1
|
Baffetta F, Buonsanti C, Moraschini L, Aprea S, Canè M, Lombardi S, Contorni M, Rondini S, Arora AK, Bardelli M, Finco O, Serruto D, Paccani SR. Lung mucosal immunity to NTHi vaccine antigens: Antibodies in sputum of chronic obstructive pulmonary disease patients. Hum Vaccin Immunother 2024; 20:2343544. [PMID: 38655676 PMCID: PMC11057560 DOI: 10.1080/21645515.2024.2343544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory illness in older adults. A major cause of COPD-related morbidity and mortality is acute exacerbation of COPD (AECOPD). Bacteria in the lungs play a role in exacerbation development, and the most common pathogen is non-typeable Haemophilus influenzae (NTHi). A vaccine to prevent AECOPD containing NTHi surface antigens was tested in a clinical trial. This study measured IgG and IgA against NTHi vaccine antigens in sputum. Sputum samples from 40 COPD patients vaccinated with the NTHi vaccine were collected at baseline and 30 days after the second dose. IgG and IgA antibodies against the target antigens and albumin were analyzed in the sputum. We compared antibody signals before and after vaccination, analyzed correlation with disease severity and between sputum and serum samples, and assessed transudation. Antigen-specific IgG were absent before vaccination and present with high titers after vaccination. Antigen-specific IgA before and after vaccination were low but significantly different for two antigens. IgG correlated between sputum and serum, and between sputum and disease severity. Sputum albumin was higher in patients with severe COPD than in those with moderate COPD, suggesting changes in transudation played a role. We demonstrated that immunization with the NTHi vaccine induces antigen-specific antibodies in sputum. The correlation between IgG from sputum and serum and the presence of albumin in the sputum of severe COPD patients suggested transudation of antibodies from the serum to the lungs, although local IgG production could not be excluded.Clinical Trial Registration: NCT02075541.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Simona Rondini
- GSK Vaccines Institute for Global Health (GVGH), Siena, Italy
| | | | | | | | | | | |
Collapse
|
2
|
Mandviwala AS, Huckriede ALW, Arankalle VA, Patil HP. Mucosal delivery of a prefusogenic-F, glycoprotein, and matrix proteins-based virus-like particle respiratory syncytial virus vaccine induces protective immunity as evidenced by challenge studies in mice. Virology 2024; 598:110194. [PMID: 39096774 DOI: 10.1016/j.virol.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
RSV infection remains a serious threat to the children all over the world, especially, in the low-middle income countries. Vaccine delivery via the mucosa holds great potential for inducing local immune responses in the respiratory tract. Previously, we reported the development of highly immunogenic RSV virus-like-particles (RSV-VLPs) based on the conformationally stable prefusogenic-F protein (preFg), glycoprotein and matrix protein. Here, to explore whether mucosal delivery of RSV-VLPs is an effective strategy to induce RSV-specific mucosal and systemic immunity, RSV-VLPs were administered via the nasal, sublingual and pulmonary routes to BALB/c mice. The results demonstrate that immunization with the VLPs via the mucosal routes induced minimal mucosal response and yet facilitated modest levels of serum IgG antibodies, enhanced T cell responses and the expression of the lung-homing marker CXCR3 on splenocytes. Immunization with VLPs via all three mucosal routes provided protection against RSV challenge with no signs of RSV induced pathology.
Collapse
Affiliation(s)
- Ahmedali S Mandviwala
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Anke L W Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vidya A Arankalle
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Harshad P Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
3
|
Wellford SA, Moseman EA. Olfactory immunology: the missing piece in airway and CNS defence. Nat Rev Immunol 2024; 24:381-398. [PMID: 38097777 PMCID: PMC11560121 DOI: 10.1038/s41577-023-00972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The olfactory mucosa is a component of the nasal airway that mediates the sense of smell. Recent studies point to an important role for the olfactory mucosa as a barrier to both respiratory pathogens and to neuroinvasive pathogens that hijack the olfactory nerve and invade the CNS. In particular, the COVID-19 pandemic has demonstrated that the olfactory mucosa is an integral part of a heterogeneous nasal mucosal barrier critical to upper airway immunity. However, our insufficient knowledge of olfactory mucosal immunity hinders attempts to protect this tissue from infection and other diseases. This Review summarizes the state of olfactory immunology by highlighting the unique immunologically relevant anatomy of the olfactory mucosa, describing what is known of olfactory immune cells, and considering the impact of common infectious diseases and inflammatory disorders at this site. We will offer our perspective on the future of the field and the many unresolved questions pertaining to olfactory immunity.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
Kaiser JA, Nelson CE, Liu X, Park HS, Matsuoka Y, Luongo C, Santos C, Ahlers LRH, Herbert R, Moore IN, Wilder-Kofie T, Moore R, Walker A, Yang L, Munir S, Teng IT, Kwong PD, Dowdell K, Nguyen H, Kim J, Cohen JI, Johnson RF, Garza NL, Via LE, Barber DL, Buchholz UJ, Le Nouën C. Mucosal prime-boost immunization with live murine pneumonia virus-vectored SARS-CoV-2 vaccine is protective in macaques. Nat Commun 2024; 15:3553. [PMID: 38670948 PMCID: PMC11053155 DOI: 10.1038/s41467-024-47784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Immunization via the respiratory route is predicted to increase the effectiveness of a SARS-CoV-2 vaccine. Here, we evaluate the immunogenicity and protective efficacy of one or two doses of a live-attenuated murine pneumonia virus vector expressing SARS-CoV-2 prefusion-stabilized spike protein (MPV/S-2P), delivered intranasally/intratracheally to male rhesus macaques. A single dose of MPV/S-2P is highly immunogenic, and a second dose increases the magnitude and breadth of the mucosal and systemic anti-S antibody responses and increases levels of dimeric anti-S IgA in the airways. MPV/S-2P also induces S-specific CD4+ and CD8+ T-cells in the airways that differentiate into large populations of tissue-resident memory cells within a month after the boost. One dose induces substantial protection against SARS-CoV-2 challenge, and two doses of MPV/S-2P are fully protective against SARS-CoV-2 challenge virus replication in the airways. A prime/boost immunization with a mucosally-administered live-attenuated MPV vector could thus be highly effective in preventing SARS-CoV-2 infection and replication.
Collapse
Affiliation(s)
- Jaclyn A Kaiser
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christine E Nelson
- T-Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xueqiao Liu
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hong-Su Park
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yumiko Matsuoka
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cindy Luongo
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Celia Santos
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laura R H Ahlers
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard Herbert
- Experimental Primate Virology Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Poolesville, MD, USA
| | - Ian N Moore
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Temeri Wilder-Kofie
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Assurances, Office of Laboratory Animal Welfare, National Institutes of Health, Bethesda, MD, USA
| | - Rashida Moore
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Emory National Primate Research Center, Environmental Health and Safety Office, Emory University, Atlanta, GA, USA
| | - April Walker
- Tuberculosis Imaging Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lijuan Yang
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kennichi Dowdell
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanh Nguyen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - JungHyun Kim
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reed F Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole L Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laura E Via
- Tuberculosis Imaging Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel L Barber
- T-Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Gagne M, Flynn BJ, Andrew SF, Flebbe DR, Mychalowych A, Lamb E, Davis-Gardner ME, Burnett MR, Serebryannyy LA, Lin BC, Pessaint L, Todd JPM, Ziff ZE, Maule E, Carroll R, Naisan M, Jethmalani Y, Case JB, Dmitriev IP, Kashentseva EA, Ying B, Dodson A, Kouneski K, Doria-Rose NA, O'Dell S, Godbole S, Laboune F, Henry AR, Marquez J, Teng IT, Wang L, Zhou Q, Wali B, Ellis M, Zouantchangadou S, Ry AV, Lewis MG, Andersen H, Kwong PD, Curiel DT, Foulds KE, Nason MC, Suthar MS, Roederer M, Diamond MS, Douek DC, Seder RA. Mucosal Adenoviral-vectored Vaccine Boosting Durably Prevents XBB.1.16 Infection in Nonhuman Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565765. [PMID: 37986823 PMCID: PMC10659340 DOI: 10.1101/2023.11.06.565765] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens. Graphical abstract
Collapse
|
6
|
Singh S, Barik D, Arukha AP, Prasad S, Mohapatra I, Singh A, Singh G. Small Molecule Targeting Immune Cells: A Novel Approach for Cancer Treatment. Biomedicines 2023; 11:2621. [PMID: 37892995 PMCID: PMC10604364 DOI: 10.3390/biomedicines11102621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Conventional and cancer immunotherapies encompass diverse strategies to address various cancer types and stages. However, combining these approaches often encounters limitations such as non-specific targeting, resistance development, and high toxicity, leading to suboptimal outcomes in many cancers. The tumor microenvironment (TME) is orchestrated by intricate interactions between immune and non-immune cells dictating tumor progression. An innovative avenue in cancer therapy involves leveraging small molecules to influence a spectrum of resistant cell populations within the TME. Recent discoveries have unveiled a phenotypically diverse cohort of innate-like T (ILT) cells and tumor hybrid cells (HCs) exhibiting novel characteristics, including augmented proliferation, migration, resistance to exhaustion, evasion of immunosurveillance, reduced apoptosis, drug resistance, and heightened metastasis frequency. Leveraging small-molecule immunomodulators to target these immune players presents an exciting frontier in developing novel tumor immunotherapies. Moreover, combining small molecule modulators with immunotherapy can synergistically enhance the inhibitory impact on tumor progression by empowering the immune system to meticulously fine-tune responses within the TME, bolstering its capacity to recognize and eliminate cancer cells. This review outlines strategies involving small molecules that modify immune cells within the TME, potentially revolutionizing therapeutic interventions and enhancing the anti-tumor response.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Debashis Barik
- Center for Computational Natural Science and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, Telangana, India
| | | | | | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota—Twin Cities, Saint Paul, MN 55108, USA
| | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Buchholz U, Kaiser J, Nelson C, Liu X, Park HS, Matsuoka Y, Luongo C, Santos C, Ahlers L, Herbert R, Moore I, Wilder-Kofie T, Moore R, Walker A, Lijuan Y, Munir S, Teng IT, Kwong P, Dowdell K, Nguyen H, Kim J, Cohen J, Johnson RF, Garza N, Via L, Barber D, LE Nouen C. Mucosal prime-boost immunization with live murine pneumonia virus-vectored SARS-CoV-2 vaccine is protective in macaques. RESEARCH SQUARE 2023:rs.3.rs-3278289. [PMID: 37790295 PMCID: PMC10543296 DOI: 10.21203/rs.3.rs-3278289/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Immunization via the respiratory route is predicted to increase the effectiveness of a SARS-CoV-2 vaccine. We evaluated the immunogenicity and protective efficacy of one or two doses of a live-attenuated murine pneumonia virus vector expressing SARS-CoV-2 prefusion-stabilized spike protein (MPV/S-2P), delivered intranasally/intratracheally to rhesus macaques. A single dose of MPV/S-2P was highly immunogenic, and a second dose increased the magnitude and breadth of the mucosal and systemic anti-S antibody responses and increased levels of dimeric anti-S IgA in the airways. MPV/S-2P also induced S-specific CD4+ and CD8+ T-cells in the airways that differentiated into large populations of tissue-resident memory cells within a month after the boost. One dose induced substantial protection against SARS-CoV-2 challenge, and two doses of MPV/S-2P were fully protective against SARS-CoV-2 challenge virus replication in the airways. A prime/boost immunization with a mucosally-administered live-attenuated MPV vector could thus be highly effective in preventing SARS-CoV-2 infection and replication.
Collapse
Affiliation(s)
| | | | - Christine Nelson
- National Institutes of Health, National Institute of Allergy and Infectious Diseases
| | - Xueqiao Liu
- Laboratory of Infectious Diseases, NIAID, NIH
| | | | | | | | | | | | | | | | | | | | | | | | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, NIAID, NIH
| | | | | | | | | | | | | | | | | | | | - Daniel Barber
- National Institutes of Health/National Institute of Allergy and Infectious Diseases
| | | |
Collapse
|
8
|
Umemoto S, Nakahashi-Ouchida R, Yuki Y, Kurokawa S, Machita T, Uchida Y, Mori H, Yamanoue T, Shibata T, Sawada SI, Ishige K, Hirano T, Fujihashi K, Akiyoshi K, Kurashima Y, Tokuhara D, Ernst PB, Suzuki M, Kiyono H. Cationic-nanogel nasal vaccine containing the ectodomain of RSV-small hydrophobic protein induces protective immunity in rodents. NPJ Vaccines 2023; 8:106. [PMID: 37488116 PMCID: PMC10366164 DOI: 10.1038/s41541-023-00700-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of upper and lower respiratory tract infection, especially in children and the elderly. Various vaccines containing the major transmembrane surface proteins of RSV (proteins F and G) have been tested; however, they have either afforded inadequate protection or are associated with the risk of vaccine-enhanced disease (VED). Recently, F protein-based maternal immunization and vaccines for elderly patients have shown promising results in phase III clinical trials, however, these vaccines have been administered by injection. Here, we examined the potential of using the ectodomain of small hydrophobic protein (SHe), also an RSV transmembrane surface protein, as a nasal vaccine antigen. A vaccine was formulated using our previously developed cationic cholesteryl-group-bearing pullulan nanogel as the delivery system, and SHe was linked in triplicate to pneumococcal surface protein A as a carrier protein. Nasal immunization of mice and cotton rats induced both SHe-specific serum IgG and mucosal IgA antibodies, preventing viral invasion in both the upper and lower respiratory tracts without inducing VED. Moreover, nasal immunization induced greater protective immunity against RSV in the upper respiratory tract than did systemic immunization, suggesting a critical role for mucosal RSV-specific IgA responses in viral elimination at the airway epithelium. Thus, our nasal vaccine induced effective protection against RSV infection in the airway mucosa and is therefore a promising vaccine candidate for further development.
Collapse
Affiliation(s)
- Shingo Umemoto
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Otorhinolaryngology & Head and Neck Surgery, Faculty of Medicine, Oita University, Oita, Japan
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), Department of Medicine, School of Medicine, San Diego, CA, USA
| | - Rika Nakahashi-Ouchida
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
| | - Yoshikazu Yuki
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- HanaVax Inc, Tokyo, Japan
| | - Shiho Kurokawa
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Tomonori Machita
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Yohei Uchida
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Hiromi Mori
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Tomoyuki Yamanoue
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Takehiko Shibata
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazuya Ishige
- Biochemicals Division, Yamasa Corporation, Chiba, Japan
| | - Takashi Hirano
- Department of Otorhinolaryngology & Head and Neck Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Kohtaro Fujihashi
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
- Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yosuke Kurashima
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), Department of Medicine, School of Medicine, San Diego, CA, USA
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan
- Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Daisuke Tokuhara
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), Department of Medicine, School of Medicine, San Diego, CA, USA
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Peter B Ernst
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), Department of Medicine, School of Medicine, San Diego, CA, USA
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, CA, USA
- Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, CA, USA
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
| | - Masashi Suzuki
- Department of Otorhinolaryngology & Head and Neck Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), Department of Medicine, School of Medicine, San Diego, CA, USA.
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan.
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba, Japan.
- HanaVax Inc, Tokyo, Japan.
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan.
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan.
| |
Collapse
|
9
|
Aksyuk AA, Bansal H, Wilkins D, Stanley AM, Sproule S, Maaske J, Sanikommui S, Hartman WR, Sobieszczyk ME, Falsey AR, Kelly EJ. AZD1222-induced nasal antibody responses are shaped by prior SARS-CoV-2 infection and correlate with virologic outcomes in breakthrough infection. Cell Rep Med 2023; 4:100882. [PMID: 36610390 PMCID: PMC9750884 DOI: 10.1016/j.xcrm.2022.100882] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The nasal mucosa is an important initial site of host defense against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, intramuscularly administered vaccines typically do not achieve high antibody titers in the nasal mucosa. We measure anti-SARS-CoV-2 spike immunoglobulin G (IgG) and IgA in nasal epithelial lining fluid (NELF) following intramuscular vaccination of 3,058 participants from the immunogenicity substudy of a phase 3, double-blind, placebo-controlled study of AZD1222 vaccination (ClinicalTrials.gov: NCT04516746). IgG is detected in NELF collected 14 days following the first AZD1222 vaccination. IgG levels increase with a second vaccination and exceed pre-existing levels in baseline-SARS-CoV-2-seropositive participants. Nasal IgG responses are durable and display strong correlations with serum IgG, suggesting serum-to-NELF transudation. AZD1222 induces short-lived increases to pre-existing nasal IgA levels in baseline-seropositive vaccinees. Vaccinees display a robust recall IgG response upon breakthrough infection, with overall magnitudes unaffected by time between vaccination and illness. Mucosal responses correlate with reduced viral loads and shorter durations of viral shedding in saliva.
Collapse
Affiliation(s)
- Anastasia A Aksyuk
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Himanshu Bansal
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Deidre Wilkins
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Ann Marie Stanley
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Stephanie Sproule
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Jill Maaske
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Satya Sanikommui
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - William R Hartman
- Department of Anesthesiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53726, USA
| | - Magdalena E Sobieszczyk
- Division of Infectious Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, New York Presbyterian/Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ann R Falsey
- University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Rochester Regional Health, Rochester, NY 14621, USA.
| | - Elizabeth J Kelly
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA.
| |
Collapse
|
10
|
Wellford SA, Moseman AP, Dao K, Wright KE, Chen A, Plevin JE, Liao TC, Mehta N, Moseman EA. Mucosal plasma cells are required to protect the upper airway and brain from infection. Immunity 2022; 55:2118-2134.e6. [PMID: 36137543 PMCID: PMC9649878 DOI: 10.1016/j.immuni.2022.08.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
While blood antibodies mediate protective immunity in most organs, whether they protect nasal surfaces in the upper airway is unclear. Using multiple viral infection models in mice, we found that blood-borne antibodies could not defend the olfactory epithelium. Despite high serum antibody titers, pathogens infected nasal turbinates, and neurotropic microbes invaded the brain. Using passive antibody transfers and parabiosis, we identified a restrictive blood-endothelial barrier that excluded circulating antibodies from the olfactory mucosa. Plasma cell depletions demonstrated that plasma cells must reside within olfactory tissue to achieve sterilizing immunity. Antibody blockade and genetically deficient models revealed that this local immunity required CD4+ T cells and CXCR3. Many vaccine adjuvants failed to generate olfactory plasma cells, but mucosal immunizations established humoral protection of the olfactory surface. Our identification of a blood-olfactory barrier and the requirement for tissue-derived antibody has implications for vaccinology, respiratory and CNS pathogen transmission, and B cell fate decisions.
Collapse
Affiliation(s)
| | - Annie Park Moseman
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Kianna Dao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Katherine E Wright
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Allison Chen
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Jona E Plevin
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Tzu-Chieh Liao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Naren Mehta
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
11
|
Park HS, Matsuoka Y, Luongo C, Yang L, Santos C, Liu X, Ahlers LRH, Moore IN, Afroz S, Johnson RF, Lafont BAP, Dorward DW, Fischer ER, Martens C, Samal SK, Munir S, Buchholz UJ, Le Nouën C. Intranasal immunization with avian paramyxovirus type 3 expressing SARS-CoV-2 spike protein protects hamsters against SARS-CoV-2. NPJ Vaccines 2022; 7:72. [PMID: 35764659 PMCID: PMC9240059 DOI: 10.1038/s41541-022-00493-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/11/2022] [Indexed: 12/13/2022] Open
Abstract
Current vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are administered parenterally and appear to be more protective in the lower versus the upper respiratory tract. Vaccines are needed that directly stimulate immunity in the respiratory tract, as well as systemic immunity. We used avian paramyxovirus type 3 (APMV3) as an intranasal vaccine vector to express the SARS-CoV-2 spike (S) protein. A lack of pre-existing immunity in humans and attenuation by host-range restriction make APMV3 a vector of interest. The SARS-CoV-2 S protein was stabilized in its prefusion conformation by six proline substitutions (S-6P) rather than the two that are used in most vaccine candidates, providing increased stability. APMV3 expressing S-6P (APMV3/S-6P) replicated to high titers in embryonated chicken eggs and was genetically stable, whereas APMV3 expressing non-stabilized S or S-2P were unstable. In hamsters, a single intranasal dose of APMV3/S-6P induced strong serum IgG and IgA responses to the S protein and its receptor-binding domain, and strong serum neutralizing antibody responses to SARS-CoV-2 isolate WA1/2020 (lineage A). Sera from APMV3/S-6P-immunized hamsters also efficiently neutralized Alpha and Beta variants of concern. Immunized hamsters challenged with WA1/2020 did not exhibit the weight loss and lung inflammation observed in empty-vector-immunized controls; SARS-CoV-2 replication in the upper and lower respiratory tract of immunized animals was low or undetectable compared to the substantial replication in controls. Thus, a single intranasal dose of APMV3/S-6P was highly immunogenic and protective against SARS-CoV-2 challenge, suggesting that APMV3/S-6P is suitable for clinical development.
Collapse
Affiliation(s)
- Hong-Su Park
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yumiko Matsuoka
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cindy Luongo
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lijuan Yang
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Celia Santos
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xueqiao Liu
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Laura R H Ahlers
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sharmin Afroz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Reed F Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bernard A P Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David W Dorward
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Elizabeth R Fischer
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Craig Martens
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Siba K Samal
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Southworth T, Jackson N, Singh D. Airway immune responses to COVID-19 vaccination in COPD patients and healthy subjects. Eur Respir J 2022; 60:13993003.00497-2022. [PMID: 35728975 PMCID: PMC9403393 DOI: 10.1183/13993003.00497-2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
COPD patients have a higher risk of developing severe illness and mortality following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection [1]. Vaccination protects against coronavirus disease 2019 (COVID-19) through the development of systemic and airway immune responses. Patients with COPD display altered humoral immunity, with reduced antibody responses compared to healthy controls [2, 3]. We studied SARS-CoV-2 vaccine-specific immune responses in COPD patients versus healthy controls, using systemic, nasal and sputum samples. Airway and blood immune responses to COVID-19 vaccination were examined in COPD patients and healthy subjects. Anti-spike IgG, but not IgA, levels were higher in airways post-vaccination, with similar responses in COPD patients and healthy subjects. https://bit.ly/3zt6D6v
Collapse
Affiliation(s)
- Thomas Southworth
- University of Manchester, Division of Infection, Immunity and Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK .,Medicines Evaluation Unit, Manchester, UK
| | | | - Dave Singh
- University of Manchester, Division of Infection, Immunity and Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK.,Medicines Evaluation Unit, Manchester, UK
| |
Collapse
|
13
|
Bhattacharya D. Instructing durable humoral immunity for COVID-19 and other vaccinable diseases. Immunity 2022; 55:945-964. [PMID: 35637104 PMCID: PMC9085459 DOI: 10.1016/j.immuni.2022.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Many aspects of SARS-CoV-2 have fully conformed with the principles established by decades of viral immunology research, ultimately leading to the crowning achievement of highly effective COVID-19 vaccines. Nonetheless, the pandemic has also exposed areas where our fundamental knowledge is thinner. Some key unknowns are the duration of humoral immunity post-primary infection or vaccination and how long booster shots confer protection. As a corollary, if protection does not last as long as desired, what are some ways it can be improved? Here, I discuss lessons from other infections and vaccines that point to several key features that influence durable antibody production and the perseverance of immunity. These include (1) the specific innate sensors that are initially triggered, (2) the kinetics of antigen delivery and persistence, (3) the starting B cell receptor (BCR) avidity and antigen valency, and (4) the memory B cell subsets that are recalled by boosters. I further highlight the fundamental B cell-intrinsic and B cell-extrinsic pathways that, if understood better, would provide a rational framework for vaccines to reliably provide durable immunity.
Collapse
Affiliation(s)
- Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| |
Collapse
|
14
|
Castillo-Ramírez DA, Carrasco-Yépez MM, Rodríguez-Mera IB, Reséndiz-Albor AA, Rosales-Cruz É, Rojas-Hernández S. A 250-kDa glycoprotein of Naegleria fowleri induces protection and modifies the expression of α4β1 and LFA-1 on T and B lymphocytes in mouse meningitis model. Parasite Immunol 2021; 43:e12882. [PMID: 34570374 DOI: 10.1111/pim.12882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022]
Abstract
The aims of this work were to evaluate the protective role of the 250-kDa polypeptide band of Naegleria fowleri. We designed an immunization strategy in Balb/c mice which were inoculated by i.n. route with an electrocuted 250-kDa polypeptide band of N. fowleri. We observed that the 250-kDa band induced 80% of protection, whereas the coadministration with Cholera Toxin induced 100% of protection. Moreover, high levels of IgA- and IgG-specific antibodies were detected by ELISA assay. We also analysed migration molecules (α4β1 and LFA-1) on T and B lymphocytes in nose-associated lymphoid tissue (NALT), cervical lymph nodes (CN) and nasal passages (NP) by flow cytometry. We observed that the percentage of B cells (B220/α4β1) and T cells (CD4/α4β1) in NP were higher in all immunized groups compared with the other compartments analysed. Finally, we detected by immunohistochemistry ICAM-1 and V-CAM-1 in the nasal cavity. The immunization with the 250-kDa polypeptide band, protect mice against N. fowleri challenge and modifies migration molecules and their ligands.
Collapse
Affiliation(s)
- Diego A Castillo-Ramírez
- Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Escuela Superior de Medicina, Ciudad de México, México
| | - María Maricela Carrasco-Yépez
- Laboratorio de Microbiología Ambiental, Grupo CyMA, UIICSE, FES Iztacala, UNAM, Estado de México, Tlalnepantla de Baz, México
| | - Itzel Berenice Rodríguez-Mera
- Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Escuela Superior de Medicina, Ciudad de México, México
| | - Aldo Arturo Reséndiz-Albor
- Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Escuela Superior de Medicina, Ciudad de México, México
| | - Érica Rosales-Cruz
- Laboratorio de Investigación en Hematopatología, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, México City, México
| | - Saúl Rojas-Hernández
- Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Escuela Superior de Medicina, Ciudad de México, México
| |
Collapse
|
15
|
Jiang W, Wei C, Mou D, Zuo W, Liang J, Ma X, Wang L, Gao N, Gu Q, Luo P, Ma Y, Li J, Liu S, Shi L, Sun M. Infant rhesus macaques as a non-human primate model of Bordetella pertussis infection. BMC Infect Dis 2021; 21:407. [PMID: 33941094 PMCID: PMC8091708 DOI: 10.1186/s12879-021-06090-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background The prevalent resurgence of pertussis has recently become a critical public health problem worldwide. To understand pertussis pathogenesis and the host response to both the pathogen and vaccines, a suitable pertussis animal model, particularly a non-human primate model, is necessary. Recently, a non-human primate pertussis model was successfully established with baboons. Rhesus macaques have been shown to be ideal animal models for several infectious diseases, but a model of infectious pertussis has not been established in these organisms. Studies on rhesus macaque models of pertussis were performed in the 1920s–1930s, but limited experimental details are available. Recent monkey pertussis models have not been successful because the typical clinical symptoms and transmission have not been achieved. Methods In the present study, infant rhesus macaques were challenged with Bordetella pertussis (B.p) using an aerosol method to evaluate the feasibility of this system as an animal model of pertussis. Results Upon aerosol infection, monkeys infected with the recently clinically isolated B.p strain 2016-CY-41 developed the typical whooping cough, leukocytosis, bacteria-positive nasopharyngeal wash (NPW), and interanimal transmission of pertussis. Both systemic and mucosal humoral responses were induced by B.p. Conclusion These results demonstrate that a model of pertussis was successfully established in infant rhesus macaques. This model provides a valuable platform for research on pertussis pathogenesis and evaluation of vaccine candidates. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06090-y.
Collapse
Affiliation(s)
- Wenwen Jiang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Chen Wei
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Dachao Mou
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Weilun Zuo
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Jiangli Liang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Xiao Ma
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Lichan Wang
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Na Gao
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Qin Gu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Peng Luo
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Yan Ma
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Jingyan Li
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China. .,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China.
| |
Collapse
|
16
|
Expanding the role of bacterial vaccines into life-course vaccination strategies and prevention of antimicrobial-resistant infections. NPJ Vaccines 2020; 5:84. [PMID: 32963814 PMCID: PMC7486369 DOI: 10.1038/s41541-020-00232-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/19/2020] [Indexed: 12/28/2022] Open
Abstract
A crisis in bacterial infections looms as ageing populations, increasing rates of bacteraemia and healthcare-associated infections converge with increasing antimicrobial resistance and a paucity of new antimicrobial classes. New initiatives are needed to develop bacterial vaccines for older adults in whom immune senescence plays a critical role. Novel vaccines require an expanded repertoire to prevent mucosal diseases such as pneumonia, skin and soft tissue infections and urinary tract infections that are major causes of morbidity and mortality in the elderly, and key drivers of antimicrobial resistance. This review considers the challenges inherent to the prevention of bacterial diseases, particularly mucosal infections caused by major priority bacterial pathogens against which current vaccines are sub-optimal. It has become clear that prevention of many lung, urinary tract and skin infections requires more than circulating antibodies. Induction of Th1/Th17 cellular responses with tissue-resident memory (Trm) cells homing to mucosal tissues may be a pre-requisite for success.
Collapse
|
17
|
Identification of Immunogenic Antigens of Naegleria fowleri Adjuvanted by Cholera Toxin. Pathogens 2020; 9:pathogens9060460. [PMID: 32531943 PMCID: PMC7350353 DOI: 10.3390/pathogens9060460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
The intranasal administration of Naegleria fowleri lysates plus cholera toxin (CT) increases protection against N. fowleri meningoencephalitis in mice, suggesting that humoral immune response mediated by antibodies is crucial to induce protection against the infection. In the present study, we applied a protein analysis to detect and identify immunogenic antigens from N. fowleri, which might be responsible for such protection. A Western blot assay of N. fowleri polypeptides was performed using the serum and nasal washes from mice immunized with N. fowleri lysates, either alone or with CT after one, two, three, or four weekly immunizations and challenged with trophozoites of N. fowleri. Immunized mice with N. fowleri plus CT, after four doses, had the highest survival rate (100%). Nasal or sera IgA and IgG antibody response was progressively stronger as the number of immunizations was increased, and that response was mainly directed to 250, 100, 70, 50, 37, and 19 kDa polypeptide bands, especially in the third and fourth immunization. Peptides present in these immunogenic bands were matched by nano-LC–ESI-MSMS with different proteins, which could serve as candidates for a vaccine against N. fowleri infection.
Collapse
|
18
|
Basu M, Piepenbrink MS, Francois C, Roche F, Zheng B, Spencer DA, Hessell AJ, Fucile CF, Rosenberg AF, Bunce CA, Liesveld J, Keefer MC, Kobie JJ. Persistence of HIV-1 Env-Specific Plasmablast Lineages in Plasma Cells after Vaccination in Humans. Cell Rep Med 2020; 1:100015. [PMID: 32577626 PMCID: PMC7311075 DOI: 10.1016/j.xcrm.2020.100015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/22/2019] [Accepted: 04/23/2020] [Indexed: 01/21/2023]
Abstract
Induction of persistent HIV-1 Envelope (Env) specific antibody (Ab) is a primary goal of HIV vaccine strategies; however, it is unclear whether HIV Env immunization in humans induces bone marrow plasma cells, the presumed source of long-lived systemic Ab. To define the features of Env-specific plasma cells after vaccination, samples were obtained from HVTN 105, a phase I trial testing the same gp120 protein immunogen, AIDSVAX B/E, used in RV144, along with a DNA immunogen in various prime and boost strategies. Boosting regimens that included AIDSVAX B/E induced robust peripheral blood plasmablast responses. The Env-specific immunoglobulin repertoire of the plasmablasts is dominated by VH1 gene usage and targeting of the V3 region. Numerous plasmablast-derived immunoglobulin lineages persisted in the bone marrow >8 months after immunization, including in the CD138+ long-lived plasma cell compartment. These findings identify a cellular linkage for the development of sustained Env-specific Abs following vaccination in humans.
Collapse
Affiliation(s)
- Madhubanti Basu
- Infectious Diseases Division, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | - Bo Zheng
- Infectious Diseases Division, University of Rochester, Rochester, NY, USA
| | - David A. Spencer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Ann J. Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | | | | | - Catherine A. Bunce
- Infectious Diseases Division, University of Rochester, Rochester, NY, USA
| | - Jane Liesveld
- Division of Hematology/Oncology, University of Rochester, Rochester, NY, USA
| | - Michael C. Keefer
- Infectious Diseases Division, University of Rochester, Rochester, NY, USA
| | - James J. Kobie
- Infectious Diseases Division, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
19
|
de Sousa-Pereira P, Woof JM. IgA: Structure, Function, and Developability. Antibodies (Basel) 2019; 8:antib8040057. [PMID: 31817406 PMCID: PMC6963396 DOI: 10.3390/antib8040057] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Immunoglobulin A (IgA) plays a key role in defending mucosal surfaces against attack by infectious microorganisms. Such sites present a major site of susceptibility due to their vast surface area and their constant exposure to ingested and inhaled material. The importance of IgA to effective immune defence is signalled by the fact that more IgA is produced than all the other immunoglobulin classes combined. Indeed, IgA is not just the most prevalent antibody class at mucosal sites, but is also present at significant concentrations in serum. The unique structural features of the IgA heavy chain allow IgA to polymerise, resulting in mainly dimeric forms, along with some higher polymers, in secretions. Both serum IgA, which is principally monomeric, and secretory forms of IgA are capable of neutralising and removing pathogens through a range of mechanisms, including triggering the IgA Fc receptor known as FcαRI or CD89 on phagocytes. The effectiveness of these elimination processes is highlighted by the fact that various pathogens have evolved mechanisms to thwart such IgA-mediated clearance. As the structure–function relationships governing the varied capabilities of this immunoglobulin class come into increasingly clear focus, and means to circumvent any inherent limitations are developed, IgA-based monoclonal antibodies are set to emerge as new and potent options in the therapeutic arena.
Collapse
Affiliation(s)
- Patrícia de Sousa-Pereira
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- CIBIO-InBIO, Campus Agrário de Vairão, University of Porto, 4485-661 Vairão, Portugal
| | - Jenny M. Woof
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Correspondence: ; Tel.: +44-1382-383389
| |
Collapse
|
20
|
Lee JM, Eguia R, Zost SJ, Choudhary S, Wilson PC, Bedford T, Stevens-Ayers T, Boeckh M, Hurt AC, Lakdawala SS, Hensley SE, Bloom JD. Mapping person-to-person variation in viral mutations that escape polyclonal serum targeting influenza hemagglutinin. eLife 2019; 8:e49324. [PMID: 31452511 PMCID: PMC6711711 DOI: 10.7554/elife.49324] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/27/2019] [Indexed: 12/11/2022] Open
Abstract
A longstanding question is how influenza virus evolves to escape human immunity, which is polyclonal and can target many distinct epitopes. Here, we map how all amino-acid mutations to influenza's major surface protein affect viral neutralization by polyclonal human sera. The serum of some individuals is so focused that it selects single mutations that reduce viral neutralization by over an order of magnitude. However, different viral mutations escape the sera of different individuals. This individual-to-individual variation in viral escape mutations is not present among ferrets that have been infected just once with a defined viral strain. Our results show how different single mutations help influenza virus escape the immunity of different members of the human population, a phenomenon that could shape viral evolution and disease susceptibility.
Collapse
Affiliation(s)
- Juhye M Lee
- Basic Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Rachel Eguia
- Basic Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Seth J Zost
- Department of MicrobiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Saket Choudhary
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesUnited States
| | - Patrick C Wilson
- Department of MedicineSection of Rheumatology, University of ChicagoChicagoUnited States
| | - Trevor Bedford
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Terry Stevens-Ayers
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Michael Boeckh
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Seema S Lakdawala
- Department of Microbiology and Molecular GeneticsSchool of Medicine, University of PittsburghPittsburghUnited States
| | - Scott E Hensley
- Department of MicrobiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jesse D Bloom
- Basic Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Howard Hughes Medical InstituteSeattleUnited States
| |
Collapse
|
21
|
Sedeyn K, Saelens X. New antibody-based prevention and treatment options for influenza. Antiviral Res 2019; 170:104562. [PMID: 31323236 DOI: 10.1016/j.antiviral.2019.104562] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022]
Abstract
The antigenic diversity of human influenza viruses represents a challenge to the development of vaccines with durable immune protection. In addition, small molecule anti-influenza viral drugs can bring clinical relief to influenza patients but the emergence of drug resistant viruses can rapidly limit the effectiveness of such drugs. In the past decade, a number of human monoclonal antibodies have been described that can bind to and neutralize a broad range of influenza A and B viruses. Most of these monoclonal antibodies are directed against the viral hemagglutinin (HA) stalk and some have now been evaluated in early to mid-stage clinical trials. An important conclusion from these clinical studies is that hemagglutinin stalk-specific antibodies are safe and can reduce influenza symptoms. In addition, examples of bi- and multi-specific anti-influenza antibodies are discussed, although such antibodies have not yet progressed into clinical testing. In the future, antibody-based therapies might become part of our arsenal to prevent and treat influenza.
Collapse
Affiliation(s)
- Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biochemistry and Microbiology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biochemistry and Microbiology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.
| |
Collapse
|
22
|
Gianchecchi E, Manenti A, Kistner O, Trombetta C, Manini I, Montomoli E. How to assess the effectiveness of nasal influenza vaccines? Role and measurement of sIgA in mucosal secretions. Influenza Other Respir Viruses 2019; 13:429-437. [PMID: 31225704 PMCID: PMC6692539 DOI: 10.1111/irv.12664] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 01/07/2023] Open
Abstract
Secretory IgAs (sIgA) constitute the principal isotype of antibodies present in nasal and mucosal secretions. They are secreted by plasma cells adjacent to the mucosal epithelial cells, the site where infection occurs, and are the main humoral mediator of mucosal immunity. Mucosally delivered vaccines, such as live attenuated influenza vaccine (LAIV), are able to mimic natural infection without causing disease or virus transmission and mainly elicit a local immune response. The measurement of sIgA concentrations in nasal swab/wash and saliva samples is therefore a valuable tool for evaluating their role in the effectiveness of such vaccines. Here, we describe two standardized assays (enzyme‐linked immunosorbent assay and microneutralization) available for the quantification of sIgA and discuss the advantages and limitations of their use.
Collapse
Affiliation(s)
| | | | | | - Claudia Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ilaria Manini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- VisMederi Srl, Siena, Italy.,VisMederi Research Srl, Siena, Italy.,Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
23
|
The TLR4 agonist adjuvant SLA-SE promotes functional mucosal antibodies against a parenterally delivered ETEC vaccine. NPJ Vaccines 2019; 4:19. [PMID: 31149350 PMCID: PMC6538625 DOI: 10.1038/s41541-019-0116-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/08/2019] [Indexed: 11/17/2022] Open
Abstract
Many pathogens establish infection at mucosal surfaces such as the enteric pathogen Enterotoxigenic E. coli (ETEC). Thus, there is a pressing need for effective vaccination strategies that promote protective immunity at mucosal surfaces. Toll-like receptor (TLR) ligands have been extensively developed as vaccine adjuvants to promote systemic immunity, whereas attenuated bacterial toxins including cholera toxin and heat-labile toxin (LT) have initially been developed to promote mucosal immunity. Here we evaluate the ability of the TLR4 agonist second-generation lipid adjuvant formulated in a stable emulsion (SLA-SE) to augment functional mucosal antibodies elicited by intramuscular immunization with a recombinant ETEC vaccine antigen. We find that, in mice, parenterally delivered SLA-SE is at least as effective as the double-mutant LT (LTR192G/L211A, dmLT) adjuvant in promoting functional antibodies and eliciting intestinal IgA responses to the vaccine antigen. In addition, SLA-SE enhanced both the IgG2a response in the mucosa and serum, and the production of LT neutralizing serum antibodies elicited by dmLT four to eightfold. These results reveal unexpected mucosal adjuvant properties of this TLR4 agonist adjuvant when delivered intramuscularly. This may have a substantial impact on the development of vaccines against enteric and other mucosal pathogens. Although offering great potential for generating intestinal immunity, vaccination by the oral route suffers from several barriers such as the breakdown of protein vaccines in the stomach and/or the induction of oral tolerance. To investigate whether these barriers can be circumvented, Mark T. Orr and colleagues at the Infectious Disease Research Institute use a parenteral (intramuscular) vaccination protocol in mice. Intramuscular immunization with an enterotoxigenic E. coli (ETEC) vaccine plus a Toll-like receptor 4 adjuvant in stable emulsion (SLA-SE) elicits a functional antibody response in both the gut and serum. Importantly, this intramuscular vaccination triggers robust production of IgA in the gut. These findings suggest that with the right adjuvant combination it might possible to generate potent protective mucosal immunity following parenteral immunization.
Collapse
|
24
|
FcγRIII stimulation breaks the tolerance of human nasal epithelial cells to bacteria through cross-talk with TLR4. Mucosal Immunol 2019; 12:425-433. [PMID: 30664707 DOI: 10.1038/s41385-018-0129-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
Abstract
The nasal cavity displays immune tolerance to commensal bacteria under homeostatic conditions, which is rapidly converted to a pro-inflammatory response upon infection. Yet, the factors that control this conversion are still largely unknown. Here, we provide evidence that Fc gamma receptor III (FcγRIII) stimulation breaks immune tolerance to bacteria in the human nasal cavity through activation of nasal epithelial cells, which are the first line of defense against invading microbes. While under steady-state conditions human nasal epithelial cells were completely non-responsive to Gram-negative bacteria P. aeruginosa or TLR4 ligand LPS, IgG opsonization of bacteria, as occurs upon infection, strongly induced production of pro-inflammatory agents such as IL-6 and IL-8. This breaking of tolerance to bacteria was completely dependent on FcγRIII, which amplified cytokine gene transcription through cross-talk with TLR4. In addition, we identified that epithelial cells from patients suffering from chronic rhinosinusitis with nasal polyps do not display LPS tolerance, thereby providing an explanation for the disturbed host defense responses of these patients. Taken together, these data are the first to identify FcγR expression on nasal epithelial cells, as well as to identify its important role in controlling the balance between tolerance and inflammation in the nasal cavity.
Collapse
|
25
|
Gould VMW, Francis JN, Anderson KJ, Georges B, Cope AV, Tregoning JS. Nasal IgA Provides Protection against Human Influenza Challenge in Volunteers with Low Serum Influenza Antibody Titre. Front Microbiol 2017; 8:900. [PMID: 28567036 PMCID: PMC5434144 DOI: 10.3389/fmicb.2017.00900] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/03/2017] [Indexed: 01/05/2023] Open
Abstract
In spite of there being a number of vaccines, influenza remains a significant global cause of morbidity and mortality. Understanding more about natural and vaccine induced immune protection against influenza infection would help to develop better vaccines. Virus specific IgG is a known correlate of protection, but other factors may help to reduce viral load or disease severity, for example IgA. In the current study we measured influenza specific responses in a controlled human infection model using influenza A/California/2009 (H1N1) as the challenge agent. Volunteers were pre-selected with low haemagglutination inhibition (HAI) titres in order to ensure a higher proportion of infection; this allowed us to explore the role of other immune correlates. In spite of HAI being uniformly low, there were variable levels of H1N1 specific IgG and IgA prior to infection. There was also a range of disease severity in volunteers allowing us to compare whether differences in systemic and local H1N1 specific IgG and IgA prior to infection affected disease outcome. H1N1 specific IgG level before challenge did not correlate with protection, probably due to the pre-screening for individuals with low HAI. However, the length of time infectious virus was recovered from the nose was reduced in patients with higher pre-existing H1N1 influenza specific nasal IgA or serum IgA. Therefore, IgA contributes to protection against influenza and should be targeted in vaccines.
Collapse
Affiliation(s)
- Victoria M W Gould
- Mucosal Infection and Immunity, Section of Virology, Imperial College LondonLondon, United Kingdom
| | - James N Francis
- Altimmune, London BioScience Innovation CentreLondon, United Kingdom
| | - Katie J Anderson
- Altimmune, London BioScience Innovation CentreLondon, United Kingdom
| | - Bertrand Georges
- Altimmune, London BioScience Innovation CentreLondon, United Kingdom
| | - Alethea V Cope
- Mucosal Infection and Immunity, Section of Virology, Imperial College LondonLondon, United Kingdom
| | - John S Tregoning
- Mucosal Infection and Immunity, Section of Virology, Imperial College LondonLondon, United Kingdom
| |
Collapse
|
26
|
Simulated Respiratory Secretion for Use in the Development of Influenza Diagnostic Assays. PLoS One 2016; 11:e0166800. [PMID: 27870895 PMCID: PMC5117718 DOI: 10.1371/journal.pone.0166800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/03/2016] [Indexed: 11/30/2022] Open
Abstract
Many assays have been developed for the detection of influenza virus which is an important respiratory pathogen. Development of these assays commonly involves the use of human clinical samples for validation of their performance. However, clinical samples can be difficult to obtain, deteriorate over time, and be inconsistent in composition. The goal of this study was to develop a simulated respiratory secretion (SRS) that could act as a surrogate for clinical samples. To this end, we determined the effects major respiratory secretion components (Na+, K+, Ca2+, cells, albumin IgG, IgM, and mucin) have on the performance of influenza assays including both nucleic acid amplification and rapid antigen assays. Minimal effects on the molecular assays were observed for all of the components tested, except for serum derived human IgG, which suppressed the signal of the rapid antigen assays. Using dot blots we were able to show anti-influenza nucleoprotein IgG antibodies are common in human respiratory samples. We composed a SRS that contained mid-point levels of human respiratory sample components and studied its effect compared to phosphate buffered saline and virus negative clinical sample matrix on the Veritor, Sofia, CDC RT-PCR, Simplexa, cobas Liat, and Alere i influenza assays. Our results demonstrated that a SRS can interact with a variety of test methods in a similar manner to clinical samples with a similar impact on test performance.
Collapse
|
27
|
Seasonal influenza vaccines and hurdles to mutual protection. Clin Microbiol Infect 2016; 22 Suppl 5:S113-S119. [PMID: 27568914 DOI: 10.1016/j.cmi.2016.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/19/2016] [Indexed: 11/22/2022]
Abstract
While vaccines against seasonal influenza are available, major hurdles still exist that prevent their use having any impact on epidemic spread. Recent epidemiologic data question the appropriateness of traditional vaccination timing (prior to the winter season) in many parts of the world. Furthermore, vaccine uptake in most countries even in high-risk populations does not reach the 75% target recommended by the World Health Organization. Influenza viruses continually undergo antigenic variation, and both inactivated and live attenuated influenza vaccines confer only short-lived strain-specific immunity, so annual revaccination is required. Improving vaccine-induced immunity is therefore an important goal. A vaccine that could confer durable protection against emerging influenza strains could significantly reduce onward transmission. Therefore, further understanding of protective immunity against influenza (including broadly cross-protective immune mechanisms such as haemagglutinin stem-binding antibodies and T cells) offers the hope of vaccines that can confer the long-lived heterosubtypic immune responses required for mutual protection.
Collapse
|
28
|
Two Phase 1, Randomized, Double-Blind, Placebo-Controlled, Single-Ascending-Dose Studies To Investigate the Safety, Tolerability, and Pharmacokinetics of an Anti-Influenza A Virus Monoclonal Antibody, MHAA4549A, in Healthy Volunteers. Antimicrob Agents Chemother 2016; 60:5437-44. [PMID: 27381392 DOI: 10.1128/aac.00607-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/23/2016] [Indexed: 11/20/2022] Open
Abstract
Hospitalized patients with severe influenza are at significant risk for morbidity and mortality. MHAA4549A is a human monoclonal immunoglobulin (Ig) G1 antibody that binds to a highly conserved stalk region of the influenza A virus hemagglutinin protein and neutralizes all tested seasonal human influenza A virus strains. Two phase 1 trials examined the safety, tolerability, and pharmacokinetics of MHAA4549A in healthy volunteers. Both single ascending-dose trials were randomized, double blinded, and placebo controlled. Trial 1 randomized 21 healthy adults into four cohorts receiving a single intravenous dose of 1.5, 5, 15, or 45 mg/kg MHAA4549A or placebo. Trial 2 randomized 14 healthy adults into two cohorts receiving a single intravenous fixed dose of 8,400 mg or 10,800 mg of MHAA4549A or placebo. Subjects were followed for 120 days after dosing. No subject was discontinued in either trial, and no serious adverse events were reported. The most common adverse event in both studies was mild headache (trial 1, 4/16 subjects receiving MHAA4549A and 1/5 receiving placebo; trial 2, 4/8 subjects receiving MHAA4549A and 2/6 receiving placebo). MHAA4549A produced no relevant time- or dose-related changes in laboratory values or vital signs compared to those with placebo. No subjects developed an antitherapeutic antibody response following MHAA4549A administration. MHAA4549A showed linear serum pharmacokinetics, with a mean half-life of 22.5 to 23.7 days. MHAA4549A is safe and well tolerated in healthy volunteers up to a single intravenous dose of 10,800 mg and demonstrates linear serum pharmacokinetics consistent with those of a human IgG1 antibody lacking known endogenous targets in humans. (These trials have been registered at ClinicalTrials.gov under registration no. NCT01877785 and NCT02284607).
Collapse
|
29
|
Mosaic H5 Hemagglutinin Provides Broad Humoral and Cellular Immune Responses against Influenza Viruses. J Virol 2016; 90:6771-6783. [PMID: 27194759 DOI: 10.1128/jvi.00730-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/09/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED The most effective way to prevent influenza virus infection is via vaccination. However, the constant mutation of influenza viruses due to antigenic drift and shift compromises vaccine efficacy. This represents a major challenge to the development of a cross-protective vaccine that can protect against circulating viral antigenic diversity. Using the modified vaccinia Ankara (MVA) virus, we had previously generated a recombinant vaccine against highly pathogenic avian influenza virus (H5N1) based on an in silico mosaic approach. This MVA-H5M construct protected mice against multiple clades of H5N1 and H1N1 viruses. We have now further characterized the immune responses using immunodepletion of T cells and passive serum transfer, and these studies indicate that antibodies are the main contributors in homosubtypic protection (H5N1 clades). Compared to a MVA construct expressing hemagglutinin (HA) from influenza virus A/VN/1203/04 (MVA-HA), the MVA-H5M vaccine markedly increased and broadened B cell and T cell responses against H5N1 virus. The MVA-H5M also provided effective protection with no morbidity against H5N1 challenge, whereas MVA-HA-vaccinated mice showed clinical signs and experienced significant weight loss. In addition, MVA-H5M induced CD8(+) T cell responses that play a major role in heterosubtypic protection (H1N1). Finally, expression of the H5M gene as either a DNA vaccine or a subunit protein protected mice against H5N1 challenge, indicating the effectiveness of the mosaic sequence without viral vectors for the development of a universal influenza vaccine. IMPORTANCE Influenza viruses infect up to one billion people around the globe each year and are responsible for 300,000 to 500,000 deaths annually. Vaccines are still the main intervention to prevent infection, but they fail to provide effective protection against heterologous strains of viruses. We developed broadly reactive H5N1 vaccine based on an in silico mosaic approach and previously demonstrated that modified vaccinia Ankara expressing an H5 mosaic hemagglutinin prevented infection with multiple clades of H5N1 and limited severe disease after H1N1 infection. Further characterization revealed that antibody responses and T cells are main contributors to protection against H5N1 and H1N1 viruses, respectively. The vaccine also broadens both T cell and B cell responses compared to native H5 vaccine from influenza virus A/Vietnam/1203/04. Finally, delivering the H5 mosaic as a DNA vaccine or as a purified protein demonstrated effective protection similar to the viral vector approach.
Collapse
|
30
|
Abstract
The development of vaccines that could provide broad protection against antigenically variant influenza viruses has long been the ultimate prize in influenza research. Recent developments have pushed us closer to this goal, and such vaccines may now be within reach. This brief review outlines the current approaches to broadly protective vaccines, and the probable hurdles and roadblocks to achieving this goal.
Collapse
Affiliation(s)
- John Jay Treanor
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Box 689, 601 Elmwood Avenue, Rochester, NY 14642, United States.
| |
Collapse
|
31
|
Prospects for broadly protective influenza vaccines. Vaccine 2015; 33 Suppl 4:D39-45. [DOI: 10.1016/j.vaccine.2015.08.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 12/14/2022]
|
32
|
Direct administration in the respiratory tract improves efficacy of broadly neutralizing anti-influenza virus monoclonal antibodies. Antimicrob Agents Chemother 2015; 59:4162-72. [PMID: 25941218 DOI: 10.1128/aac.00290-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022] Open
Abstract
The emergence of influenza virus strains resistant to approved neuraminidase inhibitors and the time constrains after infection when these drugs can be effective constitute major drawbacks for this class of drugs. This highlights a critical need to discover new therapeutic agents that can be used for the treatment of influenza virus-infected patients. The use of broadly neutralizing anti-influenza monoclonal antibodies (MAbs) has been sought as an alternative immunotherapy against influenza infection. Here, we tested in mice previously characterized broadly neutralizing anti-hemagglutinin (HA) stalk MAbs prophylactically and therapeutically using different routes of administration. The efficacy of treatment against an influenza H1N1 pandemic virus challenge was compared between two systemic routes of administration, intraperitoneal (i.p.) and intravenous (i.v.), and two local routes, intranasal (i.n.) and aerosol (a.e.). The dose of MAb required for prophylactic protection was reduced by 10-fold in animals treated locally (i.n. or a.e.) compared with those treated systemically (i.p. or i.v.). Improved therapeutic protection was observed in animals treated i.n. on day 5 postinfection (60% survival) compared with those treated via the i.p. route (20% survival). An increase in therapeutic efficacy against other influenza virus subtypes (H5N1) was also observed when a local route of administration was used. Our findings demonstrate that local administration significantly decreases the amount of broadly neutralizing monoclonal antibody required for protection against influenza, which highlights the potential use of MAbs as a therapeutic agent for influenza-associated disease.
Collapse
|
33
|
Carrasco-Yepez M, Campos-Rodriguez R, Lopez-Reyes I, Bonilla-Lemus P, Rodriguez-Cortes AY, Contis-Montes de Oca A, Jarillo-Luna A, Miliar-Garcia A, Rojas-Hernandez S. Intranasal coadministration of Cholera toxin with amoeba lysates modulates the secretion of IgA and IgG antibodies, production of cytokines and expression of pIgR in the nasal cavity of mice in the model of Naegleria fowleri meningoencephalitis. Exp Parasitol 2014; 145 Suppl:S84-92. [PMID: 24731967 DOI: 10.1016/j.exppara.2014.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/25/2014] [Accepted: 04/03/2014] [Indexed: 11/27/2022]
Abstract
The nasal mucosa is the first contact with antigens to induce IgA response. The role of this site has rarely been studied. We have shown than intranasal administration with Naegleria fowleri lysates plus Cholera toxin (CT) increased the protection (survival up to 100%) against N. fowleri infection in mice and apparently antibodies IgA and IgG together with polymorphonuclear (PMN) cells avoid the attachment of N. fowleri to apical side of the nasal epithelium. We also observed that nasal immunization resulted in the induction of antigen-specific IgG subclasses (IgG1 and IgG2a) in nasal washes at days 3 and 9 after the challenge and IgA and IgG in the nasal cavity, compared to healthy and infected mice. We found that immunization with both treatments, N. fowleri lysates plus CT or CT alone, increased the expression of the genes for alpha chain, its receptor (pIgR), and it also increased the expression of the corresponding proteins evidenced by the ∼65 and ∼74kDa bands, respectively. Since the production of pIgR, IgA and IgG antibodies, is up-regulated by some factors, we analyzed the expression of genes for IL-10, IL-6, IFN-γ, TNF-α and IL-1β by using RT-PCR of nasal passages. Immunization resulted in an increased expression of IL-10, IL-6, and IFN-γ cytokines. We also aimed to examine the possible influences of immunization and challenge on the production of inflammatory cytokines (TNF-α and IL-1β). We observed that the stimulus of immunization inhibits the production of TNF-α compared to the infected group where the infection without immunization causes an increase in it. Thus, it is possible that the coexistence of selected cytokines produced by our immunization model may provide a highly effective immunological environment for the production of IgA, IgG and pIgR as well as a strong activation of the PMN in mucosal effector tissue such as nasal passages.
Collapse
Affiliation(s)
- Maricela Carrasco-Yepez
- Proyecto CyMA, UIICSE, UNAM FES Iztacala, Avenida de los Barrios 1, Los Reyes Iztacala, CP 54090 Tlalnepantla, Mex., Mexico
| | - Rafael Campos-Rodriguez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, México, D.F., Mexico
| | | | - Patricia Bonilla-Lemus
- Proyecto CyMA, UIICSE, UNAM FES Iztacala, Avenida de los Barrios 1, Los Reyes Iztacala, CP 54090 Tlalnepantla, Mex., Mexico
| | - Antonio Yahve Rodriguez-Cortes
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, México, D.F., Mexico
| | - Arturo Contis-Montes de Oca
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, México, D.F., Mexico
| | - Adriana Jarillo-Luna
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, México, D.F., Mexico
| | - Angel Miliar-Garcia
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, México, D.F., Mexico
| | - Saul Rojas-Hernandez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, México, D.F., Mexico.
| |
Collapse
|
34
|
Panyasing Y, Goodell CK, Giménez-Lirola L, Kittawornrat A, Wang C, Schwartz KJ, Zimmerman JJ. Kinetics of influenza A virus nucleoprotein antibody (IgM, IgA, and IgG) in serum and oral fluid specimens from pigs infected under experimental conditions. Vaccine 2013; 31:6210-5. [PMID: 24200976 DOI: 10.1016/j.vaccine.2013.10.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/25/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
Indirect influenza A virus (IAV) nucleoprotein (NP) antibody ELISAs were used to compare the kinetics of the NP IgM, IgA, and IgG responses in serum and pen-based oral fluid samples collected from 82 pigs followed for 42 days post inoculation (DPI). Treatment categories included vaccination (0, 1) and inoculation (0, 1) with contemporary H1N1 or H3N2 isolates. Antibody ontogeny was markedly affected by vaccination status, but no significant differences were detected between H1N1 and H3N2 inoculated groups of the same vaccination status (0, 1) in IgM, IgA, or IgG responses. Therefore, these data were combined in subsequent analyses. The correlation between serum and oral fluid responses was evaluated using the pen-based oral fluid sample-to-positive (S/P) ratios versus the mean serum S/P ratios of pigs within the pen. IgM responses in serum and oral fluid were highly correlated in unvaccinated groups (r=0.810), as were serum and oral fluid IgG responses in both unvaccinated (r=0.839) and vaccinated (r=0.856) groups. In contrast, IgM responses were not correlated in vaccinated groups and the correlation between serum and oral fluid IgA was weak (r∼0.3), regardless of vaccination status. In general, vaccinated animals exhibited a suppressed IgM response and accelerated IgG response. The results from this study demonstrated that NP-specific IgM, IgA, and IgG antibody were detectable in serum and oral fluid and their ontogeny was influenced by vaccination status, the time course of the infection, and specimen type.
Collapse
Affiliation(s)
- Y Panyasing
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States.
| | | | | | | | | | | | | |
Collapse
|
35
|
Reber A, Katz J. Immunological assessment of influenza vaccines and immune correlates of protection. Expert Rev Vaccines 2013; 12:519-36. [PMID: 23659300 DOI: 10.1586/erv.13.35] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Influenza vaccines remain the primary public health tool in reducing the ever-present burden of influenza and its complications. In seeking more immunogenic, more effective and more broadly cross-protective influenza vaccines, the landscape of influenza vaccines is rapidly expanding, both in near-term advances and next-generation vaccine design. Although the first influenza vaccines were licensed over 60 years ago, the hemagglutination-inhibition antibody titer is currently the only universally accepted immune correlate of protection against influenza. However, hemagglutination-inhibition titers appear to be less effective at predicting protection in populations at high risk for severe influenza disease; older adults, young children and those with certain medical conditions. The lack of knowledge and validated methods to measure alternate immune markers of protection against influenza remain a substantial barrier to the development of more immunogenic, broadly cross-reactive and effective influenza vaccines. Here, the authors review the knowledge of immune effectors of protection against influenza and discuss assessment methods for a broader range of immunological parameters that could be considered in the evaluation of traditional or new-generation influenza vaccines.
Collapse
Affiliation(s)
- Adrian Reber
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road Atlanta, GA 30333, USA
| | | |
Collapse
|
36
|
Tanimoto T, Haredy AM, Takenaka N, Tamura SI, Okuno Y, Mori Y, Yamanishi K, Okamoto S. Comparison of the cross-reactive anti-influenza neutralizing activity of polymeric and monomeric IgA monoclonal antibodies. Viral Immunol 2012; 25:433-9. [PMID: 22985289 DOI: 10.1089/vim.2012.0026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Here we examined whether polymeric IgA (pIgA) and monomeric IgA (mIgA) antibodies differ in their ability to neutralize drift viruses within the same subtype. We used an IgA monoclonal antibody (mAb; H1-21) against influenza virus strain A/Hiroshima/52/2005 (A/Hiroshima; H3N2). The mAb was obtained after immunizing mice mucosally with a split-virion (SV) vaccine. The mAb contained both mIgA and pIgA forms. It reacted with the homologous virus and cross-reacted with drift viruses A/New York/55/2004 (H3N2) and A/Wyoming/3/2003 (H3N2) in hemagglutinin-inhibition (HI) and neutralizing Ab assays. The mAb also cross-reacted with A/Panama/2007/99 (H3N2) in an ELISA. We separated the mAb into pIgA and mIgA fractions by gel filtration, and then tested them for neutralizing Ab activity. The neutralizing activity for the A/Hiroshima/52/2005, A/New York/55/2004, and A/Wyoming/3/2003 viruses was lower for the mIgA than the pIgA fraction. However, the neutralizing efficiency for drift variants relative to that for the homotype did not differ between pIgA and mIgA, and pIgA only neutralized variants that could also be neutralized by mIgA. These results suggest that the polymerization of IgA enhances its antiviral immune responses, but does not increase the number of influenza virus strains neutralized by the IgA.
Collapse
Affiliation(s)
- Takeshi Tanimoto
- Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Das SC, Hatta M, Wilker PR, Myc A, Hamouda T, Neumann G, Baker JR, Kawaoka Y. Nanoemulsion W805EC improves immune responses upon intranasal delivery of an inactivated pandemic H1N1 influenza vaccine. Vaccine 2012; 30:6871-7. [PMID: 22989689 DOI: 10.1016/j.vaccine.2012.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/31/2012] [Accepted: 09/03/2012] [Indexed: 01/09/2023]
Abstract
Currently available influenza vaccines provide suboptimal protection. In order to improve the quality of protective immune responses elicited following vaccination, we developed an oil-in-water nanoemulsion (NE)-based adjuvant for an intranasally-delivered inactivated influenza vaccine. Using a prime-boost vaccination regimen, we show that intranasal vaccines containing the W(80)5EC NE elicited higher titers of serum hemagglutination inhibiting (HAI) antibody and influenza-specific IgG and IgA titers compared to vaccines that did not contain the NE. Similarly, vaccines containing the W(80)5EC NE resulted in higher influenza-specific IgA levels in the bronchoalveolar lavage (BAL) fluid and nasal wash when compared to vaccines formulated without NE. The higher antibody titers in mice immunized with the NE-containing vaccines correlated with reduced viral loads in the lungs and nasal turbinates following a high dose viral challenge. Mice immunized with vaccines containing the W(80)5EC NE also showed a reduction in body weight loss following challenge compared to mice immunized with equivalent vaccines produced without NE. Taken together, our results show that the W(80)5EC NE substantially improves the magnitude of protective influenza-specific antibody responses and is a promising mucosal adjuvant for influenza vaccines and vaccines against other mucosal pathogens.
Collapse
Affiliation(s)
- Subash C Das
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
The contribution of systemic and pulmonary immune effectors to vaccine-induced protection from H5N1 influenza virus infection. J Virol 2012; 86:5089-98. [PMID: 22379093 DOI: 10.1128/jvi.07205-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Live attenuated influenza vaccines (LAIVs) are effective in providing protection against influenza challenge in animal models and in preventing disease in humans. We previously showed that LAIVs elicit a range of immune effectors and that successful induction of pulmonary cellular and humoral immunity in mice requires pulmonary replication of the vaccine virus. An upper respiratory tract immunization (URTI) model was developed in mice to mimic the human situation, in which the vaccine virus does not replicate in the lower respiratory tract, allowing us to assess the protective efficacy of an H5N1 LAIV against highly pathogenic H5N1 virus challenge in the absence of significant pulmonary immunity. Our results show that, after one dose of an H5N1 LAIV, pulmonary influenza-specific lymphocytes are the main contributors to clearance of challenge virus from the lungs and that contributions of influenza-specific enzyme-linked immunosorbent assay (ELISA) antibodies in serum and splenic CD8(+) T cells were negligible. Complete protection from H5N1 challenge was achieved after two doses of H5N1 LAIV and was associated with maturation of the antibody response. Although passive transfer of sera from mice that received two doses of vaccine prevented lethality in naive recipients following challenge, the mice showed significant weight loss, with high pulmonary titers of the H5N1 virus. These data highlight the importance of mucosal immunity in mediating optimal protection against H5N1 infection. Understanding the requirements for effective induction and establishment of these protective immune effectors in the respiratory tract paves the way for a more rational and effective vaccine approach in the future.
Collapse
|
39
|
de Geus ED, Rebel JMJ, Vervelde L. Kinetics of the avian influenza-specific humoral responses in lung are indicative of local antibody production. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:317-322. [PMID: 21663761 DOI: 10.1016/j.dci.2011.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/09/2011] [Accepted: 05/09/2011] [Indexed: 05/30/2023]
Abstract
The role and kinetics of respiratory immunoglobulins in AIV infection has not been investigated. In this study we determined the numbers of both total antibody secreting cells (ASC) and virus-specific ASC in lung, spleen, blood and bone marrow (BM) following low-pathogenic AIV infection. Antiviral humoral immune responses were induced both locally in the lung and systemically in the spleen. Responses in the lung and BM preceded responses in the spleen and in blood, with virus-specific IgY ASC already detected in lung and BM from 1 week post-primary inoculation, indicating that respiratory immune responses are not induced in the spleen, but locally in the lung. ASC present in the blood of the lungs and co-isolated during lymphocyte isolation from the lungs have no major impact on the ASC detected in the lungs based on statistical correlation.
Collapse
Affiliation(s)
- Eveline D de Geus
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
40
|
Collins PL, Melero JA. Progress in understanding and controlling respiratory syncytial virus: still crazy after all these years. Virus Res 2011; 162:80-99. [PMID: 21963675 PMCID: PMC3221877 DOI: 10.1016/j.virusres.2011.09.020] [Citation(s) in RCA: 338] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 01/25/2023]
Abstract
Human respiratory syncytial virus (RSV) is a ubiquitous pathogen that infects everyone worldwide early in life and is a leading cause of severe lower respiratory tract disease in the pediatric population as well as in the elderly and in profoundly immunosuppressed individuals. RSV is an enveloped, nonsegmented negative-sense RNA virus that is classified in Family Paramyxoviridae and is one of its more complex members. Although the replicative cycle of RSV follows the general pattern of the Paramyxoviridae, it encodes additional proteins. Two of these (NS1 and NS2) inhibit the host type I and type III interferon (IFN) responses, among other functions, and another gene encodes two novel RNA synthesis factors (M2-1 and M2-2). The attachment (G) glycoprotein also exhibits unusual features, such as high sequence variability, extensive glycosylation, cytokine mimicry, and a shed form that helps the virus evade neutralizing antibodies. RSV is notable for being able to efficiently infect early in life, with the peak of hospitalization at 2-3 months of age. It also is notable for the ability to reinfect symptomatically throughout life without need for significant antigenic change, although immunity from prior infection reduces disease. It is widely thought that re-infection is due to an ability of RSV to inhibit or subvert the host immune response. Mechanisms of viral pathogenesis remain controversial. RSV is notable for a historic, tragic pediatric vaccine failure involving a formalin-inactivated virus preparation that was evaluated in the 1960s and that was poorly protective and paradoxically primed for enhanced RSV disease. RSV also is notable for the development of a successful strategy for passive immunoprophylaxis of high-risk infants using RSV-neutralizing antibodies. Vaccines and new antiviral drugs are in pre-clinical and clinical development, but controlling RSV remains a formidable challenge.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antiviral Agents/administration & dosage
- Child
- Communicable Disease Control/organization & administration
- Cytokines/immunology
- Humans
- Immunity, Innate
- Infant
- RNA, Viral/genetics
- RNA, Viral/immunology
- Respiratory Syncytial Virus Infections/drug therapy
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Peter L. Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - José A. Melero
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
41
|
An adjuvant for the induction of potent, protective humoral responses to an H5N1 influenza virus vaccine with antigen-sparing effect in mice. J Virol 2010; 84:8639-49. [PMID: 20538850 DOI: 10.1128/jvi.00596-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intramuscular administration of inactivated influenza virus vaccine is the main vaccine platform used for the prevention of seasonal influenza virus infection. In clinical trials, inactivated H5N1 vaccines have been shown to be safe and capable of eliciting immune correlates of protection. However, the H5N1 vaccines are poorly immunogenic compared to seasonal influenza virus vaccines. Needle-free vaccination would be more efficient and economical in a pandemic, and the development of an effective and safe mucosal adjuvant will be an important milestone. A stabilized chemical analog of double-stranded RNA, PIKA, was previously reported to be a potent mucosal adjuvant in a murine model. While PIKA stimulates dendritic cells in vitro, little was known about its receptor and adjuvanting mechanism in vivo. In this study, we demonstrated that the immunostimulatory effect of PIKA resulted in an increased number of mature antigen-presenting cells, with the induction of proinflammatory cytokines at the inoculation site. In addition, coadministration of PIKA with a poorly immunogenic H5N1 subunit vaccine led to antigen sparing and quantitative and qualitative improvements of the immune responses over those achieved with an unadjuvanted vaccine in mice. The adjuvanted vaccine provided protection against lethal challenge with homologous and heterologous H5N1 wild-type viruses. Mice lacking functional TLR3 showed diminished cytokine production with PIKA stimulation, diminished antibody responses, and reduced protective efficacy against wild-type virus challenge following vaccination. These data suggest that TLR3 is important for the optimal performance of PIKA as an adjuvant. With its good safety profile and antigen-sparing effect, PIKA could be an attractive adjuvant for use in future pandemics.
Collapse
|
42
|
Immune responses to common respiratory pathogens: problems and perspectives in equine immunology. Equine Vet J 2010. [PMCID: PMC7163740 DOI: 10.1111/j.2042-3306.1991.tb04751.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Loudon PT, Yager EJ, Lynch DT, Narendran A, Stagnar C, Franchini AM, Fuller JT, White PA, Nyuandi J, Wiley CA, Murphey-Corb M, Fuller DH. GM-CSF increases mucosal and systemic immunogenicity of an H1N1 influenza DNA vaccine administered into the epidermis of non-human primates. PLoS One 2010; 5:e11021. [PMID: 20544035 PMCID: PMC2882341 DOI: 10.1371/journal.pone.0011021] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 05/15/2010] [Indexed: 11/18/2022] Open
Abstract
Background The recent H5N1 avian and H1N1 swine-origin influenza virus outbreaks reaffirm that the threat of a world-wide influenza pandemic is both real and ever-present. Vaccination is still considered the best strategy for protection against influenza virus infection but a significant challenge is to identify new vaccine approaches that offer accelerated production, broader protection against drifted and shifted strains, and the capacity to elicit anti-viral immune responses in the respiratory tract at the site of viral entry. As a safe alternative to live attenuated vaccines, the mucosal and systemic immunogenicity of an H1N1 influenza (A/New Caledonia/20/99) HA DNA vaccine administered by particle-mediated epidermal delivery (PMED or gene gun) was analyzed in rhesus macaques. Methodology/Principal Findings Macaques were immunized at weeks 0, 8, and 16 using a disposable single-shot particle-mediated delivery device designed for clinical use that delivers plasmid DNA directly into cells of the epidermis. Significant levels of hemagglutination inhibiting (HI) antibodies and cytokine-secreting HA-specific T cells were observed in the periphery of macaques following 1–3 doses of the PMED HA DNA vaccine. In addition, HA DNA vaccination induced detectable levels of HA-specific mucosal antibodies and T cells in the lung and gut-associated lymphoid tissues of vaccinated macaques. Importantly, co-delivery of a DNA encoding the rhesus macaque GM-CSF gene was found to significantly enhance both the systemic and mucosal immunogenicity of the HA DNA vaccine. Conclusions/Significance These results provide strong support for the development of a particle-mediated epidermal DNA vaccine for protection against respiratory pathogens such as influenza and demonstrate, for the first time, the ability of skin-delivered GM-CSF to serve as an effective mucosal adjuvant for vaccine induction of immune responses in the gut and respiratory tract.
Collapse
Affiliation(s)
| | - Eric J. Yager
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | | | - Amithi Narendran
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Cristy Stagnar
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Anthony M. Franchini
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - James T. Fuller
- Recombiworks, Ltd., Clifton Park, New York, United States of America
| | | | - Julia Nyuandi
- Department of Medical Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Clayton A. Wiley
- Division of Neuropathology, Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Michael Murphey-Corb
- Department of Medical Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Deborah H. Fuller
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
44
|
Verdin-Terán SL, Vilches-Flores A, Moreno-Fierros L. Immunization with Cry1Ac from Bacillus thuringiensis increases intestinal IgG response and induces the expression of FcRn in the intestinal epithelium of adult mice. Scand J Immunol 2009; 70:596-607. [PMID: 19906202 PMCID: PMC7169514 DOI: 10.1111/j.1365-3083.2009.02332.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have shown that Cry1Ac protoxin from Bacillus thuringiensis is a potent mucosal and systemic immunogen with adjuvant properties. Interestingly, we have observed that Cry1Ac preferentially induces high specific IgG responses in intestinal fluid when it is intraperitoneally administered to mice; therefore, in the present study, we used this protocol, as a model to address the influence of systemic immunization on the induction of the intestinal IgG response. The data shown indicate that upon intraperitoneal immunization with Cry1Ac, significant intestinal specific IgG cell responses were produced in the lamina propria, accompanied by an increased frequency of intestinal IgG+ lymphocytes and epithelial cells containing IgG. Considering that FcRn is the receptor responsible for the transport of IgG in neonatal intestinal epithelia, but it is developmentally downregulated in the rodent intestine, we analysed whether upon intestinal IgG induction, FcRn mRNA expression was induced in intestinal epithelial cells, of adult mice. Whereas in intestinal epithelia of unimmunized adult mice FcRn mRNA was not detected, in Cry1Ac immunized mice it was expressed, although the level was lower in comparison with that found in neonatal epithelia. Then using flow cytometry and immunofluorescence we confirmed that the expression of the protein FcRn was induced in the intestines of adult immunized mice especially in the large intestine. Finally, we found that Cry1Ac also increased FcRn expression in isolated intestinal epithelial cells stimulated in vitro. The outcomes suggest that the expression of FcRn in intestinal epithelium might be reactivated upon immunization, and possibly facilitate IgG transport.
Collapse
Affiliation(s)
- S L Verdin-Terán
- Inmunidad en Mucosas, Unidad de Biomedicina, FES-Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1 Col. Los Reyes Iztacala Tlalnepantla, Edo. de México, México
| | | | | |
Collapse
|
45
|
Sabirov A, Casey JR, Murphy TF, Pichichero ME. Breast-feeding is associated with a reduced frequency of acute otitis media and high serum antibody levels against NTHi and outer membrane protein vaccine antigen candidate P6. Pediatr Res 2009; 66:565-70. [PMID: 19581824 PMCID: PMC2783794 DOI: 10.1203/pdr.0b013e3181b4f8a6] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nontypeable Haemophilus influenzae (NTHi) causes acute otitis media (AOM) in infants. Breast-feeding protects against AOM and/or nasopharyngeal (NP) colonization; however, the mechanism of protection is incompletely understood. Children with AOM and healthy children were studied according to feeding status: breastfed,breast/formula fed, or formula fed. Cumulative episodes of AOM, ELISA titers of serum IgG antibodies to whole-cell NTHi and vaccine candidate outer membrane protein P6, bactericidal titers of serum and NP colonization by NTHi were assessed. A lower incidence of AOM was found in breast- versus formula-fed children. Levels of specific serum IgG antibody to NTHi and P6 were highest in breast-fed, intermediate in breast/formula fed, and lowest in formula-fed infants. Serum IgG antibody to P6 correlated with bactericidal activity against NTHi. Among children with AOM, the prevalence of NTHi in the NP was lower in breast- versus nonbreast-fed infants. We conclude that breast-feeding shows an association with higher levels of antibodies to NTHi and P6, suggesting that breast-feeding modulates the serum immune response to NTHi and P6. Higher serum IgG might facilitate protection against AOM and NP colonization in breast-fed children.
Collapse
Affiliation(s)
- Albert Sabirov
- Department of Microbiology/Immunology, University of Rochester, Rochester, NY 14627
| | - Janet R. Casey
- Department of Pediatrics, Legacy Pediatrics, Rochester, NY 14618
| | - Timothy F. Murphy
- Department of Medicine, State University of New York at Buffalo, Buffalo, NY 14260
| | - Michael E. Pichichero
- Department of Immunology and Center for Infectious Disease, Rochester General Hospital Research Institute, Rochester, NY 14621
| |
Collapse
|
46
|
Prolonged protection against Intranasal challenge with influenza virus following systemic immunization or combinations of mucosal and systemic immunizations with a heat-labile toxin mutant. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:471-8. [PMID: 19193829 DOI: 10.1128/cvi.00311-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Seasonal influenza virus infections cause considerable morbidity and mortality in the world, and there is a serious threat of a pandemic influenza with the potential to cause millions of deaths. Therefore, practical influenza vaccines and vaccination strategies that can confer protection against intranasal infection with influenza viruses are needed. In this study, we demonstrate that using LTK63, a nontoxic mutant of the heat-labile toxin from Escherichia coli, as an adjuvant for both mucosal and systemic immunizations, systemic (intramuscular) immunization or combinations of mucosal (intranasal) and intramuscular immunizations protected mice against intranasal challenge with a lethal dose of live influenza virus at 3.5 months after the second immunization.
Collapse
|
47
|
Bessa J, Schmitz N, Hinton HJ, Schwarz K, Jegerlehner A, Bachmann MF. Efficient induction of mucosal and systemic immune responses by virus-like particles administered intranasally: implications for vaccine design. Eur J Immunol 2008; 38:114-26. [PMID: 18081037 DOI: 10.1002/eji.200636959] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intranasal (i.n.) immunization aims to induce local as well as systemic immune responses. In the present study, we assessed a vaccine platform based on virus-like particles (VLP) derived from the RNA phage Qbeta for i.n. immunization. We found that both i.n. and subcutaneous (s.c.) administration of Qbeta-VLP elicited strong and comparable specific IgG responses in serum and lung. Surprisingly, both routes also induced high levels of specific IgA in serum. In contrast, only i.n. administration of Qbeta-VLP resulted in local IgA production in the lung. Efficient induction of B cell responses by i.n. administration of VLP was further supported by the presence of large numbers of germinal centers (GC) as well as memory B cells in the spleen and plasma cells in the bone marrow. Results obtained for the VLP itself could be extended to an antigen covalently attached to it. Specifically, i.n. immunization of mice with VLP displaying the influenza virus derived ectodomain of the M2 protein resulted in strong M2-specific antibody responses as well as anti-viral protection. In contrast, i.n. immunization with VLP displaying p33 peptide, the major CTL epitope of lymphocytic choriomeningitis virus, induced relatively inefficient cytotoxic T cell responses, resulting in low numbers of specific T cells and poor effector cell differentiation. Taken together, these results suggest that effective antibody-based vaccines are achievable by i.n. administration of Qbeta-VLP displaying specific antigens.
Collapse
Affiliation(s)
- Juliana Bessa
- Cytos Biotechnology AG, Zürich-Schlieren, Switzerland
| | | | | | | | | | | |
Collapse
|
48
|
Mozdzanowska K, Zharikova D, Cudic M, Otvos L, Gerhard W. Roles of adjuvant and route of vaccination in antibody response and protection engendered by a synthetic matrix protein 2-based influenza A virus vaccine in the mouse. Virol J 2007; 4:118. [PMID: 17974006 PMCID: PMC2186315 DOI: 10.1186/1743-422x-4-118] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 10/31/2007] [Indexed: 12/18/2022] Open
Abstract
Background The M2 ectodomain (M2e) of influenza A virus (IAV) strains that have circulated in humans during the past 90 years shows remarkably little structural diversity. Since M2e-specific antibodies (Abs) are capable of restricting IAV replication in vivo but are present only at minimal concentration in human sera, efforts are being made to develop a M2e-specific vaccine. We are exploring a synthetic multiple antigenic peptide (MAP) vaccine and here report on the role of adjuvants (cholera toxin and immunostimulatory oligodeoxynucleotide) and route of immunization on Ab response and strength of protection. Results Independent of adjuvants and immunization route, on average 87% of the M2e-MAP-induced Abs were specific for M2e peptide and a variable fraction of these M2e(pep)-specific Abs (average 15%) cross-reacted with presumably native M2e expressed by M2-transfected cells. The titer of these cross-reactive M2e(pep-nat)-specific Abs in sera of parenterally immunized mice displayed a sigmoidal relation to level of protection, with EC50 of ~20 μg Ab/ml serum, though experiments with passive M2e(pep-nat) Abs indicated that serum Abs did not fully account for protection in parenterally vaccinated mice, particularly in upper airways. Intranasal vaccination engendered stronger protection and a higher proportion of G2a Abs than parenteral vaccination, and the strength of protection failed to correlate with M2e(pep-nat)-specific serum Ab titers, suggesting a role of airway-associated immunity in protection of intranasally vaccinated mice. Intranasal administration of M2e-MAP without adjuvant engendered no response but coadministration with infectious IAV slightly enhanced the M2e(pep-nat) Ab response and protection compared to vaccination with IAV or adjuvanted M2e-MAP alone. Conclusion M2e-MAP is an effective immunogen as ~15% of the total M2e-MAP-induced Ab response is of desired specificity. While M2e(pep-nat)-specific serum Abs have an important role in restricting virus replication in trachea and lung, M2e-specific T cells and/or locally produced Abs contribute to protection in upper airways. Intranasal vaccination is preferable to parenteral vaccination, presumably because of induction of local protective immunity by the former route. Intranasal coadministration of M2e-MAP with infectious IAV merits further investigation in view of its potential applicability to human vaccination with live attenuated IAV.
Collapse
|
49
|
Stephenson I, Zambon MC, Rudin A, Colegate A, Podda A, Bugarini R, Del Giudice G, Minutello A, Bonnington S, Holmgren J, Mills KHG, Nicholson KG. Phase I evaluation of intranasal trivalent inactivated influenza vaccine with nontoxigenic Escherichia coli enterotoxin and novel biovector as mucosal adjuvants, using adult volunteers. J Virol 2006; 80:4962-70. [PMID: 16641287 PMCID: PMC1472052 DOI: 10.1128/jvi.80.10.4962-4970.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Trivalent influenza virus A/Duck/Singapore (H5N3), A/Panama (H3N2), and B/Guandong vaccine preparations were used in a randomized, controlled, dose-ranging phase I study. The vaccines were prepared from highly purified hemagglutinin and neuraminidase from influenza viruses propagated in embryonated chicken eggs and inactivated with formaldehyde. We assigned 100 participants to six vaccine groups, as follows. Three intranasally vaccinated groups received 7.5-microg doses of hemagglutinin from each virus strain with either 3, 10, or 30 microg of heat-labile Escherichia coli enterotoxin (LTK63) and 990 microg of a supramolecular biovector; one intranasally vaccinated group was given 7.5-microg doses of hemagglutinin with 30 microg of LTK63 without the biovector; and another intranasally vaccinated group received saline solution as a placebo. The final group received an intramuscular vaccine containing 15 microg hemagglutinin from each strain with MF59 adjuvant. The immunogenicity of two intranasal doses, delivered by syringe as drops into both nostrils with an interval of 1 week between, was compared with that of two inoculations by intramuscular delivery 3 weeks apart. The intramuscular and intranasal vaccine formulations were both immunogenic but stimulated different limbs of the immune system. The largest increase in circulating antibodies occurred in response to intramuscular vaccination; the largest mucosal immunoglobulin A (IgA) response occurred in response to mucosal vaccination. Current licensing criteria for influenza vaccines in the European Union were satisfied by serum hemagglutination inhibition responses to A/Panama and B/Guandong hemagglutinins given with MF59 adjuvant by injection and to B/Guandong hemagglutinin given intranasally with the highest dose of LTK63 and the biovector. Geometric mean serum antibody titers by hemagglutination inhibition and microneutralization were significantly higher for each virus strain at 3 and 6 weeks in recipients of the intramuscular vaccine than in recipients of the intranasal vaccine. The immunogenicity of the intranasally delivered experimental vaccine varied by influenza virus strain. Mucosal IgA responses to A/Duck/Singapore (H5N3), A/Panama (H3N2), and B/Guandong were highest in participants given 30 microg LTK63 with the biovector, occurring in 7/15 (47%; P=0.0103), 8/15 (53%; P=0.0362), and 14/15 (93%; P=0.0033) participants, respectively, compared to the placebo group. The addition of the biovector to the vaccine given with 30 microg LTK63 enhanced mucosal IgA responses to A/Duck/Singapore (H5N3) (P=0.0491) and B/Guandong (P=0.0028) but not to A/Panama (H3N2). All vaccines were well tolerated.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adolescent
- Adult
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Bacterial Toxins/administration & dosage
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Enterotoxins/administration & dosage
- Enterotoxins/genetics
- Enterotoxins/immunology
- Escherichia coli Proteins/administration & dosage
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunity, Mucosal
- Immunoglobulin A/biosynthesis
- Immunoglobulin A/blood
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/blood
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/adverse effects
- Influenza Vaccines/immunology
- Injections, Intramuscular
- Nasal Mucosa/immunology
- Nasal Mucosa/metabolism
- Polysorbates/administration & dosage
- Single-Blind Method
- Squalene/administration & dosage
- Squalene/immunology
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/adverse effects
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Iain Stephenson
- Infectious Diseases Unit, Leicester Royal Infirmary, Leicester LE1 5WW, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Common Respiratory Viruses and Pulmonary Mucosal Immunology. MUCOSAL IMMUNOLOGY AND VIROLOGY 2006. [PMCID: PMC7123111 DOI: 10.1007/978-1-84628-206-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|