1
|
Churqui MP, Ghaleb M, Tunovic T, Frankal M, Enache L, Nyström K, Lagging M, Wang H. High prevalence of hepatitis E and rat hepatitis E viruses in wastewater in Gothenburg, Sweden. One Health 2024; 19:100882. [PMID: 39267918 PMCID: PMC11391864 DOI: 10.1016/j.onehlt.2024.100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatitis E virus (HEV) and Rat Hepatitis E virus (RHEV), recognized for their zoonotic potential, pose significant public health concerns. Our previous research identified both viruses in effluent wastewater in Gothenburg, Sweden. However, there are lingering inquiries regarding the prevalence and genetic diversity of these viruses in influent wastewater, as well as the utility of wastewater surveillance in elucidating their community circulation dynamics. To address these knowledge gaps, we conducted weekly collection of wastewater samples at the Rya wastewater treatment plant in Gothenburg throughout 2023. The concentrations of HEV and RHEV were quantified using quantitative polymerase chain reaction (qPCR). Additionally, two semi/nested-PCR were utilized to amplify viral strains. Furthermore, HEV strains from patients within the same region, as well as other regions in Sweden in 2023, were incorporated into the analysis. Remarkably, we observed a high prevalence of HEV (86%) and RHEV (98%) in wastewater samples, with the majority of HEV sequences identified as subtype 3c/i (9/12). In contrast, HEV subtype 3f was the most sequenced among clinical patient samples (6/12). Notably, previously unreported HEV-3b and unclassified strains were detected in wastewater. Almost all RHEV strains (20/21) were clustered into European groups, with none of the RHEV genetically close to strains previously found in human cases. The notable discordance in prevalence and identified subtypes of HEV-3 in wastewater compared to clinical samples suggests either a significant underdiagnosis of HEV infections or differences in viral loads and shedding durations among humans between HEV-3 subtypes. This underscores the urgent need for improved diagnostic techniques and heightened awareness of HEV transmission dynamics. Furthermore, the consistent detection of RHEV in wastewater underscores the necessity for further investigations to assess the potential role of RHEV in hepatitis cases of unknown etiology, given that most currently available clinical diagnostic assays fail to detect RHEV.
Collapse
Affiliation(s)
- Marianela Patzi Churqui
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Department of Clinical Microbiology, Region Västra Götaland, Gothenburg, Sweden
| | - Margarita Ghaleb
- Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Timur Tunovic
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Miriam Frankal
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Södra Älvsborg Hospital, Clinic of Infectious Diseases, Borås, Sweden
- Department of Research, Education and Innovation, Region Västra Götaland, Södra Älvsborg Hospital, Borås, Sweden
| | | | - Kristina Nyström
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Department of Clinical Microbiology, Region Västra Götaland, Gothenburg, Sweden
| | - Martin Lagging
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Department of Clinical Microbiology, Region Västra Götaland, Gothenburg, Sweden
| | - Hao Wang
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Department of Clinical Microbiology, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
2
|
Ferri G, Pennisi L, Malatesta F, Vergara A. First Detection of Hepatitis E Virus RNA in Ovine Raw Milk from Herds in Central Italy. Foods 2024; 13:3218. [PMID: 39456280 PMCID: PMC11507303 DOI: 10.3390/foods13203218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
HEV mainly enters animal and human hosts through the orofecal route, which presents a critical health concern alongside the associated environmental variable. Among products of animal origin, milk (both ovine and bovine) can harbor HEV RNA, which can potentially be transmitted to consumers. In this study, a total of 220 raw ovine milk samples were collected from Apennine breed subjects farmed (transhumance method) in three different Italian provinces, L'Aquila, Pescara, and Teramo, located in the Abruzzo region (Central Italy). All the specimens were screened using one-step real-time RT-qPCR and nested RT-PCR assays. Among them, 5/220 or 2.27% harbored HEV RNA fragments belonging to the ORF1 and ORF2 codifying regions of the genotype 3c. The average viral amount discovered was 102 GE/mL. These subjects represented 2/57 or 3.51% of the Pescara herd, and 3/105 or 2.86% of the Teramo herd. Although HEV RNA was discovered in sheep fecal samples, the original data obtained in the present study represent the first HEV RNA detection in ovine raw milk from Italy.
Collapse
Affiliation(s)
- Gianluigi Ferri
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy; (L.P.); (A.V.)
| | - Luca Pennisi
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy; (L.P.); (A.V.)
| | | | - Alberto Vergara
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy; (L.P.); (A.V.)
| |
Collapse
|
3
|
Wang B, Subramaniam S, Tian D, Mahsoub HM, Heffron CL, Meng XJ. Phosphorylation of Ser711 residue in the hypervariable region of zoonotic genotype 3 hepatitis E virus is important for virus replication. mBio 2024:e0263524. [PMID: 39377575 DOI: 10.1128/mbio.02635-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Hepatitis E virus (HEV) is distinct from other hepatotropic viruses because it is zoonotic. HEV-1 and HEV-2 exclusively infect humans, whereas HEV-3 and HEV-4 are zoonotic. However, the viral and/or host factors responsible for cross-species HEV transmission remain elusive. The hypervariable region (HVR) in HEV is extremely heterogenetic and is implicated in HEV adaptation. Here, we investigated the potential role of Serine phosphorylation in the HVR in HEV replication. We first analyzed HVR sequences across different HEV genotypes and identified a unique region at the N-terminus of the HVR, which is variable in the human-exclusive HEV genotypes but relatively conserved in zoonotic HEV genotypes. Using predictive tools, we identified four potential phosphorylation sites that are highly conserved in zoonotic HEV-3 and HEV-4 genomes but absent in human-exclusive HEV-1 strains. To explore the functional significance of these putative phosphorylation sites, we introduced mutations into the HEV-3 infectious clone and indicator replicon, replacing each Serine residue individually with alanine or aspartic acid, and assessed the impact of these substitutions on HEV-3 replication. We found that the phospho-blatant S711A mutant significantly reduced virus replication, whereas the phospho-mimetic S711D mutant modestly reduced virus replication. Conversely, mutations in the other three Serine residues did not significantly affect HEV-3 replication. Furthermore, we demonstrated that Ser711 phosphorylation did not alter host cell tropism of zoonotic HEV-3. In conclusion, our results showed that potential phosphorylation of the Ser711 residue significantly affects HEV-3 replication in vitro, providing new insights into the potential mechanisms of zoonotic HEV transmission.IMPORTANCEHEV is an important zoonotic pathogen, causing both acute and chronic hepatitis E and extrahepatic manifestation of diseases, such as neurological sequelae. The zoonotic HEV-3 is linked to chronic infection and neurological diseases. The specific viral and/or host factors facilitating cross-species HEV infection are unknown. The intrinsically disordered HVR in ORF1 is crucial for viral fitness and adaptation, both in vitro and in vivo. We hypothesized that phosphorylation of Serine residues in the HVR of zoonotic HEV by unknown host cellular kinases is associated with cross-species HEV transmission. In this study, we identified a conserved region within the HVR of zoonotic HEV strains but absent in the human-exclusive HEV-1 and HEV-2. We elucidated the important role of phosphorylation at the Ser711 residue in zoonotic HEV-3 replication, without altering the host cell tropism. These findings contribute to our understanding the mechanisms of cross-species HEV transmission.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Sakthivel Subramaniam
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Debin Tian
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Hassan M Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - C Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
4
|
Ziersch M, Harms D, Neumair L, Kurreck A, Johne R, Bock CT, Kurreck J. Combining RNA Interference and RIG-I Activation to Inhibit Hepatitis E Virus Replication. Viruses 2024; 16:1378. [PMID: 39339854 PMCID: PMC11435946 DOI: 10.3390/v16091378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatitis E virus (HEV) poses a significant global health threat, with an estimated 20 million infections occurring annually. Despite being a self-limiting illness, in most cases, HEV infection can lead to severe outcomes, particularly in pregnant women and individuals with pre-existing liver disease. In the absence of specific antiviral treatments, the exploration of RNAi interference (RNAi) as a targeted strategy provides valuable insights for urgently needed therapeutic interventions against Hepatitis E. We designed small interfering RNAs (siRNAs) against HEV, which target the helicase domain and the open reading frame 3 (ORF3). These target regions will reduce the risk of viral escape through mutations, as they belong to the most conserved regions in the HEV genome. The siRNAs targeting the ORF3 efficiently inhibited viral replication in A549 cells after HEV infection. Importantly, the siRNA was also highly effective at inhibiting HEV in the persistently infected A549 cell line, which provides a suitable model for chronic infection in patients. Furthermore, we showed that a 5' triphosphate modification on the siRNA sense strand activates the RIG-I receptor, a cytoplasmic pattern recognition receptor that recognizes viral RNA. Upon activation, RIG-I triggers a signaling cascade, effectively suppressing HEV replication. This dual-action strategy, combining the activation of the adaptive immune response and the inherent RNAi pathway, inhibits HEV replication successfully and may lead to the development of new therapies.
Collapse
Affiliation(s)
- Mathias Ziersch
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Dominik Harms
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enterovirus, Robert Koch Institute, 13353 Berlin, Germany
| | - Lena Neumair
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Anke Kurreck
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
- BioNukleo GmbH, Ackerstrasse 76, 13355 Berlin, Germany
| | - Reimar Johne
- Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | - C-Thomas Bock
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enterovirus, Robert Koch Institute, 13353 Berlin, Germany
| | - Jens Kurreck
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| |
Collapse
|
5
|
Borlang J, Murphy D, Harlow J, Osiowy C, Nasheri N. The molecular epidemiology of hepatitis E virus genotype 3 in Canada. Epidemiol Infect 2024; 152:e55. [PMID: 38487841 PMCID: PMC11022259 DOI: 10.1017/s0950268824000475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Autochthonous hepatitis E virus (HEV) infection is increasingly reported in industrialized countries and is mostly associated with zoonotic HEV genotype 3 (HEV-3). In this study, we examined the molecular epidemiology of 63 human clinical HEV-3 isolates in Canada between 2014 and 2022. Fifty-five samples were IgM positive, 45 samples were IgG positive and 44 were IgM and IgG positive. The majority of the isolates belong to the subtypes 3a, 3b, and 3j, with high sequence homology to Canadian swine and pork isolates. There were a few isolates that clustered with subtypes 3c, 3e, 3f, 3h, and 3g, and an isolate from chronic infection with a rabbit strain (3ra). Previous studies have demonstrated that the isolates from pork products and swine from Canada belong to subtypes 3a and 3b, therefore, domestic swine HEV is likely responsible for the majority of clinical HEV cases in Canada and further support the hypothesis that swine serve as the main reservoirs for HEV-3 infections. Understanding the associated risk of zoonotic HEV infection requires the establishment of sustainable surveillance strategies at the interface between humans, animals, and the environment within a One-Health framework.
Collapse
Affiliation(s)
- Jamie Borlang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Donald Murphy
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, QC, Canada
| | - Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada
| | - Carla Osiowy
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Klink P, Harms D, Altmann B, Dörffel Y, Morgera U, Zander S, Bock CT, Hofmann J. Molecular characterisation of a rabbit Hepatitis E Virus strain detected in a chronically HEV-infected individual from Germany. One Health 2023; 16:100528. [PMID: 37363232 PMCID: PMC10288053 DOI: 10.1016/j.onehlt.2023.100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 06/28/2023] Open
Abstract
In immunocompromised individuals persisting viremia frequently leads to a chronic hepatitis E virus (HEV) infection. Zoonotic transmission of HEV from pigs and wild boar to humans is proven and sporadic infections with rabbit HEV (raHEV) have recently been reported. Here, the molecular characterisation of a raHEV strain isolated from an immunocompromised, chronically HEV-infected, heart-transplanted patient is described. After successful ribavirin (RBV) treatment of a HEV infection in 2019, the patient was again tested HEV positive in 2021 and received a second RBV therapy cycle. Full-length HEV genome amplification and next generation sequencing was performed on a plasma sample taken between first and second cycle of RBV therapy and a stool sample taken two months after starting the second cycle. The sequence of plasma (raHEV-83) and stool (raHEV-99) derived virus showed the highest nucleotide sequence identity to a Chinese raHEV and a phylogenetic relationship to a raHEV strain isolated from a French patient. Furthermore, sequence analysis revealed the presence of RBV-associated substitutions V1479I and G1634K in the HEV sequences from plasma and additionally K1398R from stool. The results underline the role of rabbits as putative sources of HEV infection and emphasize the need of a one health concept for a better understanding of HEV epidemiology and to develop tools for prevention and control of HEV infection.
Collapse
Affiliation(s)
- Patrycja Klink
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany
| | - Dominik Harms
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany
| | - Britta Altmann
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany
| | - Yvonne Dörffel
- Outpatient Clinic, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Morgera
- Outpatient Clinic, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Steffen Zander
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany
| | - C. Thomas Bock
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | - Jörg Hofmann
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, German Centre for Infection Research, Berlin, Germany
- Labor Berlin, Charité-Vivantes GmbH, Berlin, Germany
| |
Collapse
|
7
|
Wang B, Mahsoub HM, Li W, Heffron CL, Tian D, Hassebroek AM, LeRoith T, Meng XJ. Ribavirin Treatment Failure-Associated Mutation, Y1320H, in the RNA-Dependent RNA Polymerase of Genotype 3 Hepatitis E Virus (HEV) Enhances Virus Replication in a Rabbit HEV Infection Model. mBio 2023; 14:e0337222. [PMID: 36809085 PMCID: PMC10128057 DOI: 10.1128/mbio.03372-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023] Open
Abstract
Chronic hepatitis E virus (HEV) infection has become a significant clinical problem that requires treatment in immunocompromised individuals. In the absence of an HEV-specific antiviral, ribavirin (RBV) has been used off-label, but treatment failure may occur due to mutations in the viral RNA-dependent RNA polymerase (RdRp), including Y1320H, K1383N, and G1634R. Chronic hepatitis E is mostly caused by zoonotic genotype 3 HEV (HEV-3), and HEV variants from rabbits (HEV-3ra) are closely related to human HEV-3. Here, we explored whether HEV-3ra, along with its cognate host, can serve as a model to study RBV treatment failure-associated mutations observed in human HEV-3-infected patients. By utilizing the HEV-3ra infectious clone and indicator replicon, we generated multiple single mutants (Y1320H, K1383N, K1634G, and K1634R) and a double mutant (Y1320H/K1383N) and assessed the role of mutations on replication and antiviral activity of HEV-3ra in cell culture. Furthermore, we also compared the replication of the Y1320H mutant with the wild-type HEV-3ra in experimentally infected rabbits. Our in vitro analyses revealed that the effects of these mutations on rabbit HEV-3ra are altogether highly consistent with those on human HEV-3. Importantly, we found that the Y1320H enhances virus replication during the acute stage of HEV-3ra infection in rabbits, which corroborated our in vitro results showing an enhanced viral replication of Y1320H. Taken together, our data suggest that HEV-3ra and its cognate host is a useful and relevant naturally occurring homologous animal model to study the clinical relevance of antiviral-resistant mutations observed in human HEV-3 chronically-infected patients. IMPORTANCE HEV-3 causes chronic hepatitis E that requires antiviral therapy in immunosuppressed individuals. RBV is the main therapeutic option for chronic hepatitis E as an off-label use. Several amino acid changes, including Y1320H, K1383N, and G1634R, in the RdRp of human HEV-3 have reportedly been associated with RBV treatment failure in chronic hepatitis E patients. In this study, we utilized an HEV-3ra from rabbit and its cognate host to investigate the effect of these RBV treatment failure-associated HEV-3 RdRp mutations on viral replication efficiency and antiviral susceptibility. The in vitro data using rabbit HEV-3ra was highly comparable to those from human HEV-3. We demonstrated that the Y1320H mutation significantly enhanced HEV-3ra replication in cell culture and enhanced virus replication during the acute stage of HEV-3ra infection in rabbits. The rabbit HEV-3ra infection model should be useful in delineating the role of human HEV-3 RBV treatment failure-associated mutations in antiviral resistance.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Hassan M. Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Wen Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - C. Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Debin Tian
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Anna M. Hassebroek
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
8
|
Biedermann P, Klink P, Nocke MK, Papp CP, Harms D, Kebelmann M, Thürmer A, Choi M, Altmann B, Todt D, Hofmann J, Bock CT. Insertions and deletions in the hypervariable region of the hepatitis E virus genome in individuals with acute and chronic infection. Liver Int 2023; 43:794-804. [PMID: 36617681 DOI: 10.1111/liv.15517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIMS Hepatitis E virus is a major cause of acute hepatitis worldwide and can progress to chronicity in immunocompromised individuals. Various virus-host recombination events have been reported in the hypervariable region of the hepatitis E virus genome, but the patterns of assembly and selection remain unclear. METHODS To gain further insight into viral evolution, we assessed the presence of low abundance variants in 16 samples from individuals with acute or chronic infection using a targeted next-generation sequencing approach. RESULTS In seven samples, different variants with insertions and/or deletions were identified. Among them, eight insertions originating either from human genes or from the hepatitis E virus genome. Five different deletions could be identified. The amino acid composition of sequences with insertions showed a higher frequency of lysine and a lower abundance of proline, and additionally acetylation and ubiquitination sites were more frequent than in hepatitis E virus wild-type sequences. CONCLUSIONS These findings suggest that the nucleotide composition of insertions and sites for post-translational modification may contribute to recombination events. Although the impact of low-level hepatitis E virus variants is uncertain, our results highlight the importance of a highly sensitive next-generation sequencing approach to capture the full diversity of hypervariable region.
Collapse
Affiliation(s)
- Paula Biedermann
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
- German Centre for Infection Research, Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Patrycja Klink
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Maximilian K Nocke
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Christian-Patrick Papp
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
- German Centre for Infection Research, Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Dominik Harms
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Marianne Kebelmann
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Andrea Thürmer
- Genome Sequencing, Methodology and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Mira Choi
- Department of Nephrology and Intensive Medical Care, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Britta Altmann
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Jörg Hofmann
- German Centre for Infection Research, Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Labor Berlin, Charité-Vivantes GmbH, Berlin, Germany
| | - Claus-Thomas Bock
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
9
|
Peeters M, Schenk J, De Somer T, Roskams T, Locus T, Klamer S, Subissi L, Suin V, Delwaide J, Stärkel P, De Maeght S, Willems P, Colle I, Van Hoof M, Van Acker J, Van Steenkiste C, Moreno C, Janssens F, Reynders M, Steverlynck M, Verlinden W, Lasser L, de Galocsy C, Geerts A, Maus J, Gallant M, Van Outryve S, Marot A, Reynaert H, Decaestecker J, Bottieau E, Schreiber J, Mulkay JP, de Goeij S, Salame M, Dooremont D, Dastis SN, Boes J, Nijs J, Beyls J, Hens N, Nevens F, Van Gucht S, Vanwolleghem T. Viral clade is associated with severity of symptomatic genotype 3 hepatitis E virus infections in Belgium, 2010-2018. J Hepatol 2023; 78:67-77. [PMID: 36075495 DOI: 10.1016/j.jhep.2022.08.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS HEV genotype (gt) 3 infections are prevalent in high-income countries and display a wide spectrum of clinical presentations. Host - but not viral - factors are reported to be associated with worse clinical outcomes. METHODS Demographic, clinical, and biochemical data laboratory-confirmed HEV infections (by PCR and/or a combination of IgM and IgG serology) at the Belgian National Reference Centre between January 2010 and June 2018 were collected using standardised case report forms. Genotyping was based on HEV open reading frame 2 sequences. Serum CXCL10 levels were measured by a magnetic bead-based assay. H&E staining was performed on liver biopsies. RESULTS A total of 274 HEV-infected individuals were included. Subtype assignment was possible for 179/218 viraemic cases, confirming gt3 as dominant with an almost equal representation of clades abchijklm and efg. An increased hospitalisation rate and higher peak serum levels of alanine aminotransferase, bilirubin, and alkaline phosphatase were found in clade efg-infected individuals in univariate analyses. In multivariable analyses, clade efg infections remained more strongly associated with severe disease presentation than any of the previously identified host risk factors, being associated with a 2.1-fold higher risk of hospitalisation (95% CI 1.1-4.4, p = 0.034) and a 68.2% higher peak of bilirubin levels (95% CI 13.3-149.9, p = 0.010), independently of other factors included in the model. In addition, acute clade efg infections were characterised by higher serum CXCL10 levels (p = 0.0005) and a more pronounced liver necro-inflammatory activity (p = 0.022). CONCLUSIONS In symptomatic HEV gt3 infections, clade efg is associated with a more severe disease presentation, higher serum CXCL10 levels, and liver necro-inflammatory activity, irrespective of known host risk factors. CLINICAL TRIAL REGISTRATION The protocol was submitted to clinicaltrials.gov (NCT04670419). IMPACT AND IMPLICATIONS HEV genotype (gt) 3 infections display a wide spectrum of clinical presentations currently ascribed to host factors. Here we examined the role of viral factors on liver disease outcomes by combining viral phylogeny with clinical, biochemical, cytokine, and histological data from 274 Belgian adults infected with HEV presenting between 2010 and 2018. HEV gt 3 clade efg infections were associated with a more severe disease presentation, higher serum CXCL10 levels and liver necro-inflammatory activity, irrespective of known host risk factors. HEV gt3 clade-dependent clinical outcomes call for broad HEV gt3 subtyping in clinical practice and research to help identify those at higher risk for worse outcomes and to further unravel underlying virus-host interactions.
Collapse
Affiliation(s)
- Michael Peeters
- Sciensano, Infectious Diseases in Humans, Viral Diseases, National Reference Centre of Hepatitis Viruses, Brussels, Belgium
| | - Julie Schenk
- University of Antwerp, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Centre for Health Economic Research and Modelling Infectious Diseases, Antwerp, Belgium; Hasselt University, Data Science Institute, Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt, Belgium
| | - Thomas De Somer
- University Hospital Antwerp, Gastroenterology & Hepatology, Antwerp, Belgium; Maria Middelares Hospital, Gastroenterology & Hepatology, Ghent, Belgium
| | - Tania Roskams
- KU Leuven, Pathology, Translational Cell and Tissue Research, Leuven, Belgium
| | - Tatjana Locus
- Sciensano, Infectious Diseases in Humans, Viral Diseases, National Reference Centre of Hepatitis Viruses, Brussels, Belgium
| | - Sofieke Klamer
- Sciensano, Epidemiology of Infectious Diseases, Brussels, Belgium
| | - Lorenzo Subissi
- Sciensano, Infectious Diseases in Humans, Viral Diseases, National Reference Centre of Hepatitis Viruses, Brussels, Belgium; European Public Health Microbiology Training Program (EUPHEM), European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Vanessa Suin
- Sciensano, Infectious Diseases in Humans, Viral Diseases, National Reference Centre of Hepatitis Viruses, Brussels, Belgium
| | - Jean Delwaide
- University Hospital Liege, Gastroenterology & Hepatology, Liege, Belgium
| | - Peter Stärkel
- Cliniques Universitaires Saint-Luc (CUSL), Gastroenterology & Hepatology, Brussels, Belgium
| | | | | | - Isabelle Colle
- A.S.Z. Aalst, Gastroenterology & Hepatology, Aalst, Belgium; Ghent University Hospital, Department of Hepatology and Gastroenterology, Ghent, Belgium
| | - Marc Van Hoof
- Clinique Saint-Luc, Gastroenterology & Hepatology, Bouge, Belgium
| | - Jos Van Acker
- AZ Sint-Lucas, Clinical Microbiology, Ghent, Belgium
| | - Christophe Van Steenkiste
- University Hospital Antwerp, Gastroenterology & Hepatology, Antwerp, Belgium; Maria Middelares Hospital, Gastroenterology & Hepatology, Ghent, Belgium
| | - Christophe Moreno
- CUB Hôpital Erasme, Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Université Libre de Bruxelles, Brussels, Belgium
| | - Filip Janssens
- Jessa Hospital, Gastroenterology & Hepatology, Hasselt, Belgium
| | - Marijke Reynders
- AZ Sint-Jan Brugge-Oostende AV, Medical Microbiology, Laboratory Medicine, Brugge, Belgium
| | | | - Wim Verlinden
- University Hospital Antwerp, Gastroenterology & Hepatology, Antwerp, Belgium; Vitaz, Gastroenterology & Hepatology, Sint-Niklaas, Belgium; University of Antwerp, Laboratory of Experimental Medicine and Pediatrics, Viral Hepatitis Research Group, Antwerp, Belgium
| | - Luc Lasser
- CHU Brugmann, Gastroenterology & Hepatology, Brussels, Belgium
| | | | - Anja Geerts
- Ghent University Hospital, Gastroenterology & Hepatology, Ghent, Belgium
| | - Jeroen Maus
- ZNA Middelheim, Gastroenterology & Hepatology, Antwerp, Belgium
| | - Marie Gallant
- Jan Yperman Ziekenhuis, Gastroenterology & Hepatology, Ieper, Belgium
| | | | - Astrid Marot
- CHU UCL Namur, Université Catholique de Louvain, Department of Gastroenterology and Hepatology, Yvoir, Belgium
| | - Hendrik Reynaert
- University Hospital UZ Brussel, Gastroenterology & Hepatology, Brussels, Belgium
| | | | | | - Jonas Schreiber
- CHIREC Delta Hospital, Gastroenterology & Hepatology, Brussels, Belgium
| | | | | | - Mikhaël Salame
- Centre Hospitalier Régional Haute Senne, Soignies, Belgium
| | | | | | | | - Jochen Nijs
- Sint-Trudo Ziekenhuis, Department of Gastroenterology, Sint-Truiden, Belgium
| | - Jan Beyls
- Sint-Andriesziekenhuis, Department of Gastroenterology, Tielt, Belgium
| | - Niel Hens
- University of Antwerp, Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Centre for Health Economic Research and Modelling Infectious Diseases, Antwerp, Belgium; Hasselt University, Data Science Institute, Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt, Belgium
| | - Frederik Nevens
- University Hospitals KU Leuven, Gastroenterology & Hepatology, Leuven, Belgium
| | - Steven Van Gucht
- Sciensano, Infectious Diseases in Humans, Viral Diseases, National Reference Centre of Hepatitis Viruses, Brussels, Belgium.
| | - Thomas Vanwolleghem
- University Hospital Antwerp, Gastroenterology & Hepatology, Antwerp, Belgium; University of Antwerp, Laboratory of Experimental Medicine and Pediatrics, Viral Hepatitis Research Group, Antwerp, Belgium.
| | | |
Collapse
|
10
|
Wang B, Tian D, Sooryanarain H, Mahsoub HM, Heffron CL, Hassebroek AM, Meng XJ. Two mutations in the ORF1 of genotype 1 hepatitis E virus enhance virus replication and may associate with fulminant hepatic failure. Proc Natl Acad Sci U S A 2022; 119:e2207503119. [PMID: 35969750 PMCID: PMC9407470 DOI: 10.1073/pnas.2207503119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatitis E virus (HEV) infection in pregnant women has a high incidence of developing fulminant hepatic failure (FHF) with significant mortality. Multiple amino acid changes in genotype 1 HEV (HEV-1) are reportedly linked to FHF clinical cases, but experimental confirmation of the roles of these changes in FHF is lacking. By utilizing the HEV-1 indicator replicon and infectious clone, we generated 11 HEV-1 single mutants, each with an individual mutation, and investigated the effect of these mutations on HEV replication and infection in human liver cells. We demonstrated that most of the mutations actually impaired HEV-1 replication efficiency compared with the wild type (WT), likely due to altered physicochemical properties and structural conformations. However, two mutations, A317T and V1120I, significantly increased HEV-1 replication. Notably, these two mutations simultaneously occurred in 100% of 21 HEV-1 variants from patients with FHF in Bangladesh. We further created an HEV-1 A317T/V1120I double mutant and found that it greatly enhanced HEV replication, which may explain the rapid viral replication and severe disease. Furthermore, we tested the effect of these FHF-associated mutations on genotype 3 HEV (HEV-3) replication and found that all the mutants had a reduced level of replication ability and infectivity, which is not unexpected due to distinct infection patterns between HEV-1 and HEV-3. Additionally, we demonstrated that these FHF-associated mutations do not appear to alter their sensitivity to ribavirin (RBV), suggesting that ribavirin remains a viable option for antiviral therapy for patients with FHF. The results have important implications for understanding the mechanism of HEV-1-associated FHF.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia–Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
- Center for Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Debin Tian
- Department of Biomedical Sciences and Pathobiology, Virginia–Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
- Center for Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Harini Sooryanarain
- Department of Biomedical Sciences and Pathobiology, Virginia–Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
- Center for Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Hassan M. Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia–Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
- Center for Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - C. Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia–Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
- Center for Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Anna M. Hassebroek
- Department of Biomedical Sciences and Pathobiology, Virginia–Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
- Center for Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia–Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
- Center for Emerging, Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| |
Collapse
|
11
|
Muñoz-Chimeno M, Bartúren S, García-Lugo MA, Morago L, Rodríguez Á, Galán JC, Pérez-Rivilla A, Rodríguez M, Millán R, Del Álamo M, Alonso R, Molina L, Aguinaga A, Avellón A. Hepatitis E virus genotype 3 microbiological surveillance by the Spanish Reference Laboratory: geographic distribution and phylogenetic analysis of subtypes from 2009 to 2019. EURO SURVEILLANCE : BULLETIN EUROPEEN SUR LES MALADIES TRANSMISSIBLES = EUROPEAN COMMUNICABLE DISEASE BULLETIN 2022; 27. [PMID: 35686567 PMCID: PMC9198656 DOI: 10.2807/1560-7917.es.2022.27.23.2100542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Hepatitis E virus genotype 3 (HEV-3) is widely distributed throughout Europe, with incidence of infections increasing in many countries. Belgium, Bulgaria, France, Germany, Italy, the Netherlands and the United Kingdom have reported the distribution of HEV-3 subtypes in cohorts of patients with hepatic disease. Aim To describe the distribution of the HEV-3 subtypes in Spain at national and autonomous community (AC) levels between 2009 and 2019. The study was also extended to Andorra. Methods Of 5,197 samples received by the National Reference Laboratory during the study, 409 were HEV-RNA-positive. Among these, 294 (71.9%) were further typed based on an ORF2 sequence fragment, or, for a subset of 74, based on the full-coding genome sequence. Results HEV-3 was detected in 291 samples. The dominant subtype in Spain was HEV-3f (88.3%; 257/291), which occurred in all ACs, with no change in detection level over time. Within this subtype, three subclusters were characterised: HEV-3f-B, HEV-3f-A1 and HEV-3f-A2. The second most common HEV subtype was the recently described HEV-3m (7%; 21/291), with two subclusters identified: HEV-3m-A, which has been known since 2010, and HEV-3m-B, since 2014. The third most encountered subtype was HEV-3c (4.1%; 12/291), with a frequency not increasing over time, unlike observations in some European countries. Conclusion The importance of the surveillance of HEV-3 subtype and subcluster circulation is yet to be assessed. This surveillance together with the comprehensive epidemiological characterisation of clinical cases, could support the identification of sources of transmission and the establishment of control measures nationally and internationally.
Collapse
Affiliation(s)
- Milagros Muñoz-Chimeno
- Hepatitis Unit, National Centre of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Silvia Bartúren
- Hepatitis Unit, National Centre of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | - Lucia Morago
- Hepatitis Unit, National Centre of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Álvaro Rodríguez
- Hepatitis Unit, National Centre of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Juan Carlos Galán
- CIBERESP, Madrid, Spain.,Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Mercedes Rodríguez
- Hospital Universitario Central de Asturias, Grupo de Microbiología Traslacional (ISPA) Oviedo, Asturias, Spain
| | - Rosario Millán
- Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | | | - Roberto Alonso
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laura Molina
- Hospital Universitario de Fuenlabrada, Madrid, Spain
| | | | - Ana Avellón
- CIBERESP, Madrid, Spain.,Hepatitis Unit, National Centre of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
12
|
Chirohepevirus from Bats: Insights into Hepatitis E Virus Diversity and Evolution. Viruses 2022; 14:v14050905. [PMID: 35632647 PMCID: PMC9146828 DOI: 10.3390/v14050905] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Homologs of the human hepatitis E virus (HEV) have been identified in more than a dozen animal species. Some of them have been evidenced to cross species barriers and infect humans. Zoonotic HEV infections cause chronic liver diseases as well as a broad range of extrahepatic manifestations, which increasingly become significant clinical problems. Bats comprise approximately one-fifth of all named mammal species and are unique in their distinct immune response to viral infection. Most importantly, they are natural reservoirs of several highly pathogenic viruses, which have induced severe human diseases. Since the first discovery of HEV-related viruses in bats in 2012, multiple genetically divergent HEV variants have been reported in a total of 12 bat species over the last decade, which markedly expanded the host range of the HEV family and shed light on the evolutionary origin of human HEV. Meanwhile, bat-borne HEV also raised critical public health concerns about its zoonotic potential. Bat HEV strains resemble genomic features but exhibit considerable heterogeneity. Due to the close evolutionary relationships, bat HEV altogether has been recently assigned to an independent genus, Chirohepevirus. This review focuses on the current state of bat HEV and provides novel insights into HEV genetic diversity and molecular evolution.
Collapse
|
13
|
Broadly Reactive Real-Time RT-PCR Assay for the Detection of Hepatitis E Virus and Simultaneous Genotyping by Single Nucleotide Polymorphism Analysis. Microbiol Spectr 2022; 10:e0191221. [PMID: 35138152 PMCID: PMC8826742 DOI: 10.1128/spectrum.01912-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hepatitis E virus (HEV) infection is a global public health concern. Although HEV infection is usually asymptomatic and self-limiting, extrahepatic manifestations and chronic infections in immunocompromised patients have been described. HEV strains infecting humans have been classified into four main genotypes. In this study we have developed and validated a novel sensitive real-time RT-PCR assay for the detection of all four HEV genotypes. Simultaneous discrimination of genotypes 1, 2, and 4 from genotype 3 by single nucleotide polymorphism (SNP) analysis was possible. In all, 201 serum samples from cases and carriers previously tested for HEV by nested RT-PCR were analyzed. Twenty-seven HEV-positive samples could not be typed by the nested RT-PCR and nucleotide sequencing, but were newly typed by SNP analysis. As polymorphisms were present at the primer or probe binding site, we adopted a degenerate primer and mixed probes. When a mixed probe was added, the fluorescence intensity increased, facilitating genotype determination. IMPORTANCE The distribution of HEV-3 and HEV-4 has been changing. HEV-4, which had been predominantly found in Asia, is now being detected in other parts of the world, and there are now reports of chronic infections. Additionally, neurological disorders have frequently been reported in patients with acute or chronic HEV infections. HEV-4 has also been shown to lead to a higher severity in terms of acute hepatitis than does HEV-3. Early typing can provide useful information regarding the route of infection and for tailoring treatment to the expected course of the disease. The present method afforded a good detection rate even when polymorphisms were present within the target region for viral gene detection. We believe that this method can be applied to the analysis of mutation-prone viral genes in the future.
Collapse
|
14
|
Advanced sequencing approaches detected insertions of viral and human origin in the viral genome of chronic hepatitis E virus patients. Sci Rep 2022; 12:1720. [PMID: 35110582 PMCID: PMC8811047 DOI: 10.1038/s41598-022-05706-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
The awareness of hepatitis E virus (HEV) increased significantly in the last decade due to its unexpectedly high prevalence in high-income countries. There, infections with HEV-genotype 3 (HEV-3) are predominant which can progress to chronicity in immunocompromised individuals. Persistent infection and antiviral therapy can select HEV-3 variants; however, the spectrum and occurrence of HEV-3 variants is underreported. To gain in-depth insights into the viral population and to perform detailed characterization of viral genomes, we used a new approach combining long-range PCR with next-generation and third-generation sequencing which allowed near full-length sequencing of HEV-3 genomes. Furthermore, we developed a targeted ultra-deep sequencing approach to assess the dynamics of clinically relevant mutations in the RdRp-region and to detect insertions in the HVR-domain in the HEV genomes. Using this new approach, we not only identified several insertions of human (AHNAK, RPL18) and viral origin (RdRp-derived) in the HVR-region isolated from an exemplary sample but detected a variant containing two different insertions simultaneously (AHNAK- and RdRp-derived). This finding is the first HEV-variant recognized as such showing various insertions in the HVR-domain. Thus, this molecular approach will add incrementally to our current knowledge of the HEV-genome organization and pathogenesis in chronic hepatitis E.
Collapse
|
15
|
Chambaro HM, Sasaki M, Muleya W, Kajihara M, Shawa M, Mwape KE, Harima H, Qiu Y, Hall WW, Fandamu P, Squarre D, Simulundu E, Sawa H, Orba Y. Hepatitis E virus infection in pigs: a first report from Zambia. Emerg Microbes Infect 2021; 10:2169-2172. [PMID: 34736356 PMCID: PMC8635572 DOI: 10.1080/22221751.2021.2002669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
While evidence suggests presence of HEV infection in humans in Zambia, currently, there is no information on its occurrence in domestic pigs. Here, we investigated the presence of HEV antibodies and genome in domestic pigs in Zambia. Sera (n = 484) from domestic pigs were screened for antibodies against HEV by ELISA while genome detection in fecal (n = 25) and liver (n = 100) samples from slaughter pigs was conducted using nested RT–PCR assay. Overall, seroprevalence was 47.7% (231/484) while zoonotic genotype 3 HEV RNA was detected in 16.0% (20/125) of slaughtered pigs. This is the first report to highlight occurrence of HEV infection in domestic pigs in Zambia. This finding suggests possible contamination of the pork supply chain. Moreover, there is a potential risk of zoonotic transmission of HEV to abattoir workers, pig farmers and handlers.
Collapse
Affiliation(s)
- Herman M Chambaro
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Sapporo, Japan.,Virology Laboratory, Central Veterinary Research Institute, Lusaka, Zambia.,Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Sapporo, Japan
| | - Walter Muleya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Masahiro Kajihara
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Sapporo, Japan
| | - Misheck Shawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Sapporo, Japan
| | - Kabemba E Mwape
- Department of Clinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Hayato Harima
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Sapporo, Japan
| | - Yongjin Qiu
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Sapporo, Japan
| | - William W Hall
- National Virus Reference Laboratory, University College Dublin, Dublin, Ireland.,Global Virus Network, Baltimore, MD, USA
| | - Paul Fandamu
- Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - David Squarre
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Sapporo, Japan.,Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka, Zambia.,Department of Conservation Science, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia.,Macha Research Trust, Choma, Zambia
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Sapporo, Japan.,Global Virus Network, Baltimore, MD, USA.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.,One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Sapporo, Japan.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
16
|
Cell Culture Isolation and Whole Genome Characterization of Hepatitis E Virus Strains from Wild Boars in Germany. Microorganisms 2021; 9:microorganisms9112302. [PMID: 34835427 PMCID: PMC8624179 DOI: 10.3390/microorganisms9112302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Infection with hepatitis E virus (HEV) can cause acute and chronic hepatitis in humans. The HEV genotype 3 can be zoonotically transmitted from animals to humans, with wild boars representing an important reservoir species. Cell culture isolation of HEV is generally difficult and mainly described for human isolates so far. Here, five sera and five liver samples from HEV-RNA-positive wild boar samples were inoculated onto PLC/PRF/5 cells, incubated for 3 months and thereafter passaged for additional 6 weeks. As demonstrated by RT-qPCR, immunofluorescence and immune electron microscopy, virus was successfully isolated from two liver samples, which originally contained high HEV genome copy numbers. Both isolates showed slower growth than the culture-adapted HEV strain 47832c. In contrast to this strain, the isolated strains had no insertions in their hypervariable genome region. Next generation sequencing using an HEV sequence-enriched library enabled full genome sequencing. Strain Wb108/17 belongs to subtype 3f and strain Wb257/17 to a tentative novel subtype recently described in Italian wild boars. The results indicate that HEV can be successfully isolated in cell culture from wild boar samples containing high HEV genome copy numbers. The isolates may be used further to study the zoonotic potential of wild boar-derived HEV subtypes.
Collapse
|
17
|
Pavia G, Gioffrè A, Pirolo M, Visaggio D, Clausi MT, Gherardi M, Samele P, Ciambrone L, Di Natale R, Spatari G, Visca P, Casalinuovo F. Seroprevalence and phylogenetic characterization of hepatitis E virus in pig farms in Southern Italy. Prev Vet Med 2021; 194:105448. [PMID: 34333413 DOI: 10.1016/j.prevetmed.2021.105448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/27/2022]
Abstract
Hepatitis E virus (HEV) infection is an emerging public health problem in industrialized countries. The infection is associated with waterborne epidemics and transmitted via faecal-oral route. Zoonotic cases of HEV in humans have increased in Europe, and HEV genotype 3 (HEV-3) is the most frequent among humans and animals. Nevertheless, HEV surveillance in the Italian pig farming industry is patchy. Here, HEV prevalence in pig farms located in the Calabria region in Southern Italy was investigated. A total of 692 serum samples were collected from 26 farms and tested for anti-HEV IgG antibody detection. The percentage of HEV-seropositive pigs was 56.8 %. Small farm size, farrow-to-finishing production, and infrequent cleaning procedures were associated with higher HEV seroprevalence. In 12 of the HEV-seropositive farms, 67 faecal samples were collected and 10 of these (10.6 %) tested positive for HEV RNA. Seven of 10 viral RNA sequences were genotyped for phylogenetic analysis, five of which belonged to subtype HEV-3f and two to subtype HEV-3e. The high HEV seroprevalence and the circulation of HEV-3 strains among domestic pigs in the Calabria region pose a risk for the zoonotic transmission of HEV from pigs to occupational exposed workers.
Collapse
Affiliation(s)
- Grazia Pavia
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Catanzaro, Italy
| | - Angela Gioffrè
- Department of Medicine, Epidemiology, Workplace and Environmental Hygiene, Lamezia Terme Research Centre, INAIL - National Institute for Insurance against Accidents at Work, Lamezia Terme, Italy
| | - Mattia Pirolo
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146, Rome, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146, Rome, Italy
| | | | - Monica Gherardi
- Department of Medicine, Epidemiology, Workplace and Environmental Hygiene, Monte Porzio Catone Research Centre, INAIL - National Institute for Insurance against Accidents at Work, Rome, Italy
| | - Pasquale Samele
- Department of Medicine, Epidemiology, Workplace and Environmental Hygiene, Lamezia Terme Research Centre, INAIL - National Institute for Insurance against Accidents at Work, Lamezia Terme, Italy
| | - Lucia Ciambrone
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Catanzaro, Italy
| | - Rossella Di Natale
- Department of Biomedical Sciences, Dental, Morphological and Functional Investigations, University of Messina, Messina, Italy
| | - Giovanna Spatari
- Department of Biomedical Sciences, Dental, Morphological and Functional Investigations, University of Messina, Messina, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146, Rome, Italy
| | | |
Collapse
|
18
|
Yeboah R, Sylverken AA, Owusu M, El-Duah P, Burimuah V, Frimpong Y, Lamptey J, Eckerle I, Meyer B, Antwi C, Agbenyaga O, Folitse R, Emikpe B, Oppong SK, Adu-Sarkodie Y, Drosten C. Sero-molecular epidemiology of hepatitis E virus in pigs and human contacts in Ghana. ONE HEALTH OUTLOOK 2021; 3:13. [PMID: 34154674 PMCID: PMC8218416 DOI: 10.1186/s42522-021-00043-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Hepatitis E virus (HEV) is among the leading causes of viral hepatitis in most developing countries. Zoonotic acquisition of HEV genotype 3 from swine has come into focus more recently. Available studies on HEV in Ghana and other countries in the region do not provide enough information towards understanding the epidemiology of HEV in human and animal populations. Towards this end, we conducted a comparative cross-sectional study to determine the seroprevalence and risk factors associated with HEV exposure, both in swine and humans working on pig farms in typical local settings. The presence of viral RNA in human and swine samples was also evaluated, along with classification of viral sequences from HEV-positive samples. METHODS Structured questionnaires soliciting information on pigs reared, as well as socio-demographic information including age, sex and educational background of humans was collected. A total of 10 ml and 5 ml of whole blood was collected from pigs and human participants respectively. ELISA and real-time RT-PCR were performed on the sera for the qualitative detection of IgG antibodies to hepatitis E virus and viral RNA, respectively. RESULTS Five hundred and forty-four (544) human participants including 264 swine contacts and 280 swine non-contacts were enrolled in the study. Although the proportion of HEV IgG antibodies was higher in contact groups (114; 54.3%) than non-contact groups (96; 45.7%), a multivariate analysis did not show any significant difference. No HEV RNA was detected in human samples. Similarly, 720 pigs were sampled from 18 farms located in five regions in Ghana. Twenty-three (23) of the pigs (3.2, 95%CI = 2.0-4.8) were positive for HEV RNA by real-time RT-PCR testing. Sequences obtained from HEV-positive samples were found to share high sequence identities with each other and clustered with other genotype 3 viruses indicating the existence of circulating zoonotic genotype 3 viruses on farms. Although we did not find evidence of pig to human transmission of HEV genotype 3, the presence of this genotype in pigs shows the potential for possible zoonotic transmission in African farm settings and buttresses the importance of active surveillance for the infection among at risk populations.
Collapse
Affiliation(s)
- Richmond Yeboah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Augustina Angelina Sylverken
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael Owusu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Philip El-Duah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Institute of Virology, Charite, Berlin, Germany
| | - Vitus Burimuah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yaw Frimpong
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jones Lamptey
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Benjamin Meyer
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Christopher Antwi
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Olivia Agbenyaga
- Department of Agroforestry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Raphael Folitse
- School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Benjamin Emikpe
- Department of Pathobiology, School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Samuel Kingsley Oppong
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yaw Adu-Sarkodie
- Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | |
Collapse
|
19
|
Osundare FA, Klink P, Akanbi OA, Wang B, Harms D, Ojurongbe O, Ajayi MA, Babaranti EO, Bock CT, Opaleye OO. Hepatitis E virus infection in high-risk populations in Osun State, Nigeria. One Health 2021; 13:100256. [PMID: 34007873 PMCID: PMC8111252 DOI: 10.1016/j.onehlt.2021.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) infection is an emerging infection that is of major public health concern, especially in some vulnerable groups like immunosuppressed individuals, pregnant women and HBV-coinfected individuals. HEV is transmitted faecal/oral or zoonotically depending on the HEV-genotype. This study aimed at investigating HEV infections among different at-risk populations in Osun State, Southwestern Nigeria. A total of 720 serum samples were collected from animal handlers, pregnant women, people living with HIV/AIDS, and Hepatitis B virus (HBV) infected individuals. Commercially available Enzyme-Linked Immunosorbent Assays (ELISA) were used for the detection of anti-HEV total and IgM antibodies. Polymerase chain reaction (PCR) was carried out in the HEV seropositive samples and all the samples from individuals infected with HBV. Descriptive analysis and chi-square test of association were performed. The anti-HEV total antibody seroprevalence in HIV-positive individuals, animal handlers and pregnant women was 11.4% (n = 47/411), 7.9% (n = 7/89), and 6.3% (n = 10/160), respectively. Markers of acute HEV infection (anti-HEV IgM) were detected in 2.2% of HIV-positive individuals (n = 9/411) and 1.8% of animal handlers (n = 2/89), respectively, and in 0.6% of pregnant women (n = 1/160). However, all samples were HEV RNA negative. This study analysed the presence of markers of HEV infection among different at-risk populations without clinical symptoms of HEV infection. Our results showed that HEV is an underestimated threat to public health in Nigeria and underlines the need of an HEV surveillance system to understand the distribution and transmission of HEV infection in animals and/to humans. The risk of HEV-infection in at-risk populations like animal handlers, pregnant, or HIV infected individuals were assessed. Anti-HEV seroprevalence in animal handlers, HIV-positive individuals, and pregnant was 11.4%, 7.9%, and 6.3%, respectively. Anti-HEV IgM antibodies were detected in 2.2% of HIV-positive individuals, 1.8% of animal handlers, and in 0.6% of pregnant. The finding has One Health implication underscoring the need of HEV surveillance to understand animal-to-human transmission.
Collapse
Affiliation(s)
- Folakemi Abiodun Osundare
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria.,Science Laboratory Technology Department, Federal Polytechnic Ede, Ede, Nigeria
| | - Patrycja Klink
- Department Infectious Diseases, Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Berlin, Germany
| | - Olusola Aanuoluwapo Akanbi
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria.,Department Infectious Diseases, Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Berlin, Germany
| | - Bo Wang
- Department Infectious Diseases, Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Berlin, Germany.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Dominik Harms
- Department Infectious Diseases, Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Berlin, Germany
| | - Olusola Ojurongbe
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria
| | - Moses Adedapo Ajayi
- Science Laboratory Technology Department, Federal Polytechnic Ede, Ede, Nigeria
| | | | - C-Thomas Bock
- Department Infectious Diseases, Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Berlin, Germany.,Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | - Oladele Oluyinka Opaleye
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria.,Department Infectious Diseases, Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
20
|
Wang Y, Toh X, Ong J, Teo XH, Bay P, Fernandez CJ, Huangfu T. Serological prevalence and molecular characterization of hepatitis E virus in imported pigs in Singapore (2000-2019). Transbound Emerg Dis 2021; 69:286-296. [PMID: 33406320 DOI: 10.1111/tbed.13977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 12/25/2022]
Abstract
Hepatitis E is a significant liver disease caused by infection with hepatitis E virus (HEV). The risk factors for hepatitis E in developed countries include blood transfusion and ingestion of undercooked meat or meat products derived from HEV-infected animals. Since 2000, there has been increased human hepatitis E incidence reported in Singapore. Although the causes of this increase have not been established, several studies have linked zoonotic HEV infections in humans to pork consumption. It is therefore important to closely monitor the presence of HEV in food sources for the prevalence and virulence. In this study, we demonstrated the presence of HEV in pigs imported into Singapore for consumption through serological and molecular investigation of live pig and post-slaughter samples collected between 2000 and 2019. Among imported pigs, anti-HEV antibody prevalence remained at a level around 35% until 2017, with a statistically significant increase in 2018. HEV RNA was detected in 8.40% (34/405) of the faecal samples, indicative of an active infection in the pigs. HEV RNA was also detected in 6.67% (4/60) of liver samples obtained post-slaughter. We also report the development of an RT-PCR-based next-generation sequencing (NGS) method that enabled full sequencing of the HEV genome in HEV RNA-positive samples in a relatively short span of time. Phylogenetic analysis identified the HEV in one of the imported pigs (HEV-S28) as genotype 3a, which clustered together with the human HEV strains previously identified in Singapore. We found that the HEV-S28 strain exhibited amino acid substitutions that are associated with reduced HEV replication efficiency. The increase in anti-HEV seroprevalence in the pig population from 2018 is worth further exploration. We will continue to monitor the prevalent HEV strains and assess the genetic diversity of HEV in the imported pigs to confirm the potential association with human infections.
Collapse
Affiliation(s)
- Yifan Wang
- Center for Animal & Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), Singapore, Singapore
| | - Xinyu Toh
- Center for Animal & Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), Singapore, Singapore
| | - Jasmine Ong
- Center for Animal & Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), Singapore, Singapore
| | - Xuan Hui Teo
- Center for Animal & Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), Singapore, Singapore
| | - Patrick Bay
- Singapore Food Agency (SFA), Singapore, Singapore
| | - Charlene Judith Fernandez
- Center for Animal & Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), Singapore, Singapore
| | - Taoqi Huangfu
- Center for Animal & Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), Singapore, Singapore
| |
Collapse
|
21
|
Pallerla SR, Schembecker S, Meyer CG, Linh LTK, Johne R, Wedemeyer H, Bock CT, Kremsner PG, Velavan TP. Hepatitis E virus genome detection in commercial pork livers and pork meat products in Germany. J Viral Hepat 2021; 28:196-204. [PMID: 32869414 DOI: 10.1111/jvh.13396] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
The hepatitis E virus (HEV) is one of the most common causes of hepatitis worldwide. HEV is also widespread in many developed countries, where the number of infections is steadily increasing. In those countries, the virus is transmitted mainly through consumption of undercooked or raw food or through contact with animals. Especially, pigs serve as a main reservoir of HEV. Here, we investigated the prevalence of HEV RNA in pork livers and pork meat products to assess the actual risk of HEV infection through food consumption in Germany. A total of 131 pork products were collected from grocery stores and butcher shops between October 2019 and February 2020 and screened for HEV RNA using nested PCR and subsequent sequencing. Overall, 10% of the samples were positive for HEV, including pork livers (5%), spreadable liver sausages (13%) and liver pâté samples (15%). Sequence analyses indicated that the large majority of HEV strains belonged to subtype HEV-3c, representing the most frequent subtype in Germany. One sample belonged to subtype HEV-3f. Further sequence analysis revealed large sequence variation between the samples; however, most of the mutations identified were synonymous. Although infectivity of the virus was not tested, the results suggest a considerable risk of HEV infection through food consumption. Therefore, preventive measures should be taken according to a One Health approach.
Collapse
Affiliation(s)
- Srinivas Reddy Pallerla
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Sonja Schembecker
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam.,Medical Faculty, Duy Tan University, Da Nang, Vietnam
| | - Le Thi Kieu Linh
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Reimar Johne
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research, Partner Hannover, Braunschweig, Germany
| | - C-Thomas Bock
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam.,Medical Faculty, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
22
|
Beyer S, Szewzyk R, Gnirss R, Johne R, Selinka HC. Detection and Characterization of Hepatitis E Virus Genotype 3 in Wastewater and Urban Surface Waters in Germany. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:137-147. [PMID: 32172512 PMCID: PMC7225198 DOI: 10.1007/s12560-020-09424-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 05/18/2023]
Abstract
In highly populated areas, environmental surveillance of wastewater and surface waters is a key factor to control the circulation of viruses and risks for public health. Hepatitis E virus (HEV) genotype 3 is considered as an emerging pathogen in industrialized countries. Therefore, this study was carried out to determine the prevalence of HEV in environmental waters in urban and suburban regions in Germany. HEV was monitored in water samples using quantitative RT-PCR (RT-qPCR) and nested RT-PCR without or with virus concentration via polyethylene glycol precipitation or ultracentrifugation. By RT-qPCR, 84-100% of influent samples of wastewater treatment plants were positive for HEV RNA. Genotypes HEV-3c and 3f were identified in wastewater, with HEV-3c being the most prevalent genotype. These data correlate with subtypes identified earlier in patients from the same area. Comparison of wastewater influent and effluent samples revealed a reduction of HEV RNA of about 1 log10 during passage through wastewater treatment plants. In addition, combined sewer overflows (CSOs) after heavy rainfalls were shown to release HEV RNA into surface waters. About 75% of urban river samples taken during these CSO events were positive for HEV RNA by RT-qPCR. In contrast, under normal weather conditions, only around 30% of river samples and 15% of samples from a bathing water located at an urban river were positive for HEV. Median concentrations of HEV RNA of all tested samples at this bathing water were below the limit of detection.
Collapse
Affiliation(s)
- Sophia Beyer
- Section II 1.4 Microbiological Risks, German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Regine Szewzyk
- Section II 1.4 Microbiological Risks, German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Regina Gnirss
- Berliner Wasserbetriebe (BWB), Cicerostr. 24, 10709, Berlin, Germany
| | - Reimar Johne
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Hans-Christoph Selinka
- Section II 1.4 Microbiological Risks, German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany.
| |
Collapse
|
23
|
Hepatitis E Virus Seroprevalence and Associated Risk Factors in Apparently Healthy Individuals from Osun State, Nigeria. Pathogens 2020; 9:pathogens9050392. [PMID: 32443767 PMCID: PMC7281516 DOI: 10.3390/pathogens9050392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
Hepatitis E virus (HEV) infection is a major public health concern in low-income countries, yet incidence and prevalence estimates are often lacking. Serum (n = 653) and faecal (n = 150) samples were collected from apparently healthy individuals using convenience sampling technique in six communities (Ore, Oke-Osun, Osogbo, Ede, Esa-Odo, and Iperindo) from Osun State, Nigeria. Serum samples were analysed for total anti-HEV IgG/IgM and anti-HEV IgM using commercially available HEV ELISA kits. Total anti-HEV positive serum and all stool samples were analysed for HEV RNA by RT-PCR. Overall, 15.0% (n = 98/653) and 3.8% (n = 25/653) of the serum samples were positive for anti-HEV total and IgM antibodies, respectively. Total anti-HEV and IgM in Ore, Oke-Osun, Osogbo, Ede, Esa-Odo, and Iperindo was 21.0% (n = 13/62) and 3.2% (n = 2/62), 19.4% (n = 20/103) and 6.8% (n = 7/103), 11.4% (n = 12/105) and 2.9% (n = 3/105), 8.0% (n = 16/199) and 1.5% (n = 3/199), 22.0% (n = 22/100) and 10.0% (n = 10/100), and 17.9% (n = 15/84) and 0.0% (n = 0/84), respectively. All samples (stool and serum) were HEV RNA negative. Anti-HEV seroprevalence was associated with rural location, increasing age, alcohol consumption, and rearing of animals. This study demonstrated a high anti-HEV seroprevalence in Osun State, indicating the need to implement surveillance and asses the hepatitis E burden in Nigeria.
Collapse
|
24
|
Wolff A, Günther T, Albert T, Schilling-Loeffler K, Gadicherla AK, Johne R. Stability of hepatitis E virus at different pH values. Int J Food Microbiol 2020; 325:108625. [PMID: 32361052 DOI: 10.1016/j.ijfoodmicro.2020.108625] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/27/2022]
Abstract
Infection with the hepatitis E virus (HEV) can cause acute and chronic hepatitis in humans. The zoonotic HEV genotype 3 is mainly transmitted by consumption of raw and fermented meat products prepared from infected pigs or wild boars. Lowering of pH during fermentation is one of the microbiological hurdles considered to inhibit growth of certain pathogens. However, no data are currently available on pH stability of HEV. As a reliable and reproducible measurement of HEV infectivity in meat products is not established so far, the stability of the cell culture-adapted HEV genotype 3 strain 47832c was analyzed here in phosphate-buffered saline (PBS) at different pH values. Only a minimal decrease of infectivity (up to 0.6 log10 focus forming units) was found after treatment at pH 2 to 9 for 3 h at room temperature. At pH 10, a decrease of about 3 log10 was evident, whereas no remaining virus (>3.5 log10 decrease) was detected at pH 1. The conditions usually achieved during curing of raw sausages were simulated using D/L-lactic acid added to PBS resulting in pH 4.5 to 6.5. After incubation at 4 °C for 7 days at these conditions, no significant differences as compared to a standard PBS solution at pH 7.7 were evident. At room temperature, a 0.8 log10 decrease was found at pH 4.7 after 7 days incubation compared to pH 7.7, but less at the other pH values. In conclusion, only minimal inactivating effects were found at pH conditions commonly occurring during food processing. Therefore, remaining infectious virus might be present in fermented meat products if HEV-contaminated starting material was used. Additional effects of other factors like high salt concentrations and low aw values should be investigated in future studies.
Collapse
Affiliation(s)
- A Wolff
- German Federal Institute for Risk Assessment, Department of Biological Safety, Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - T Günther
- German Federal Institute for Risk Assessment, Department of Biological Safety, Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - T Albert
- University of Leipzig, Institute for Food Hygiene, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - K Schilling-Loeffler
- German Federal Institute for Risk Assessment, Department of Biological Safety, Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - A K Gadicherla
- German Federal Institute for Risk Assessment, Department of Biological Safety, Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - R Johne
- German Federal Institute for Risk Assessment, Department of Biological Safety, Diedersdorfer Weg 1, 12277 Berlin, Germany.
| |
Collapse
|
25
|
Specific circulating microRNAs during hepatitis E infection can serve as indicator for chronic hepatitis E. Sci Rep 2020; 10:5337. [PMID: 32210284 PMCID: PMC7093451 DOI: 10.1038/s41598-020-62159-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) genotypes 3 and 4 (HEV-3, HEV-4) infections are an emerging public health issue in industrialized countries. HEV-3 and −4 are usually self-limiting but can progress to chronic hepatitis E in immunocompromised individuals. The molecular mechanisms involved in persistent infections are poorly understood. Micro RNAs (miRNAs) can regulate viral pathogenesis and can serve as novel disease biomarkers. We aimed to explore the modulation of serum miRNAs in patients with acute (AHE) and chronic (CHE) hepatitis E. Both AHE- and CHE-patients exhibited high viral loads (median 3.23E + 05 IU/mL and 2.11E + 06 IU/mL, respectively) with HEV-3c being the predominant HEV-genotype. Expression analysis of liver-specific serum miRNAs was performed using real-time PCR. miR-99a-5p, miR-122-5p, and miR-125b-5p were upregulated in AHE (4.70–5.28 fold) and CHE patients (2.28–6.34 fold), compared to HEV-negative controls. Notably, miR-192-5p was increased 2.57 fold while miR-125b-5p was decreased 0.35 fold in CHE but not in AHE patients. Furthermore, decreased miR-122-5p expression significantly correlates with reduced liver transaminases in CHE patients. To our knowledge, this marks the first investigation concerning the regulation of circulating liver-specific miRNAs in acute and chronic HEV infections. We found that miR-125b-5p, miR-192-5p, and miR-99a-5p may prove useful in the diagnosis of chronic hepatitis E.
Collapse
|
26
|
Capai L, Maestrini O, Casabianca F, Villechenaud N, Masse S, Bosseur F, Lamballerie X, Charrel RN, Falchi A. Drastic decline of hepatitis E virus detection in domestic pigs after the age of 6 months, Corsica, France. Transbound Emerg Dis 2019; 66:2462-2473. [DOI: 10.1111/tbed.13304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/08/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Lisandru Capai
- EA 7310, Laboratoire de Virologie Université de Corse Corte France
| | - Oscar Maestrini
- Laboratoire de Recherche sur le Développement de l’Elevage (LRDE) Institut National de la Recherche Agronomique (INRA) Corte France
| | - François Casabianca
- Laboratoire de Recherche sur le Développement de l’Elevage (LRDE) Institut National de la Recherche Agronomique (INRA) Corte France
| | | | - Shirley Masse
- EA 7310, Laboratoire de Virologie Université de Corse Corte France
| | - Frédéric Bosseur
- Sciences Pour l’Environnement – UMR CNRS 6134 niversité de Corse Corte France
| | - Xavier Lamballerie
- IRD 190, INSERM 1207 IHU Méditerranée Infection, Unité des Virus Émergents (UVE): Aix Marseille Univ Marseille France
| | - Rémi N. Charrel
- IRD 190, INSERM 1207 IHU Méditerranée Infection, Unité des Virus Émergents (UVE): Aix Marseille Univ Marseille France
- Emerging Pathogens Institute University of Florida Gainesville Florida
| | | |
Collapse
|
27
|
Complete Genome Sequence of a Hepatitis E Virus Genotype 1e Strain from an Outbreak in Nigeria, 2017. Microbiol Resour Announc 2019; 8:MRA01378-18. [PMID: 30637389 PMCID: PMC6318360 DOI: 10.1128/mra.01378-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/16/2018] [Indexed: 11/20/2022] Open
Abstract
Hepatitis E virus genotype 1 (HEV-1) is associated with large epidemics. Notably, HEV subtype 1e (HEV-1e) has caused HEV outbreaks in sub-Saharan Africa. Hepatitis E virus genotype 1 (HEV-1) is associated with large epidemics. Notably, HEV subtype 1e (HEV-1e) has caused HEV outbreaks in sub-Saharan Africa. We report here the second full-length genome sequence of an HEV-1e strain (NG/17-0503) from a recent outbreak in Nigeria in 2017. It shares 94.2% identity with an HEV-1e strain from Chad.
Collapse
|
28
|
Zhu YO, Aw P, Aung MM, Lee HK, Hibberd M, Lee GH. Patterns of mutation within an emerging endemic lineage of HEV-3a. J Viral Hepat 2019; 26:191-198. [PMID: 30315669 DOI: 10.1111/jvh.13015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
The hepatitis E virus can cause chronic infections in immuno-suppressed patients, and cases have been on the rise globally. Viral mutations during such infections are difficult to characterize. We deep-sequenced viral populations from 15 immunocompromised patients with chronic HEV to identify the viral lineage and describe viral mutational hotspots within and across patients. A total of 21 viral RNA samples were collected between 2012 and 2017 from a single hospital in Singapore. Sequences covering a total of 3894 bp of the HEV genome were obtained. Phylogenetic analyses identified all sequences as belonging to the HEV-3a sub-clade and clearly indicate a unique local lineage. Deep sequencing reveals variable viral population complexity during infections. Comparisons of viral samples from the same patients spaced 2-19 months apart revealed rapid nucleotide replacements in the dominant viral sequence in both ribavirin treated and treatment-naive patients. Mutational hotspots were identified within ORF3 and the PCP/HVR domain of ORF1.
Collapse
Affiliation(s)
- Yuan O Zhu
- Agency for Science, Technology and Research (A*STAR), Genome Institute of Singapore, Singapore City, Singapore
| | - Pauline Aw
- Agency for Science, Technology and Research (A*STAR), Genome Institute of Singapore, Singapore City, Singapore
| | - Myo Myint Aung
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Hong Kai Lee
- Department of Laboratory Medicine, Molecular Diagnosis Centre, National University Hospital, National University Health System, Singapore City, Singapore
| | - Martin Hibberd
- Agency for Science, Technology and Research (A*STAR), Genome Institute of Singapore, Singapore City, Singapore.,London School of Hygiene and Tropical Medicine, London, UK
| | - Guan Huei Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
29
|
Wang B, Akanbi OA, Harms D, Adesina O, Osundare FA, Naidoo D, Deveaux I, Ogundiran O, Ugochukwu U, Mba N, Ihekweazu C, Bock CT. A new hepatitis E virus genotype 2 strain identified from an outbreak in Nigeria, 2017. Virol J 2018; 15:163. [PMID: 30352598 PMCID: PMC6199738 DOI: 10.1186/s12985-018-1082-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/16/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND In 2017 the Nigerian Ministry of Health notified the World Health Organization (WHO) of an outbreak of hepatitis E located in the north-east region of the country with 146 cases with 2 deaths. The analysis of the hepatitis E virus (HEV) genotypes responsible for the outbreak revealed the predominance of HEV genotypes 1 (HEV-1) and 2 (HEV-2). Molecular data of HEV-2 genomes are limited; therefore we characterized a HEV-2 strain of the outbreak in more detail. FINDING The full-length genome sequence of an HEV-2 strain (NG/17-0500) from the outbreak was amplified using newly designed consensus primers. Comparison with other HEV complete genome sequences, including the only HEV-2 strain (Mex-14) with available complete genome sequences and the availability of data of partial HEV-2 sequences from Sub-Saharan Africa, suggests that NG/17-0500 belongs to HEV subtype 2b (HEV-2b). CONCLUSIONS We identified a novel HEV-2b strain from Sub-Saharan Africa, which is the second complete HEV-2 sequence to date, whose natural history and epidemiology merit further investigation.
Collapse
Affiliation(s)
- Bo Wang
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
| | - Olusola Anuoluwapo Akanbi
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
| | - Dominik Harms
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
| | - Olufisayo Adesina
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
| | - Folakemi Abiodun Osundare
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
- Ladoke Akintola University of Technology, Ogbomoso, Oyo State P.M.B 4000 Nigeria
| | - Dhamari Naidoo
- Infectious Hazard Management Department, World Health Organization, Geneva, Switzerland
| | - Isabel Deveaux
- Nigeria Centre for Disease Control, Plot 801, Ebitu Ukiwe Street, Jabi, Abuja, Nigeria
| | - Opeayo Ogundiran
- Nigeria Centre for Disease Control, Plot 801, Ebitu Ukiwe Street, Jabi, Abuja, Nigeria
| | - Uzoma Ugochukwu
- Nigeria Centre for Disease Control, Plot 801, Ebitu Ukiwe Street, Jabi, Abuja, Nigeria
| | - Nwando Mba
- Nigeria Centre for Disease Control, Plot 801, Ebitu Ukiwe Street, Jabi, Abuja, Nigeria
| | - Chikwe Ihekweazu
- Nigeria Centre for Disease Control, Plot 801, Ebitu Ukiwe Street, Jabi, Abuja, Nigeria
| | - C.-Thomas Bock
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|