1
|
Palittapongarnpim P, Tantivitayakul P, Aiewsakun P, Mahasirimongkol S, Jaemsai B. Genomic Interactions Between Mycobacterium tuberculosis and Humans. Annu Rev Genomics Hum Genet 2024; 25:183-209. [PMID: 38640230 DOI: 10.1146/annurev-genom-021623-101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Mycobacterium tuberculosis is considered by many to be the deadliest microbe, with the estimated annual cases numbering more than 10 million. The bacteria, including Mycobacterium africanum, are classified into nine major lineages and hundreds of sublineages, each with different geographical distributions and levels of virulence. The phylogeographic patterns can be a result of recent and early human migrations as well as coevolution between the bacteria and various human populations, which may explain why many studies on human genetic factors contributing to tuberculosis have not been replicable in different areas. Moreover, several studies have revealed the significance of interactions between human genetic variations and bacterial genotypes in determining the development of tuberculosis, suggesting coadaptation. The increased availability of whole-genome sequence data from both humans and bacteria has enabled a better understanding of these interactions, which can inform the development of vaccines and other control measures.
Collapse
Affiliation(s)
- Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; , ,
| | - Pornpen Tantivitayakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand;
| | - Pakorn Aiewsakun
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; , ,
| | - Surakameth Mahasirimongkol
- Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
- Information and Communication Technology Center, Office of Permanent Secretary, Ministry of Public Health, Nonthaburi, Thailand;
| | - Bharkbhoom Jaemsai
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; , ,
| |
Collapse
|
2
|
Bakuła Z, Dziurzyński M, Decewicz P, Bakonytė D, Vasiliauskaitė L, Nakčerienė B, Krenke R, Stakėnas P, Jagielski T. Spoligotyping of Mycobacterium tuberculosis - Comparing in vitro and in silico approaches. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105508. [PMID: 37757901 DOI: 10.1016/j.meegid.2023.105508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
Spoligotyping is one of the molecular typing methods widely used for exploring the genetic variety of Mycobacterium tuberculosis. The aim of this study was to compare the spoligoprofiles of M. tuberculosis clinical isolates, obtained using in vitro and in silico approaches. The study included 230 M. tuberculosis isolates, recovered from Poland and Lithuania between 2018 and 2021. Spoligotyping in vitro was performed with a commercially available kit. Whole genome sequencing (WGS) was done with Illumina NovaSeq 6000 sequencer. Spoligotype International Types (SITs) were assigned according to the SITVIT2 database or using three different in silico tools, and based on WGS data, namely SpoTyping, SpolPred, and lorikeet. Upon in vitro spoligotyping, the isolates produced 65 different spoligotypes. Spoligotypes inferred from the WGS data were congruent with in vitro generated patterns in 81.7% (188/230) for lorikeet and 81.3% (187/230) for SpolPred and SpoTyping. Spacers 18 and 31 produced the highest ratio of discrepant results between in vitro and in silico approaches, with their signals discordantly assigned for 15 (6.5%) and 9 (3.9%) isolates, respectively. All three in silico approaches used were similarly efficient for M. tuberculosis spoligotype prediction. However, only SpoTyping could predict spoligotypes without a need for manual curation. Thus, we consider it as the most accurate tool. Its use is further advocated by the shortest time of analysis. A relatively high (ca. 20%) discordance between in vitro and in silico spoligotyping results was observed. While we discourage comparing conventional spoligotyping with in silico equivalents, we advise the use of the latter, as it improves the accuracy of spoligopatterns, and thus depicts the relatedness between the isolates more reliably.
Collapse
Affiliation(s)
- Zofia Bakuła
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
| | - Mikołaj Dziurzyński
- Department of Biology (DBIO), University of Florence, via Madonna del Piano 10, Sesto Fiorentino 50019, Italy.
| | - Przemysław Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
| | - Daiva Bakonytė
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania.
| | - Laima Vasiliauskaitė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Vilnius University, Lithuania; Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania; Centre of Laboratory Medicine, Laboratory of Infectious Diseases and Tuberculosis, Vilnius University Hospital Santaros klinikos, Lithuania.
| | - Birutė Nakčerienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania; Department of Programs and State Tuberculosis Information System, Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania.
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases & Allergy, Medical University of Warsaw, Warsaw, Poland.
| | - Petras Stakėnas
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania.
| | - Tomasz Jagielski
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
| |
Collapse
|
3
|
Kwaghe AV, Ameh JA, Kudi CA, Ambali AG, Adesokan HK, Akinseye VO, Adelakun OD, Usman JG, Cadmus SI. Prevalence and molecular characterization of Mycobacterium tuberculosis complex in cattle and humans, Maiduguri, Borno state, Nigeria: a cross-sectional study. BMC Microbiol 2023; 23:7. [PMID: 36624395 PMCID: PMC9827019 DOI: 10.1186/s12866-022-02710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/21/2022] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Globally, the highest burden of bovine and human tuberculosis resides in Africa and Asia. Tuberculosis (TB) is the second leading single infectious killer after severe acute respiratory syndrome corona virus-2 (SARSCOV-2). Bovine TB remains a treat to wild and domesticated animals, humans and hinders international trade in endemic countries like Nigeria. We aimed at determining the prevalence of bovine and human tuberculosis, and the spoligotypes of Mycobacterium tuberculosis complex in cattle and humans in Maiduguri. METHODS We conducted a cross sectional study on bovine and human tuberculosis in Maiduguri, Borno state. We calculated sample size using the method of Thrusfield. Lesions suggestive of TB from 160 slaughtered cattle were obtained from Maiduguri Central Abattoir. Sputum samples from humans; 82 abattoir workers and 147 suspected TB patients from hospitals/clinics were obtained. Lesions and sputum samples were cultured for the isolation of Mycobacterium spp. Positive cultures were subjected genus typing, deletion analysis and selected isolates were spoligotyped. Data was analysed using SPSS VERSION 16.0. RESULTS Prevalence of 32.5% (52/160) was obtained in cattle. Damboa local government area (LGA), where majority of the infected animals were obtained from had 35.5% bTB prevalence. All categories analysed (breed, age, sex, body conformation and score) had P-values that were not significant (P > 0.05). Sputum culture revealed a prevalence of 3.7% (3/82) from abattoir workers and 12.2% from hospitals/clinics. A significant P-value (0.03) was obtained when positive culture from abattoir and that of hospitals/clinics were compared. Out of the 52 culture positive isolates obtained from cattle, 26 (50%) belonged to M. tuberculosis complex (MTC) and 17/26 (65.4%) were characterized as M. bovis. In humans, 7/12 (58.3%) MTC obtained were characterized as M. tuberculosis. Spoligotyping revealed SB0944 and SB1025 in cattle, while SIT838, SIT61 of LAM10_CAM and SIT1054, SIT46 of Haarlem (H) families were obtained from humans. CONCLUSIONS Cattle in Damboa LGA need to be screened for bTB as majority of the infected animals were brought from there. Our findings revealed the presence of SB0944 and SB1025 spoligotypes from cattle in Borno state. We isolated M. tuberculosis strain of the H family mainly domiciled in Europe from humans.
Collapse
Affiliation(s)
- Ayi Vandi Kwaghe
- grid.473394.e0000 0004 1785 2322Department of Veterinary and Pest Control Services, Federal Ministry of Agriculture and Rural Development, P. M. B. 135, Area 11, Garki, Abuja, Nigeria ,Nigeria Field Epidemiology and Laboratory Training Programme, Abuja, Nigeria
| | - James Agbo Ameh
- grid.413003.50000 0000 8883 6523Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Caleb Ayuba Kudi
- grid.411225.10000 0004 1937 1493Department of Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University Zaria, Zaria, Kaduna State Nigeria
| | - Abdul-Ganiyu Ambali
- grid.412974.d0000 0001 0625 9425Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Kwara State Nigeria
| | - Hezekiah Kehinde Adesokan
- grid.9582.60000 0004 1794 5983Department of Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Victor Oluwatoyin Akinseye
- grid.9582.60000 0004 1794 5983Department of Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State Nigeria ,Department of Chemical Sciences, Augustine University Ilara-Epe, Epe, Lagos State Nigeria
| | - Olubukola Deborah Adelakun
- grid.9582.60000 0004 1794 5983Department of Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Joy Gararawa Usman
- grid.419813.6National Veterinary Research Institute, Vom, Plateau State Nigeria
| | - Simeon Idowu Cadmus
- grid.9582.60000 0004 1794 5983Department of Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| |
Collapse
|
4
|
Investigating the Diversity of Tuberculosis Spoligotypes with Dimensionality Reduction and Graph Theory. Genes (Basel) 2022; 13:genes13122328. [PMID: 36553596 PMCID: PMC9778039 DOI: 10.3390/genes13122328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The spoligotype is a graphical description of the CRISPR locus present in Mycobacterium tuberculosis, which has the particularity of having only 68 possible spacers. This spoligotype, which can be easily obtained either in vitro or in silico, allows to have a summary information of lineage or even antibiotic resistance (when known to be associated to a particular cluster) at a lower cost. The objective of this article is to show that this representation is richer than it seems, and that it is under-exploited until now. We first recall an original way to represent these spoligotypes as points in the plane, allowing to highlight possible sub-lineages, particularities in the animal strains, etc. This graphical representation shows clusters and a skeleton in the form of a graph, which led us to see these spoligotypes as vertices of an unconnected directed graph. In this paper, we therefore propose to exploit in detail the description of the variety of spoligotypes using a graph, and we show to what extent such a description can be informative.
Collapse
|
5
|
Liang C, Li X, Li Q, Zhang X, Ren W, Yao C, Pang Y, Liu Y, Li C, Tang S. Clinical isolates of Mycobacterium tuberculosis with different genotypes exhibit distinct host macrophage responses in vitro. J Med Microbiol 2022; 71. [PMID: 36748527 DOI: 10.1099/jmm.0.001604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Introduction. Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis, can survive as an intracellular parasite after entering macrophages via phagocytosis. M.tb strains are genotypically distinct and engage in diverse pathogen-host interactions, with different host immune responses triggered by different M.tb strains. Importantly, differences in intracellular accumulation and triggering of host macrophage responses during early infection stages are key determinants that shape the final outcomes of host innate immune responses to different M.tb strains.Hypothesis/Gap Statement. Clinical M.tb strains with different genotypes elicit different host innate immune responses in vitro.Aim. This work aimed to compare host innate immune responses elicited by genotypically diverse, clinically derived M.tb strains in vitro.Methodology. RAW264.7 cells were infected with three lineage 2 and lineage 4 clinically derived M.tb strains and strain H37Rv. Strains were evaluated for differences in intracellular growth, induction of macrophage apoptosis, and induction of expression of proinflammatory cytokines and associated pattern recognition receptors.Results. Highly variable cytokine profiles were observed subsequent to RAW264.7 cell infection with the different strains. The Beijing genotype strain, a modern Beijing strain belonging to lineage 2, induced milder host proinflammatory responses and less apoptosis and exhibited greater intracellular growth as compared to the other strains. Moreover, mRNA expression levels of iNOS in Beijing and MANU2 genotype strains exceeded corresponding levels obtained for the T1 genotype strain. Meanwhile, mRNA expression levels of toll-like receptor (TLR)-encoding genes TLR2 and TLR7 in macrophages infected with the Beijing genotype strain were higher than corresponding levels observed in MANU2 genotype strain-infected macrophages.Conclusion. The higher intracellular survival rate and lower level of host cell apoptosis associated with macrophage infection with the Beijing genotype strain indicated greater virulence of this strain relative to that of the other strains. Furthermore, in vitro immune responses induced by the Beijing genotype strain were unique in that this strain induced a weaker inflammatory response than was induced by T1 or MANU2 genotype strains. Nevertheless, additional evidence is needed to confirm that Beijing genotype strains possess greater virulence than strains with other genotypes.
Collapse
Affiliation(s)
- Chen Liang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University & Beijing Tuberculosis and Thoracic Tumor Research Institute, Tongzhou District, Beijing, 101149, PR China
| | - Xiaomeng Li
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University & Beijing Tuberculosis and Thoracic Tumor Research Institute, Tongzhou District, Beijing, 101149, PR China
| | - Qiao Li
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University & Beijing Tuberculosis and Thoracic Tumor Research Institute, Tongzhou District, Beijing, 101149, PR China
| | - Xuxia Zhang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University & Beijing Tuberculosis and Thoracic Tumor Research Institute, Tongzhou District, Beijing, 101149, PR China
| | - Weicong Ren
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University & Beijing Tuberculosis and Thoracic Tumor Research Institute, Tongzhou District, Beijing, 101149, PR China
| | - Cong Yao
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University & Beijing Tuberculosis and Thoracic Tumor Research Institute, Tongzhou District, Beijing, 101149, PR China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University & Beijing Tuberculosis and Thoracic Tumor Research Institute, Tongzhou District, Beijing, 101149, PR China
| | - Yi Liu
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University & Beijing Tuberculosis and Thoracic Tumor Research Institute, Tongzhou District, Beijing, 101149, PR China
| | - Chuanyou Li
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University & Beijing Tuberculosis and Thoracic Tumor Research Institute, Tongzhou District, Beijing, 101149, PR China
- Department of Tuberculosis, Beijing Center for Tuberculosis Research and Control, Beijing Center for Disease Prevention and Control, Xicheng District, Beijing 100035, PR China
| | - Shenjie Tang
- Tuberculosis Clinical Medical Center, Beijing Chest Hospital, Capital Medical University & Beijing Tuberculosis and Thoracic Tumor Research Institute, Tongzhou District, Beijing, 101149, PR China
| |
Collapse
|
6
|
Dale K, Globan M, Horan K, Sherry N, Ballard S, Tay EL, Bittmann S, Meagher N, Price DJ, Howden BP, Williamson DA, Denholm J. Whole genome sequencing for tuberculosis in Victoria, Australia: A genomic implementation study from 2017 to 2020. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2022; 28:100556. [PMID: 36034164 PMCID: PMC9405109 DOI: 10.1016/j.lanwpc.2022.100556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Background Whole genome sequencing (WGS) is increasingly used by tuberculosis (TB) programs to monitor Mycobacterium tuberculosis (Mtb) transmission. We aimed to characterise the molecular epidemiology of TB and Mtb transmission in the low-incidence setting of Victoria, Australia, and assess the utility of WGS. Methods WGS was performed on all first Mtb isolates from TB cases from 2017 to 2020. Potential clusters (≤12 single nucleotide polymorphisms [SNPs]) were investigated for epidemiological links. Transmission events in highly-related (≤5 SNPs) clusters were classified as likely or possible, based on the presence or absence of an epidemiological link, respectively. Case characteristics and transmission settings (as defined by case relationship) were summarised. Poisson regression was used to examine associations with secondary case number. Findings Of 1844 TB cases, 1276 (69.2%) had sequenced isolates, with 182 (14.2%) in 54 highly-related clusters, 2-40 cases in size. Following investigation, 140 cases (11.0% of sequenced) were classified as resulting from likely/possible local-transmission, including 82 (6.4%) for which transmission was likely. Common identified transmission settings were social/religious (26.4%), household (22.9%) and family living in different households (7.1%), but many were uncertain (41.4%). While household transmission featured in many clusters (n = 24), clusters were generally smaller (median = 3 cases) than the fewer that included transmission in social/religious settings (n = 12, median = 7.5 cases). Sputum-smear-positivity was associated with higher secondary case numbers. Interpretation WGS results suggest Mtb transmission commonly occurs outside the household in our low-incidence setting. Further work is required to optimise the use of WGS in public health management of TB. Funding The Victorian Tuberculosis Program receives block funding for activities including case management and contact tracing from the Victorian Department of Health. No specific funding for this report was received by manuscript authors or the Victorian Tuberculosis Program, and the funders had no role in the study design, data collection, data analysis, interpretation or report writing.
Collapse
Affiliation(s)
- Katie Dale
- Victorian Tuberculosis Program, Melbourne Health, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Maria Globan
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kristy Horan
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Norelle Sherry
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Susan Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ee Laine Tay
- Communicable Disease Epidemiology and Surveillance, Health Protection Branch, Public Health Division, Department of Health, Victoria, Australia
| | - Simone Bittmann
- Victorian Tuberculosis Program, Melbourne Health, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Niamh Meagher
- Department of Infectious Diseases at the Doherty Institute for Infection & Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - David J. Price
- Department of Infectious Diseases at the Doherty Institute for Infection & Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin P. Howden
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Deborah A. Williamson
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Justin Denholm
- Victorian Tuberculosis Program, Melbourne Health, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
van Riet J, Saha C, Strepis N, Brouwer RWW, Martens-Uzunova ES, van de Geer WS, Swagemakers SMA, Stubbs A, Halimi Y, Voogd S, Tanmoy AM, Komor MA, Hoogstrate Y, Janssen B, Fijneman RJA, Niknafs YS, Chinnaiyan AM, van IJcken WFJ, van der Spek PJ, Jenster G, Louwen R. CRISPRs in the human genome are differentially expressed between malignant and normal adjacent to tumor tissue. Commun Biol 2022; 5:338. [PMID: 35396392 PMCID: PMC8993844 DOI: 10.1038/s42003-022-03249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) have been identified in bacteria, archaea and mitochondria of plants, but not in eukaryotes. Here, we report the discovery of 12,572 putative CRISPRs randomly distributed across the human chromosomes, which we termed hCRISPRs. By using available transcriptome datasets, we demonstrate that hCRISPRs are distinctively expressed as small non-coding RNAs (sncRNAs) in cell lines and human tissues. Moreover, expression patterns thereof enabled us to distinguish normal from malignant tissues. In prostate cancer, we confirmed the differential hCRISPR expression between normal adjacent and malignant primary prostate tissue by RT-qPCR and demonstrate that the SHERLOCK and DETECTR dipstick tools are suitable to detect these sncRNAs. We anticipate that the discovery of CRISPRs in the human genome can be further exploited for diagnostic purposes in cancer and other medical conditions, which certainly will lead to the development of point-of-care tests based on the differential expression of the hCRISPRs.
Collapse
Affiliation(s)
- Job van Riet
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Chinmoy Saha
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nikolaos Strepis
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rutger W W Brouwer
- Center for Biomics, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Elena S Martens-Uzunova
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wesley S van de Geer
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sigrid M A Swagemakers
- Clinical Bioinformatics, Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Andrew Stubbs
- Clinical Bioinformatics, Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Yassir Halimi
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sanne Voogd
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Arif Mohammad Tanmoy
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
- Child Health Research Foundation, 23/2 SEL Huq Skypark, Block-B, Khilji Rd, Dhaka, 1207, Bangladesh
| | - Malgorzata A Komor
- Translational Gastrointestinal Oncology, Department of Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Youri Hoogstrate
- Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Remond J A Fijneman
- Translational Gastrointestinal Oncology, Department of Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Yashar S Niknafs
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Peter J van der Spek
- Clinical Bioinformatics, Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guido Jenster
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rogier Louwen
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.
| |
Collapse
|
8
|
Li H, Liu C, Liang M, Liu D, Zhao B, Shi J, Zhao Y, Ou X, Zhang G. Tuberculosis Outbreak in an Educational Institution in Henan Province, China. Front Public Health 2021; 9:737488. [PMID: 34712640 PMCID: PMC8545879 DOI: 10.3389/fpubh.2021.737488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
On June 17, 2018, a case of pulmonary tuberculosis (TB) was reported among students at a senior high school in Luoning, China. The outbreak encompassed a total of 23 cases along with TB screening in the whole school by means of PPD and chest X-ray. By the end of September 2018, the entire 9 cases cultured positive had epidemiological association. All of the 9 Mycobacterium tuberculosis (Mtb) isolates available were sensitive to all drugs tested and had similar spoligotyping and 15 loci mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) profile. Whole-genome sequencing (WGS) of the Mtb isolates revealed 20 variable nucleotide positions within 8 cases, indicating a clonal outbreak. The index case, which was first identified and diagnosed, is separated from the cluster by a minimum number of 95 distinct SNPs. Minimum distance spanning tree (MST) indicted that the 8 cases were indeed part of a single transmission chain. It was concluded that this is an epidemic situation of TB outbreak exposed by the aggrieved index case at school, which was caused by the veiled infectious case wherein a student was suffering from TB and attending school simultaneously.
Collapse
Affiliation(s)
- Hui Li
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Chunfa Liu
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Minghui Liang
- Luoyang Center for Disease Control and Prevention, Luoyang, China
| | - Dongxin Liu
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bing Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Shi
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| | - Yanlin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xichao Ou
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guolong Zhang
- Henan Center for Disease Control and Prevention, Zhengzhou, China
| |
Collapse
|
9
|
Devi KR, Pradhan J, Bhutia R, Dadul P, Sarkar A, Gohain N, Narain K. Molecular diversity of Mycobacterium tuberculosis complex in Sikkim, India and prediction of dominant spoligotypes using artificial intelligence. Sci Rep 2021; 11:7365. [PMID: 33795751 PMCID: PMC8016865 DOI: 10.1038/s41598-021-86626-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
In India, tuberculosis is an enormous public health problem. This study provides the first description of molecular diversity of the Mycobacterium tuberculosis complex (MTBC) from Sikkim, India. A total of 399 Acid Fast Bacilli sputum positive samples were cultured on Lőwenstein-Jensen media and genetic characterisation was done by spoligotyping and 24-loci MIRU-VNTR typing. Spoligotyping revealed the occurrence of 58 different spoligotypes. Beijing spoligotype was the most dominant type constituting 62.41% of the total isolates and was associated with Multiple Drug Resistance. Minimum Spanning tree analysis of 249 Beijing strains based on 24-loci MIRU-VNTR analysis identified 12 clonal complexes (Single Locus Variants). The principal component analysis was used to visualise possible grouping of MTBC isolates from Sikkim belonging to major spoligotypes using 24-MIRU VNTR profiles. Artificial intelligence-based machine learning (ML) methods such as Random Forests (RF), Support Vector Machines (SVM) and Artificial Neural Networks (ANN) were used to predict dominant spoligotypes of MTBC using MIRU-VNTR data. K-fold cross-validation and validation using unseen testing data set revealed high accuracy of ANN, RF, and SVM for predicting Beijing, CAS1_Delhi, and T1 Spoligotypes (93-99%). However, prediction using the external new validation data set revealed that the RF model was more accurate than SVM and ANN.
Collapse
Affiliation(s)
- Kangjam Rekha Devi
- grid.420069.90000 0004 1803 0080N.E. Region, Indian Council of Medical Research (ICMR)-Regional Medical Research Centre, Post Box #105, Dibrugarh, Assam 786 001 India
| | - Jagat Pradhan
- National Tuberculosis Elimination Programme (NTEP), Gangtok, Sikkim India
| | - Rinchenla Bhutia
- National Tuberculosis Elimination Programme (NTEP), Gangtok, Sikkim India
| | - Peggy Dadul
- Department of Health Care, Human Services and Family Welfare, State Tuberculosis Control Society, Gangtok, Sikkim India
| | - Atanu Sarkar
- grid.420069.90000 0004 1803 0080N.E. Region, Indian Council of Medical Research (ICMR)-Regional Medical Research Centre, Post Box #105, Dibrugarh, Assam 786 001 India
| | - Nitumoni Gohain
- grid.420069.90000 0004 1803 0080N.E. Region, Indian Council of Medical Research (ICMR)-Regional Medical Research Centre, Post Box #105, Dibrugarh, Assam 786 001 India
| | - Kanwar Narain
- grid.420069.90000 0004 1803 0080N.E. Region, Indian Council of Medical Research (ICMR)-Regional Medical Research Centre, Post Box #105, Dibrugarh, Assam 786 001 India
| |
Collapse
|
10
|
Guyeux C, Sola C, Noûs C, Refrégier G. CRISPRbuilder-TB: "CRISPR-builder for tuberculosis". Exhaustive reconstruction of the CRISPR locus in mycobacterium tuberculosis complex using SRA. PLoS Comput Biol 2021; 17:e1008500. [PMID: 33667225 PMCID: PMC7968741 DOI: 10.1371/journal.pcbi.1008500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 03/17/2021] [Accepted: 11/08/2020] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis complex (MTC) CRISPR locus diversity has long been studied solely investigating the presence/absence of a known set of spacers. Unveiling the genetic mechanisms of its evolution requires a more exhaustive reconstruction in a large amount of representative strains. In this article, we point out and resolve, with a new pipeline, the problem of CRISPR reconstruction based directly on short read sequences in M. tuberculosis. We first show that the process we set up, that we coin as “CRISPRbuilder-TB” (https://github.com/cguyeux/CRISPRbuilder-TB), allows an efficient reconstruction of simulated or real CRISPRs, even when including complex evolutionary steps like the insertions of mobile elements. Compared to more generalist tools, the whole process is much more precise and robust, and requires only minimal manual investigation. Second, we show that more than 1/3 of the currently complete genomes available for this complex in the public databases contain largely erroneous CRISPR loci. Third, we highlight how both the classical experimental in vitro approach and the basic in silico spoligotyping provided by existing analytic tools miss a whole diversity of this locus in MTC, by not capturing duplications, spacer and direct repeats variants, and IS6110 insertion locations. This description is extended in a second article that describes MTC-CRISPR diversity and suggests general rules for its evolution. This work opens perspectives for an in-depth exploration of M. tuberculosis CRISPR loci diversity and of mechanisms involved in its evolution and its functionality, as well as its adaptation to other CRISPR locus-harboring bacterial species. In this article, we tackle the bioinformatical issue of the reconstruction of the Mycobacterium tuberculosis complex CRISPR locus using short read sequences without requiring genome assembly. We first show that many complete genomes, as found in public databases and often reconstructed by de novo assemblies, often contain errors on this locus as well as on other repeated sequences. We provide an in-depth description of our new method, designated as ‘CRISPRbuilder-TB’, and we show that our method provides much more exhaustive and reliable information (on DR variants, spacer diversity, global structure) than Crass and CRISPR_detector. The new and unsuspected genomic diversity we detected is described in a companion paper. Scripts are available to adapt the tool to other species.
Collapse
Affiliation(s)
- Christophe Guyeux
- FEMTO-ST Institute, UMR 6174 CNRS, DISC Computer Department, Univ. Bourgogne Franche-Comté (UBFC), Besançon, France
- * E-mail:
| | - Christophe Sola
- IAME, UMR1137 INSERM, Université Paris, Université Paris Nord
- 3 Université Paris-Saclay, Saint-Aubin, France
| | - Camille Noûs
- IAME, UMR1137 INSERM, Université Paris, Université Paris Nord
| | - Guislaine Refrégier
- 4 Ecologie Systematique Evolution, Batiment 360, Université Paris-Saclay, CNRS, AgroParisTech,Orsay 91400, France
| |
Collapse
|
11
|
Orgeur M, Frigui W, Pawlik A, Clark S, Williams A, Ates LS, Ma L, Bouchier C, Parkhill J, Brodin P, Brosch R. Pathogenomic analyses of Mycobacterium microti, an ESX-1-deleted member of the Mycobacterium tuberculosis complex causing disease in various hosts. Microb Genom 2021; 7:000505. [PMID: 33529148 PMCID: PMC8208694 DOI: 10.1099/mgen.0.000505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/16/2020] [Indexed: 01/03/2023] Open
Abstract
Mycobacterium microti is an animal-adapted member of the Mycobacterium tuberculosis complex (MTBC), which was originally isolated from voles, but has more recently also been isolated from other selected mammalian hosts, including occasionally from humans. Here, we have generated and analysed the complete genome sequences of five representative vole and clinical M. microti isolates using PacBio- and Illumina-based technologies, and have tested their virulence and vaccine potential in SCID (severe combined immune deficient) mouse and/or guinea pig infection models. We show that the clinical isolates studied here cluster separately in the phylogenetic tree from vole isolates and other clades from publicly available M. microti genome sequences. These data also confirm that the vole and clinical M. microti isolates were all lacking the specific RD1mic region, which in other tubercle bacilli encodes the ESX-1 type VII secretion system. Biochemical analysis further revealed marked phenotypic differences between isolates in type VII-mediated secretion of selected PE and PPE proteins, which in part were attributed to specific genetic polymorphisms. Infection experiments in the highly susceptible SCID mouse model showed that the clinical isolates were significantly more virulent than the tested vole isolates, but still much less virulent than the M. tuberculosis H37Rv control strain. The strong attenuation of the ATCC 35872 vole isolate in immunocompromised mice, even compared to the attenuated BCG (bacillus Calmette-Guérin) vaccine, and its historic use in human vaccine trials encouraged us to test this strain's vaccine potential in a guinea pig model, where it demonstrated similar protective efficacy as a BCG control, making it a strong candidate for vaccination of immunocompromised individuals in whom BCG vaccination is contra-indicated. Overall, we provide new insights into the genomic and phenotypic variabilities and particularities of members of an understudied clade of the MTBC, which all share a recent common ancestor that is characterized by the deletion of the RD1mic region.
Collapse
Affiliation(s)
- Mickael Orgeur
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Paris 75015, France
| | - Wafa Frigui
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Paris 75015, France
| | - Alexandre Pawlik
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Paris 75015, France
| | - Simon Clark
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Ann Williams
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Louis S. Ates
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Paris 75015, France
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam institute for Infection & Immunity, Meibergdreef 9, Amsterdam, Netherlands
| | - Laurence Ma
- Institut Pasteur, Biomics, C2RT, Paris 75015, France
| | | | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Priscille Brodin
- CIIL - Center for Infection and Immunity of Lille, Université de Lille/CNRS UMR 9017/INSERM U1019/CHU Lille/Institut Pasteur de Lille, Lille 59000, France
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Paris 75015, France
| |
Collapse
|
12
|
Refrégier G, Sola C, Guyeux C. Unexpected diversity of CRISPR unveils some evolutionary patterns of repeated sequences in Mycobacterium tuberculosis. BMC Genomics 2020; 21:841. [PMID: 33256602 PMCID: PMC7708916 DOI: 10.1186/s12864-020-07178-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diversity of the CRISPR locus of Mycobacterium tuberculosis complex has been studied since 1997 for molecular epidemiology purposes. By targeting solely the 43 spacers present in the two first sequenced genomes (H37Rv and BCG), it gave a biased idea of CRISPR diversity and ignored diversity in the neighbouring cas-genes. RESULTS We set up tailored pipelines to explore the diversity of CRISPR-cas locus in Short Reads. We analyzed data from a representative set of 198 clinical isolates as evidenced by well-characterized SNPs. We found a relatively low diversity in terms of spacers: we recovered only the 68 spacers that had been described in 2000. We found no partial or global inversions in the sequences, letting always the Direct Variant Repeats (DVR) in the same order. In contrast, we found an unexpected diversity in the form of: SNPs in spacers and in Direct Repeats, duplications of various length, and insertions at various locations of the IS6110 insertion sequence, as well as blocks of DVR deletions. The diversity was in part specific to lineages. When reconstructing evolutionary steps of the locus, we found no evidence for SNP reversal. DVR deletions were linked to recombination between IS6110 insertions or between Direct Repeats. CONCLUSION This work definitively shows that CRISPR locus of M. tuberculosis did not evolve by classical CRISPR adaptation (incorporation of new spacers) since the last most recent common ancestor of virulent lineages. The evolutionary mechanisms that we discovered could be involved in bacterial adaptation but in a way that remains to be identified.
Collapse
Affiliation(s)
- Guislaine Refrégier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, cedex, 91198, Gif-sur-Yvette, France.
| | - Christophe Sola
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, cedex, 91198, Gif-sur-Yvette, France.
| | - Christophe Guyeux
- FEMTO-ST Institute, UMR 6174 CNRS, DISC Computer Science Department, Univ. Bourgogne Franche-Comté (UBFC), 16 Route de Gray, 25000, Besançon, France
| |
Collapse
|
13
|
Mekonnen GA, Mihret A, Tamiru M, Hailu E, Olani A, Aliy A, Sombo M, Lakew M, Gumi B, Ameni G, Wood JLN, Berg S. Genotype Diversity of Mycobacterium bovis and Pathology of Bovine Tuberculosis in Selected Emerging Dairy Regions of Ethiopia. Front Vet Sci 2020; 7:553940. [PMID: 33195524 PMCID: PMC7554335 DOI: 10.3389/fvets.2020.553940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/14/2020] [Indexed: 11/26/2022] Open
Abstract
Bovine tuberculosis (bTB) is endemic in Ethiopia with higher prevalence in cattle, particularly in the central parts. Spread of Mycobacterium bovis (M. bovis) to wider regions is inevitable in uncontrolled conditions. This study was conducted to explore the pathology, characterize M. bovis strains, and describe genotypic diversity to demonstrate possible epidemiological links in emerging dairy areas of Ethiopia, namely, Mekelle and Gondar. Twenty-seven bTB positive cattle identified by the Single Intradermal Comparative Cervical Tuberculin (SICCT) test were subjected to post-mortem inspection to determine lesion distribution and pathological score. Samples from tissues with visible tuberculous or suspected non-visible lesions were processed and cultured following a standard protocol. Isolates identified as M. bovis by Region of Difference (RD)-based Polymerase Chain Reaction (PCR) were also spoligotyped to determine their spoligotype patterns. Post-mortem inspection of visceral organs indicated bTB suggestive lesions in 41% of the animals, with 25% being in the lungs. Lymph nodes from 77% of the animals had lesions. Fifty-five isolates identified from 24 of the slaughtered animals were confirmed as M. bovis. No other mycobacterial species were isolated. Spoligotyping classified strains from 21 of these animals into seven spoligotype patterns: SB0133, SB0134, SB1176, SB2233, SB2290, SB2467, and SB2520. More than one spoligotype were identified from five of these animals, and none of the last four spoligotypes had been reported in Ethiopia before. SB0134 was the most predominant type (47%) followed by SB0133 (25.5%). SB0133, SB2290, SB2467, and SB1176 are spoligotypes lacking spacers 3–7, characteristics of M. bovis strains of the African 2 (Af2) clonal complex, while SB0134, SB2233, and SB2520 do not belong to any of the established clonal complexes and likely to have a different evolutionary history. Despite a small sample size, the present study showed strain diversity with multiple genotypes identified in a single herd and even within a single animal, and the genotypes showed no sign of geographical localization, which could be a consequence of significant movement of bTB diseased cattle around the country, spreading the disease. Therefore, any future control programme of bTB in Ethiopia needs to address the risks of cattle movement.
Collapse
Affiliation(s)
- Getnet Abie Mekonnen
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia.,Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adane Mihret
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Mekdes Tamiru
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Elena Hailu
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abebe Olani
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Abde Aliy
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Melaku Sombo
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Matios Lakew
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Balako Gumi
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Animal Health and Zoonotic Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - James L N Wood
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Berg
- Animal and Plant Health Agency, Weybridge, United Kingdom
| |
Collapse
|
14
|
Genetic diversity and drug resistance pattern of Mycobacterium tuberculosis strains isolated from pulmonary tuberculosis patients in the Benishangul Gumuz region and its surroundings, Northwest Ethiopia. PLoS One 2020; 15:e0231320. [PMID: 32267877 PMCID: PMC7141659 DOI: 10.1371/journal.pone.0231320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/20/2020] [Indexed: 01/30/2023] Open
Abstract
Introduction Tuberculosis (TB) remains a major global public health problem and is the leading cause of death from a single bacterium, Mycobacterium tuberculosis (MTB) complex. The emergence and spread of drug-resistant strains aggravate the problem, especially in tuberculosis high burden countries such as Ethiopia. The supposedly high initial cost of laboratory diagnosis coupled with scarce financial resources has limited collection of information about drug resistance patterns and circulating strains in peripheral and emerging regions of Ethiopia. Here, we investigated drug susceptibility and genetic diversity of mycobacterial isolates among pulmonary tuberculosis patients in the Benishangul Gumuz region and its surroundings in northwest Ethiopia. Methods and material In a cross-sectional study, 107 consecutive sputum smear-positive pulmonary tuberculosis (PTB) patients diagnosed at two hospitals and seven health centers were enrolled between October 2013 and June 2014. Sputum samples were cultured at Armauer Hansen Research Institute (AHRI) TB laboratory, and drug susceptibility testing (DST) was performed against Isoniazid, Rifampicin, Ethambutol, and Streptomycin using the indirect proportion method. Isolates were characterized using polymerase chain reaction (PCR)based Region of Difference 9 (RD9) testing and spoligotyping. Statistical analysis was performed using Statistical Package for the Social Sciences (SPSS) for Windows version 24.0. Results Of 107 acid-fast-bacilli (AFB) smear-positive sputum samples collected, 81.3% (87/107) were culture positive. A PCR based RD9 testing revealed that all the 87 isolates were M. tuberculosis. Of these isolates, 16.1% (14/87) resistance to one or more drugs was observed. Isoniazid monoresistance occurred in 6.9% (6/87). Multidrug resistance (MDR) was observed in two isolates (2.3%), one of which was resistant to all the four drugs tested. Spoligotyping revealed that the majority, 61.3% (46/75) of strains could be grouped into ten spoligotype patterns containing two to 11 isolates each while the remaining 38.7% (29/75) were unique. SIT289 (11 isolates) and SIT53 (nine isolates) constituted 43.5% (20/46) among clustered isolates while 29.3% (22/75) were ‘‘New” to the database. The dominant families were T, 37% (28/75), CAS, 16.0% (12/75), and H, 8% (6/75), adding up to 51.3% (46/75) of all isolates identified. Conclusion and recommendations The current study indicates a moderate prevalence of MDR TB. However, the observed high monoresistance to Isoniazid, one of the two proxy drugs for MDR-TB, reveals the hidden potential threat fora sudden increase in MDR-TB if resistance to Rifampicin would increase. Clustered spoligotype patterns suggest ongoing active tuberculosis transmission in the area. The results underscore the need for enhanced monitoring of TB drug resistance and epidemiological studies in this and other peripheral regions of the country using robust molecular tools with high discriminatory power such as the Mycobacterial Interspersed Repetitive Units -Variable Number of Tandem Repeats (MIRU-VNTR) typing and whole-genome sequencing (WGS).
Collapse
|
15
|
Minias A, Minias P, Czubat B, Dziadek J. Purifying Selective Pressure Suggests the Functionality of a Vitamin B12 Biosynthesis Pathway in a Global Population of Mycobacterium tuberculosis. Genome Biol Evol 2019; 10:2326-2337. [PMID: 30060031 PMCID: PMC6363050 DOI: 10.1093/gbe/evy153] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis is one of the deadliest and most challenging pathogens to study in current microbiological research. One of the issues that remains to be resolved is the importance of cobalamin in the metabolism of M. tuberculosis. The functionality of a vitamin B12 biosynthesis pathway in M. tuberculosis is under dispute, and the ability of this pathogen to scavenge vitamin B12 from the host is unknown. Here, we quantified the ratios of nonsynonymous and synonymous nucleotide substitution rates (dN/dS) in the genes involved in vitamin B12 biosynthesis and transport and in genes encoding cobalamin-dependent enzymes in nearly four thousand strains of M. tuberculosis. We showed that purifying selection is the dominant force acting on cobalamin-related genes at the levels of individual codons, genes and groups of genes. We conclude that cobalamin-related genes may not be essential but are adaptive for M. tuberculosis in clinical settings. Furthermore, the cobalamin biosynthesis pathway is likely to be functional in this species.
Collapse
Affiliation(s)
- Alina Minias
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection University of Łódź, Łódź, Poland
| | - Bożena Czubat
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland.,Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland
| | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| |
Collapse
|
16
|
Benítez-Guzmán A, Esquivel-Solís H, Romero-Torres C, Arriaga-Díaz C, Gutiérrez-Pabello JA. Genetically Related Mycobacterium bovis Strains Displayed Differential Intracellular Growth in Bovine Macrophages. Vet Sci 2019; 6:vetsci6040081. [PMID: 31635257 PMCID: PMC6958473 DOI: 10.3390/vetsci6040081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 01/30/2023] Open
Abstract
Molecular typing of bacterial isolates provides a powerful approach for distinguishing Mycobacterium bovis (M. bovis) genotypes. It is known that M. bovis strain virulence plays a role in prevalence and spread of the disease, suggesting that strain virulence and prevailing genotypes are associated. However, it is not well understood whether strain virulence correlates with particular genotypes. In this study, we assessed the in vitro intracellular growth of 18 M. bovis isolates in bovine macrophages as an indicator of bacterial virulence and sought a relationship with the genotype identified by spoligotyping. We found 14 different spoligotypes—11 were already known and three spoligotypes had never been reported before. We identified 2 clusters that were phylogenetically related, containing 10 and 6 strains, respectively, and 2 orphan strains. Intracellular growth and phagocytic rates of 18 M. bovis strains were heterogeneous. Our results suggest that M. bovis intracellular growth and phagocytosis are independent of the bacterial lineage identified by spoligotyping.
Collapse
Affiliation(s)
- Alejandro Benítez-Guzmán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Hugo Esquivel-Solís
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico.
| | - Cecilia Romero-Torres
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, CENID Microbiología, Ciudad de México 05110, Mexico.
| | - Camila Arriaga-Díaz
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, CENID Microbiología, Ciudad de México 05110, Mexico.
| | - José A Gutiérrez-Pabello
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
17
|
Somphavong S, Berland JL, Gauthier M, Vu TT, Nguyen QH, Iem V, Vongvichit P, Inthavong D, Akkhavong V, Chanthavilay P, Soundala S, Keovichit I, Paranhos-Baccalà G, Paboriboune P, Nguyen TVA, Bañuls AL. First insights into the genetic characteristics and drug resistance of Mycobacterium tuberculosis population collected during the first national tuberculosis prevalence survey of Lao PDR (2010-2011). BMC Infect Dis 2019; 19:851. [PMID: 31615439 PMCID: PMC6794770 DOI: 10.1186/s12879-019-4435-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 08/30/2019] [Indexed: 01/27/2023] Open
Abstract
Background In Lao People’s Democratic Republic (PDR), tuberculosis (TB) prevalence was estimated at 540/100,000 in 2011. Nevertheless, little is known about the genetic characteristics and anti-TB drug resistance of the Mycobacterium tuberculosis population. The main objective of this work was to study the genetic characteristics and drug resistance of M. tuberculosis population collected during the first National TB Prevalence Survey (TBPS) of Lao PDR (2010–2011). Methods Two hundred and twenty two isolates collected during TBPS (2010–2011) were analyzed with the GenoType MTBDRplus test for M. tuberculosis identification and drug resistance detection. Then, 206 of the 222 isolates were characterized by spoligotyping and MIRU-VNTR typing. Results Among the 222 M. tuberculosis isolates, 11 were mono-resistant to isoniazid and 2 were resistant to isoniazid and rifampicin (MDR-TB), using the GenoType MTBDRplus test. Among the 202 genetically characterized isolates, the East African-Indian (EAI) family was predominant (76.7%) followed by the Beijing (14.4%) and T (5.5%) families. EAI isolates came from all the country provinces, whereas Beijing isolates were found mainly in the northern and central provinces. A higher proportion of Beijing isolates was observed in people younger than 35 years compared to EAI. Moreover, the percentage of drug resistance was higher among Beijing (17.2%) than EAI (5.2%) isolates, and the two MDR-TB isolates belonged to the Beijing family. Combined analysis of the MIRU-VNTR and spoligotyping results (n = 202 isolates) revealed an estimated clustering rate of 11% and the occurrence of mini-outbreaks of drug-resistant TB caused by Beijing genotypes. Conclusions The EAI family, the ancient and endemic family in Asia, is predominant in Lao PDR whereas the prevalence of Beijing, the most harmful M. tuberculosis family for humans, is still low, differently from neighboring countries. However, its association with drug resistance, its presence in young patients and its potential association with recent transmission suggest that the Beijing family could change TB epidemiological pattern in Lao PDR. Therefore, efficient TB control and surveillance systems must be maintained and reinforced to prevent the emergence of highly transmissible and drug-resistant strains in Lao PDR, as observed in neighboring countries. Electronic supplementary material The online version of this article (10.1186/s12879-019-4435-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Silaphet Somphavong
- Centre d'Infectiologie Lao-Christophe Mérieux, Vientiane, Lao PDR. .,MIVEGEC (IRD-CNRS-Université de Montpellier), Centre IRD, Montpellier, France. .,LMI "Drug Resistance in South East Asia, DRISA", Hanoi, Vietnam.
| | - Jean-Luc Berland
- Laboratoire des Pathogènes Émergents, Fondation Mérieux, Lyon, France
| | - Marie Gauthier
- Laboratoire des Pathogènes Émergents, Fondation Mérieux, Lyon, France
| | - Thi Thuong Vu
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Quang Huy Nguyen
- LMI "Drug Resistance in South East Asia, DRISA", Hanoi, Vietnam.,Department of Pharmacological, Medical and Agronomical Biotechnology, University of Science and Technology of Hanoi, Academy of Science and Technology, Hanoi, Vietnam
| | - Vibol Iem
- National reference laboratory for tuberculosis, Vientiane, Lao PDR
| | | | - Donekham Inthavong
- National reference laboratory for tuberculosis, Vientiane, Lao PDR.,National Tuberculosis Control Program, Vientiane, Lao PDR
| | | | | | | | | | | | | | - Thi Van Anh Nguyen
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Anne-Laure Bañuls
- MIVEGEC (IRD-CNRS-Université de Montpellier), Centre IRD, Montpellier, France.,LMI "Drug Resistance in South East Asia, DRISA", Hanoi, Vietnam
| |
Collapse
|
18
|
Ali S, Khan MT, Anwar Sheed K, Khan MM, Hasan F. Spoligotyping analysis of Mycobacterium tuberculosis in Khyber Pakhtunkhwa area, Pakistan. Infect Drug Resist 2019; 12:1363-1369. [PMID: 31190924 PMCID: PMC6535427 DOI: 10.2147/idr.s198314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/05/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Spoligotyping is a reproducible, reverse hybridization approach for genotyping of Mycobacterium tuberculosis complex (MTBC). Molecular typing of MTBC is helpful for understanding and controlling tuberculosis epidemics. Methods: Spoligotyping was performed on 166 clinical isolates of Mycobacterium tuberculosis (MTB) collected from 25 districts of Khyber Pakhtunkhwa, Pakistan. Results were compared to SITVIT2, an online database developed by the Institut Pasteur de la Guadeloupe, France. Results: Spoligotyping results showed that 145 strains (88%) displayed known patterns while 21 (12%) were new. Lineage 3/Central Asian strain (L3/CAS) was the predominant family (73%, χ2=19.9, P=0.001), followed by L2/Beijing (5.4%) and L4 (4.2%). L3/CAS1-Delhi was the major sublineage (82%) among the L3/CAS family (χ2=664, P=0.0001). Analysis showed that the majority of the clinical isolates with an unknown pattern had an evolutionary link with the L3/CAS strain, and nine (5.4%) of the unknown strains were epidemiologically linked and were tentatively named L3/CAS-KP (Khyber Pakhtunkhwa). Conclusion: The present study demonstrated that L3/CAS is the predominant lineage of MTB, widely distributed in different areas of the Khyber Pakhtunkhwa province of Pakistan. Spoligotyping patterns of some clinical isolates could not be matched to other reported patterns in an international database. Other tools, such as mycobacterial interspersed repetitive unit–variable number tandem repeat (MIRU-VNTR), will be helpful in future investigations into the epidemiological characteristics of clinical isolates in the Khyber Pakhtunkhwa province.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Khan Anwar Sheed
- Provincial TB Reference Laboratory, Provincial TB Control Program, Khyber Pakhtunkhwa, Pakistan
| | | | - Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
19
|
Bekele S, Derese Y, Hailu E, Mihret A, Dagne K, Yamuah L, Hailu T, Ayele S, Beyene D, Berg S, Aseffa A. Line-probe assay and molecular typing reveal a potential drug resistant clone of Mycobacterium tuberculosis in Ethiopia. TROPICAL DISEASES TRAVEL MEDICINE AND VACCINES 2018; 4:15. [PMID: 30534412 PMCID: PMC6280437 DOI: 10.1186/s40794-018-0075-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/25/2018] [Indexed: 11/30/2022]
Abstract
Background Antimicrobial resistance is a global concern of increasing significance. Multidrug resistant tuberculosis (MDR-TB) is spreading worldwide. It is important to monitor trends of antimycobacterial resistance. This is particularly true for high TB burden countries such as Ethiopia where disproportionally less drug sensitivity data are reported from. Methods The prevalence of drug resistance was assessed with the line probe assay GenoType MTBDRplus in a set of 161 M. tuberculosis strains that were selected from four common lineages and sub-lineages previously identified in Ethiopia. Most of the tested M. tuberculosis isolates had been genotyped by established Spoligotyping and MIRU-VNTR typing methods. Results The proportion of MDR-TB among the isolates was 3.1%. Mono-resistance was 1.2% to rifampicin and 4.3% to isoniazid, and resistance to either of the two first line drugs was 8.7%. Strains of Lineage 4 had the highest resistance rate (13.6%) followed by Lineage 3 (4.9%). None of the isolates representing Lineages 1 and Lineage 7 were drug resistant. Multidrug resistance among pulmonary TB and TB lymphadenitis clinical isolates was 2.8 and 3.7%, respectively. Drug resistance of strains carrying the most prevalent spoligotype in Ethiopia - SIT149 - was further explored. Stratification by MIRU-VNTR identified one genotype with a high rate of drug resistance against Rifampicin and Isoniazid and circulation of a potential MDR-TB clone is proposed. Conclusion Although the strain selection was not fully randomized, the overall M. tuberculosis drug resistance rate in this strain set was 8.7% while the rate of MDR was 3.1%. In parallel, we identified a sub-lineage that showed a high rate of resistance to both rifampicin and isoniazid. These resistant strains may belong to a clone of M. tuberculosis that is circulating in the highlands of Ethiopia. Electronic supplementary material The online version of this article (10.1186/s40794-018-0075-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiferaw Bekele
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia.,2Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia.,4Present address: J. Craig Venter Institute, Rockville, MD USA
| | - Yohannes Derese
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Elena Hailu
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Adane Mihret
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Kifle Dagne
- 2Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Lawrence Yamuah
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Tsegaye Hailu
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Samuel Ayele
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Demissew Beyene
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia
| | - Stefan Berg
- 3Animal and Plant Health Agency, New Haw, Surrey, UK
| | - Abraham Aseffa
- 1Armauer Hansen Research Institute, Jima Road, Addis Ababa, Ethiopia.,4Present address: J. Craig Venter Institute, Rockville, MD USA
| |
Collapse
|
20
|
Tang Y, Fu Y. Class 2 CRISPR/Cas: an expanding biotechnology toolbox for and beyond genome editing. Cell Biosci 2018; 8:59. [PMID: 30459943 PMCID: PMC6233275 DOI: 10.1186/s13578-018-0255-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022] Open
Abstract
Artificial nuclease-dependent DNA cleavage systems (zinc-finger nuclease, ZFN; transcription activator like effectors, TALENs) and exogenous nucleic acid defense systems (CRISPR/Cas) have been used in the new era for genome modification. The most widely used toolbox for genome editing, modulation and detection contains Types II, V and VI of CRISPR/Cas Class 2 systems, categorized and characterized by Cas9, Cas12a and Cas13 respectively. In this review, we (1) elaborate on the definition, classification, structures of CRISPR/Cas Class 2 systems; (2) advance our understanding of new molecular mechanisms and recent progress in their applications, especially beyond genome-editing applications; (3) provide the insights on the specificity, efficiency and versatility of each tool; (4) elaborate the enhancement on specificity and efficiency of the CRISPR/Cas toolbox. The expanding and concerted usage of the CRISPR/Cas tools is making them more powerful in genome editing and other biotechnology applications.
Collapse
Affiliation(s)
- Yuyi Tang
- MicroAnaly (Shanghai) Gene Technologies Co., Ltd, Shanghai, China
| | - Yan Fu
- MicroAnaly (Shanghai) Gene Technologies Co., Ltd, Shanghai, China
- Anhui MicroAnaly Gene Technologies Co., Ltd, Chaohu, Anhui China
- National Gene Research Center, Chaohu, Anhui China
| |
Collapse
|
21
|
Shi J, Zheng D, Zhu Y, Ma X, Wang S, Li H, Xing J. Role of MIRU-VNTR and spoligotyping in assessing the genetic diversity of Mycobacterium tuberculosis in Henan Province, China. BMC Infect Dis 2018; 18:447. [PMID: 30176820 PMCID: PMC6122615 DOI: 10.1186/s12879-018-3351-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 08/21/2018] [Indexed: 01/31/2023] Open
Abstract
Background Tuberculosis remains a serious threat to human health as an infectious disease in China. Henan, a most populated province in China, has a high incidence of tuberculosis (TB). Though the genetic diversity of Mycobacterium tuberculosis (MTB) has been investigated in many regions, there have been only a few studies on the molecular characteristics and drug resistance phenotypes in Henan. This is the first study on the genetic profile of MTB from Henan. Methods A total of 668 MTB isolates from various areas were genotyped with spoligotyping and 26-locus MIRU-VNTR (classical 24-locus MIRU-VNTR and 2 other loci). The association between TB spoligotype signatures and drug-resistant profiles was analysed. Results Our data revealed that MTB isolates circulating in Henan had a high degree of genetic variation. The Beijing family was the most predominant genotype (83.53%,n = 558), and the typical Beijing type(ST1) was the major sublineage (81.73%,n = 546). In total,668 isolates were divided into 567 different types, forming 38 clusters (2–15 isolates per cluster), and 529 unique types by 26-locus MIRU-VNTR analysis. There was no correlation between the Beijing family and gender, age at diagnosis or treatment history, whereas the Beijing family was significantly associated with all four first-line drug resistance and multidrug-resistant phenotypes. For these samples, 15 of 26 MIRU-VNTR loci had high or moderate discriminatory power according to the Hunter-Gaston discriminatory index. A combination of the 10 most polymorphic loci had similar discriminatory power as the 26-locus set. Conclusion The Beijing genotype is the most prevalent family. Ten-locus MIRU-VNTR in combination with spoligotyping can efficiently classify the molecular type of MTB in Henan Province. Electronic supplementary material The online version of this article (10.1186/s12879-018-3351-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Shi
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China.
| | - Danwei Zheng
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China
| | - Yankun Zhu
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China
| | - Xiaoguang Ma
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China
| | - Shaohua Wang
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China
| | - Hui Li
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China.
| | - Jin Xing
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China
| |
Collapse
|
22
|
McSpoligotyping, a One-Step Melting Curve Analysis-Based Protocol for Spoligotyping of Mycobacterium tuberculosis. J Clin Microbiol 2018; 56:JCM.00539-18. [PMID: 29875194 DOI: 10.1128/jcm.00539-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/31/2018] [Indexed: 11/20/2022] Open
Abstract
The direct repeat (DR) region in the Mycobacterium tuberculosis (MTB) genome is composed of highly polymorphic direct variant repeats, which are the basis of spacer oligonucleotide typing (spoligotyping) to study the population structure and epidemiology of M. tuberculosis However, the membrane hybridization-based detection format requires various post-PCR manipulations and is prone to carryover contamination, restricting its wide use in high-TB-burden and resource-limited countries. We developed a one-step spoligotyping protocol, termed McSpoligotyping, based on real-time PCR. The typing results can be generated within 3 h by a single step of DNA addition. When evaluated with a collection of 1,968 isolates of MTB, McSpoligotyping agreed 97.71% (1,923/1,968) by sample and 99.93% (84,568/84,624) by spacer with traditional spoligotyping. Sequencing results showed that McSpoligotyping was even more accurate than spoligotyping (99.34% versus 98.37%). Further exploration of the false results of McSpoligotyping revealed the presence of single-nucleotide polymorphisms in the DR region. We concluded that McSpoligotyping could be used in epidemiology studies of tuberculosis by taking advantage of the shortened procedure, ease of use, and compatibility of results with standard spoligotyping.
Collapse
|
23
|
García-Martínez J, Maldonado RD, Guzmán NM, Mojica FJM. The CRISPR conundrum: evolve and maybe die, or survive and risk stagnation. MICROBIAL CELL 2018; 5:262-268. [PMID: 29850463 PMCID: PMC5972030 DOI: 10.15698/mic2018.06.634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CRISPR-Cas represents a prokaryotic defense mechanism against invading genetic elements. Although there is a diversity of CRISPR-Cas systems, they all share similar, essential traits. In general, a CRISPR-Cas system consists of one or more groups of DNA repeats named CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), regularly separated by unique sequences referred to as spacers, and a set of functionally associated cas (CRISPR associated) genes typically located next to one of the repeat arrays. The origin of spacers is in many cases unknown but, when ascertained, they usually match foreign genetic molecules. The proteins encoded by some of the cas genes are in charge of the incorporation of new spacers upon entry of a genetic element. Other Cas proteins participate in generating CRISPR-spacer RNAs and perform the task of destroying nucleic acid molecules carrying sequences similar to the spacer. In this way, CRISPR-Cas provides protection against genetic intruders that could substantially affect the cell viability, thus acting as an adaptive immune system. However, this defensive action also hampers the acquisition of potentially beneficial, horizontally transferred genes, undermining evolution. Here we cover how the model bacterium Escherichia coli deals with CRISPR-Cas to tackle this major dilemma, evolution versus survival.
Collapse
Affiliation(s)
- Jesús García-Martínez
- Departamento de Fisiología, Genética y Microbiología. Universidad de Alicante, Campus de San Vicente, 03690 San Vicente del Raspeig (Alicante), Spain
| | - Rafael D Maldonado
- Departamento de Fisiología, Genética y Microbiología. Universidad de Alicante, Campus de San Vicente, 03690 San Vicente del Raspeig (Alicante), Spain
| | - Noemí M Guzmán
- Departamento de Fisiología, Genética y Microbiología. Universidad de Alicante, Campus de San Vicente, 03690 San Vicente del Raspeig (Alicante), Spain
| | - Francisco J M Mojica
- Departamento de Fisiología, Genética y Microbiología. Universidad de Alicante, Campus de San Vicente, 03690 San Vicente del Raspeig (Alicante), Spain.,I.M.E.M. Ramón Margalef. Universidad de Alicante, Campus de San Vicente, 03690 San Vicente del Raspeig (Alicante), Spain
| |
Collapse
|
24
|
Djemal SE, Siala M, Smaoui S, Kammoun S, Marouane C, Bezos J, Messadi-Akrout F, Romero B, Gdoura R. Genetic diversity assessment of Tunisian Mycobacterium bovis population isolated from cattle. BMC Vet Res 2017; 13:393. [PMID: 29246228 PMCID: PMC5732386 DOI: 10.1186/s12917-017-1314-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/06/2017] [Indexed: 12/16/2022] Open
Abstract
Background The genetic diversity of M. bovis in Tunisia is still underestimated despite the implementation of an eradication program. The lack of data about spatial distribution of the M. bovis population hinders the control of bovine tuberculosis (bTB) progress. This study represents the largest molecular analysis of M. bovis isolates in Tunisia. It is aimed to upgrade the understanding of bTB epidemiology and the geographical distribution of the infection. Tuberculosis research was performed in cattle (n = 149) with TB-compatible lesions collected over 5 months from a slaughterhouse located in Sfax, Tunisia. Results Ninety-four animals were found to be infected by M. bovis and two others by M. caprae. Spoligotyping revealed twenty-five patterns, SB0120, SB0134, and SB0121 being the most prevalent profiles (36.4%, 11.4%, and 7.2%, respectively). Three new spoligotypes were detected: SB2345, SB2344 and SB2343. MIRU-VNTR analysis classified the isolates in seventy-three profiles and showed a large genotypic variety observed within the main spoligotype which was split into several MIRU-VNTR types: 29 in SB0120 (h = 0.983), 10 in SB0134 (h = 0.981) and 7 in SB0121 (h = 1). Genotyping revealed a common pattern in different geographic regions. It also showed that Sfax, located in southern-Tunisia, represents a high-risk area with an elevated genetic diversity. Conclusions Spatial analysis may provide insights into disease transmission, which affects the effectiveness of eradication campaigns in cattle. Electronic supplementary material The online version of this article (10.1186/s12917-017-1314-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saif Eddine Djemal
- Department of Life Sciences, Research Laboratory of Environmental Toxicology-Microbiology and Health (LR17ES06), Faculty of Sciences, University of Sfax-Tunisia, Sfax, Tunisia.
| | - Mariam Siala
- Department of Life Sciences, Research Laboratory of Environmental Toxicology-Microbiology and Health (LR17ES06), Faculty of Sciences, University of Sfax-Tunisia, Sfax, Tunisia.,Department of Biology, Preparatory Institute for Engineering Studies, University of Sfax-Tunisia, Sfax, Tunisia
| | - Salma Smaoui
- Department of Microbiology, Regional Hygiene Care Mycobacteriology Laboratory, Hedi-Chaker University Hospital, Sfax, Tunisia.,Department of Biology, Faculty of Pharmacy, University of Monastir-Tunisia, Monastir, Tunisia.,Department of Microbiology, National Reference Laboratory of Mycobacteria, Research Unit (UR12SP18), A, Mami University Hospital of Pneumology, Ariana, Tunisia
| | - Sana Kammoun
- Department of Microbiology, Regional Hygiene Care Mycobacteriology Laboratory, Hedi-Chaker University Hospital, Sfax, Tunisia.,Department of Biology, Faculty of Pharmacy, University of Monastir-Tunisia, Monastir, Tunisia.,Department of Microbiology, National Reference Laboratory of Mycobacteria, Research Unit (UR12SP18), A, Mami University Hospital of Pneumology, Ariana, Tunisia
| | - Chema Marouane
- Department of Microbiology, Regional Hygiene Care Mycobacteriology Laboratory, Hedi-Chaker University Hospital, Sfax, Tunisia.,Department of Biology, Faculty of Pharmacy, University of Monastir-Tunisia, Monastir, Tunisia.,Department of Microbiology, National Reference Laboratory of Mycobacteria, Research Unit (UR12SP18), A, Mami University Hospital of Pneumology, Ariana, Tunisia
| | - Javier Bezos
- , MAEVA SERVET SL. C/ de la Fragua 3, 28749, Alameda del Valle, Madrid, Spain.,Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Avda. Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Feriele Messadi-Akrout
- Department of Microbiology, Regional Hygiene Care Mycobacteriology Laboratory, Hedi-Chaker University Hospital, Sfax, Tunisia.,Department of Biology, Faculty of Pharmacy, University of Monastir-Tunisia, Monastir, Tunisia.,Department of Microbiology, National Reference Laboratory of Mycobacteria, Research Unit (UR12SP18), A, Mami University Hospital of Pneumology, Ariana, Tunisia
| | - Beatriz Romero
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Avda. Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Radhouane Gdoura
- Department of Life Sciences, Research Laboratory of Environmental Toxicology-Microbiology and Health (LR17ES06), Faculty of Sciences, University of Sfax-Tunisia, Sfax, Tunisia
| |
Collapse
|
25
|
Aparicio T, de Lorenzo V, Martínez-García E. CRISPR/Cas9-Based Counterselection Boosts Recombineering Efficiency in Pseudomonas putida. Biotechnol J 2017; 13:e1700161. [PMID: 29058367 DOI: 10.1002/biot.201700161] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/15/2017] [Indexed: 12/13/2022]
Abstract
While adoption of single-stranded DNA recombineering techniques has greatly eased genetic design of the platform strain Pseudomonas putida KT2440, available methods still produce the desired modifications/deletions at low frequencies. This makes isolation of mutants that do not display selectable or conspicuous phenotypes considerably difficult. To overcome this limitation, the authors have merged ssDNA recombineering with CRISPR/Cas9 technology in this bacterium for efficient killing of unmodified cells and thus non-phenotypic selection of bacteria bearing the mutations of interest. After incorporating the system into standardized pSEVA plasmids the authors tested its functional efficiency by targeting different types of changes that ranged from single nucleotide substitutions to one-gene deletions-to even the removal of the large flagellar cluster (≈69 kb). Simultaneous introduction of two independent gene deletions was tested as well. In all cases, directing the crRNA/Cas9 complexes toward non-modified, wild-type genomic sequences boosted dramatically the appearance of the mutants at stake in the absence of any phenotypic selection. The results presented here upgrade the engineering possibilities of the genome of this environmental bacterium (and possibly other Gram-negatives) to obtain modifications that are otherwise cumbersome to generate.
Collapse
Affiliation(s)
- Tomás Aparicio
- T. Aparicio, V. de Lorenzo, E. Martínez-García, Systems Biology Program, National Center of Biotechnology CSIC, Madrid, 28049 Spain
| | - Víctor de Lorenzo
- T. Aparicio, V. de Lorenzo, E. Martínez-García, Systems Biology Program, National Center of Biotechnology CSIC, Madrid, 28049 Spain
| | - Esteban Martínez-García
- T. Aparicio, V. de Lorenzo, E. Martínez-García, Systems Biology Program, National Center of Biotechnology CSIC, Madrid, 28049 Spain
| |
Collapse
|
26
|
Han W, She Q. CRISPR History: Discovery, Characterization, and Prosperity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 152:1-21. [PMID: 29150001 DOI: 10.1016/bs.pmbts.2017.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CRISPR research is a very young research field since it was only 10years ago when the system was found to confer antiviral defense. Nevertheless, there has been an explosion of publications in CRISPR research in the past 5years. The research was started with the comparative genomics of microbial genomes early this century, which revealed the prevalence of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) in bacteria and archaea. Series of hypotheses were made based on bioinformatics analyses and tested experimentally within a few years after the CRISPR acronym was coined. These findings have not only led to the discovery of the unique antiviral system and the involved molecular mechanisms, but also to the development of CRISPR technology with various well-developed applications, such as genome editing in all three domains of life. Currently, widespread research efforts in multiple research disciplines have constantly yielded new insights into molecular mechanisms of CRISPR antiviral immunity, and new applications in scientific research and biomedical applications. Retrospectively, it is worth pointing out that close interdisciplinary interactions have fostered series of discoveries in the CRISPR research and worked as the driving force in the fast developing research field.
Collapse
Affiliation(s)
- Wenyuan Han
- Archaea Center, University of Copenhagen, Copenhagen Biocenter, Copenhagen, Denmark
| | - Qunxin She
- Archaea Center, University of Copenhagen, Copenhagen Biocenter, Copenhagen, Denmark.
| |
Collapse
|
27
|
Hijikata M, Keicho N, Duc LV, Maeda S, Hang NTL, Matsushita I, Kato S. Spoligotyping and whole-genome sequencing analysis of lineage 1 strains of Mycobacterium tuberculosis in Da Nang, Vietnam. PLoS One 2017; 12:e0186800. [PMID: 29049400 PMCID: PMC5648229 DOI: 10.1371/journal.pone.0186800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/06/2017] [Indexed: 11/18/2022] Open
Abstract
Background Spacer oligonucleotide typing (spoligotyping), a widely used, classical genotyping method for Mycobacterium tuberculosis complex (MTBC), is a PCR-based dot-blot hybridization technique to detect the genetic diversity of the direct repeat (DR) region. Of the seven major MTBC lineages in the world, lineage 1 (Indo-Oceanic) mostly corresponds to the East African–Indian (EAI) spoligotype family in East Africa and Southeast Asia. Objectives We investigated the genomic features of Vietnamese lineage 1 strains, comparing spoligotype patterns using whole-genome sequencing (WGS) data. Methods M. tuberculosis strains isolated in Da Nang, Vietnam were subjected to conventional spoligotyping, followed by WGS analysis using a high-throughput sequencer. Vietnamese lineage 1 strains were further analyzed with other lineage 1 strains obtained from a public database. Results Indicating a major spoligotype in Da Nang, 86 (46.2%) of the 186 isolates belonged to the EAI family or lineage 1. Although typical EAI4-VNM strains are characterized by the deletion of spacers 26 and 27, 65 (75.6%) showed ambiguous signals on spacer 26. De novo assembly of the entire DR region and in silico spoligotyping analysis suggested the absence of spacer 26, and direct sequencing revealed that the 17th spacer sequence not used for conventional typing, was cross-hybridized to the spacer 26 probe. Vietnamese EAI4-VNM, other EAI-like strains, and those showing a non-EAI pattern lacking many spacers formed a monophyletic group separate from other EAI families in the world. Conclusion Information about the alignment of spacers in the entire DR region obtained from WGS data provides a clue for the determination of experimentally ambiguous spoligo patterns. WGS data also helped to analyze the hidden relationships between apparently distinct spoligo patterns.
Collapse
Affiliation(s)
- Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Naoto Keicho
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
- * E-mail:
| | | | - Shinji Maeda
- Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Hokkaido, Japan
| | | | - Ikumi Matsushita
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Seiya Kato
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| |
Collapse
|
28
|
Tarazona D, Jaramillo L, Borda V, Levano K, Galarza M, Guio H. A Genomic Signature for Genotyping Mycobacterium tuberculosis. Bioinformation 2017; 13:224-230. [PMID: 28943727 PMCID: PMC5602289 DOI: 10.6026/97320630013224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/13/2017] [Accepted: 07/23/2017] [Indexed: 11/30/2022] Open
Abstract
Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB), has a vast diversity of genotypes including Beijing, CAS,
EAI, Haarlem, LAM, X, Ural, T, AFRI1 and AFRI2. However, genotyping can be expensive, time consuming and in some cases, results
may vary depending on methodology used. Here, we proposed a new set of 10 SNPs using a total of 249 MTB genomes, and selected
by first the inclusion/ exclusion (IE) criteria using spoligotyping and phylogenies, followed by the selection of the nonsynonymous
SNPs present in the most conserved cluster of orthologous groups (COG) of each genotype of MTB. Genotype assignment of the new
set of 10 SNPs was validated using an additional of 34 MTB genomes and results showed 100% correlation with their known
genotypes. Our set of 10 SNPs have not been previously reported and cover the MTB genotypes that are prevalent worldwide. This set
of SNPs could be used for molecular epidemiology with drug resistant markers.
Collapse
Affiliation(s)
- David Tarazona
- Laboratorio de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
| | - Luis Jaramillo
- Laboratorio de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
| | - Victor Borda
- Laboratorio de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
| | - Kelly Levano
- Laboratorio de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
| | - Marco Galarza
- Laboratorio de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
| | - Heinner Guio
- Laboratorio de Biotecnología y Biología Molecular, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Perú
| |
Collapse
|
29
|
Freidlin PJ, Nissan I, Luria A, Goldblatt D, Schaffer L, Kaidar-Shwartz H, Chemtob D, Dveyrin Z, Head SR, Rorman E. Structure and variation of CRISPR and CRISPR-flanking regions in deleted-direct repeat region Mycobacterium tuberculosis complex strains. BMC Genomics 2017; 18:168. [PMID: 28201993 PMCID: PMC5310062 DOI: 10.1186/s12864-017-3560-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/07/2017] [Indexed: 12/16/2022] Open
Abstract
Background CRISPR and CRISPR-flanking genomic regions are important for molecular epidemiology of Mycobacterium tuberculosis complex (MTBC) strains, and potentially for adaptive immunity to phage and plasmid DNA, and endogenous roles in the bacterium. Genotyping in the Israel National Mycobacterium Reference Center Tel-Aviv of over 1500 MTBC strains from 2008–2013 showed three strains with validated negative 43-spacer spoligotypes, that is, with putatively deleted direct repeat regions (deleted-DR/CRISPR regions). Two isolates of each of three negative spoligotype MTBC (a total of 6 isolates) were subjected to Next Generation Sequencing (NGS). As positive controls, NGS was performed for three intact-DR isolates belonging to T3_Eth, the largest multiple-drug-resistant (MDR)-containing African-origin cluster in Israel. Other controls consisted of NGS reads and complete whole genome sequences from GenBank for 20 intact-DR MTBC and for 1 deleted-DR MTBC strain recognized as CAS by its defining RD deletion. Results NGS reads from negative spoligotype MTBC mapped to reference H37Rv NC_000962.3 suggested that the DR/CRISPR regions were completely deleted except for retention of the middle IS6110 mobile element. Clonally specific deletion of CRISPR-flanking genes also was observed, including deletion of at least cas2 and cas1 genes. Genomic RD deletions defined lineages corresponding to the major spoligotype families Beijing, EAI, and Haarlem, consistent with 24 loci MIRU-VNTR profiles. Analysis of NGS reads, and analysis of contigs obtained by manual PCR confirmed that all 43 gold standard DR/CRISPR spacers were missing in the deleted-DR genomes. Conclusions Although many negative spoligotype strains are recorded as spoligotype-international-type (SIT) 2669 in the SITVIT international database, this is the first time to our knowledge that it has been shown that negative spoligotype strains are found in at least 4 different 24 loci MIRU-VNTR and RD deletion families. We report for the first time negative spoligotype-associated total loss of CRISPR region spacers and repeats, with accompanying clonally specific loss of flanking genes, including at least CRISPR-associated genes cas2 and cas1. Since cas1 deleted E.coli shows increased sensitivity to DNA damage and impaired chromosomal segregation, we discussed the possibility of a similar phenotype in the deleted-DR strains and Beijing family strains as both lack the cas1 gene. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3560-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul Jeffrey Freidlin
- National Mycobacterium Reference Center, National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel.
| | - Israel Nissan
- National Mycobacterium Reference Center, National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel
| | - Anna Luria
- National Mycobacterium Reference Center, National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel.,current address: Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Drora Goldblatt
- National Mycobacterium Reference Center, National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel
| | | | - Hasia Kaidar-Shwartz
- National Mycobacterium Reference Center, National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel
| | - Daniel Chemtob
- Department of Tuberculosis and AIDS, Ministry of Health, Jerusalem, Israel
| | - Zeev Dveyrin
- National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel
| | | | - Efrat Rorman
- National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel
| |
Collapse
|
30
|
Westra ER, Dowling AJ, Broniewski JM, van Houte S. Evolution and Ecology of CRISPR. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032428] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Edze R. Westra
- Environment and Sustainability Institute and Centre for Ecology and Conservation, Biosciences, University of Exeter, Tremough Campus, Penryn TR10 9FE, United Kingdom;
| | - Andrea J. Dowling
- Environment and Sustainability Institute and Centre for Ecology and Conservation, Biosciences, University of Exeter, Tremough Campus, Penryn TR10 9FE, United Kingdom;
| | - Jenny M. Broniewski
- Environment and Sustainability Institute and Centre for Ecology and Conservation, Biosciences, University of Exeter, Tremough Campus, Penryn TR10 9FE, United Kingdom;
| | - Stineke van Houte
- Environment and Sustainability Institute and Centre for Ecology and Conservation, Biosciences, University of Exeter, Tremough Campus, Penryn TR10 9FE, United Kingdom;
| |
Collapse
|
31
|
Methodological and Clinical Aspects of the Molecular Epidemiology of Mycobacterium tuberculosis and Other Mycobacteria. Clin Microbiol Rev 2016; 29:239-90. [PMID: 26912567 DOI: 10.1128/cmr.00055-15] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Molecular typing has revolutionized epidemiological studies of infectious diseases, including those of a mycobacterial etiology. With the advent of fingerprinting techniques, many traditional concepts regarding transmission, infectivity, or pathogenicity of mycobacterial bacilli have been revisited, and their conventional interpretations have been challenged. Since the mid-1990s, when the first typing methods were introduced, a plethora of other modalities have been proposed. So-called molecular epidemiology has become an essential subdiscipline of modern mycobacteriology. It serves as a resource for understanding the key issues in the epidemiology of tuberculosis and other mycobacterial diseases. Among these issues are disclosing sources of infection, quantifying recent transmission, identifying transmission links, discerning reinfection from relapse, tracking the geographic distribution and clonal expansion of specific strains, and exploring the genetic mechanisms underlying specific phenotypic traits, including virulence, organ tropism, transmissibility, or drug resistance. Since genotyping continues to unravel the biology of mycobacteria, it offers enormous promise in the fight against and prevention of the diseases caused by these pathogens. In this review, molecular typing methods for Mycobacterium tuberculosis and nontuberculous mycobacteria elaborated over the last 2 decades are summarized. The relevance of these methods to the epidemiological investigation, diagnosis, evolution, and control of mycobacterial diseases is discussed.
Collapse
|
32
|
Carvalho RCT, Vasconcellos SEG, Issa MDA, Soares Filho PM, Mota PMPC, Araújo FRD, Carvalho ACDS, Gomes HM, Suffys PN, Figueiredo EEDS, Paschoalin VMF. Molecular Typing of Mycobacterium bovis from Cattle Reared in Midwest Brazil. PLoS One 2016; 11:e0162459. [PMID: 27631383 PMCID: PMC5024986 DOI: 10.1371/journal.pone.0162459] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/23/2016] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium bovis is the causative agent of bovine tuberculosis (BTB), the pathogen responsible for serious economic impact on the livestock sector. In order to obtain data on isolated M. bovis strains and assist in the control and eradication program for BTB, a cross sectional descriptive molecular epidemiology study in the Brazilian Midwest was conducted. Through spoligotyping and 24-loci MIRU-VNTR methods, 37 clinical isolates of M. bovis circulating in the region were analyzed, 10 isolated from the state of Mato Grosso, 12 from the state of Mato Grosso do Sul and 15 from the state of Goiás. The spoligotyping analysis identified 10 distinct M. bovis profiles (SB0121 n = 14, SB0295 n = 6, SB0140 n = 6, SB0881 n = 3, SB1144 n = 2, SB1145 n = 2, SB0134 n = 1, SB1050 n = 1, SB1055 n = 1, SB1136 n = 1) grouped in six clusters and four orphan patterns. The MIRU-VNTR 24-loci grouped the same isolates in six clusters and 22 unique orphan patterns, showing higher discriminatory power than spoligotyping. When associating the results of both techniques, the isolates were grouped in five clusters and 24 unique M. bovis profiles. Among the 24-loci MIRU-VNTR evaluated, two, ETR-A and QUB 11b loci, showed high discriminatory ability (h = ≥ 0.50), while MIRU 16, MIRU 27, ETR-B, ETR-C, Mtub21 and QUB 26 loci showed moderate ability (h = 0.33 or h = 0.49) and were the most effective in evaluating the genotypic similarities among the clinical M. bovis isolate samples. Herein, the 29 patterns found amongst the 37 isolates of M. bovis circulating in the Brazilian Midwest can be due to the animal movement between regions, municipalities and farms, thus causing the spread of various M. bovis strains in herds from Midwest Brazil.
Collapse
Affiliation(s)
- Ricardo César Tavares Carvalho
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro/RJ, Brasil
- Faculdade de Nutrição, Universidade Federal de Mato Grosso (UFMT), Cuiabá/MT, Brasil
| | - Sidra Ezidio Gonçalves Vasconcellos
- Laboratório de Biologia Molecular Aplicado a Micobactérias, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro/RJ, Brasil
| | - Marina de Azevedo Issa
- Laboratório Nacional Agropecuário (LANAGRO), Ministério da Agricultura, Pecuária e Abastecimento (MAPA), Pedro Leopoldo/MG, Brasil
| | - Paulo Martins Soares Filho
- Laboratório Nacional Agropecuário (LANAGRO), Ministério da Agricultura, Pecuária e Abastecimento (MAPA), Pedro Leopoldo/MG, Brasil
| | - Pedro Moacyr Pinto Coelho Mota
- Laboratório Nacional Agropecuário (LANAGRO), Ministério da Agricultura, Pecuária e Abastecimento (MAPA), Pedro Leopoldo/MG, Brasil
| | | | - Ana Carolina da Silva Carvalho
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro/RJ, Brasil
- Universidade Federal do Rio de Janeiro (UFRJ)-Campus Macaé, Macaé/RJ, Brasil
| | - Harrison Magdinier Gomes
- Laboratório de Biologia Molecular Aplicado a Micobactérias, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro/RJ, Brasil
| | - Philip Noel Suffys
- Laboratório de Biologia Molecular Aplicado a Micobactérias, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro/RJ, Brasil
- Mycobacteriology Unit, Tropical Institute of Medicine, Antwerp, Belgium
| | | | | |
Collapse
|
33
|
Chrenek MA, Nickerson JM, Boatright JH. Clustered Regularly Interspaced Short Palindromic Repeats: Challenges in Treating Retinal Disease. Asia Pac J Ophthalmol (Phila) 2016; 5:304-8. [PMID: 27488072 PMCID: PMC4975549 DOI: 10.1097/apo.0000000000000225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ophthalmic researchers and clinicians arguably have led the way for safe, effective gene therapy, most notably with adeno-associated viral gene supplementation in the treatment for patients with Leber congenital amaurosis type 2 with mutations in the RPE65 gene. These successes notwithstanding, most other genetic retinal disease will be refractory to supplementation. The ideal gene therapy approach would correct gene mutations to restore normal function in the affected cells. Gene editing in which a mutant allele is inactivated or converted to sequence that restores normal function is hypothetically one such approach. Such editing involves site-specific digestion of mutant genomic DNA followed by repair. Previous experimental approaches were hampered by inaccurate and high rates of off-site lesioning and by overall low digestion rates. A new tool, clustered regularly interspaced short palindromic repeats coupled with the nuclease Cas9, may address both shortcomings. Some of the many challenges that must be addressed in moving clustered regularly interspaced short palindromic repeats coupled with the nuclease Cas9 therapies to the ophthalmic clinic are discussed here.
Collapse
Affiliation(s)
- Micah A. Chrenek
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
| | - John M. Nickerson
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
| | - Jeffrey H. Boatright
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia
| |
Collapse
|
34
|
Spoligotyping of Mycobacterium tuberculosis Complex Isolates by Use of Ligation-Based Amplification and Melting Curve Analysis. J Clin Microbiol 2016; 54:2384-7. [PMID: 27335152 DOI: 10.1128/jcm.00857-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/15/2016] [Indexed: 11/20/2022] Open
Abstract
We report here a ligation-based spoligotyping that can identify unamplified spacers in membrane-based spoligotyping due to asymmetric insertion of IS6110 in the direct repeat locus. Our typing yielded 84.4% (411/487) concordance with traditional typing and 100% (487/487) accuracy when confirmed by DNA sequencing.
Collapse
|
35
|
Kumar MS, Plotkin JB, Hannenhalli S. Regulated CRISPR Modules Exploit a Dual Defense Strategy of Restriction and Abortive Infection in a Model of Prokaryote-Phage Coevolution. PLoS Comput Biol 2015; 11:e1004603. [PMID: 26544847 PMCID: PMC4636164 DOI: 10.1371/journal.pcbi.1004603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 10/14/2015] [Indexed: 11/23/2022] Open
Abstract
CRISPRs offer adaptive immunity in prokaryotes by acquiring genomic fragments from infecting phage and subsequently exploiting them for phage restriction via an RNAi-like mechanism. Here, we develop and analyze a dynamical model of CRISPR-mediated prokaryote-phage coevolution that incorporates classical CRISPR kinetics along with the recently discovered infection-induced activation and autoimmunity side effects. Our analyses reveal two striking characteristics of the CRISPR defense strategy: that both restriction and abortive infections operate during coevolution with phages, driving phages to much lower densities than possible with restriction alone, and that CRISPR maintenance is determined by a key dimensionless combination of parameters, which upper bounds the activation level of CRISPRs in uninfected populations. We contrast these qualitative observations with experimental data on CRISPR kinetics, which offer insight into the spacer deletion mechanism and the observed low CRISPR prevalence in clinical isolates. More generally, we exploit numerical simulations to delineate four regimes of CRISPR dynamics in terms of its host, kinetic, and regulatory parameters. To counteract viral infections, bacteria and archaea have evolved a variety of defense systems. These can broadly be classified into either restriction or suicide mechanisms. The former enforces nicks in the invading DNA making it unusable for production of further infectious particles; the latter, by contrast, induces cell death whereby an infected cell activates specific host suicidal pathways that are otherwise strongly repressed, thus inhibiting further infection. Examples of the former class include restriction-modification (R-M) and the recently discovered CRISPR systems, while the latter class includes a variety of toxin/anti-toxin systems. CRISPRs, in contrast to R-Ms, adapt to target viral genomes by updating the database of target sites they recognize. The adverse side effect of such a mechanism, however, is that CRISPRs can target the host genome itself resulting in undesirable cell death (autoimmunity). The recent discovery of infection-induced activation of CRISPR systems suggests that these negative side effects may be limited to periods of infection. This led us to hypothesize that such regulatory control—similar to abortive infection mechanisms—can be advantageous by limiting viral spread through suicide of infected cells. To test this hypothesis, we mathematically model CRISPR induced prokaryote-phage coevolutionary dynamics in the presence of infection-regulated CRISPR activity. Our results indicate that, except in limited growth rates, regulated CRISPRs exploit both autoimmunity and target restriction and can therefore be considered a hybrid class that leverages both restriction and suicide mechanisms to limit phage infection.
Collapse
Affiliation(s)
- M. Senthil Kumar
- Graduate Program in Bioinformatics, University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (MSK); (JBP); (SH)
| | - Joshua B. Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (MSK); (JBP); (SH)
| | - Sridhar Hannenhalli
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (MSK); (JBP); (SH)
| |
Collapse
|
36
|
Azé J, Sola C, Zhang J, Lafosse-Marin F, Yasmin M, Siddiqui R, Kremer K, van Soolingen D, Refrégier G. Genomics and Machine Learning for Taxonomy Consensus: The Mycobacterium tuberculosis Complex Paradigm. PLoS One 2015; 10:e0130912. [PMID: 26154264 PMCID: PMC4496040 DOI: 10.1371/journal.pone.0130912] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/25/2015] [Indexed: 11/18/2022] Open
Abstract
Infra-species taxonomy is a prerequisite to compare features such as virulence in different pathogen lineages. Mycobacterium tuberculosis complex taxonomy has rapidly evolved in the last 20 years through intensive clinical isolation, advances in sequencing and in the description of fast-evolving loci (CRISPR and MIRU-VNTR). On-line tools to describe new isolates have been set up based on known diversity either on CRISPRs (also known as spoligotypes) or on MIRU-VNTR profiles. The underlying taxonomies are largely concordant but use different names and offer different depths. The objectives of this study were 1) to explicit the consensus that exists between the alternative taxonomies, and 2) to provide an on-line tool to ease classification of new isolates. Genotyping (24-VNTR, 43-spacers spoligotypes, IS6110-RFLP) was undertaken for 3,454 clinical isolates from the Netherlands (2004-2008). The resulting database was enlarged with African isolates to include most human tuberculosis diversity. Assignations were obtained using TB-Lineage, MIRU-VNTRPlus, SITVITWEB and an algorithm from Borile et al. By identifying the recurrent concordances between the alternative taxonomies, we proposed a consensus including 22 sublineages. Original and consensus assignations of the all isolates from the database were subsequently implemented into an ensemble learning approach based on Machine Learning tool Weka to derive a classification scheme. All assignations were reproduced with very good sensibilities and specificities. When applied to independent datasets, it was able to suggest new sublineages such as pseudo-Beijing. This Lineage Prediction tool, efficient on 15-MIRU, 24-VNTR and spoligotype data is available on the web interface “TBminer.” Another section of this website helps summarizing key molecular epidemiological data, easing tuberculosis surveillance. Altogether, we successfully used Machine Learning on a large dataset to set up and make available the first consensual taxonomy for human Mycobacterium tuberculosis complex. Additional developments using SNPs will help stabilizing it.
Collapse
Affiliation(s)
- Jérôme Azé
- LIRMM UM CNRS, UMR 5506, 860 rue de St Priest, 34095 Montpellier cedex 5, France
| | - Christophe Sola
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Bât 400, 91405 Orsay cedex, France
| | - Jian Zhang
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Bât 400, 91405 Orsay cedex, France
| | - Florian Lafosse-Marin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Bât 400, 91405 Orsay cedex, France
| | - Memona Yasmin
- Pakistan Institute for Engineering and Applied Sciences (PIEAS), Lehtrar Road, Nilore, Islamabad, Pakistan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box # 577, Jhang Road, Faisalabad, Pakistan
| | - Rubina Siddiqui
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box # 577, Jhang Road, Faisalabad, Pakistan
| | - Kristin Kremer
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Dick van Soolingen
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
- Department of Pulmonary Diseases and Department of Microbiology, Radbout University Nijmegen Medical Centre, University Lung Centre Dekkerswald, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Guislaine Refrégier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Bât 400, 91405 Orsay cedex, France
- * E-mail:
| |
Collapse
|
37
|
Sola C. Clustured regularly interspersed short palindromic repeats (CRISPR) genetic diversity studies as a mean to reconstruct the evolution of the Mycobacterium tuberculosis complex. Tuberculosis (Edinb) 2015; 95 Suppl 1:S159-66. [PMID: 25748060 DOI: 10.1016/j.tube.2015.02.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The natural history of tuberculosis may be tackled by various means, among which the record of molecular scars that have been registered by the Mycobacterium tuberculosis complex (MTBC) genomes transmitted from patient to patient for tens of thousands years and possibly more. Recently discovered polymorphic loci, the CRISPR sequences, are indirect witnesses of the historical phage-bacteria struggle, and may be related to the time when the ancestor of today's tubercle bacilli were environmental bacteria, i.e. before becoming intracellular parasites. In this article, we present what are CRISPRs and try to summarize almost 20 years of research results obtained using the genetic diversity of the CRISPR loci in MTBC as a perspective for studying new models. We show that the study of the diversity of CRISPR sequences, thanks to «spoligotyping», has played a great role in our global understanding of the population structure of MTBC.
Collapse
Affiliation(s)
- Christophe Sola
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
38
|
Sola C, Abadia E, Le Hello S, Weill FX. High-Throughput CRISPR Typing of Mycobacterium tuberculosis Complex and Salmonella enterica Serotype Typhimurium. Methods Mol Biol 2015; 1311:91-109. [PMID: 25981468 DOI: 10.1007/978-1-4939-2687-9_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Spoligotyping was developed almost 18 years ago and still remains a popular first-lane genotyping technique to identify and subtype Mycobacterium tuberculosis complex (MTC) clinical isolates at a phylogeographic level. For other pathogens, such as Salmonella enterica, recent studies suggest that specifically designed spoligotyping techniques could be interesting for public health purposes. Spoligotyping was in its original format a reverse line-blot hybridization method using capture probes designed on "spacers" and attached to a membrane's surface and a PCR product obtained from clustered regularly interspaced short palindromic repeats (CRISPRs). Cowan et al. and Fabre et al. were the first to propose a high-throughput Spoligotyping method based on microbeads for MTC and S. enterica serotype Typhimurium, respectively. The main advantages of the high-throughput Spoligotyping techniques we describe here are their low cost, their robustness, and the existence (at least for MTC) of very large databases that allow comparisons between spoligotypes from anywhere.
Collapse
Affiliation(s)
- Christophe Sola
- Microbiology Department, Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Rue Gregor Mendel, Building 400, Room 205-208, F-91405, Orsay-Cedex, France,
| | | | | | | |
Collapse
|
39
|
Botelho A, Canto A, Leão C, Cunha MV. Clustered regularly interspaced short palindromic repeats (CRISPRs) analysis of members of the Mycobacterium tuberculosis complex. Methods Mol Biol 2015; 1247:373-389. [PMID: 25399110 DOI: 10.1007/978-1-4939-2004-4_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Typical CRISPR (clustered, regularly interspaced, short palindromic repeat) regions are constituted by short direct repeats (DRs), interspersed with similarly sized non-repetitive spacers, derived from transmissible genetic elements, acquired when the cell is challenged with foreign DNA. The analysis of the structure, in number and nature, of CRISPR spacers is a valuable tool for molecular typing since these loci are polymorphic among strains, originating characteristic signatures. The existence of CRISPR structures in the genome of the members of Mycobacterium tuberculosis complex (MTBC) enabled the development of a genotyping method, based on the analysis of the presence or absence of 43 oligonucleotide spacers separated by conserved DRs. This method, called spoligotyping, consists on PCR amplification of the DR chromosomal region and recognition after hybridization of the spacers that are present. The workflow beneath this methodology implies that the PCR products are brought onto a membrane containing synthetic oligonucleotides that have complementary sequences to the spacer sequences. Lack of hybridization of the PCR products to a specific oligonucleotide sequence indicates absence of the correspondent spacer sequence in the examined strain. Spoligotyping gained great notoriety as a robust identification and typing tool for members of MTBC, enabling multiple epidemiological studies on human and animal tuberculosis.
Collapse
Affiliation(s)
- Ana Botelho
- Unidade Estratégica de Investigação e Serviços em Produção e Saúde Animal, Instituto Nacional de Investigação Agrária e Veterinária, I.P (INIAV, IP), Rua General Morais Sarmento, 1500-311, Lisbon, Portugal,
| | | | | | | |
Collapse
|
40
|
Abstract
Macroarray-based analysis is a powerful and economic format to study variations in "clustered regularly interspaced short palindromic repeat (CRISPR)" loci in bacteria. To date, it was used almost exclusively for Mycobacterium tuberculosis and was named spoligotyping (spacer oligonucleotides typing). Here, we describe the pipeline of this approach that includes search of loci and selection of spacers, preparation of the membrane with immobilized probes and spoligotyping itself (PCR and reverse hybridization).
Collapse
Affiliation(s)
- Igor Mokrousov
- Laboratory of Molecular Microbiology, St. Petersburg Pasteur Institute, 14 Mira Street, St. Petersburg, 197101, Russia,
| | | |
Collapse
|
41
|
Bacteriological diagnosis and molecular strain typing of Mycobacterium bovis and Mycobacterium caprae. Res Vet Sci 2014; 97 Suppl:S30-43. [DOI: 10.1016/j.rvsc.2014.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 04/08/2014] [Accepted: 04/24/2014] [Indexed: 11/24/2022]
|
42
|
Comparison of a semiautomated commercial repetitive-sequence-based PCR method with spoligotyping, 24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing, and restriction fragment length polymorphism-based analysis of IS6110 for Mycobacterium tuberculosis typing. J Clin Microbiol 2014; 52:4082-6. [PMID: 25210067 DOI: 10.1128/jcm.02226-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fifty-two multidrug-resistant isolates of Mycobacterium tuberculosis representative of the currently predominant lineages in France were analyzed using repetitive-sequence-based PCR (rep-PCR) DiversiLab (DL), spoligotyping, 24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing (MIRU-VNTR), and restriction fragment length polymorphism of IS6110 (IS6110-RFLP). DL, as opposed to MIRU-VNTR and IS6110-RFLP analysis, did not allow discrimination among half of the isolates, an indication of comparatively lower resolving power.
Collapse
|
43
|
Ramos DF, Silva ABS, Fagundes MQ, von Groll A, da Silva PEA, Dellagostin OA. Molecular typing of Mycobacterium bovis isolated in the south of Brazil. Braz J Microbiol 2014; 45:657-60. [PMID: 25242955 PMCID: PMC4166296 DOI: 10.1590/s1517-83822014000200039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 09/09/2013] [Indexed: 11/22/2022] Open
Abstract
Bovine tuberculosis is a major infectious disease of the cattle. In this study, 85 M. bovis isolates from 162 lymph nodes, obtained from a herd of cattle on a farm in southern Brazil, were evaluated using spoligotyping and VNTR. The strains were grouped into five clusters and five orphans, showing a heterogenic genetic profile, what could represent diverse geographic origins of the introduced cows and/or the frequent movement of cattle between different properties.
Collapse
Affiliation(s)
- Daniela Fernandes Ramos
- Núcleo de Biotecnologia Centro de Desenvolvimento Tecnológico Universidade Federal de Pelotas PelotasRS Brazil Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Ana Bárbara Scholante Silva
- Laboratório de Micobactérias Faculdade de Medicina Universidade Federal de Rio Grande Rio GrandeRS Brazil Laboratório de Micobactérias, Faculdade de Medicina, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
| | - Michel Quevedo Fagundes
- Núcleo de Biotecnologia Centro de Desenvolvimento Tecnológico Universidade Federal de Pelotas PelotasRS Brazil Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Andrea von Groll
- Laboratório de Micobactérias Faculdade de Medicina Universidade Federal de Rio Grande Rio GrandeRS Brazil Laboratório de Micobactérias, Faculdade de Medicina, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
| | - Pedro Eduardo Almeida da Silva
- Laboratório de Micobactérias Faculdade de Medicina Universidade Federal de Rio Grande Rio GrandeRS Brazil Laboratório de Micobactérias, Faculdade de Medicina, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
| | - Odir Antônio Dellagostin
- Núcleo de Biotecnologia Centro de Desenvolvimento Tecnológico Universidade Federal de Pelotas PelotasRS Brazil Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
44
|
Blouin Y, Cazajous G, Dehan C, Soler C, Vong R, Hassan MO, Hauck Y, Boulais C, Andriamanantena D, Martinaud C, Martin É, Pourcel C, Vergnaud G. Progenitor “Mycobacterium canettii” clone responsible for lymph node tuberculosis epidemic, Djibouti. Emerg Infect Dis 2014; 20:21-8. [PMID: 24520560 PMCID: PMC3884719 DOI: 10.3201/eid2001.130652] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Two outbreaks among expatriate children were caused by an epidemic clone from the Horn of Africa. “Mycobacterium canettii,” an opportunistic human pathogen living in an unknown environmental reservoir, is the progenitor species from which Mycobacterium tuberculosis emerged. Since its discovery in 1969, most of the ≈70 known M. canettii strains were isolated in the Republic of Djibouti, frequently from expatriate children and adults. We show here, by whole-genome sequencing, that most strains collected from February 2010 through March 2013, and associated with 2 outbreaks of lymph node tuberculosis in children, belong to a unique epidemic clone within M. canettii. Evolution of this clone, which has been recovered regularly since 1983, may mimic the birth of M. tuberculosis. Thus, recognizing this organism and identifying its reservoir are clinically important.
Collapse
|
45
|
Detection and molecular characterization of Mycobacterium microti isolates in wild boar from northern Italy. J Clin Microbiol 2014; 52:2834-43. [PMID: 24871212 DOI: 10.1128/jcm.00440-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Approximately 23,000 hunter-harvested wild boars from the pre-Alpine area of northern Italy were examined for tuberculosis over a 9-year period (2003 to 2011). Retropharyngeal and mandibular lymph nodes from the wild boars were examined grossly, and 1,151 of the lymph nodes were analyzed in our laboratory by histology (728 samples) and culture isolation (819 samples). Mycobacterium tuberculosis complex (MTBC)-specific PCR (1,142 samples) was used for molecular-level detection in tissue samples, as was a gyrB restriction fragment length polymorphism (RFLP) assay (322 samples). Lesions compatible with tuberculosis and indistinguishable from those described in cases of Mycobacterium bovis infection had been observed since 2003. Mycobacterium microti was identified directly in 256 tissue samples by the adopted molecular approaches. However, only 26 M. microti strains were obtained by culture isolation due to the well-known difficulties in isolating this slow-growing mycobacterium. During 2006, a prevalence study was performed in two provinces of the area, and the diffusion of M. microti was calculated to be 5.8% (95% confidence intervals surrounding the estimated prevalences [CIP95%], 3.94 to 7.68%). Over the following years (2007 to 2011), the presence of M. microti appeared to be stable. All isolates were genotyped by spoligotyping and exact tandem repeat analysis (ETR types A to F). In addition to the typical vole type (SB0118), a new spoligotype lacking the 43 spacers was found. Spoligotyping was also applied directly to tissue samples, and a geographical cluster distribution of the two spoligotypes was observed. This is the first report studying the diffusion and genetic variability of M. microti in wild boar.
Collapse
|
46
|
Molecular characterization of Mycobacterium tuberculosis isolates from elephants of Nepal. Tuberculosis (Edinb) 2014; 94:287-92. [DOI: 10.1016/j.tube.2013.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/20/2013] [Accepted: 12/28/2013] [Indexed: 11/22/2022]
|
47
|
Diversity, evolution, and therapeutic applications of small RNAs in prokaryotic and eukaryotic immune systems. Phys Life Rev 2014; 11:113-34. [DOI: 10.1016/j.plrev.2013.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/05/2013] [Indexed: 12/26/2022]
|
48
|
Rodriguez-Campos S, Smith NH, Boniotti MB, Aranaz A. Overview and phylogeny of Mycobacterium tuberculosis complex organisms: implications for diagnostics and legislation of bovine tuberculosis. Res Vet Sci 2014; 97 Suppl:S5-S19. [PMID: 24630673 DOI: 10.1016/j.rvsc.2014.02.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/04/2014] [Accepted: 02/15/2014] [Indexed: 10/25/2022]
Abstract
Members of the Mycobacterium tuberculosis complex (MTBC) cause a serious disease with similar pathology, tuberculosis; in this review, bovine tuberculosis will be considered as disease caused by any member of the MTBC in bovids. Bovine tuberculosis is responsible for significant economic loss due to costly eradication programs and trade limitations and poses a threat to both endangered and protected species as well as to public health. We here give an overview on all members of the MTBC, focusing on their isolation from different animal hosts. We also review the recent advances made in elucidating the evolutionary and phylogenetic relationships of members of the MTBC. Because the nomenclature of the MTBC is controversial, its members have been considered species, subspecies or ecotypes, this review discusses the possible implications for diagnostics and the legal consequences of naming of new species.
Collapse
Affiliation(s)
- Sabrina Rodriguez-Campos
- Institute of Veterinary Bacteriology, Veterinary Faculty, University of Bern, Laenggassstrasse 122, 3012 Bern, Switzerland.
| | - Noel H Smith
- Animal Health and Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Maria B Boniotti
- Centro Nazionale di Referenza per la Tubercolosi Bovina, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, via Bianchi 9, 25124 Brescia, Italy
| | - Alicia Aranaz
- Departamento de Sanidad Animal, Veterinary Faculty, Universidad Complutense de Madrid, Avda. Puerta de Hiero s/n, 28040 Madrid, Spain
| |
Collapse
|
49
|
Alzamora Filho F, Vasconcellos SE, Gomes HM, Cavalcante MP, Suffys PN, Costa JN. Múltiplas estirpes de isolados de Mycobacteriumbovis identificados por tipagem molecular em bovinos abatidos em matadouros-frigoríficos. PESQUISA VETERINÁRIA BRASILEIRA 2014. [DOI: 10.1590/s0100-736x2014000200001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
O objetivo do presente trabalho foi utilizar métodos bacteriológicos e moleculares para a identificação do Mycobacteriumbovis em lesões observadas em carcaças de bovinos durante a inspeção postmortem de rotina em matadouros-frigoríficos com serviço de inspeção oficial. Foi acompanhado o abate e a inspeção de 825.394 bovinos, sadios ao exame ante mortem pelo serviço de inspeção oficial em dez matadouros-frigoríficos do estado da Bahia. Carcaça de 180 bovinos apresentaram lesões sugestivas de tuberculose e por outras linfadenites. No isolamento bacteriano, 25 amostras apresentaram crescimento disgônico de colônias de coloração creme-amareladas em meio de cultura Stonebrink-Leslie. Desses isolados, 14 foram identificados como M. bovis PCR multiplex e pela técnica do spoligotyping foram discriminados oito diferentes espoligotipos do M. bovis, sendo sete descritos na literatura e um novo spoligotipo sem descrição anterior. O espoligotipo majoritário foi o SB0121, com cinco amostras, sendo descrito no Brasil e em outros países, seguidos por dois clusters, SB295 e SB1055, com dois isolados cada. O espoligotipo SB1145 e SB1648 foram referidos apenas no Brasil e Dinamarca, respectivamente. O espoligotipo SB140 já foi encontrado no Brasil, Argentina, Uruguai e Paraguai. Estes resultados demonstram que os espoligotipos obtidos são compartilhados, até o momento, entre estados brasileiros e entre países da América Latina e Europa. Sendo assim, a discriminação molecular de isolados de M. bovis através do Spoligotyping constitui-se numa ferramenta para estudos epidemiológicos da tuberculose bovina no Estado da Bahia.
Collapse
|
50
|
Current methods in the molecular typing of Mycobacterium tuberculosis and other mycobacteria. BIOMED RESEARCH INTERNATIONAL 2014; 2014:645802. [PMID: 24527454 PMCID: PMC3914561 DOI: 10.1155/2014/645802] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/18/2013] [Indexed: 11/18/2022]
Abstract
In the epidemiology of tuberculosis (TB) and nontuberculous mycobacterial (NTM) diseases, as in all infectious diseases, the key issue is to define the source of infection and to disclose its routes of transmission and dissemination in the environment. For this to be accomplished, the ability of discerning and tracking individual Mycobacterium strains is of critical importance. Molecular typing methods have greatly improved our understanding of the biology of mycobacteria and provide powerful tools to combat the diseases caused by these pathogens. The utility of various typing methods depends on the Mycobacterium species under investigation as well as on the research question. For tuberculosis, different methods have different roles in phylogenetic analyses and person-to-person transmission studies. In NTM diseases, most investigations involve the search for environmental sources or phylogenetic relationships. Here, too, the type of setting determines which methodology is most suitable. Within this review, we summarize currently available molecular methods for strain typing of M. tuberculosis and some NTM species, most commonly associated with human disease. For the various methods, technical practicalities as well as discriminatory power and accomplishments are reviewed.
Collapse
|