1
|
Kuthning D, Raafat D, Holtfreter S, Gramenz J, Wittmann N, Bröker BM, Meyer-Bahlburg A. Variant-specific antibody profiling for tracking SARS-CoV-2 variant infections in children and adolescents. Front Immunol 2024; 15:1434291. [PMID: 39257574 PMCID: PMC11384586 DOI: 10.3389/fimmu.2024.1434291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Monitoring the seroprevalence of SARS-CoV-2 in children and adolescents can provide valuable information for effective SARS-CoV-2 surveillance, and thus guide vaccination strategies. In this study, we quantified antibodies against the spike S1 domains of several SARS-CoV-2 variants (wild-type, Alpha, Delta, and Omicron variants) as well as endemic human coronaviruses (HCoVs) in 1,309 children and adolescents screened between December 2020 and March 2023. Their antibody binding profiles were compared with those of 22 pre-pandemic samples from children and adolescents using an in-house Luminex®-based Corona Array (CA). The primary objectives of this study were to (i) monitor SARS-CoV-2-specific antibodies in children and adolescents, (ii) evaluate whether the S1-specific antibody response can identify the infecting variant of concern (VoC), (iii) estimate the prevalence of silent infections, and (iv) test whether vaccination or infection with SARS-CoV-2 induce HCoV cross-reactive antibodies. Both SARS-CoV-2 infection and vaccination induced a robust antibody response against the S1 domain of WT and VoCs in children and adolescents. Antibodies specific for the S1 domain were able to distinguish between SARS-CoV-2 VoCs in infected children. The serologically identified VoC was typically the predominant VoC at the time of infection. Furthermore, our highly sensitive CA identified more silent SARS-CoV-2 infections than a commercial ELISA (12.1% vs. 6.3%, respectively), and provided insights into the infecting VoC. Seroconversion to endemic HCoVs occurred in early childhood, and vaccination or infection with SARS-CoV-2 did not induce HCoV S1 cross-reactive antibodies. In conclusion, the antibody response to the S1 domain of the spike protein of SARS-CoV-2 is highly specific, providing information about the infecting VoC and revealing clinically silent infections.
Collapse
Affiliation(s)
- Daniela Kuthning
- Pediatric Rheumatology, Department of Pediatric and Adolescent Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Dina Raafat
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Silva Holtfreter
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Jana Gramenz
- Pediatric Rheumatology, Department of Pediatric and Adolescent Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Nico Wittmann
- Pediatric Rheumatology, Department of Pediatric and Adolescent Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Barbara M Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Almut Meyer-Bahlburg
- Pediatric Rheumatology, Department of Pediatric and Adolescent Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
2
|
Stern D, Meyer TC, Treindl F, Mages HW, Krüger M, Skiba M, Krüger JP, Zobel CM, Schreiner M, Grossegesse M, Rinner T, Peine C, Stoliaroff-Pépin A, Harder T, Hofmann N, Michel J, Nitsche A, Stahlberg S, Kneuer A, Sandoni A, Kubisch U, Schlaud M, Mankertz A, Schwarz T, Corman VM, Müller MA, Drosten C, de la Rosa K, Schaade L, Dorner MB, Dorner BG. A bead-based multiplex assay covering all coronaviruses pathogenic for humans for sensitive and specific surveillance of SARS-CoV-2 humoral immunity. Sci Rep 2023; 13:21846. [PMID: 38071261 PMCID: PMC10710470 DOI: 10.1038/s41598-023-48581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Serological assays measuring antibodies against SARS-CoV-2 are key to describe the epidemiology, pathobiology or induction of immunity after infection or vaccination. Of those, multiplex assays targeting multiple antigens are especially helpful as closely related coronaviruses or other antigens can be analysed simultaneously from small sample volumes, hereby shedding light on patterns in the immune response that would otherwise remain undetected. We established a bead-based 17-plex assay detecting antibodies targeting antigens from all coronaviruses pathogenic for humans: SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV strains 229E, OC43, HKU1, and NL63. The assay was validated against five commercial serological immunoassays, a commercial surrogate virus neutralisation test, and a virus neutralisation assay, all targeting SARS-CoV-2. It was found to be highly versatile as shown by antibody detection from both serum and dried blot spots and as shown in three case studies. First, we followed seroconversion for all four endemic HCoV strains and SARS-CoV-2 in an outbreak study in day-care centres for children. Second, we were able to link a more severe clinical course to a stronger IgG response with this 17-plex-assay, which was IgG1 and IgG3 dominated. Finally, our assay was able to discriminate recent from previous SARS-CoV-2 infections by calculating the IgG/IgM ratio on the N antigen targeting antibodies. In conclusion, due to the comprehensive method comparison, thorough validation, and the proven versatility, our multiplex assay is a valuable tool for studies on coronavirus serology.
Collapse
Affiliation(s)
- Daniel Stern
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany.
| | - Tanja C Meyer
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Fridolin Treindl
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Hans Werner Mages
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Maren Krüger
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Martin Skiba
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Jan Philipp Krüger
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Berlin, Berlin, Germany
| | - Christian M Zobel
- Department of Internal Medicine, Bundeswehr Hospital Berlin, Berlin, Germany
| | | | - Marica Grossegesse
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Thomas Rinner
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Caroline Peine
- Immunization Unit (FG 33), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353, Berlin, Germany
| | - Anna Stoliaroff-Pépin
- Immunization Unit (FG 33), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353, Berlin, Germany
| | - Thomas Harder
- Immunization Unit (FG 33), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353, Berlin, Germany
| | - Natalie Hofmann
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Janine Michel
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Andreas Nitsche
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Silke Stahlberg
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Antje Kneuer
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Anna Sandoni
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Ulrike Kubisch
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Martin Schlaud
- Central Epidemiological Laboratory (FG 22), Department of Epidemiology and Health Monitoring, Robert Koch Institute, 12101, Berlin, Germany
| | - Annette Mankertz
- Measles, Mumps, Rubella, and Viruses Affecting Immunocompromised Patients (FG 12), Robert Koch Institute, 13353, Berlin, Germany
| | - Tatjana Schwarz
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- Corporate Member, Freie Universität Berlin, 10117, Berlin, Germany
- Corporate Member, Humboldt-Universität zu Berlin, 14195, Berlin, Germany
| | - Marcel A Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Kathrin de la Rosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Lars Schaade
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Martin B Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany
| | - Brigitte G Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353, Berlin, Germany.
| |
Collapse
|
3
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
4
|
Roy DR, Kemp TJ, Haynesworth K, Loftus SA, Pinto LA. Development, Validation, and Utilization of a Luminex-Based SARS-CoV-2 Multiplex Serology Assay. Microbiol Spectr 2023; 11:e0389822. [PMID: 36927068 PMCID: PMC10100979 DOI: 10.1128/spectrum.03898-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/10/2023] [Indexed: 03/18/2023] Open
Abstract
SARS-CoV-2 antibody testing is important for seroprevalence studies and for evaluating vaccine immune responses. We developed and validated a Luminex bead-based multiplex serology assay for measuring IgG levels of anti-SARS-CoV-2 antibodies against full-length spike (S), nucleocapsid (N), and receptor-binding domains (RBDs) of wild-type, RBD N501Y mutant, RBD E484K mutant, RBD triple mutant SARS-CoV-2 proteins, Sars-CoV-1, MERS-CoV, and common human coronaviruses, including SARS-CoV-2, OC43, 229E, HKU1, and NL63. Assay cutoff values, sensitivity, and specificity were determined using samples from 160 negative controls and 60 PCR-confirmed, SARS-CoV-2-infected individuals. The assay demonstrated sensitivities of 98.3%, 95%, and 100% and specificities of 100%, 99.4%, and 98.8% for anti-(S), -N, and -RBD, respectively. Results are expressed as IgG antibody concentrations in BAU/mL, using the WHO international standard (NIBSC code 20/136) for anti-SARS-CoV-2 IgG antibodies. When the multiplex assay was performed and compared with singleplex assays, the IgG antibody measurement geometric mean ratios were between 0.895 and 1.122, and no evidence of interference was observed between antigens. Lower and upper IgG concentration limits, based on accuracy (between 80% and 120%), precision (percent relative standard deviation, ≤25%), and sample dilutional linearity (between 75% and 125%), were used to establish the assay range. Precision was established by evaluating 24 individual human serum samples obtained from vaccinated and SARS-CoV-2-infected individuals. The assay provided reproducible, consistent results with typical coefficients of variation of ≤20% for all assays, irrespective of the run, day, or analyst. Results indicate the assay has high sensitivity and specificity and thus is appropriate for use in measuring SARS-CoV-2 IgG antibodies in infected and vaccinated individuals. IMPORTANCE The SARS-CoV-2 pandemic resulted in the development and validation of multiple serology tests with variable performance. While there are multiple SARS-CoV-2 serology tests to detect SARS-CoV-2 antibodies, the focus is usually either on only one antigen at a time or multiple proteins from only one SARS-CoV-2 variant. These tests usually do not evaluate antibodies against viral proteins from different SARS-CoV-2 variants or from other coronaviruses. Here, we evaluated a multiplex serology test based on Luminex technology, where antibodies against multiple domains of SARS-CoV-2 wild type, SARS-CoV-2 mutants, and common coronavirus antibodies are detected simultaneously in a single assay. This Luminex-based multiplex serology assay can enhance our understanding of the immune response to SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
- Daisy R. Roy
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Troy J. Kemp
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Katarzyna Haynesworth
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Sarah A. Loftus
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ligia A. Pinto
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
5
|
Gattinger P, Ohradanova-Repic A, Valenta R. Importance, Applications and Features of Assays Measuring SARS-CoV-2 Neutralizing Antibodies. Int J Mol Sci 2023; 24:ijms24065352. [PMID: 36982424 PMCID: PMC10048970 DOI: 10.3390/ijms24065352] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023] Open
Abstract
More than three years ago, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused the unforeseen COVID-19 pandemic with millions of deaths. In the meantime, SARS-CoV-2 has become endemic and is now part of the repertoire of viruses causing seasonal severe respiratory infections. Due to several factors, among them the development of SARS-CoV-2 immunity through natural infection, vaccination and the current dominance of seemingly less pathogenic strains belonging to the omicron lineage, the COVID-19 situation has stabilized. However, several challenges remain and the possible new occurrence of highly pathogenic variants remains a threat. Here we review the development, features and importance of assays measuring SARS-CoV-2 neutralizing antibodies (NAbs). In particular we focus on in vitro infection assays and molecular interaction assays studying the binding of the receptor binding domain (RBD) with its cognate cellular receptor ACE2. These assays, but not the measurement of SARS-CoV-2-specific antibodies per se, can inform us of whether antibodies produced by convalescent or vaccinated subjects may protect against the infection and thus have the potential to predict the risk of becoming newly infected. This information is extremely important given the fact that a considerable number of subjects, in particular vulnerable persons, respond poorly to the vaccination with the production of neutralizing antibodies. Furthermore, these assays allow to determine and evaluate the virus-neutralizing capacity of antibodies induced by vaccines and administration of plasma-, immunoglobulin preparations, monoclonal antibodies, ACE2 variants or synthetic compounds to be used for therapy of COVID-19 and assist in the preclinical evaluation of vaccines. Both types of assays can be relatively quickly adapted to newly emerging virus variants to inform us about the magnitude of cross-neutralization, which may even allow us to estimate the risk of becoming infected by newly appearing virus variants. Given the paramount importance of the infection and interaction assays we discuss their specific features, possible advantages and disadvantages, technical aspects and not yet fully resolved issues, such as cut-off levels predicting the degree of in vivo protection.
Collapse
Affiliation(s)
- Pia Gattinger
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Karl Landsteiner University, 3500 Krems an der Donau, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
- Correspondence:
| |
Collapse
|
6
|
Das S, Dunbar S. Multiplex Immunoassay Approaches Using Luminex® xMAP® Technology for the Study of COVID-19 Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:479-489. [PMID: 37378784 DOI: 10.1007/978-3-031-28012-2_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has been one of the most severe outbreaks of respiratory illness in history. The clinical symptoms of COVID-19 may be similar to flu, although they can be life-threatening, particularly in the elderly and immunocompromised population. Together with nucleic acid detection, serological testing has been essential for the diagnosis of SARS-CoV-2 infection but has been critically important for studying the epidemiology, serosurveillance, and for vaccine research and development. Multiplexed immunoassay technologies have a particular advantage as they can simultaneously measure multiple analytes from a single sample. xMAP technology is a multiplex analysis platform that can measure up to 500 analytes at the same time from the same sample. It has been shown to be an important tool for studying immune response to the various SARS-CoV-2 antigens, as well as for measuring host protein biomarker levels as prognostic indicators of COVID-19. In this chapter, we describe several key studies where xMAP technology was used for multiplexed analysis of SARS-COV-2 antibody responses and host protein expression in COVID-19 patients.
Collapse
|
7
|
Jeremiah SS, Miyakawa K, Ryo A. Detecting SARS-CoV-2 neutralizing immunity: highlighting the potential of split nanoluciferase technology. J Mol Cell Biol 2022; 14:mjac023. [PMID: 35416249 PMCID: PMC9387144 DOI: 10.1093/jmcb/mjac023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has progressed over 2 years since its onset causing significant health concerns all over the world and is currently curtailed by mass vaccination. Immunity acquired against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be following either infection or vaccination. However, one can never be sure whether the acquired immunity is adequate to protect the individual from subsequent infection because of three important factors: individual variations in humoral response dynamics, waning of protective antibodies over time, and the emergence of immune escape mutants. Therefore, a test that can accurately differentiate the protected from the vulnerable is the need of the hour. The plaque reduction neutralization assay is the conventional gold standard test for estimating the titers of neutralizing antibodies that confer protection. However, it has got several drawbacks, which hinder the practical application of this test for wide-scale usage. Hence, various tests have been developed to detect protective immunity against SARS-CoV-2 that directly or indirectly assess the presence of neutralizing antibodies to SARS-CoV-2 in a lower biosafety setting. In this review, the pros and cons of the currently available assays are elaborated in detail and special focus is put on the scope of the novel split nanoluciferase technology for detecting SARS-CoV-2 neutralizing antibodies.
Collapse
Affiliation(s)
| | - Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
8
|
Shen H, Chen X, Zeng L, Xu X, Tao Y, Kang S, Lu Y, Lian M, Yang C, Zhu Z. Magnetofluid-Integrated Multicolor Immunochip for Visual Analysis of Neutralizing Antibodies to SARS-CoV-2 Variants. Anal Chem 2022; 94:8458-8465. [PMID: 35658117 PMCID: PMC9211038 DOI: 10.1021/acs.analchem.2c01260] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
The global spread of SARS-CoV-2 virus has severely affected human health, life, and work. Vaccine immunization is considered to be an effective means to protect the body from infection. Therefore, timely analysis of the antibody level is helpful to identify people with low immune response or attenuated antibodies so as to carry out targeted and precise vaccine booster immunization. Herein, we develop a magnetofluid-integrated multicolor immunochip, as a sample-to-answer system in a fully enclosed space, for visual analysis of neutralizing antibodies of SARS-CoV-2. Generally, this chip adopts an innovative three-dimensional two-phase system that utilizes mineral oil to block the connection between reagent wells in the vertical direction and provides a wide interface for rapid and nondestructive shuttle of magnetic beads during the immunoassay. In order to obtain visualized signal output, gold nanorods with a size-dependent color effect are used as the colorful chromogenic substrates for evaluation of the antibody level. Using this chip, the neutralizing antibodies were successfully detected in vaccine-immunized volunteers with 83.3% sensitivity and 100% specificity. Furthermore, changes in antibody levels of the same individual over time were also reflected by the multicolor assay. Overall, benefiting from simple operation, airtight safety, and nonrequirement of external equipment, this platform can provide a new point-of-care testing strategy for alleviating the shortage of medical resources and promoting epidemic control in underdeveloped areas.
Collapse
Affiliation(s)
- Haicong Shen
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinying Chen
- Clinical
Laboratory, Xiamen University Hospital, Xiamen 361005, China
| | - Liuqing Zeng
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Xu
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yingzhou Tao
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Siyin Kang
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yinzhu Lu
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingjian Lian
- Clinical
Laboratory, The First Affiliated Hospital
of Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Institute
of Molecular Medicine, Department of Gastrointestinal Surgery, Renji
Hospital, School of Medicine, Shanghai Jiao
Tong University Shanghai, Shanghai 200127, China
| | - Zhi Zhu
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
9
|
Cameron A, Bohrhunter JL, Porterfield CA, Mangat R, Karasick MH, Pearson Z, Angeloni S, Pecora ND. Simultaneous Measurement of IgM and IgG Antibodies to SARS-CoV-2 Spike, RBD, and Nucleocapsid Multiplexed in a Single Assay on the xMAP INTELLIFLEX DR-SE Flow Analyzer. Microbiol Spectr 2022; 10:e0250721. [PMID: 35389244 PMCID: PMC9045264 DOI: 10.1128/spectrum.02507-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/13/2022] [Indexed: 11/20/2022] Open
Abstract
The multiplex capabilities of the new xMAP INTELLIFLEX DR-SE flow analyzer were explored by modifying a serological assay previously used to characterize the IgG antibody to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The goal was to examine the instrument's performance and to simultaneously measure IgM and IgG antibody responses against multiple SARS-CoV-2 antigens in a single assay. Specific antibodies against the SARS-CoV-2 spike (S), receptor binding domain (RBD), and nucleocapsid (N) proteins were investigated in 310 symptomatic case patients using a fluorescent microsphere immunoassay and simultaneous detection of IgM and IgG. Neutralization potential was studied using the addition of soluble angiotensin-converting enzyme 2 (ACE2) to block antibody binding. A profile extending to 180 days from symptom onset (DFSO) was described for antibodies specific to each viral antigen. Generally, IgM levels peaked and declined rapidly ∼3-4 weeks following infection, whereas S- and RBD-specific IgG plateaued at 80 DFSO. ACE2 more effectively prevented IgM and IgG binding in convalescent cases > 30 DFSO, suggesting those antibodies had greater neutralization potential. This work highlighted the multiplex and multi-analyte potential of the xMAP INTELLIFLEX DR-SE, and provided further evidence for antigen-specific IgM and IgG trajectories in acute and convalescent cases. IMPORTANCE The xMAP INTELLIFLEX DR-SE enabled simultaneous and semi-quantitative detection of both IgM and IgG to three different SARS-CoV-2 antigens in a single assay. The assay format is advantageous for rapid and medium-throughput profiling using a small volume of specimen. The xMAP INTELLIFLEX DR-SE technology demonstrated the potential to include numerous SARS-CoV-2 antigens; future work could incorporate multiple spike protein variants in a single assay. This could be an important feature for assessing the serological response to emerging variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Andrew Cameron
- Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Jessica L. Bohrhunter
- Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Claire A. Porterfield
- Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Rupinder Mangat
- Division of Infectious Diseases, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Michael H. Karasick
- Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Zachary Pearson
- Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Nicole D. Pecora
- Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Labropoulou S, Vassilaki N, Milona RS, Terpos E, Politou M, Pappa V, Pagoni M, Grouzi E, Dimopoulos MA, Mentis A, Emmanouil M, Angelakis E. Characterizing Kinetics and Avidity of SARS-CoV-2 Antibody Responses in COVID-19 Greek Patients. Viruses 2022; 14:758. [PMID: 35458488 PMCID: PMC9024518 DOI: 10.3390/v14040758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
In-depth understanding of the immune response provoked by SARS-CoV-2 infection is necessary, as there is a great risk of reinfection and a difficulty in achieving herd immunity due to a decline in both antibody concentration and avidity. Avidity testing, however, could overcome variability in the immune response associated with sex or clinical symptoms, and thus differentiate between recent and past infections. In this context, here, we analyzed SARS-CoV-2 antibody kinetics and avidity in Greek hospitalized (26%) and non-hospitalized (74%) COVID-19 patients (N = 71) in the course of up to 15 months after their infection to improve the accuracy of the serological diagnosis in dating the onset of the infection. The results showed that IgG-S1 levels decline significantly at four months (p = 0.0239) in both groups of patients and are higher in hospitalized ones (up to 2.1-fold, p < 0.001). Additionally, hospitalized patients’ titers drop greatly and are equalized to non-hospitalized ones only at a time-point of twelve to fifteen months. Antibody levels of women in total remain more stable months after infection, compared to men. Furthermore, we examined the differential maturation of IgG avidity after SARS-CoV-2 infection, showing an incomplete maturation of avidity that results in a plateau at four months after infection. We also defined 38.2% avidity (sensitivity: 58.9%, specificity: 90.91%) as an appropriate “cut-off” that could be used to determine the stage of infection before avidity reaches a plateau.
Collapse
Affiliation(s)
- Stavroula Labropoulou
- Diagnostics Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece; (S.L.); (A.M.); (M.E.); (E.A.)
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece;
| | - Raphaela S. Milona
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece;
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.T.); (M.A.D.)
| | - Marianna Politou
- Hematology Laboratory Blood Bank, School of Medicine, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Vasiliki Pappa
- Hematology Unit, Second Department of Internal Medicine, School of Medicine, Attikon University General Hospital, National and Kapodistrian University of Athens, 12461 Athens, Greece;
| | - Maria Pagoni
- BMT Unit, Department of Hematology and Lymphomas, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Elisavet Grouzi
- Department of Transfusion Service and Clinical Hemostasis, “Saint Savvas” Oncology Hospital, 11522 Athens, Greece;
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.T.); (M.A.D.)
| | - Andreas Mentis
- Diagnostics Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece; (S.L.); (A.M.); (M.E.); (E.A.)
| | - Mary Emmanouil
- Diagnostics Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece; (S.L.); (A.M.); (M.E.); (E.A.)
| | - Emmanouil Angelakis
- Diagnostics Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece; (S.L.); (A.M.); (M.E.); (E.A.)
- IHU-Méditerranée Infection, Aix-Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
11
|
Comparison of the Anti-SARS-CoV-2 Surrogate Neutralization Assays by TECOmedical and DiaPROPH-Med with Samples from Vaccinated and Infected Individuals. Viruses 2022; 14:v14020315. [PMID: 35215912 PMCID: PMC8877287 DOI: 10.3390/v14020315] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Anti-SARS-CoV-2-specific serological responses are a topic of ongoing evaluation studies. In the study presented here, the anti-SARS-CoV-2 surrogate neutralization assays by TECOmedical and DiaPROPH -Med were assessed in a head-to-head comparison with serum samples of individuals after vaccination as well as after previous infection with SARS-CoV-2. In case of discordant results, a cell culture-based neutralization assay was applied as a reference standard. The TECOmedical assay showed sensitivity and specificity of 100% and 61.3%, respectively, the DiaPROPH-Med assay 95.0% and 48.4%, respectively. As a side finding of the study, differences in the likelihood of expressing neutralizing antibodies could be shown for different exposition types. So, 60 of 81 (74.07%) of the samples with only one vaccination showed an expression of neutralizing antibodies in contrast to 85.71% (60 of 70 samples) of the samples with two vaccinations and 100% (40 of 40) of the samples from previously infected individuals. In conclusion, the both assays showed results similar to previous assessments. While the measured diagnostic accuracy of both assays requires further technical improvement of this diagnostic approach, as the calculated specificity values of 61.3% and 48.4%, respectively, appear acceptable for diagnostic use only in populations with a high percentage of positive subjects, but not at expectedly low positivity rates.
Collapse
|
12
|
Guarino C, Larson E, Babasyan S, Rollins A, Joshi LR, Laverack M, Parrilla L, Plocharczyk E, Diel DG, Wagner B. Development of a quantitative COVID-19 multiplex assay and its use for serological surveillance in a low SARS-CoV-2 incidence community. PLoS One 2022; 17:e0262868. [PMID: 35061843 PMCID: PMC8782306 DOI: 10.1371/journal.pone.0262868] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
A serological COVID-19 Multiplex Assay was developed and validated using serum samples from convalescent patients and those collected prior to the 2020 pandemic. After initial testing of multiple potential antigens, the SARS-CoV-2 nucleocapsid protein (NP) and receptor-binding domain (RBD) of the spike protein were selected for the human COVID-19 Multiplex Assay. A comparison of synthesized and mammalian expressed RBD proteins revealed clear advantages of mammalian expression. Antibodies directed against NP strongly correlated with SARS-CoV-2 virus neutralization assay titers (rsp = 0.726), while anti-RBD correlation was moderate (rsp = 0.436). Pan-Ig, IgG, IgA, and IgM against NP and RBD antigens were evaluated on the validation sample sets. Detection of NP and RBD specific IgG and IgA had outstanding performance (AUC > 0.90) for distinguishing patients from controls, but the dynamic range of the IgG assay was substantially greater. The COVID-19 Multiplex Assay was utilized to identify seroprevalence to SARS-CoV-2 in people living in a low-incidence community in Ithaca, NY. Samples were taken from a cohort of healthy volunteers (n = 332) in early June 2020. Only two volunteers had a positive result on a COVID-19 PCR test performed prior to serum sampling. Serological testing revealed an exposure rate of at least 1.2% (NP) or as high as 5.7% (RBD), higher than the measured incidence rate of 0.16% in the county at that time. This highly sensitive and quantitative assay can be used for monitoring community exposure rates and duration of immune response following both infection and vaccination.
Collapse
Affiliation(s)
- Cassandra Guarino
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Elisabeth Larson
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Alicia Rollins
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Lok R. Joshi
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Melissa Laverack
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Lara Parrilla
- Cayuga Medical Center, Ithaca, NY, United States of America
| | | | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
13
|
Wang J, Li D, Cameron A, Zhou Q, Wiltse A, Nayak J, Pecora ND, Zand MS. OUP accepted manuscript. J Infect Dis 2022; 226:474-484. [PMID: 35091739 PMCID: PMC8807312 DOI: 10.1093/infdis/jiac022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/24/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND A protective antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial to decrease morbidity and mortality from severe coronavirus disease 2019 (COVID-19) disease. The effects of preexisting anti-human coronavirus (HCoV) antibodies on the SARS-CoV-2-specific immunoglobulin G (IgG) responses and severity of disease are currently unclear. METHODS We profiled anti-spike (S), S1, S2, and receptor-binding domain IgG antibodies against SARS-CoV-2 and 6 HCoVs using a multiplex assay (mPLEX-CoV) with serum samples from SARS-CoV-2 infected (n = 155) and pre-COVID-19 (n = 188) cohorts. RESULTS COVID-19 subjects showed significantly increased anti-S SARS-CoV-2 IgG levels that were highly correlated with IgG antibodies against OC43 and HKU1 S proteins. However, OC43 and HKU1 anti-S antibodies in pre-COVID-19 era sera did not cross-react with SARS-CoV-2. Unidirectional cross-reactive antibodies elicited by SARS-CoV-2 infection were distinct from the bidirectional cross-reactive antibodies recognizing homologous strains RaTG13 and SARS-CoV-1. High anti-OC43 and anti-S2 antibody levels were associated with both a rapid anti-SARS-CoV-2 antibody response and increased disease severity. Subjects with increased sequential organ failure assessment (SOFA) scores developed a higher ratio of S2- to S1-reactive antibodies. CONCLUSIONS Early and rapid emergence of OC43 S- and S2-reactive IgG after SARS-CoV-2 infection correlates with COVID-19 disease severity.
Collapse
Affiliation(s)
- Jiong Wang
- Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York, USA
| | - Dongmei Li
- Clinical and Translational Science Institute, University of Rochester, Rochester, New York, USA
| | - Andrew Cameron
- Clinical Microbiology, Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, New York, USA
| | - Qian Zhou
- Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York, USA
| | - Alexander Wiltse
- Present affiliation: University of Maryland Medical Center, Baltimore, MD
| | - Jennifer Nayak
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester, Rochester, New York, USA
| | - Nicole D Pecora
- Present affiliation: Brigham and Women’s Hospital, Harvard University, Boston, MA
| | - Martin S Zand
- Correspondence: Martin S. Zand, MD, PhD, University of Rochester Medical Center, Clinical and Translational Science Institute, Room 1.207, 265 Crittendon Boulevard, Rochester, NY 14642 ()
| |
Collapse
|
14
|
Luo H, Camilleri D, Garitaonandia I, Djumanov D, Chen T, Lorch U, Täubel J, Wang D. Kinetics of anti-SARS-CoV-2 IgG antibody levels and potential influential factors in subjects with COVID-19: A 11-month follow-up study. Diagn Microbiol Infect Dis 2021; 101:115537. [PMID: 34619569 PMCID: PMC8428032 DOI: 10.1016/j.diagmicrobio.2021.115537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022]
Abstract
We aim to study kinetics of anti-SARS-CoV-2 IgG antibody levels in subjects with COVID-19 for up to 11 months and the potential influential factors. The study was a prospective longitudinal study. The analyses were based on 77 serum/plasma samples with a mean of 4 samples per participant (range 1 – 18) in 20 participants with at least one positive Polymerase Chain Reaction testing result from 19 March 2020 up to 10 February 2021. Among the subjects (median age 34.5 years, 65% male), IgG level declined with the follow-up time (per month; geometric mean ratio [GMR] 0.73; 95% CI, 0.72 – 0.74). In a small sample of subjects from the general population with COVID-19, IgG levels declined non-linearly from month 2 to 11 with individual heterogeneity in quantity and changing speed and may be associated with gender, race and the loss of smell and taste.
Collapse
Affiliation(s)
- Huanyuan Luo
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Ibon Garitaonandia
- Richmond Research Institute, St George's University of London, London, UK
| | - Dilshat Djumanov
- Department of Data Science, Richmond Pharmacology Ltd, London, UK
| | - Tao Chen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ulrike Lorch
- Department of Data Science, Richmond Pharmacology Ltd, London, UK
| | - Jörg Täubel
- Department of Data Science, Richmond Pharmacology Ltd, London, UK; Richmond Research Institute, St George's University of London, London, UK.
| | - Duolao Wang
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
15
|
Altawalah H. Antibody Responses to Natural SARS-CoV-2 Infection or after COVID-19 Vaccination. Vaccines (Basel) 2021; 9:910. [PMID: 34452035 PMCID: PMC8402626 DOI: 10.3390/vaccines9080910] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the causative agent of the ongoing pandemic of coronavirus disease 2019 (COVID-19). The clinical severity of COVID-19 ranges from asymptomatic to critical disease and, eventually, death in smaller subsets of patients. The first case of COVID-19 was declared at the end of 2019 and it has since spread worldwide and remained a challenge in 2021, with the emergence of variants of concern. In fact, new concerns were the still unclear situation of SARS-CoV-2 immunity during the ongoing pandemic and progress with vaccination. If maintained at sufficiently high levels, the immune response could effectively block reinfection, which might confer long-lived protection. Understanding the protective capacity and the duration of humoral immunity during SARS-CoV-2 infection or after vaccination is critical for managing the pandemic and would also provide more evidence about the efficacy of SARS-CoV-2 vaccines. However, the exact features of antibody responses that govern SARS-CoV-2 infection or after vaccination remain unclear. This review summarizes the main knowledge that we have about the humoral immune response during COVID-19 disease or after vaccination. Such knowledge should help to optimize vaccination strategies and public health decisions.
Collapse
Affiliation(s)
- Haya Altawalah
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 24923, Kuwait; or
- Virology Unit, Yacoub Behbehani Center, Sabah Hospital, Ministry of Health, Safat 24923, Kuwait
| |
Collapse
|
16
|
Wang J, Li D, Zhou Q, Wiltse A, Zand MS. Antibody Mediated Immunity to SARS-CoV-2 and Human Coronaviruses: Multiplex Beads Assay and Volumetric Absorptive Microsampling to Generate Immune Repertoire Cartography. Front Immunol 2021; 12:696370. [PMID: 34386006 PMCID: PMC8353270 DOI: 10.3389/fimmu.2021.696370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
The COVID-19 pandemic is caused by SARS-CoV-2, a novel zoonotic coronavirus. Emerging evidence indicates that preexisting humoral immunity against other seasonal human coronaviruses (HCoVs) plays a critical role in the specific antibody response to SARS-CoV-2. However, current work to assess the effects of preexisting and cross-reactive anti-HCoVs antibodies has been limited. To address this issue, we have adapted our previously reported multiplex assay to simultaneously and quantitatively measure anti-HCoV antibodies. The full mPlex-CoV panel covers the spike (S) and nucleocapsid (N) proteins of three highly pathogenic HCoVs (SARS-CoV-1, SARS-CoV-2, MERS) and four human seasonal strains (OC43, HKU1, NL63, 229E). Combining this assay with volumetric absorptive microsampling (VAMS), we measured the anti-HCoV IgG, IgA, and IgM antibodies in fingerstick blood samples. The results demonstrate that the mPlex-CoV assay has high specificity and sensitivity. It can detect strain-specific anti-HCoV antibodies down to 0.1 ng/ml with 4 log assay range and with low intra- and inter-assay coefficients of variation (%CV). We also estimate multiple strain HCoVs IgG, IgA and IgM concentration in VAMS samples in three categories of subjects: pre-COVID-19 (n=21), post-COVID-19 convalescents (n=19), and COVID-19 vaccine recipients (n=14). Using metric multidimensional scaling (MDS) analysis, HCoVs IgG concentrations in fingerstick blood samples were well separated between the pre-COVID-19, post-COVID-19 convalescents, and COVID-19 vaccine recipients. In addition, we demonstrate how multi-dimensional scaling analysis can be used to visualize IgG mediated antibody immunity against multiple human coronaviruses. We conclude that the combination of VAMS and the mPlex-Cov assay is well suited to performing remote study sample collection under pandemic conditions to monitor HCoVs antibody responses in population studies.
Collapse
Affiliation(s)
- Jiong Wang
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY, United States
| | - Dongmei Li
- Clinical and Translational Science Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Qian Zhou
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY, United States
| | - Alexander Wiltse
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY, United States
| | - Martin S. Zand
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY, United States
- Clinical and Translational Science Institute, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
17
|
Qu J, Chenier M, Zhang Y, Xu CQ. A Microflow Cytometry-Based Agglutination Immunoassay for Point-of-Care Quantitative Detection of SARS-CoV-2 IgM and IgG. MICROMACHINES 2021; 12:mi12040433. [PMID: 33919836 PMCID: PMC8070841 DOI: 10.3390/mi12040433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022]
Abstract
A rapid, sensitive and simple microflow cytometry-based agglutination immunoassay (MCIA) was developed for point-of-care (POC) quantitative detection of SARS-CoV-2 IgM and IgG antibodies. The antibody concentration was determined by using the transit time of beads aggregates. A linear relationship was established between the average transit time and the concentration of SARS-CoV-2 IgM and IgG, respectively. The limit of detection (LOD) of SARS-CoV-2 IgM and IgG by the MCIA measurement are 0.06 mg/L and 0.10 mg/L, respectively. The 10 µL sample consumption, 30 min assay time and the compact setup make this technique suitable for POC quantitative detection of SARS-CoV-2 antibodies.
Collapse
Affiliation(s)
- Jianxi Qu
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (J.Q.); (Y.Z.)
| | - Mathieu Chenier
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
| | - Yushan Zhang
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (J.Q.); (Y.Z.)
| | - Chang-qing Xu
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (J.Q.); (Y.Z.)
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
- Correspondence: ; Tel.: +1-905-525-9140
| |
Collapse
|
18
|
Tian L, Elsheikh EB, Patrone PN, Kearsley AJ, Gaigalas AK, Inwood S, Lin-Gibson S, Esposito D, Wang L. Towards Quantitative and Standardized Serological and Neutralization Assays for COVID-19. Int J Mol Sci 2021; 22:2723. [PMID: 33800363 PMCID: PMC7962843 DOI: 10.3390/ijms22052723] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Quantitative and robust serology assays are critical measurements underpinning global COVID-19 response to diagnostic, surveillance, and vaccine development. Here, we report a proof-of-concept approach for the development of quantitative, multiplexed flow cytometry-based serological and neutralization assays. The serology assays test the IgG and IgM against both the full-length spike antigens and the receptor binding domain (RBD) of the spike antigen. Benchmarking against an RBD-specific SARS-CoV IgG reference standard, the anti-SARS-CoV-2 RBD antibody titer was quantified in the range of 37.6 µg/mL to 31.0 ng/mL. The quantitative assays are highly specific with no correlative cross-reactivity with the spike proteins of MERS, SARS1, OC43 and HKU1 viruses. We further demonstrated good correlation between anti-RBD antibody titers and neutralizing antibody titers. The suite of serology and neutralization assays help to improve measurement confidence and are complementary and foundational for clinical and epidemiologic studies.
Collapse
Affiliation(s)
- Linhua Tian
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (L.T.); (E.B.E.); (A.K.G.); (S.I.); (S.L.-G.)
| | - Elzafir B. Elsheikh
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (L.T.); (E.B.E.); (A.K.G.); (S.I.); (S.L.-G.)
| | - Paul N. Patrone
- Applied and Computational Mathematics Division, NIST, Gaithersburg, MD 20899, USA; (P.N.P.); (A.J.K.)
| | - Anthony J. Kearsley
- Applied and Computational Mathematics Division, NIST, Gaithersburg, MD 20899, USA; (P.N.P.); (A.J.K.)
| | - Adolfas K. Gaigalas
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (L.T.); (E.B.E.); (A.K.G.); (S.I.); (S.L.-G.)
| | - Sarah Inwood
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (L.T.); (E.B.E.); (A.K.G.); (S.I.); (S.L.-G.)
| | - Sheng Lin-Gibson
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (L.T.); (E.B.E.); (A.K.G.); (S.I.); (S.L.-G.)
| | - Dominic Esposito
- Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702, USA;
| | - Lili Wang
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (L.T.); (E.B.E.); (A.K.G.); (S.I.); (S.L.-G.)
| |
Collapse
|
19
|
Shen H, Forgacs D, Chapla D, Moremen KW, Wells L, Hamer SA, Tompkins SM, Ross TM, Rouphael N, Edupuganti S, Collins MH, Tarleton RL. A flexible, pan-species, multi-antigen platform for the detection and monitoring of SARS-CoV-2-specific antibody responses. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.01.20.21249279. [PMID: 33532799 PMCID: PMC7852250 DOI: 10.1101/2021.01.20.21249279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The SARS-CoV-2 pandemic and the vaccination effort that is ongoing has created an unmet need for accessible, affordable, flexible and precise platforms for monitoring the induction, specificity and maintenance of virus-specific immune responses. Herein we validate a multiplex (Luminex-based) assay capable of detecting SARS-CoV-2-specific antibodies irrespective of host species, antibody isotype, and specimen type (e.g. plasma, serum, saliva or blood spots). The well-established precision of Luminex-based assays provides the ability to follow changes in antibody levels over time to many antigens, including multiple permutations of the most common SARS-CoV-2 antigens. This platform can easily measure antibodies known to correlate with neutralization activity as well as multiple non-SARS-CoV-2 antigens such as vaccines (e.g. Tetanus toxoid) or those from frequently encountered agents (influenza), which serve as stable reference points for quantifying the changing SARS-specific responses. All of the antigens utilized in our study can be made in-house, many in E. coli using readily available plasmids. Commercially sourced antigens may also be incorporated and newly available antigen variants can be rapidly produced and integrated, making the platform adaptable to the evolving viral strains in this pandemic.
Collapse
Affiliation(s)
- Huifeng Shen
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens GA, USA
| | - David Forgacs
- Center for Vaccines and Immunology, University of Georgia, Athens GA, USA
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens GA, USA
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens GA, USA
- Department of Biochemistry, University of Georgia, Athens GA, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens GA, USA
- Department of Biochemistry, University of Georgia, Athens GA, USA
| | - Sarah A. Hamer
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station TX, USA
| | - Stephen M. Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens GA, USA
- Department of Infectious Diseases, University of Georgia, Athens GA, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens GA, USA
- Department of Infectious Diseases, University of Georgia, Athens GA, USA
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, Georgia, USA
| | - Srilatha Edupuganti
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, Georgia, USA
| | - Matthew H. Collins
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, Georgia, USA
| | - Rick L. Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens GA, USA
- Department of Cellular Biology, University of Georgia, Athens GA, USA
| |
Collapse
|