Staphylococcus aureus. Among these, a thiol-based oxidation sensing pathway through a global regulator MgrA controls the virulence and antibiotic resistance of the bacterium. Herein, we report a new thiol-based oxidation sensing and regulation system that is mediated through a parallel global regulator SarZ. SarZ is a functional homologue of MgrA and is shown to affect the expression of approximately 87 genes in S. aureus. It uses a key Cys residue, Cys-13, to sense oxidative stress and to co-ordinate the expression of genes involved in metabolic switching, antibiotic resistance, peroxide stress defence, virulence, and cell wall properties. The discovery of this SarZ-mediated regulation, mostly independent from the MgrA-based regulation, fills a missing gap of oxidation sensing and response in S. aureus.
Collapse
Affiliation(s)
- Peng R Chen
- Department of Chemistry, 929 East 57th Street, The University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bauer ME, Fortney KR, Harrison A, Janowicz DM, Munson RS, Spinola SM. Identification of Haemophilus ducreyi genes expressed during human infection. MICROBIOLOGY-SGM 2008; 154:1152-1160. [PMID: 18375807 DOI: 10.1099/mic.0.2007/013953-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To identify Haemophilus ducreyi transcripts that are expressed during human infection, we used selective capture of transcribed sequences (SCOTS) with RNA isolated from pustules obtained from three volunteers infected with H. ducreyi, and with RNA isolated from broth-grown bacteria used to infect volunteers. With SCOTS, competitive hybridization of tissue-derived and broth-derived sequences identifies genes that may be preferentially expressed in vivo. Among the three tissue specimens, we identified 531 genes expressed in vivo. Southern blot analysis of 60 genes from each tissue showed that 87 % of the identified genes hybridized better with cDNA derived from tissue specimens than with cDNA derived from broth-grown bacteria. RT-PCR on nine additional pustules confirmed in vivo expression of 10 of 11 selected genes in other volunteers. Of the 531 genes, 139 were identified in at least two volunteers. These 139 genes fell into several functional categories, including biosynthesis and metabolism, regulation, and cellular processes, such as transcription, translation, cell division, DNA replication and repair, and transport. Detection of genes involved in anaerobic and aerobic respiration indicated that H. ducreyi likely encounters both microenvironments within the pustule. Other genes detected suggest an increase in DNA damage and stress in vivo. Genes involved in virulence in other bacterial pathogens and 32 genes encoding hypothetical proteins were identified, and may represent novel virulence factors. We identified three genes, lspA1, lspA2 and tadA, known to be required for virulence in humans. This is the first study to broadly define transcripts expressed by H. ducreyi in humans.
Collapse
Affiliation(s)
- Margaret E Bauer
- Department of Microbiology and Immunology, Indiana University School of Medicine, 635 Barnhill Drive, Room MS420, Indianapolis, IN 46202, USA
| | - Kate R Fortney
- Department of Medicine, Indiana University School of Medicine, 545 Barnhill Drive, Room EH 435, Indianapolis, IN 46202, USA
| | - Alistair Harrison
- The Center for Microbial Pathogenesis in The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205-2696, USA
| | - Diane M Janowicz
- Department of Medicine, Indiana University School of Medicine, 545 Barnhill Drive, Room EH 435, Indianapolis, IN 46202, USA
| | - Robert S Munson
- The Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, 700 Children's Drive, Columbus, OH 43205-2696, USA.,The Center for Microbial Pathogenesis in The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205-2696, USA
| | - Stanley M Spinola
- Department of Microbiology and Immunology, Indiana University School of Medicine, 635 Barnhill Drive, Room MS420, Indianapolis, IN 46202, USA.,Center for Immunobiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medicine, Indiana University School of Medicine, 545 Barnhill Drive, Room EH 435, Indianapolis, IN 46202, USA
| |
Collapse
|
42
|
Orencio-Trejo M, Flores N, Escalante A, Hernández-Chávez G, Bolívar F, Gosset G, Martinez A. Metabolic regulation analysis of an ethanologenic Escherichia coli strain based on RT-PCR and enzymatic activities. BIOTECHNOLOGY FOR BIOFUELS 2008; 1:8. [PMID: 18471274 PMCID: PMC2396614 DOI: 10.1186/1754-6834-1-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 05/01/2008] [Indexed: 05/07/2023]
Abstract
BACKGROUND A metabolic regulation study was performed, based upon measurements of enzymatic activities, fermentation performance, and RT-PCR analysis of pathways related to central carbon metabolism, in an ethanologenic Escherichia coli strain (CCE14) derived from lineage C. In comparison with previous engineered strains, this E coli derivative has a higher ethanol production rate in mineral medium, as a result of the elevated heterologous expression of the chromosomally integrated genes encoding PDCZm and ADHZm (pyruvate decarboxylase and alcohol dehydrogenase from Zymomonas mobilis). It is suggested that this behavior might be due to lineage differences between E. coli W and C. RESULTS This study demonstrated that the glycolytic flux is controlled, in this case, by reactions outside glycolysis, i.e., the fermentative pathways. Changes in ethanol production rate in this ethanologenic strain result in low organic acid production rates, and high glycolytic and ethanologenic fluxes, that correlate with enhanced transcription and enzymatic activity levels of PDCZm and ADHZm. Furthermore, a higher ethanol yield (90% of the theoretical) in glucose-mineral media was obtained with CCE14 in comparison with previous engineered E. coli strains, such as KO11, that produces a 70% yield under the same conditions. CONCLUSION Results suggest that a higher ethanol formation rate, caused by ahigher PDCZm and ADHZm activities induces a metabolic state that cells compensate through enhanced glucose transport, ATP synthesis, and NAD-NADH+H turnover rates. These results show that glycolytic enzymatic activities, present in E. coli W and C under fermentative conditions, are sufficient to contend with increases in glucose consumption and product formation rates.
Collapse
Affiliation(s)
- Montserrat Orencio-Trejo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| | - Noemí Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| | - Georgina Hernández-Chávez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| | - Alfredo Martinez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| |
Collapse
|
43
|
Jantama K, Haupt M, Svoronos SA, Zhang X, Moore J, Shanmugam K, Ingram L. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains ofEscherichia coli C that produce succinate and malate. Biotechnol Bioeng 2008; 99:1140-53. [DOI: 10.1002/bit.21694] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Improved succinic acid production in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture. Appl Environ Microbiol 2007; 73:7837-43. [PMID: 17951436 DOI: 10.1128/aem.01546-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli NZN111 is a pflB ldhA double mutant which loses its ability to ferment glucose anaerobically due to redox imbalance. In this study, two-stage culture of NZN111 was carried out for succinic acid production. It was found that when NZN111 was aerobically cultured on acetate, it regained the ability to ferment glucose with succinic acid as the major product in subsequent anaerobic culture. In two-stage culture carried out in flasks, succinic acid was produced at a level of 11.26 g/liter from 13.4 g/liter of glucose with a succinic acid yield of 1.28 mol/mol glucose and a productivity of 1.13 g/liter.h in the anaerobic stage. Analyses of key enzyme activities revealed that the activities of isocitrate lyase, malate dehydrogenase, malic enzyme, and phosphoenolpyruvate (PEP) carboxykinase were greatly enhanced while those of pyruvate kinase and PEP carboxylase were reduced in the acetate-grown cells. The two-stage culture was also performed in a 5-liter fermentor without separating the acetate-grown NZN111 cells from spent medium. The overall yield and concentration of succinic acid reached 1.13 mol/mol glucose and 28.2 g/liter, respectively, but the productivity of succinic acid in the anaerobic stage dropped to 0.7 g/liter.h due to cell autolysis and reduced anaplerotic activities. The results indicate the great potential to take advantage of cellular regulation mechanisms for improvement of succinic acid production by a metabolically engineered E. coli strain.
Collapse
|
45
|
Arora MB, Hestekin JA, Snyder SW, St Martin EJ, Lin YJ, Donnelly MI, Millard CS. The Separative Bioreactor: A Continuous Separation Process for the Simultaneous Production and Direct Capture of Organic Acids. SEP SCI TECHNOL 2007; 42:2519-2538. [PMID: 23723533 PMCID: PMC3662075 DOI: 10.1080/01496390701477238] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 04/05/2007] [Indexed: 10/29/2022]
Abstract
The replacement of petrochemicals with biobased chemicals requires efficient bioprocesses, biocatalysis, and product recovery. Biocatalysis (e.g., enzyme conversion and fermentation) offers an attractive alternative to chemical processing because biocatalysis utilize renewable feedstocks under benign reaction conditions. One class of chemical products that could be produced in large volumes by biocatalysis is organic acids. However, biocatalytic reactions to produce organic acids typically result in only dilute concentrations of the product because of product inhibition and acidification that drives the reaction pH outside of the optimal range for the biocatalyst. Buffering or neutralization results in formation of the acid salt rather than the acid, which requires further processing to recover the free acid product. To address these barriers to biocatalytic organic acid production, we developed the "separative bioreactor" based on resin wafer electrodeionization, which is an electro-deionization platform that uses resin wafers fabricated from ion exchange resins. The separative bioreactor simultaneously separates the organic acid from the biocatalyst as it is produced, thus it avoids product inhibition enhancing reaction rates. In addition, the separative bioreactor recovers the product in its acid form to avoid neutralization. The instantaneous separation of acid upon formation in the separative bioreactor is one of the first truly one-step systems for producing organic acids. The separative bioreactor was demonstrated with two systems. In the first demonstration, the enzyme glucose fructose oxidoreductase (GFOR) was immobilized in the reactor and later regenerated in situ. GFOR produced gluconic acid (in its acid form) continuously for 7 days with production rates up to 1000 mg/L/hr at >99% product recovery and GFOR reactivity >30mg gluconic acid/mg GFOR/hour. In the second demonstration, the E. coli strain CSM1 produced lactic acid for up to 24 hours with a productivity of >200 mg/L/hr and almost 100% product recovery.
Collapse
Affiliation(s)
- M B Arora
- Energy Systems Division, Argonne National Laboratory, Argonne, IL ; Chemical Engineering Division, Argonne National Laboratory, Argonne, IL
| | | | | | | | | | | | | |
Collapse
|
46
|
Nnyepi MR, Peng Y, Broderick JB. Inactivation of E. coli pyruvate formate-lyase: role of AdhE and small molecules. Arch Biochem Biophys 2007; 459:1-9. [PMID: 17280641 PMCID: PMC2637557 DOI: 10.1016/j.abb.2006.12.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 12/20/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022]
Abstract
Escherichia coli AdhE has been reported to harbor three distinct enzymatic activities: alcohol dehydrogenase, acetaldehyde-CoA dehydrogenase, and pyruvate formate-lyase (PFL) deactivase. Herein we report on the cloning, expression, and purification of E. coli AdhE, and the re-investigation of its purported enzymatic activities. While both the alcohol dehydrogenase and acetaldehyde-CoA dehydrogenase activities were readily detectable, we were unable to obtain any evidence for catalytic deactivation of PFL by AdhE, regardless of whether the reported cofactors for deactivation (Fe(II), NAD, and CoA) were present. Our results demonstrate that AdhE is not a PFL deactivating enzyme. We have also examined the potential for deactivation of active PFL by small-molecule thiols. Both beta-mercaptoethanol and dithiothreitol deactivate PFL efficiently, with the former providing quite rapid deactivation. PFL deactivated by these thiols can be reactivated, suggesting that this deactivation is non-destructive transfer of an H atom equivalent to quench the glycyl radical.
Collapse
Affiliation(s)
| | | | - Joan B. Broderick
- Address correspondence to: Joan B. Broderick, Department of Chemistry and Biochemistry, Montana State University, 108 Gaines Hall, Bozeman, MT 59717, Tel. 406-586-2041; Fax 406-586-2018;
| |
Collapse
|
47
|
Moreau PL. The lysine decarboxylase CadA protects Escherichia coli starved of phosphate against fermentation acids. J Bacteriol 2007; 189:2249-61. [PMID: 17209032 PMCID: PMC1899392 DOI: 10.1128/jb.01306-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conflicting results have been reported for the rate and extent of cell death during a prolonged stationary phase. It is shown here that the viability of wild-type cells (MG1655) could decrease >or=10(8)-fold between days 1 and 14 and between days 1 and 6 of incubation under aerobic and anaerobic phosphate (P(i)) starvation conditions, respectively, whereas the cell viability decreased moderately under ammonium and glucose starvation conditions. Several lines of evidence indicated that the loss of viability of P(i)-starved cells resulted primarily from the catabolism of glucose into organic acids through pyruvate oxidase (PoxB) and pyruvate-formate lyase (PflB) under aerobic and anaerobic conditions, respectively. Weak organic acids that are excreted into the medium can reenter the cell and dissociate into protons and anions, thereby triggering cell death. However, P(i)-starved cells were efficiently protected by the activity of the inducible GadABC glutamate-dependent acid resistance system. Glutamate decarboxylation consumes one proton, which contributes to the internal pH homeostasis, and removes one intracellular negative charge, which might compensate for the accumulated weak acid anions. Unexpectedly, the tolerance of P(i)-starved cells to fermentation acids was markedly increased as a result of the activity of the inducible CadBA lysine-dependent acid resistance system that consumes one proton and produces the diamine cadaverine. CadA plays a key role in the defense of Salmonella at pH 3 but was thought to be ineffective in Escherichia coli since the protection of E. coli challenged at pH 2.5 by lysine is much weaker than the protection by glutamate. CadA activity was favored in P(i)-starved cells probably because weak organic acids slowly reenter cells fermenting glucose. Since the environmental conditions that trigger the death of P(i)-starved cells are strikingly similar to the conditions that are thought to prevail in the human colon (i.e., a combination of low levels of P(i) and oxygen and high levels of carbohydrates, inducing the microbiota to excrete high levels of organic acids), it is tempting to speculate that E. coli can survive in the gut because of the activity of the GadABC and CadBA glutamate- and lysine-dependent acid resistance systems.
Collapse
|
48
|
Meshulam-Simon G, Behrens S, Choo AD, Spormann AM. Hydrogen metabolism in Shewanella oneidensis MR-1. Appl Environ Microbiol 2006; 73:1153-65. [PMID: 17189435 PMCID: PMC1828657 DOI: 10.1128/aem.01588-06] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shewanella oneidensis MR-1 is a facultative sediment microorganism which uses diverse compounds, such as oxygen and fumarate, as well as insoluble Fe(III) and Mn(IV) as electron acceptors. The electron donor spectrum is more limited and includes metabolic end products of primary fermenting bacteria, such as lactate, formate, and hydrogen. While the utilization of hydrogen as an electron donor has been described previously, we report here the formation of hydrogen from pyruvate under anaerobic, stationary-phase conditions in the absence of an external electron acceptor. Genes for the two S. oneidensis MR-1 hydrogenases, hydA, encoding a periplasmic [Fe-Fe] hydrogenase, and hyaB, encoding a periplasmic [Ni-Fe] hydrogenase, were found to be expressed only under anaerobic conditions during early exponential growth and into stationary-phase growth. Analyses of DeltahydA, DeltahyaB, and DeltahydA DeltahyaB in-frame-deletion mutants indicated that HydA functions primarily as a hydrogen-forming hydrogenase while HyaB has a bifunctional role and represents the dominant hydrogenase activity under the experimental conditions tested. Based on results from physiological and genetic experiments, we propose that hydrogen is formed from pyruvate by multiple parallel pathways, one pathway involving formate as an intermediate, pyruvate-formate lyase, and formate-hydrogen lyase, comprised of HydA hydrogenase and formate dehydrogenase, and a formate-independent pathway involving pyruvate dehydrogenase. A reverse electron transport chain is potentially involved in a formate-hydrogen lyase-independent pathway. While pyruvate does not support a fermentative mode of growth in this microorganism, pyruvate, in the absence of an electron acceptor, increased cell viability in anaerobic, stationary-phase cultures, suggesting a role in the survival of S. oneidensis MR-1 under stationary-phase conditions.
Collapse
Affiliation(s)
- Galit Meshulam-Simon
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-5429, USA
| | | | | | | |
Collapse
|
49
|
Atteia A, van Lis R, Gelius-Dietrich G, Adrait A, Garin J, Joyard J, Rolland N, Martin W. Pyruvate formate-lyase and a novel route of eukaryotic ATP synthesis in Chlamydomonas mitochondria. J Biol Chem 2006; 281:9909-18. [PMID: 16452484 DOI: 10.1074/jbc.m507862200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyruvate formate-lyase (PFL) catalyzes the non-oxidative conversion of pyruvate to formate and acetyl-CoA. PFL and its activating enzyme (PFL-AE) are common among strict anaerobic and microaerophilic prokaryotes but are very rare among eukaryotes. In a proteome survey of isolated Chlamydomonas reinhardtii mitochondria, we found several PFL-specific peptides leading to the identification of cDNAs for PFL and PFL-AE, establishing the existence of a PFL system in this photosynthetic algae. Anaerobiosis and darkness led to increased PFL transcripts but had little effect on protein levels, as determined with antiserum raised against C. reinhardtii PFL. Protein blots revealed the occurrence of PFL in both chloroplast and mitochondria purified from aerobically grown cells. Mass spectrometry sequencing of C. reinhardtii mitochondrial proteins, furthermore, identified peptides for phosphotransacetylase and acetate kinase. The phosphotransacetylase-acetate kinase pathway is a common route of ATP synthesis or acetate assimilation among prokaryotes but is novel among eukaryotes. In addition to PFL and pyruvate dehydrogenase, the algae also expresses pyruvate:ferredoxin oxidoreductase and bifunctional aldehyde/alcohol dehydrogenase. Among eukaryotes, the oxygen producer C. reinhardtii has the broadest repertoire of pyruvate-, ethanol-, and acetate-metabolizing enzymes described to date, many of which were previously viewed as specific to anaerobic eukaryotic lineages.
Collapse
Affiliation(s)
- Ariane Atteia
- Institute of Botany, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bekker M, Teixeira De Mattos MJ, Hellingwerf KJ. The role of two-component regulation systems in the physiology of the bacterial cell. Sci Prog 2006; 89:213-42. [PMID: 17338439 PMCID: PMC10368358 DOI: 10.3184/003685006783238308] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two-component regulation systems (TCRSs) are the dominant type of signal transduction system in prokaryotes that are used to inform the cellular trancriptional machinery (and additional targets for regulation, like the motility apparatus) about actual changes in the extracellular physicochemical conditions. We now review their molecular structure and enzymatic characteristics, their mutual interactions and its implications, and their role in cellular physiology. Specific emphasis is placed on the ArcB/A system, a representative of the phosphorelay type of TCRS, and a key player in the adjustment of the cellular make-up of enterobacteria in response to alterations in the oxygen availability. Also some applied aspects of the TCRSs are discussed, i.e. their role as a target to develop new anti-bacterials and their application in biotechnology (or: 'synthetic biology').
Collapse
Affiliation(s)
| | | | - Klaas J. Hellingwerf
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| |
Collapse
|