1
|
Omura M, Satoh K, Tamura T, Komori A, Makimura K. Molecular epidemiological investigation of Cryptococcus spp. carried by captive koalas ( Phascolarctos cinereus) in Japan. Microbiol Spectr 2024; 12:e0290323. [PMID: 38411053 PMCID: PMC11210188 DOI: 10.1128/spectrum.02903-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii cause cryptococcosis, a systemic mycosis that infects a wide range of species. Recent molecular biological investigations have allowed for the genotyping of these species, providing more detailed information on their pathogenicity and infection routes. Koalas (Phascolarctos cinereus) are frequently colonized by Cryptococcus spp., but molecular epidemiological studies have yet to be conducted in Japan. Here, we conducted multi-locus sequence typing (MLST) analysis on Cryptococcus spp. colonization isolates obtained from all koalas kept in seven parks across Japan. Out of 46 koalas examined, 10 (22%) were positive for C. gattii and 3 (6.5%) were positive for C. neoformans. All C. gattii isolates belonged to molecular type VGI and were either sequence type (ST) 51 or a novel ST, and all C. neoformans isolates belonged to molecular type VNI and ST23. Despite the frequent movement of koalas between parks, the STs were relatively park-specific, suggesting that the floor of the rearing barns is a source of infection and may act as a reservoir. MLST analysis confirmed that C. gattii was transported, established, and spread by koalas in areas where C. gattii was not originally present. MLST analysis is considered useful in assessing the pathogenicity and tracing the transmission routes of Cryptococcus spp. carried by koalas.IMPORTANCEThis is the first study to conduct a multi-locus sequence typing analysis on Cryptococcus spp. carried by captive koalas in Japan. Cryptococcosis remains a globally high-fatality fungal infection in humans, and captive koalas are known to carry a high percentage of Cryptococcus spp. Through this research, the molecular types and transmission routes of Cryptococcus spp. carried by koalas have been elucidated, revealing the potential role of enclosure flooring as a reservoir. It has been confirmed that Cryptococcus gattii, which is not endemic in Japan, has become established through koalas and is spreading to new individuals in Japan. This study is believed to provide valuable insights into koala conservation and contribute to the One Health approach for Cryptococcosis, a zoonotic infection.
Collapse
Affiliation(s)
- Miki Omura
- Laboratory of Medical Mycology, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Kazuo Satoh
- Teikyo University Institute of Medical Mycology, Tokyo, Japan
| | - Takashi Tamura
- Teikyo University Institute of Medical Mycology, Tokyo, Japan
| | - Aya Komori
- Teikyo University Institute of Medical Mycology, Tokyo, Japan
| | - Koichi Makimura
- Laboratory of Medical Mycology, Graduate School of Medicine, Teikyo University, Tokyo, Japan
- Teikyo University Institute of Medical Mycology, Tokyo, Japan
| |
Collapse
|
2
|
A Possible Link between the Environment and Cryptococcus gattii Nasal Colonisation in Koalas ( Phascolarctos cinereus) in the Liverpool Plains, New South Wales. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084603. [PMID: 35457470 PMCID: PMC9028200 DOI: 10.3390/ijerph19084603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 01/25/2023]
Abstract
Cryptococcosis caused by yeasts of the Cryptococcus gattii species complex is an increasingly important mycological disease in humans and other mammals. In Australia, cases of C. gattii-related cryptococcosis are more prevalent in the koala (Phascolarctos cinereus) compared to humans and other animals, likely due to the close association that both C. gattii and koalas have with Eucalyptus species. This provides a cogent opportunity to investigate the epidemiology of spontaneous C. gattii infections in a free-living mammalian host, thereby offering insights into similar infections in humans. This study aimed to establish a link between nasal colonisation by C. gattii in free-ranging koalas and the tree hollows of Eucalyptus species, the key environmental source of the pathogen. We (i) detected and genotyped C. gattii from nine out of 169 free-ranging koalas and representative tree hollows within their home range in the Liverpool Plains, New South Wales, and (ii) examined potential environmental predictors of nasal colonisation in koalas and the presence of C. gattii in tree hollows. Phylogenetic analyses based on multi-locus sequence typing (MLST) revealed that the koalas were most likely colonised by the most abundant C. gattii genotypes found in the Eucalyptus species, or closely related genotypes. Importantly, the likelihood of the presence of C. gattii in tree hollows was correlated with increasing hollow size.
Collapse
|
3
|
Hong N, Chen M, Xu J. Molecular Markers Reveal Epidemiological Patterns and Evolutionary Histories of the Human Pathogenic Cryptococcus. Front Cell Infect Microbiol 2021; 11:683670. [PMID: 34026667 PMCID: PMC8134695 DOI: 10.3389/fcimb.2021.683670] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/22/2021] [Indexed: 01/02/2023] Open
Abstract
The human pathogenic Cryptococcus species are the main agents of fungal meningitis in humans and the causes of other diseases collectively called cryptococcosis. There are at least eight evolutionary divergent lineages among these agents, with different lineages showing different geographic and/or ecological distributions. In this review, we describe the main strain typing methods that have been used to analyze the human pathogenic Cryptococcus and discuss how molecular markers derived from the various strain typing methods have impacted our understanding of not only cryptococcal epidemiology but also its evolutionary histories. These methods include serotyping, multilocus enzyme electrophoresis, electrophoretic karyotyping, random amplified polymorphic DNA, restriction fragment length polymorphism, PCR-fingerprinting, amplified fragment length polymorphism, multilocus microsatellite typing, single locus and multilocus sequence typing, matrix-assisted laser desorption/ionization time of flight mass spectrometry, and whole genome sequencing. The major findings and the advantages and disadvantages of each method are discussed. Together, while controversies remain, these strain typing methods have helped reveal (i) the broad phylogenetic pattern among these agents, (ii) the centers of origins for several lineages and their dispersal patterns, (iii) the distributions of genetic variation among geographic regions and ecological niches, (iv) recent hybridization among several lineages, and (v) specific mutations during infections within individual patients. However, significant challenges remain. Multilocus sequence typing and whole genome sequencing are emerging as the gold standards for continued strain typing and epidemiological investigations of cryptococcosis.
Collapse
Affiliation(s)
- Nan Hong
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China.,Department of Burn and Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Min Chen
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
4
|
Martínez-Pérez PA, Fleming PA, Hyndman TH. Isolation of Cryptococcus neoformans var. grubii (serotype A) and C. magnus from the nasal lining of free-ranging quokkas (Setonix brachyurus). Aust Vet J 2020; 98:610-615. [PMID: 32935332 DOI: 10.1111/avj.13019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 08/03/2020] [Accepted: 08/25/2020] [Indexed: 11/29/2022]
Abstract
Cryptococcus species are environmental yeasts, with a worldwide distribution and remarkable environmental adaptation. Although many species do not cause disease, C. neoformans and C. gattii are causative agents of cryptococcosis, a life threatening infection and a significant public health problem worldwide. Infection especially affects immunocompromised animals and humans. In wildlife, cryptococcosis appears to be more prevalent in captive populations. The objective of this study was to assess whether apparently healthy quokkas (Setonix brachyurus) harbor Cryptococcus spp. Using cultural and molecular methods, we studied yeasts isolated from nasal swabs collected from 130 free-ranging quokkas on Rottnest Island (RI, n = 97) and the mainland (n = 33) of Western Australia. Unspeciated Cryptococcus spp. (from four quokkas), C. neoformans var. grubii (serotype A) (two quokkas) and C. magnus (one quokka) were isolated from the nasal lining of apparently healthy quokkas from RI. Cryptococcus neoformans var. grubii was isolated from animals captured in a human-populated area on RI. There was no significant effect of the presence of Cryptococcus on the results of haematology, blood chemistry, peripheral blood cell morphology or clinical examination. To the best of our knowledge, this is the first documented isolation of C. neoformans var. grubii (serotype A) and C. magnus in a free-ranging macropod in Western Australia. The public health implications of this finding should be further explored.
Collapse
Affiliation(s)
- P A Martínez-Pérez
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - P A Fleming
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - T H Hyndman
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia.,School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, 6150, Australia
| |
Collapse
|
5
|
Brito-Santos F, Trilles L, Firacative C, Wanke B, Carvalho-Costa FA, Nishikawa MM, Pereira Campos J, Junqueira ACV, de Souza AC, dos Santos Lazéra M, Meyer W. Indoor Dust as a Source of Virulent Strains of the Agents of Cryptococcosis in the Rio Negro Micro-Region of the Brazilian Amazon. Microorganisms 2020; 8:microorganisms8050682. [PMID: 32392852 PMCID: PMC7284895 DOI: 10.3390/microorganisms8050682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Cryptococcosis, a potentially fatal mycosis in humans, is acquired via exposure to exogenous environmental sources. This study aimed to investigate the frequency, genetic diversity, and virulence of cryptococcal strains isolated from indoor dust in the Rio Negro micro-region of the Brazilian Amazon. A total of 8.9% of the studied houses were positive, recovering nine Cryptococcus neoformans VNI and 16 C. gattii VGII isolates, revealing an endemic pattern in domestic microenvironments. The International Society for Human and Animal Mycology (ISHAM) consensus multilocus sequence typing (MLST) scheme for the C. neoformans/C. gattii species complexes identified two sequence types (STs), ST93 and ST5, amongst C. neoformans isolates and six STs amongst C. gattii isolates, including the Vancouver Island Outbreak ST7 (VGIIa) and ST20 (VGIIb), the Australian ST5, and ST264, ST268 and ST445, being unique to the studied region. Virulence studies in the Galleria mellonella model showed that five C.gattii strains and one C. neoformans strain showed a similar pathogenic potential to the highly virulent Vancouver Island outbreak strain CDR265 (VGIIa). The findings of this study indicate that humans can be exposed to the agents of cryptococcosis via house dust, forming the basis for future studies to analyze the impact of early and continuous exposure to indoor dust on the development of subclinical or clinical infections.
Collapse
Affiliation(s)
- Fábio Brito-Santos
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, FIOCRUZ, Rio de Janeiro 21040-900, Brazil (L.T.); (B.W.); (J.P.C.); (M.S.L.)
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney 2006, NSW, Australia;
| | - Luciana Trilles
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, FIOCRUZ, Rio de Janeiro 21040-900, Brazil (L.T.); (B.W.); (J.P.C.); (M.S.L.)
| | - Carolina Firacative
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney 2006, NSW, Australia;
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 541038, Colombia
| | - Bodo Wanke
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, FIOCRUZ, Rio de Janeiro 21040-900, Brazil (L.T.); (B.W.); (J.P.C.); (M.S.L.)
| | - Filipe Anibal Carvalho-Costa
- Laboratory of Molecular Epidemiology and Systematics, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil;
| | | | - Jonas Pereira Campos
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, FIOCRUZ, Rio de Janeiro 21040-900, Brazil (L.T.); (B.W.); (J.P.C.); (M.S.L.)
| | | | - Amanda Coutinho de Souza
- Laboratory of Parasitology, Oswaldo Cruz Institute, Rio de Janeiro 21040-900, Brazil; (A.C.V.J.)
| | - Márcia dos Santos Lazéra
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, FIOCRUZ, Rio de Janeiro 21040-900, Brazil (L.T.); (B.W.); (J.P.C.); (M.S.L.)
| | - Wieland Meyer
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, FIOCRUZ, Rio de Janeiro 21040-900, Brazil (L.T.); (B.W.); (J.P.C.); (M.S.L.)
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney 2006, NSW, Australia;
- Correspondence: ; Tel.: +61-2-86273430
| |
Collapse
|
6
|
Acheson ES, Galanis E, Bartlett K, Klinkenberg B. Climate Classification System-Based Determination of Temperate Climate Detection of Cryptococcus gattii sensu lato. Emerg Infect Dis 2020; 25:1723-1726. [PMID: 31441746 PMCID: PMC6711209 DOI: 10.3201/eid2509.181884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We compared 2 climate classification systems describing georeferenced environmental Cryptococcus gattii sensu lato isolations occurring during 1989–2016. Each system suggests the fungus was isolated in temperate climates before the 1999 outbreak on Vancouver Island, British Columbia, Canada. However, the Köppen-Geiger system is more precise and should be used to define climates where pathogens are detected.
Collapse
|
7
|
Setianingrum F, Rautemaa-Richardson R, Denning DW. Pulmonary cryptococcosis: A review of pathobiology and clinical aspects. Med Mycol 2019; 57:133-150. [PMID: 30329097 DOI: 10.1093/mmy/myy086] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023] Open
Abstract
Pulmonary cryptococcosis is an important opportunistic invasive mycosis in immunocompromised patients, but it is also increasingly seen in immunocompetent patients. The main human pathogens are Cryptococcus neoformans and C. gattii, which have a worldwide distribution. In contrast to cryptococcal meningitis, pulmonary cryptococcosis is still underdiagnosed because of limitations in diagnostic tools. It can mimic lung cancer, pulmonary tuberculosis, bacterial pneumonia, and other pulmonary mycoses both clinically and radiologically. Pulmonary nodules are the most common radiological feature, but these are not specific to pulmonary cryptococcosis. The sensitivity of culture of respiratory samples for Cryptococcus is poor and a positive result may also reflect colonisation. Cryptococcal antigen (CrAg) with lateral flow device is a fast and sensitive test and widely used on serum and cerebrospinal fluid, but sera from patients with pulmonary cryptococcosis are rarely positive in the absence of disseminated disease. Detection of CrAg from respiratory specimens might assist the diagnosis of pulmonary cryptococcosis but there are very few data. Molecular detection techniques such as multiplex reverse transcription polymerase chain reaction (RT-PCR) could also provide better sensitivity but these still require validation for respiratory specimens. The first line of treatment for pulmonary cryptococcosis is fluconazole, or amphotericin B and flucytosine for those with central nervous system involvement. Pulmonary cryptococcosis worsens the prognosis of cryptococcal meningitis. In this review, we summarize the biological aspects of Cryptococcus and provide an update on the diagnosis and management of pulmonary cryptococcosis.
Collapse
Affiliation(s)
- Findra Setianingrum
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Parasitology Department, Universitas Indonesia, Jakarta, Indonesia
| | - Riina Rautemaa-Richardson
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Mycology Reference Centre Manchester, ECMM Centre of Excellence in Clinical and Laboratory Mycology and Clinical Studies, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Department of Infectious Diseases, Wythenshawe Hospital Manchester University NHS Foundation Trust, Manchester, UK
| | - David W Denning
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Department of Infectious Diseases, Wythenshawe Hospital Manchester University NHS Foundation Trust, Manchester, UK
- National Aspergillosis Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
8
|
Acheson ES, Galanis E, Bartlett K, Mak S, Klinkenberg B. Searching for clues for eighteen years: Deciphering the ecological determinants of Cryptococcus gattii on Vancouver Island, British Columbia. Med Mycol 2018; 56:129-144. [PMID: 28525610 DOI: 10.1093/mmy/myx037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 04/06/2017] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus gattii emerged on Vancouver Island in 1999 for unknown reasons, causing human and animal fatalities and illness. The apparent emergence of this fungus in another temperate area, this time in the Pacific Northwest, suggests the fungus may have expanded its ecological niche. Yet studies that directly examine the potential roles of climatic and land use changes on C. gattii are still lacking. We aim to summarize the existing global literature on the ecology of C. gattii, with particular focus on the gap in knowledge surrounding the potential effects of climatic and land use changes. We systematically reviewed English peer-reviewed literature on the ecological determinants of C. gattii. We included studies published from January 1970 through June 2016 and identified 56 relevant studies for our review. We identified environmental isolations of C. gattii from 18 countries, spanning 72 separate regions across six continents. Fifty-three tree species were associated with C. gattii, spanning 10 climate classifications and 36 terrestrial ecoregions. No studies directly tested the potential effects of climatic changes (including climatic oscillations and global climate change) on C. gattii, while only one study directly assessed those of land use change. To improve model predictions of current and future distributions of C. gattii, more focus is needed on the potential effects of climatic and land use changes to help decrease the public health risk. The apparent emergence of C. gattii in British Columbia is also an opportunity to explore the factors behind emerging infectious diseases in Canada and elsewhere.
Collapse
Affiliation(s)
- Emily Sohanna Acheson
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, Canada, V6T 1Z2
| | - Eleni Galanis
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada, V5Z 4R4.,School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Karen Bartlett
- School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Sunny Mak
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada, V5Z 4R4
| | - Brian Klinkenberg
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, British Columbia, Canada, V6T 1Z2
| |
Collapse
|
9
|
Phenotypic Variability Correlates with Clinical Outcome in Cryptococcus Isolates Obtained from Botswanan HIV/AIDS Patients. mBio 2018; 9:mBio.02016-18. [PMID: 30352938 PMCID: PMC6199498 DOI: 10.1128/mbio.02016-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pathogenic species of Cryptococcus cause hundreds of thousands of deaths annually. Considerable phenotypic variation is exhibited during infection, including increased capsule size, capsule shedding, giant cells (≥15 μm), and micro cells (≤1 μm). We examined 70 clinical isolates of Cryptococcus neoformans and Cryptococcus tetragattii from HIV/AIDS patients in Botswana to determine whether the capacity to produce morphological variants was associated with clinical parameters. Isolates were cultured under conditions designed to simulate in vivo stresses. Substantial variation was seen across morphological and clinical data. Giant cells were more common in C. tetragattii, while micro cells and shed capsule occurred in C. neoformans only. Phenotypic variables fell into two groups associated with differing symptoms. The production of "large" phenotypes (greater cell and capsule size and giant cells) was associated with higher CD4 count and was negatively correlated with intracranial pressure indicators, suggesting that these are induced in early stage infection. "Small" phenotypes (micro cells and shed capsule) were associated with lower CD4 counts, negatively correlated with meningeal inflammation indicators, and positively correlated with intracranial pressure indicators, suggesting that they are produced later during infection and may contribute to immune suppression and promote proliferation and dissemination. These trends persisted at the species level, indicating that they were not driven by association with particular Cryptococcus species. Isolates possessing giant cells, micro cells, and shed capsule were rare, but strikingly, they were associated with patient death (P = 0.0165). Our data indicate that pleomorphism is an important driver in Cryptococcus infection.IMPORTANCE Cryptococcosis results in hundreds of thousands of deaths annually, predominantly in sub-Saharan Africa. Cryptococcus is an encapsulated yeast, and during infection, cells have the capacity for substantial morphological changes, including capsule enlargement and shedding and variations in cell shape and size. In this study, we examined 70 Cryptococcus isolates causing meningitis in HIV/AIDS patients in Botswana in order to look for associations between phenotypic variation and clinical symptoms. Four variant phenotypes were seen across strains: giant cells of ≥15 µm, micro cells of ≤1 µm, shed extracellular capsule, and irregularly shaped cells. We found that "large" and "small" phenotypes were associated with differing disease symptoms, indicating that their production may be important during the disease process. Overall, our study indicates that Cryptococcus strains that can switch on cell types under different situations may be more able to sustain infection and resist the host response.
Collapse
|
10
|
Investigating Clinical Issues by Genotyping of Medically Important Fungi: Why and How? Clin Microbiol Rev 2017; 30:671-707. [PMID: 28490578 DOI: 10.1128/cmr.00043-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genotyping studies of medically important fungi have addressed elucidation of outbreaks, nosocomial transmissions, infection routes, and genotype-phenotype correlations, of which secondary resistance has been most intensively investigated. Two methods have emerged because of their high discriminatory power and reproducibility: multilocus sequence typing (MLST) and microsatellite length polymorphism (MLP) using short tandem repeat (STR) markers. MLST relies on single-nucleotide polymorphisms within the coding regions of housekeeping genes. STR polymorphisms are based on the number of repeats of short DNA fragments, mostly outside coding regions, and thus are expected to be more polymorphic and more rapidly evolving than MLST markers. There is no consensus on a universal typing system. Either one or both of these approaches are now available for Candida spp., Aspergillus spp., Fusarium spp., Scedosporium spp., Cryptococcus neoformans, Pneumocystis jirovecii, and endemic mycoses. The choice of the method and the number of loci to be tested depend on the clinical question being addressed. Next-generation sequencing is becoming the most appropriate method for fungi with no MLP or MLST typing available. Whatever the molecular tool used, collection of clinical data (e.g., time of hospitalization and sharing of similar rooms) is mandatory for investigating outbreaks and nosocomial transmission.
Collapse
|
11
|
Chen SC, Sorrell TC, Chang CC, Paige EK, Bryant PA, Slavin MA. Consensus guidelines for the treatment of yeast infections in the haematology, oncology and intensive care setting, 2014. Intern Med J 2015; 44:1315-32. [PMID: 25482743 DOI: 10.1111/imj.12597] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pathogenic yeast forms are commonly associated with invasive fungal disease in the immunocompromised host, including patients with haematological malignancies and patients of haemopoietic stem cell transplants. Yeasts include the Candida spp., Cryptococcus spp., Pneumocystis jirovecii and some lesser-known pathogens. Candida species remain the most common cause of invasive yeast infections (and the most common human pathogenic fungi). These guidelines present evidence-based recommendations for the antifungal management of established, invasive yeast infections in adult and paediatric patients in the haematology/oncology setting. Consideration is also given to the critically ill patient in intensive care units, including the neonatal intensive care unit. Evidence for 'pre-emptive' or 'diagnostic-driven antifungal therapy' is also discussed. For the purposes of this paper, invasive yeast diseases are categorised under the headings of invasive candidiasis, cryptococcosis and uncommon yeast infections. Specific recommendations for the management of Pneumocystis jirovecii are presented in an accompanying article (see consensus guidelines by Cooley et al. appearing elsewhere in this supplement).
Collapse
Affiliation(s)
- S C Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, Westmead, New South Wales; Department of Infectious Diseases, Westmead Hospital, Westmead, New South Wales; Sydney Medical School, The University of Sydney, Sydney, New South Wales
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Understanding of the taxonomy and phylogeny of Cryptococcus gattii has been advanced by modern molecular techniques. C. gattii probably diverged from Cryptococcus neoformans between 16 million and 160 million years ago, depending on the dating methods applied, and maintains diversity by recombining in nature. South America is the likely source of the virulent C. gattii VGII molecular types that have emerged in North America. C. gattii shares major virulence determinants with C. neoformans, although genomic and transcriptomic studies revealed that despite similar genomes, the VGIIa and VGIIb subtypes employ very different transcriptional circuits and manifest differences in virulence phenotypes. Preliminary evidence suggests that C. gattii VGII causes severe lung disease and death without dissemination, whereas C. neoformans disseminates readily to the central nervous system (CNS) and causes death from meningoencephalitis. Overall, currently available data indicate that the C. gattii VGI, VGII, and VGIII molecular types more commonly affect nonimmunocompromised hosts, in contrast to VGIV. New, rapid, cheap diagnostic tests and imaging modalities are assisting early diagnosis and enabling better outcomes of cerebral cryptococcosis. Complications of CNS infection include increased intracranial pressure, severe neurological sequelae, and development of immune reconstitution syndrome, although the mortality rate is low. C. gattii VGII isolates may exhibit higher fluconazole MICs than other genotypes. Optimal therapeutic regimens are yet to be determined; in most cases, initial therapy with amphotericin B and 5-flucytosine is recommended.
Collapse
|
13
|
Polvi EJ, Li X, O’Meara TR, Leach MD, Cowen LE. Opportunistic yeast pathogens: reservoirs, virulence mechanisms, and therapeutic strategies. Cell Mol Life Sci 2015; 72:2261-87. [PMID: 25700837 PMCID: PMC11113693 DOI: 10.1007/s00018-015-1860-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
Abstract
Life-threatening invasive fungal infections are becoming increasingly common, at least in part due to the prevalence of medical interventions resulting in immunosuppression. Opportunistic fungal pathogens of humans exploit hosts that are immunocompromised, whether by immunosuppression or genetic predisposition, with infections originating from either commensal or environmental sources. Fungal pathogens are armed with an arsenal of traits that promote pathogenesis, including the ability to survive host physiological conditions and to switch between different morphological states. Despite the profound impact of fungal pathogens on human health worldwide, diagnostic strategies remain crude and treatment options are limited, with resistance to antifungal drugs on the rise. This review will focus on the global burden of fungal infections, the reservoirs of these pathogens, the traits of opportunistic yeast that lead to pathogenesis, host genetic susceptibilities, and the challenges that must be overcome to combat antifungal drug resistance and improve clinical outcome.
Collapse
Affiliation(s)
- Elizabeth J. Polvi
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
| | - Xinliu Li
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
| | - Teresa R. O’Meara
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
| | - Michelle D. Leach
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
14
|
Espinel-Ingroff A, Kidd SE. Current trends in the prevalence of Cryptococcus gattii in the United States and Canada. Infect Drug Resist 2015; 8:89-97. [PMID: 25999744 PMCID: PMC4437038 DOI: 10.2147/idr.s57686] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The incidence of Cryptococcus gattii infections in both Canada and the United States (US) is provided in this literature review beyond the British Columbia (BC) outbreak (1999-2013). Based on a search of the literature, case reports of C. gattii human infections including the prevalent molecular genotypes causing these infections in both Canada and the US have been documented since the C. gattii outbreak in BC. The literature reveals that: i) although C. gattii infections continue to be reported in both countries, the preliminary overall number of confirmed C. gattii infections may be decreasing in both Canada and the US (~23 cases each in 2012 versus ~17 and 20 cases, respectively in 2013); ii) C. gattii genotype distribution is region-dependent; iii) C. gattii is more frequently isolated from infections in the immunocompromised host (including acquired immune deficiency syndrome [AIDS] infection) than previously expected; iv) although pulmonary disease is higher than in C. neoformans infections, central nervous system disease is also reported among patients infected with C. gattii.
Collapse
Affiliation(s)
| | - Sarah E Kidd
- National Mycology Reference Center, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
15
|
Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, Falk R, Parnmen S, Lumbsch HT, Boekhout T. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol 2015; 78:16-48. [PMID: 25721988 DOI: 10.1016/j.fgb.2015.02.009] [Citation(s) in RCA: 473] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/12/2015] [Accepted: 02/15/2015] [Indexed: 02/08/2023]
Abstract
Phylogenetic analysis of 11 genetic loci and results from many genotyping studies revealed significant genetic diversity with the pathogenic Cryptococcus gattii/Cryptococcus neoformans species complex. Genealogical concordance, coalescence-based, and species tree approaches supported the presence of distinct and concordant lineages within the complex. Consequently, we propose to recognize the current C. neoformans var. grubii and C. neoformans var. neoformans as separate species, and five species within C. gattii. The type strain of C. neoformans CBS132 represents a serotype AD hybrid and is replaced. The newly delimited species differ in aspects of pathogenicity, prevalence for patient groups, as well as biochemical and physiological aspects, such as susceptibility to antifungals. MALDI-TOF mass spectrometry readily distinguishes the newly recognized species.
Collapse
Affiliation(s)
- Ferry Hagen
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands; Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Kantarawee Khayhan
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands; Department of Microbiology and Parasitology, Faculty of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Bart Theelen
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands
| | - Anna Kolecka
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands
| | - Itzhack Polacheck
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Edward Sionov
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel; Department of Food Quality & Safety, Institute for Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Rama Falk
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel; Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir-David, Israel
| | - Sittiporn Parnmen
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Teun Boekhout
- CBS-KNAW Fungal Biodiversity Centre, Basidiomycete and Yeast Research, Utrecht, The Netherlands; Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China; Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Dou H, Xu Y, Li T. Application of the DiversiLab system for tracing the source of the mixed infections caused byCryptococcus neoformansvar.grubiifrom a patient with systemic lupus erythematosus. Mycoses 2015; 58:149-59. [PMID: 25591136 DOI: 10.1111/myc.12291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/25/2014] [Accepted: 12/15/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Hongtao Dou
- Department of Clinical Laboratory; Peking Union Medical College Hospital; Peking Union Medical College; Chinese Academy of Medical Sciences; Beijing China
| | - Yingchun Xu
- Department of Clinical Laboratory; Peking Union Medical College Hospital; Peking Union Medical College; Chinese Academy of Medical Sciences; Beijing China
| | - Taisheng Li
- Department of Infectious Diseases; Peking Union Medical College Hospital; Peking Union Medical College; Chinese Academy of Medical Sciences; Beijing China
| |
Collapse
|
17
|
Fang W, Fa Z, Liao W. Epidemiology of Cryptococcus and cryptococcosis in China. Fungal Genet Biol 2014; 78:7-15. [PMID: 25445309 DOI: 10.1016/j.fgb.2014.10.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/17/2022]
Abstract
Cryptococcosis is a significant invasive fungal infection with noteworthy morbidity and mortality, primarily caused by Cryptococcus neoformans and Cryptococcus gattii. In China, C. neoformans var. grubii (especially molecular type VNI) is the most common variety in the environment and responsible for the majority of cryptococcal infections. C. gattii infections are quite rare in China and the primary molecular type is VGI, which is closely related to C. gattii isolates in Australia. Interestingly, the majority of cryptococcosis in China were reported in the HIV-uninfected patients (especially immunocompetent hosts). This unique phenomenon may be attributed to multiple polymorphisms in the genes encoding mannose-binding lectin (MBL) and Fc-gamma receptor 2B (FCGR2B) in the Han population, the major ethnic group in China. Compared to immunocompromised patients, immunocompetent patients with cryptococcal meningitis often presented with more intense inflammatory responses and more severe neurological complications, but less fungal burdens and disseminated infection. The overall prognosis, which is independently associated with amphotericin B-based initial therapy, is similar between immunocompetent and immunocompromised patients. In addition, intrathecal administration of amphotericin B has been proved to be an effective adjunctive treatment for cryptococcosis in China.
Collapse
Affiliation(s)
- Wei Fang
- Department of Dermatology and Venereology, Changzheng Hospital, Shanghai, China
| | - Zhenzong Fa
- Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Shanghai, China
| | - Wanqing Liao
- Department of Dermatology and Venereology, Changzheng Hospital, Shanghai, China; Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Shanghai, China.
| |
Collapse
|
18
|
Insights on the genotype distribution among Cryptococcus neoformans and C. gattii Portuguese clinical isolates. Curr Microbiol 2014; 68:199-203. [PMID: 24077953 DOI: 10.1007/s00284-013-0452-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
Abstract
This study provides a comprehensive picture of the C. neoformans/C. gattii molecular types most often associated with human cryptococcosis in Portugal and assesses the impact of C. gattii in these infections. One hundred and twenty-two clinical isolates, from distinct patients, were identified as C. neoformans and genotyped by URA5-RFLP, with the molecular types VNI (45.5 %) and VNIII (30.9 %) being the most commonly found ones. The molecular types VNII (11.4 %) and VNIV (11.4 %) were less abundant. One patient was found to be infected with a VGII isolate. This patient exhibited unusual clinical symptoms of cryptococcosis, reinforcing the suspicion for the presence of a different genotypic pattern, as determined afterwards. This case was detected in 2007 and is the first report of a potential autochthonous C. gattii infection case in Portugal, as the patient revealed no historical record of travelling outside the country.
Collapse
|
19
|
La Hoz RM, Pappas PG. Cryptococcal infections: changing epidemiology and implications for therapy. Drugs 2014; 73:495-504. [PMID: 23575940 DOI: 10.1007/s40265-013-0037-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although the incidence of HIV-associated cryptococcosis has decreased in developed countries since the introduction of antiretroviral therapy, this disease continues to cause significant morbidity and mortality in sub-Saharan Africa among patients with AIDS. Important strides have been made in an attempt to decrease the burden of disease, particularly the development of the lateral flow assay cryptococcal antigen (LFA CrAg) as a diagnostic tool in resource-limited settings, coupled with the introduction of pre-emptive treatment with fluconazole for HIV-positive patients at risk for cryptococcosis with a positive LFA CrAg. Among solid organ transplant recipients, recent prospective studies have identified cryptococcosis as the third most common invasive fungal infection, and progress is being made toward earlier diagnosis and more effective therapy. Finally, the Cryptococcus gattii outbreak in British Columbia, Canada and the US Pacific Northwest is providing important new insights into the emergence of this pathogen in geographic areas previously considered low risk for acquisition of infection. Understanding the similarities and differences among C. gattii and C. neoformans infections will provide critical insights into the behavior of these organisms in the human host. Both pathogens affect immunocompetent and immunosuppressed hosts, causing pulmonary, central nervous system and widely disseminated infections. Treatment recommendations in the future will necessarily take into account the site of infection, clinical severity of the infection, Cryptococcus species, host immune status and economic resources.
Collapse
Affiliation(s)
- Ricardo M La Hoz
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, 1900 University Blvd, THT 229, Birmingham, AL 35294-0006, USA
| | | |
Collapse
|
20
|
Paula DAD, Almeida ABFD, Cruz FSD, Furlan FH, Colodel EM, Sousa VR, Nakazato L, Dutra V. Occurrence and molecular characterization of cryptococcosis in dogs and cats in Mato Grosso, Brazil. PESQUISA VETERINARIA BRASILEIRA 2014. [DOI: 10.1590/s0100-736x2014000200012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cryptococcosis is an infection that affects humans and animals, the etiology is attributed to Cryptococcus neoformans variety neoformans, C. neoformans var. grubii and Cryptococcus gattii. The infection is common in dogs and cats, causing respiratory, neurological, cutaneous and ocular infections. Aiming to better understand the epidemiology of cryptococcosis in animals in the region, this paper describe the occurrence and characterization of the Cryptococcus species involved in this illness in pet animals at Mato Grosso State, Brazil. Clinical samples of four cases, two in cats and two dogs, were submitted for pathological, microbiological and molecular analysis. Microscopically, in three cases, tissue sections stained with hematoxylin and eosin had absence to severe granulomatous reaction composed by histiocytes, multinucleated cells and lymphocytes infiltration. In one case, citological imprint analysis showed similar inflammatory mainly mononuclear and lymphocyte cells infiltration. All cases had variable amounts of intracellular and extracellular fungal structures compatible with Cryptococcus sp. on Periodic Acid-Schiff (PAS) stain. All clinical samples were positive for culture on Sabouraud Dextrose Agar (SDA) and morphologically classified as Cryptococcus sp. The isolates were PCR positive for C. gatti, being confirmed by sequencing technique. The findings characterize the molecular species involved in animal infections in the region, and may contribute to future studies of the epidemiology of C. gattii.
Collapse
|
21
|
Kaocharoen S, Ngamskulrungroj P, Firacative C, Trilles L, Piyabongkarn D, Banlunara W, Poonwan N, Chaiprasert A, Meyer W, Chindamporn A. Molecular epidemiology reveals genetic diversity amongst isolates of the Cryptococcus neoformans/C. gattii species complex in Thailand. PLoS Negl Trop Dis 2013; 7:e2297. [PMID: 23861989 PMCID: PMC3701708 DOI: 10.1371/journal.pntd.0002297] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/23/2013] [Indexed: 12/22/2022] Open
Abstract
To gain a more detailed picture of cryptococcosis in Thailand, a retrospective study of 498 C. neoformans and C. gattii isolates has been conducted. Among these, 386, 83 and 29 strains were from clinical, environmental and veterinary sources, respectively. A total of 485 C. neoformans and 13 C. gattii strains were studied. The majority of the strains (68.9%) were isolated from males (mean age of 37.97 years), 88.5% of C. neoformans and only 37.5% of C. gattii strains were from HIV patients. URA5-RFLP and/or M13 PCR-fingerprinting analysis revealed that the majority of the isolates were C. neoformans molecular type VNI regardless of their sources (94.8%; 94.6% of the clinical, 98.8% of the environmental and 86.2% of the veterinary isolates). In addition, the molecular types VNII (2.4%; 66.7% of the clinical and 33.3% of the veterinary isolates), VNIV (0.2%; 100% environmental isolate), VGI (0.2%; 100% clinical isolate) and VGII (2.4%; 100% clinical isolates) were found less frequently. Multilocus Sequence Type (MLST) analysis using the ISHAM consensus MLST scheme for the C. neoformans/C. gattii species complex identified a total of 20 sequence types (ST) in Thailand combining current and previous data. The Thai isolates are an integrated part of the global cryptococcal population genetic structure, with ST30 for C. gattii and ST82, ST83, ST137, ST141, ST172 and ST173 for C. neoformans being unique to Thailand. Most of the C. gattii isolates were ST7 = VGIIb, which is identical to the less virulent minor Vancouver island outbreak genotype, indicating Thailand as a stepping stone in the global spread of this outbreak strain. The current study revealed a greater genetic diversity and a wider range of major molecular types being present amongst Thai cryptococcal isolates than previously reported.
Collapse
Affiliation(s)
- Sirada Kaocharoen
- Mycology Laboratory, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Molecular Mycology Research Laboratory, CIDM, Sydney Medical School - Westmead Hospital, The University of Sydney, Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - Popchai Ngamskulrungroj
- Molecular Mycology Research Laboratory, CIDM, Sydney Medical School - Westmead Hospital, The University of Sydney, Westmead Millennium Institute, Westmead, New South Wales, Australia
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Carolina Firacative
- Molecular Mycology Research Laboratory, CIDM, Sydney Medical School - Westmead Hospital, The University of Sydney, Westmead Millennium Institute, Westmead, New South Wales, Australia
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Luciana Trilles
- Molecular Mycology Research Laboratory, CIDM, Sydney Medical School - Westmead Hospital, The University of Sydney, Westmead Millennium Institute, Westmead, New South Wales, Australia
- Laboratório de Micologia, Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Dumrongdej Piyabongkarn
- Mycology Laboratory, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Natteewan Poonwan
- Mycology Laboratory, National Institute of Health, Nonthaburi, Thailand
| | - Angkana Chaiprasert
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, CIDM, Sydney Medical School - Westmead Hospital, The University of Sydney, Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - Ariya Chindamporn
- Mycology Laboratory, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
22
|
Mazza M, Refojo N, Bosco-Borgeat ME, Taverna CG, Trovero AC, Rogé A, Davel G. Cryptococcus gattiiin urban trees from cities in North-eastern Argentina. Mycoses 2013; 56:646-50. [DOI: 10.1111/myc.12084] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/04/2013] [Accepted: 04/06/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Mariana Mazza
- Mycology Department; INEI ‘Dr. Carlos G. Malbrán’- ANLIS. Ciudad Autónoma de Buenos Aires; Argentina
| | - Nicolás Refojo
- Mycology Department; INEI ‘Dr. Carlos G. Malbrán’- ANLIS. Ciudad Autónoma de Buenos Aires; Argentina
| | | | - Constanza Giselle Taverna
- Mycology Department; INEI ‘Dr. Carlos G. Malbrán’- ANLIS. Ciudad Autónoma de Buenos Aires; Argentina
| | | | - Ariel Rogé
- Antigens and Antisera Laboratory; INPB - ANLIS. Ciudad Autónoma de Buenos Aires; Argentina
| | - Graciela Davel
- Mycology Department; INEI ‘Dr. Carlos G. Malbrán’- ANLIS. Ciudad Autónoma de Buenos Aires; Argentina
| |
Collapse
|
23
|
Tseng HK, Liu CP, Ho MW, Lu PL, Lo HJ, Lin YH, Cho WL, Chen YC. Microbiological, epidemiological, and clinical characteristics and outcomes of patients with cryptococcosis in Taiwan, 1997-2010. PLoS One 2013; 8:e61921. [PMID: 23613973 PMCID: PMC3629109 DOI: 10.1371/journal.pone.0061921] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/15/2013] [Indexed: 01/24/2023] Open
Abstract
Background Among members of Cryptococcus neoformans- Cryptococcus gattii species complex, C. neoformans is distributed worldwide whereas C. gattii is considered to be more prevalent in the subtropics and tropics including Taiwan. This nationwide study was undertaken to determine the distribution of genotypes, clinical characteristics and outcomes of 219 patients with proven cryptococcosis at 20 hospitals representative of all geographic areas in Taiwan during 1997–2010. Methods and Findings Of 219 isolates analyzed, C. neoformans accounted for 210 isolates (95.9%); nine isolates were C. gattii (4.1%). The predominant genotype was VNI (206 isolates). The other genotypes included VNII (4 isolates), VGI (3 isolates) and VGII (6 isolates). Antifungal minimal inhibition concentrations higher than epidemiologic cutoff values (ECVs) were found in nine VNI isolates (7 for amphotericin B). HIV infection was the most common underlying condition (54/219, 24.6%). Among HIV-negative patients, liver diseases (HBV carrier or cirrhosis) were common (30.2%) and 15.4% did not have any underlying condition. Meningoencephalitis was the most common presentation (58.9%), followed by pulmonary infection (19.6%) and “others” (predominantly cryptococcemia) (18.7%). The independent risk factors for 10-week mortality, by multivariate analysis, were cirrhosis of liver (P = 0.014) and CSF cryptococcal antigen titer ≥512 (P = 0.020). All except one of 54 HIV-infected patients were infected by VNI genotype (98.1%). Of the 13 isolates of genotypes other than VNI, 12 (92.3%) were isolated from HIV-negative patients. HIV-infected patients compared to HIV-negative patients were more likely to have meningoencephalitis and serum cryptococcal antigen ≥1∶512. Patients infected with C. gattii compared to C. neoformans were younger, more likely to have meningoencephalitis (100% vs. 57%), reside in Central Taiwan (56% vs. 31%), and higher 10-week crude mortality (44.4% vs. 22.2%). Conclusions Cryptococcus neoformans in Taiwan, more prevalent than C. gatii, has a predominant VNI genotype. Isolates with antifungal MIC higher than ECVs were rare.
Collapse
Affiliation(s)
- Hsiang-Kuang Tseng
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Mackay Memorial Hospital, Zhongshan District, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Mackay Medicine Nursing and Management College, Taipei, Taiwan
| | - Chang-Pan Liu
- Division of Infectious Diseases, Department of Internal Medicine, Mackay Memorial Hospital, Zhongshan District, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Mackay Medicine Nursing and Management College, Taipei, Taiwan
| | - Mao-Wang Ho
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Po-Liang Lu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiu-Jung Lo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- School of Dentistry, China Medical University, Taichung, Taiwan
| | - Yu-Hui Lin
- Division of Infectious Diseases, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Long Cho
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- * E-mail: (YCC); (WLC)
| | - Yee-Chun Chen
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- * E-mail: (YCC); (WLC)
| | | |
Collapse
|
24
|
Mortenson JA, Bartlett KH, Wilson RW, Lockhart SR. Detection of Cryptococcus gattii in selected urban parks of the Willamette Valley, Oregon. Mycopathologia 2013; 175:351-5. [PMID: 23354596 DOI: 10.1007/s11046-013-9614-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
Human and animal infections of the fungus Cryptococcus gattii have been recognized in Oregon since 2006. Transmission is primarily via airborne environmental spores and now thought to be locally acquired due to infection in non-migratory animals and humans with no travel history. Previous published efforts to detect C. gattii from tree swabs and soil samples in Oregon have been unsuccessful. This study was conducted to determine the presence of C. gattii in selected urban parks of Oregon cities within the Willamette Valley where both human and animal cases of C. gattii have been diagnosed. Urban parks were sampled due to spatial and temporal overlap of humans, companion animals and wildlife. Two of 64 parks had positive samples for C. gattii. One park had a positive tree and the other park, 60 miles away, had positive bark mulch samples from a walkway. Genotypic subtypes identified included C. gattii VGIIa and VGIIc, both considered highly virulent in murine host models.
Collapse
|
25
|
Chowdhary A, Prakash A, Randhawa HS, Kathuria S, Hagen F, Klaassen CH, Meis JF. First environmental isolation ofCryptococcus gattii, genotype AFLP5, from India and a global review. Mycoses 2013; 56:222-8. [DOI: 10.1111/myc.12039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Cogliati M. Global Molecular Epidemiology of Cryptococcus neoformans and Cryptococcus gattii: An Atlas of the Molecular Types. SCIENTIFICA 2013; 2013:675213. [PMID: 24278784 PMCID: PMC3820360 DOI: 10.1155/2013/675213] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/11/2012] [Indexed: 05/08/2023]
Abstract
Cryptococcosis is a fungal disease affecting more than one million people per year worldwide. The main etiological agents of cryptococcosis are the two sibling species Cryptococcus neoformans and Cryptococcus gattii that present numerous differences in geographical distribution, ecological niches, epidemiology, pathobiology, clinical presentation and molecular characters. Genotyping of the two Cryptococcus species at subspecies level supplies relevant information to understand how this fungus has spread worldwide, the nature of its population structure, and how it evolved to be a deadly pathogen. At present, nine major molecular types have been recognized: VNI, VNII, VNB, VNIII, and VNIV among C. neoformans isolates, and VGI, VGII, VGIII, and VGIV among C. gattii isolates. In this paper all the information available in the literature concerning the isolation of the two Cryptococcus species has been collected and analyzed on the basis of their geographical origin, source of isolation, level of identification, species, and molecular type. A detailed analysis of the geographical distribution of the major molecular types in each continent has been described and represented on thematic maps. This study represents a useful tool to start new epidemiological surveys on the basis of the present knowledge.
Collapse
Affiliation(s)
- Massimo Cogliati
- Lab. Micologia Medica, Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
- *Massimo Cogliati:
| |
Collapse
|
27
|
Pappas PG. Cryptococcal infections in non-HIV-infected patients. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2013; 124:61-79. [PMID: 23874010 PMCID: PMC3715903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Infections due to Cryptococcus species occur globally and in a wide variety of hosts, ranging from those who are severely immunosuppressed to those who have phenotypically "normal" immune systems. Approximately 1 million cases of cryptococcosis occur throughout the world, and is it estimated that there are 650,000 associated deaths annually. Most of these cases occur among patients with advanced HIV disease, but a growing number occur among solid organ transplant recipients and others receiving exogenous immunosuppression, patients with innate and acquired immunodeficiency, and otherwise immunologically normal hosts. Much of our recent knowledge is solely derived from clinical experience over the last 2 to 3 decades of cryptococcosis among HIV-infected patients. However, based on recent observations, it is clear that there are substantial differences in the epidemiology, clinical features, approaches to therapy, and outcome when comparing HIV-infected to non-HIV-infected individuals who have cryptococcosis. If one carefully examines cryptococcosis in the three largest subgroups of patients based on host immune status, specifically, those with HIV, solid organ transplant recipients, and those who are non-HIV, non-transplant (NHNT) infected persons, then one can observe very different risks for infection, varied clinical presentations, long-term complications, mortality, and approaches to therapy. This article focuses on cryptococcosis in the non-HIV-infected patient, including a brief review of ongoing events in the Pacific Northwest of the United States and Canada relative to the outbreak of Cryptococcus gattii infections among a largely immunologically normal population, and highlights some of the key insights and questions which have emerged as a result of these important new observations.
Collapse
Affiliation(s)
- Peter G Pappas
- Division of Infectious Diseases, University of Alabama at Birmingham, 1900 University Blvd, 229 THT, Birmingham, AL 35294-0006, USA.
| |
Collapse
|
28
|
Walraven CJ, Gerstein W, Hardison SE, Wormley F, Lockhart SR, Harris JR, Fothergill A, Wickes B, Gober-Wilcox J, Massie L, Ku TSN, Firacative C, Meyer W, Lee SA. Fatal disseminated Cryptococcus gattii infection in New Mexico. PLoS One 2011; 6:e28625. [PMID: 22194869 PMCID: PMC3237461 DOI: 10.1371/journal.pone.0028625] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 11/11/2011] [Indexed: 01/15/2023] Open
Abstract
We report a case of fatal disseminated infection with Cryptococcus gattii in a patient from New Mexico. The patient had no history of recent travel to known C. gattii-endemic areas. Multilocus sequence typing revealed that the isolate belonged to the major molecular type VGIII. Virulence studies in a mouse pulmonary model of infection demonstrated that the strain was less virulent than other C. gattii strains. This represents the first documented case of C. gattii likely acquired in New Mexico.
Collapse
Affiliation(s)
- Carla J. Walraven
- Section of Infectious Diseases, New Mexico Veterans Healthcare System, Albuquerque, New Mexico, United States of America
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
| | - Wendy Gerstein
- Section of Infectious Diseases, New Mexico Veterans Healthcare System, Albuquerque, New Mexico, United States of America
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
| | - Sarah E. Hardison
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Floyd Wormley
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Shawn R. Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Julie R. Harris
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Annette Fothergill
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Brian Wickes
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Julie Gober-Wilcox
- Section of Infectious Diseases, New Mexico Veterans Healthcare System, Albuquerque, New Mexico, United States of America
| | - Larry Massie
- Section of Infectious Diseases, New Mexico Veterans Healthcare System, Albuquerque, New Mexico, United States of America
| | - T. S. Neil Ku
- Section of Infectious Diseases, New Mexico Veterans Healthcare System, Albuquerque, New Mexico, United States of America
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
| | - Carolina Firacative
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, Sydney Medical School - Westmead Hospital, The University of Sydney, New South Wales, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, Sydney Medical School - Westmead Hospital, The University of Sydney, New South Wales, Australia
| | - Samuel A. Lee
- Section of Infectious Diseases, New Mexico Veterans Healthcare System, Albuquerque, New Mexico, United States of America
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
29
|
Cryptococcus gattii: a Review of the Epidemiology, Clinical Presentation, Diagnosis, and Management of This Endemic Yeast in the Pacific Northwest. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.clinmicnews.2011.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Iatta R, Hagen F, Fico C, Lopatriello N, Boekhout T, Montagna MT. Cryptococcus gattii Infection in an Immunocompetent Patient from Southern Italy. Mycopathologia 2011; 174:87-92. [DOI: 10.1007/s11046-011-9493-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/18/2011] [Indexed: 12/20/2022]
|
31
|
Abstract
Infections caused by the emerging pathogen Cryptococcus gattii are increasing in frequency in North America. During the past decade, interest in the pathogen has continued to grow, not only in North America but also in other areas of the world where infections have recently been documented. This review synthesizes existing data and raises issues that remain to be addressed.
Collapse
Affiliation(s)
- Julie Harris
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS C-09, Atlanta, GA 30309 USA.
| | | | | |
Collapse
|
32
|
Ngamskulrungroj P, Serena C, Gilgado F, Malik R, Meyer W. Global VGIIa isolates are of comparable virulence to the major fatal Cryptococcus gattii Vancouver Island outbreak genotype. Clin Microbiol Infect 2011; 17:251-8. [PMID: 20331682 DOI: 10.1111/j.1469-0691.2010.03222.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The ongoing cryptococcosis outbreak on Vancouver Island, BC, Canada, is caused by two VGII sub-genotypes of the primary pathogen, Cryptococcus gattii: VGIIa isolates predominate, whereas VGIIb isolates are rare. Although higher virulence of the VGIIa genotype has been proposed, an unresolved key question is whether VGIIa isolates from other regions are also more virulent than VGIIb isolates. We report the relationship between genotype and virulence for a global collection of C. gattii VGIIa and VGIIb isolates (from Australia, Argentina, Brazil, Canada, Thailand and the USA). In vitro and in vivo virulence studies were conducted. At 37°C, growth [at 18 h: 0.2 optical density (OD) difference, p 0.026; at 36 h: 0.6 OD difference, p 0.036) and mean melanin production (OD = 0.25 vs. OD = 0.15, p 0.059] of VGIIa isolates was greater than that of VGIIb isolates. The inhibitory effect of high temperature on melanin production of VGIIa isolates was less than that of VGIIb isolates (OD = 0.36 vs. OD = 0.69; p 0.001). Capsule production at 37°C of VGIIa isolates was less than that of VGIIb isolates. All VGIIa isolates were fertile, whereas only 17% of VGIIb isolates were fertile (p <0.001). In vivo virulence studies using the BALB/c mice nasal inhalation model revealed that VGIIa isolates were more virulent than VGIIb isolates (p <0.001) independent of their clinical (p 0.003) or environmental origin (p <0.001). This study established a clear association between genotype and virulence of the primary fungal pathogen, C. gattii.
Collapse
Affiliation(s)
- P Ngamskulrungroj
- Molecular Mycology Research Laboratory, Centre for Infectious Disease and Microbiology, Westmead Millennium Institute, Westmead Hospital, Sydney Medical School - Westmead, The University of Sydney, Westmead, NSW, Australia
| | | | | | | | | |
Collapse
|
33
|
Lester SJ, Malik R, Bartlett KH, Duncan CG. Cryptococcosis: update and emergence of Cryptococcus gattii. Vet Clin Pathol 2011; 40:4-17. [PMID: 21244455 DOI: 10.1111/j.1939-165x.2010.00281.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cryptococcosis is a fungal disease that occurs throughout the world. Recent reclassification of Cryptococcus species along with a change in the distribution pattern has prompted reevaluation of the organism and the diseases caused by this pathogen. This review highlights the emergence of Cryptococcus gattii as a primary pathogen in North America and summarizes our current understanding of the disease in mammals and birds.
Collapse
|
34
|
Sidrim JJC, Costa AKF, Cordeiro RA, Brilhante RSN, Moura FEA, Castelo-Branco DSCM, Neto MPDA, Rocha MFG. Molecular methods for the diagnosis and characterization of Cryptococcus: a review. Can J Microbiol 2010; 56:445-58. [PMID: 20657615 DOI: 10.1139/w10-030] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cryptococcosis is a fungal infection caused by yeasts of the genus Cryptococcus, with Cryptococcus neoformans and Cryptococcus gattii as the primary pathogenic species. This disease is a threat to immunocompromised patients, especially those who have AIDS. However, the disease has also been described in healthy individuals. The tests used to identify these microorganisms have limitations that make final diagnosis difficult. However, currently there are specific gene sequences that can be used to detect C. neoformans and C. gattii from clinical specimens and cultures. These sequences can be used for identification, typing, and the study of population genetics. Among the main identification techniques are hybridization, which was the pioneer in molecular identification and development of specific probes for pathogen detection; PCR and other PCR-based methods, particularly nested PCR and multiplex PCR; and sequencing of specific genomic regions that are amplified through PCR, which is especially useful for diagnosis of cryptococcosis caused by unconventional Cryptococcus sp. Concerning microorganism typing, the following techniques have shown the best ability to differentiate between fungal serotypes and molecular types: PCR fingerprinting, PCR-RFLP, AFLP, and MLST. Thus, the accumulation of data generated by molecular methods can have a positive impact on monitoring resistant strains and treating diseases.
Collapse
Affiliation(s)
- José Júlio Costa Sidrim
- Specialized Medical Mycology Center, Federal University of Ceará, Rua Coronel Nunes de Melo, Rodolfo Teófilo, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Burns RE, Mohr FC. Pathology in practice. Severe chronic multifocal to coalescing granulomatous meningoencephalomyelitis, rhinitis and sinusitis, with intralesional yeasts consistent with Cryptococcus spp. J Am Vet Med Assoc 2010; 236:1069-70. [PMID: 20470067 DOI: 10.2460/javma.236.10.1069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Rachel E Burns
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
36
|
McGill S, Malik R, Saul N, Beetson S, Secombe C, Robertson I, Irwin P. Cryptococcosis in domestic animals in Western Australia: a retrospective study from 1995-2006. Med Mycol 2010; 47:625-39. [PMID: 19306217 DOI: 10.1080/13693780802512519] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A retrospective study of cryptococcosis in domestic animals residing in Western Australia was conducted over an 11-year-period (from 1995 to 2006) by searching the data base of Murdoch University Veterinary Teaching hospital and the largest private clinical pathology laboratory in Perth. Cryptococcosis was identified in 155 animals: 72 cats, 57 dogs, 20 horses, three alpacas, two ferrets and a sheep. There was no seasonal trend apparent from the dates of diagnosis. Taking into account the commonness of accessions to Murdoch University, cats were five to six times more likely to develop this disease than dogs, and three times more likely than horses, while horses were almost twice as likely as dogs to become infected. Amongst the feline cohort, Ragdoll and Birman breeds were over-represented, while in dogs several pedigree breeds were similarly overrepresented. Dogs and horses tended to develop disease at an early age (one to five years), while cats were presented over a much wider range of ages. In cats and dogs the upper respiratory tract was the most common primary site of infection, while horses and alpacas tended to have lower respiratory involvement. The most striking finding of the study was the high frequency with which C. gattii was identified, with infections attributable to this species comprising 5/9 cats, 11/22 dogs, 9/9 horses and 1/1 alpaca, where appropriate testing was conducted. Preliminary molecular genotyping suggested that most of the C. gattii infections in domestic animals (9/9 cases) were of the VGII genotype. This contrasts the situation on the eastern seaboard of Australia, where disease attributable to C. gattii is less common and mainly due to the VGI genotype. C. gattii therefore appears to be an important cause of cryptococcosis in Western Australia.
Collapse
Affiliation(s)
- S McGill
- School of Veterinary and Biomedical Sciences, Murdoch University, Perth, Western Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
37
|
Meyer W, Aanensen DM, Boekhout T, Cogliati M, Diaz MR, Esposto MC, Fisher M, Gilgado F, Hagen F, Kaocharoen S, Litvintseva AP, Mitchell TG, Simwami SP, Trilles L, Viviani MA, Kwon-Chung J. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol 2010; 47:561-70. [PMID: 19462334 DOI: 10.1080/13693780902953886] [Citation(s) in RCA: 341] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This communication describes the consensus multi-locus typing scheme established by the Cryptococcal Working Group I (Genotyping of Cryptococcus neoformans and C. gattii) of the International Society for Human and Animal Mycology (ISHAM) using seven unlinked genetic loci for global strain genotyping. These genetic loci include the housekeeping genes CAP59,GPD1, LAC1, PLB1, SOD1, URA5 and the IGS1 region. Allele and sequence type information are accessible at http://www.mlst.net/ .
Collapse
Affiliation(s)
- Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, University of Sydney Western Clinical School at Westmead Hospital, Westmead, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Cryptococcosis occurs in immunocompromised and, in special cases, immunocompetent individuals. There have been a number of important advances in the field, but, despite current treatment, patients continue to die of the infection. This article reviews cryptococcosis epidemiology, clinical features, and management. Current knowledge is incomplete, however, so this article also discusses some of the gaps in the present understanding of cryptococcosis. The hope is that current research striving to understand the mechanisms of host evasion of Cryptococcus will result in improved treatment regimens that decrease both the mortality and morbidity of cryptococcosis.
Collapse
Affiliation(s)
- Shaunna M Huston
- Department of Medical Science, University of Calgary, Alberta, Canada
| | | |
Collapse
|
39
|
Byrnes EJ, Li W, Lewit Y, Perfect JR, Carter DA, Cox GM, Heitman J. First reported case of Cryptococcus gattii in the Southeastern USA: implications for travel-associated acquisition of an emerging pathogen. PLoS One 2009; 4:e5851. [PMID: 19516904 PMCID: PMC2689935 DOI: 10.1371/journal.pone.0005851] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 04/22/2009] [Indexed: 01/06/2023] Open
Abstract
In 2007, the first confirmed case of Cryptococcus gattii was reported in the state of North Carolina, USA. An otherwise healthy HIV negative male patient presented with a large upper thigh cryptococcoma in February, which was surgically removed and the patient was started on long-term high-dose fluconazole treatment. In May of 2007, the patient presented to the Duke University hospital emergency room with seizures. Magnetic resonance imaging revealed two large CNS lesions found to be cryptococcomas based on brain biopsy. Prior chest CT imaging had revealed small lung nodules indicating that C. gattii spores or desiccated yeast were likely inhaled into the lungs and dissemination occurred to both the leg and CNS. The patient's travel history included a visit throughout the San Francisco, CA region in September through October of 2006, consistent with acquisition during this time period. Cultures from both the leg and brain biopsies were subjected to analysis. Based on phenotypic and molecular methods, both isolates were C. gattii, VGI molecular type, and distinct from the Vancouver Island outbreak isolates. Based on multilocus sequence typing of coding and noncoding regions and virulence in a heterologous host model, the leg and brain isolates are identical, but the two differed in mating fertility. Two clinical isolates, one from a transplant recipient in San Francisco and the other from Australia, were identical to the North Carolina clinical isolate at all markers tested. Closely related isolates that differ at only one or a few noncoding markers are present in the Australian environment. Taken together, these findings support a model in which C. gattii VGI was transferred from Australia to California, possibly though an association with its common host plant E. camaldulensis, and the patient was exposed in San Francisco and returned to present with disease in North Carolina.
Collapse
Affiliation(s)
- Edmond J. Byrnes
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wenjun Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yonathan Lewit
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - John R. Perfect
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Dee A. Carter
- Department of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Gary M. Cox
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
40
|
Cryptococcus gattii: An Emerging Cause of Fungal Disease in North America. Interdiscip Perspect Infect Dis 2009; 2009:840452. [PMID: 19503836 PMCID: PMC2686104 DOI: 10.1155/2009/840452] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 01/18/2009] [Indexed: 01/03/2023] Open
Abstract
During the latter half of the twentieth century, fungal pathogens such as
Cryptococcus neoformans were increasingly recognized as a significant threat to the
health of immune compromised populations throughout the world. Until recently, the closely related
species C. gattii was considered to be a low-level endemic pathogen that was confined to
tropical regions such as Australia. Since 1999, C. gattii has emerged in the Pacific Northwest
region of North America and has been responsible for a large disease epidemic among generally
healthy individuals. The changing epidemiology of C. gattii infection is likely to be a consequence of alterations in fungal ecology and biology and illustrates its potential to cause serious human disease.
This review summarizes selected biological and clinical aspects of C. gattii that are
particularly relevant to the recent North American outbreak and compares these to the Australian and South
American experience.
Collapse
|
41
|
Lin X, Patel S, Litvintseva AP, Floyd A, Mitchell TG, Heitman J. Diploids in the Cryptococcus neoformans serotype A population homozygous for the alpha mating type originate via unisexual mating. PLoS Pathog 2009; 5:e1000283. [PMID: 19180236 PMCID: PMC2629120 DOI: 10.1371/journal.ppat.1000283] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 12/30/2008] [Indexed: 01/03/2023] Open
Abstract
The ubiquitous environmental human pathogen Cryptococcus neoformans is traditionally considered a haploid fungus with a bipolar mating system. In nature, the α mating type is overwhelmingly predominant over a. How genetic diversity is generated and maintained by this heterothallic fungus in a largely unisexual α population is unclear. Recently it was discovered that C. neoformans can undergo same-sex mating under laboratory conditions generating both diploid intermediates and haploid recombinant progeny. Same-sex mating (α-α) also occurs in nature as evidenced by the existence of natural diploid αADα hybrids that arose by fusion between two α cells of different serotypes (A and D). How significantly this novel sexual style contributes to genetic diversity of the Cryptococcus population was unknown. In this study, ∼500 natural C. neoformans isolates were tested for ploidy and close to 8% were found to be diploid by fluorescence flow cytometry analysis. The majority of these diploids were serotype A isolates with two copies of the α MAT locus allele. Among those, several are intra-varietal allodiploid hybrids produced by fusion of two genetically distinct α cells through same-sex mating. The majority, however, are autodiploids that harbor two seemingly identical copies of the genome and arose via either endoreplication or clonal mating. The diploids identified were isolated from different geographic locations and varied genotypically and phenotypically, indicating independent non-clonal origins. The present study demonstrates that unisexual mating produces diploid isolates of C. neoformans in nature, giving rise to populations of hybrids and mixed ploidy. Our findings underscore the importance of same-sex mating in shaping the current population structure of this important human pathogenic fungus, with implications for mechanisms of selfing and inbreeding in other microbial pathogens. Although sex typically involves partners of opposite mating type (sexuality), it can also occur with just one mating type and even single individuals (parthenogenesis, homothallism). However, from a population perspective, sexual reproduction occurs by either outcrossing or inbreeding regardless of the partners' sexuality. Here the impact of sex was studied for Cryptococcus neoformans, a pathogen that causes fungal meningitis. While sex in the laboratory is known to occur via opposite-sex-mating, the population is largely unisexual (α) in nature. Recently, an unusual α-α unisexual mating process involving only mating type α was discovered in the lab, but the impact of unisexual mating in nature was unknown. The global survey of this typically haploid organism reveals ∼8% diploids in the population produced by unisexual α-α mating. Some diploids result from fusion of two genetically distinct parents while other diploids arise via sibling mating or genome duplication. Although hybrid fitness is well-documented, how sex between identical isolates benefits the population is a conundrum. The diploid state may confer growth advantages or serve as a capacitor for evolution, allowing mutations to arise that would be deleterious on their own in the haploid, and then releasing these in novel combinations by meiosis and sporulation.
Collapse
Affiliation(s)
- Xiaorong Lin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sweta Patel
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Anastasia P. Litvintseva
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Anna Floyd
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Thomas G. Mitchell
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
42
|
Datta K, Bartlett KH, Marr KA. Cryptococcus gattii: Emergence in Western North America: Exploitation of a Novel Ecological Niche. Interdiscip Perspect Infect Dis 2009; 2009:176532. [PMID: 19266091 PMCID: PMC2648661 DOI: 10.1155/2009/176532] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 11/17/2008] [Indexed: 12/15/2022] Open
Abstract
The relatively uncommon fungal pathogen Cryptococcus gattii recently emerged as a significant cause of cryptococcal disease in human and animals in the Pacific Northwest of North America. Although genetic studies indicated its possible presence in the Pacific Northwest for more than 30 years, C. gattii as an etiological agent was largely unknown in this region prior to 1999. The recent emergence may have been encouraged by changing conditions of climate or land use and/or host susceptibility, and predictive ecological niche modeling indicates a potentially wider spread. C. gattii can survive wide climatic variations and colonize the environment in tropical, subtropical, temperate, and dry climates. Long-term climate changes, such as the significantly elevated global temperature in the last 100 years, influence patterns of disease among plants and animals and create niche microclimates habitable by emerging pathogens. C. gattii may have exploited such a hitherto unrecognized but clement environment in the Pacific Northwest to provide a wider exposure and risk of infection to human and animal populations.
Collapse
Affiliation(s)
- Kausik Datta
- School of Medicine, Johns Hopkins University, 720 Rutland Avenue, Room 1064, Ross Building, Baltimore, MD 21205, USA
| | - Karen H. Bartlett
- School of Environmental Health, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Kieren A. Marr
- School of Medicine, Johns Hopkins University, 720 Rutland Avenue, Room 1064, Ross Building, Baltimore, MD 21205, USA
| |
Collapse
|
43
|
Ngamskulrungroj P, Sorrell TC, Chindamporn A, Chaiprasert A, Poonwan N, Meyer W. Association between fertility and molecular sub-type of global isolates of Cryptococcus gattii molecular type VGII. Med Mycol 2008; 46:665-73. [PMID: 18651305 DOI: 10.1080/13693780802210734] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The basidiomycetous yeast Cryptococcus gattii, is a primary pathogen which causes disease in apparently healthy humans and a wide range of animals. Recently, an outbreak of cryptococcosis caused by a previously uncommon genotype of C. gattii, VGII, emerged on Vancouver Island, British Columbia, Canada. Two pathogenic sub-types of VGII (designated VGIIa and VGIIb) were identified among these isolates. All of the isolates proved to be mating type alpha and had exceptionally high sporulation capacity. The common subtype, VGIIa, was more virulent than VGIIb in mice, suggesting a linkage between subtype and fertility/virulence. To test this hypothesis, we compared the fertility of 91 isolates from the Vancouver Island outbreak with that of 72 VGII isolates selected globally. Of all isolates, 69.94% were found to be fertile and exhibited clamp connections and basidiospores. The Vancouver isolates showed a high fertility rate of 84.2% as compared to only 29% of the 21 Australian isolates investigated. Mating type alpha strains were more fertile (72.79%) than mating type a (43.75%) (p<0.022). Amongst the two subtypes of VGII a much higher proportion of VGIIa (91.7%) than VGIIb (33.3%) was fertile (p<0.001). These results suggest that there is a clear correlation between the VGII subtypes of C. gattii and their mating/fertility. Further in vitro and in vivo investigations of more strains and congenic pairs are warranted.
Collapse
Affiliation(s)
- Popchai Ngamskulrungroj
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Hospital, Westmead, NSW, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Ribeiro MA, Ngamskulrungroj P. Molecular characterization of environmental Cryptococcus neoformans isolated in Vitoria, ES, Brazil. Rev Inst Med Trop Sao Paulo 2008; 50:315-20. [DOI: 10.1590/s0036-46652008000600001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 10/07/2008] [Indexed: 11/22/2022] Open
Abstract
Cryptococcus neoformans is the major cause of fungal meningitis, a potentially lethal mycosis. Bird excreta can be considered a significant environmental reservoir of this species in urban areas, thirty-three samples of pigeon excreta were collected within the city of Vitoria, Brazil. Cryptococcus neoformans was isolated and identified using standard biochemical assays in ten samples. PCR amplification with primer M13 and orotidine monophosphate pyrophosphorylase (URA5) gene-restriction fragment length polymorphism (RFLP) analysis discerned serotypes and genotypes within this species. All isolates were serotype A (C. neoformans var. grubii) and genotype VNI. The two alternative alleles a and α at the mating type locus were determined by PCR amplification and mating assays performed on V8 medium. All isolates were MAT α mating type but only 50% were able to mate in vitro with the opposite mating type MAT a tester strains (JEC20, KN99a and Bt63). This study adds information on the ecology and molecular characterization of C. neoformans in the Southeast region of Brazil.
Collapse
Affiliation(s)
| | - Popchai Ngamskulrungroj
- Duke University Medical Center, USA; University of Sydney at Westmead Hospital, Australia; Mahidol University, Thailand
| |
Collapse
|
45
|
Lin X, Litvintseva AP, Nielsen K, Patel S, Floyd A, Mitchell TG, Heitman J. alpha AD alpha hybrids of Cryptococcus neoformans: evidence of same-sex mating in nature and hybrid fitness. PLoS Genet 2007; 3:1975-90. [PMID: 17953489 PMCID: PMC2042000 DOI: 10.1371/journal.pgen.0030186] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 09/10/2007] [Indexed: 11/19/2022] Open
Abstract
Cryptococcus neoformans is a ubiquitous human fungal pathogen that causes meningoencephalitis in predominantly immunocompromised hosts. The fungus is typically haploid, and sexual reproduction involves two individuals with opposite mating types/sexes, alpha and a. However, the overwhelming predominance of mating type (MAT) alpha over a in C. neoformans populations limits alpha-a mating in nature. Recently it was discovered that C. neoformans can undergo same-sex mating under laboratory conditions, especially between alpha isolates. Whether same-sex mating occurs in nature and contributes to the current population structure was unknown. In this study, natural alpha AD alpha hybrids that arose by fusion between two alpha cells of different serotypes (A and D) were identified and characterized, providing definitive evidence that same-sex mating occurs naturally. A novel truncated allele of the mating-type-specific cell identity determinant SXI1 alpha was also identified as a genetic factor likely involved in this process. In addition, laboratory-constructed alpha AD alpha strains exhibited hybrid vigor both in vitro and in vivo, providing a plausible explanation for their relative abundance in nature despite the fact that AD hybrids are inefficient in meiosis/sporulation and are trapped in the diploid state. These findings provide insights on the origins, genetic mechanisms, and fitness impact of unisexual hybridization in the Cryptococcus population.
Collapse
Affiliation(s)
- Xiaorong Lin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Anastasia P Litvintseva
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kirsten Nielsen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sweta Patel
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Anna Floyd
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Thomas G Mitchell
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Keller SM, Hettler EA, Wickes BL. A retrotransposon-derived probe for discriminating strains of Cryptococcus neoformans. Mycopathologia 2007; 162:377-87. [PMID: 17146581 DOI: 10.1007/s11046-006-0073-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 09/20/2006] [Indexed: 12/16/2022]
Abstract
Hybridization of digested DNA to probes derived from repeated sequences has proven to be an extremely powerful epidemiologic tool for studying the relatedness of fungi. The dispersed nature of these sequences throughout the genome provides the discriminatory power for distinguishing two independent isolates from each other based on banding pattern. The genome of Cryptococcus neoformans contains a number of classes of transposable elements, which are often present in multiple copies. We characterized a probe related to the Ty3/gypsy class of transposable elements called TCN1 and used it to screen multiple isolates from all four serotypes of C. neoformans. DNA with TCN1 homology could be amplified from each isolate of serotypes A and D and all isolates hybridized to a probe derived from TCN1. Isolates from serotype B and C were also tested for the presence of a TCN1 homolog, however, only some of these isolates yielded both a TCN1-specific PCR product or hybridization signal. Comparison of the TCN1 hybridization patterns of serotypes A and D to multiple RAPD patterns of the same isolates suggested that TCN1 was more discriminating and therefore, a useful epidemiological tool.
Collapse
Affiliation(s)
- Suzanne M Keller
- The Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, Mail Code 7758, USA
| | | | | |
Collapse
|
47
|
Kidd SE, Chow Y, Mak S, Bach PJ, Chen H, Hingston AO, Kronstad JW, Bartlett KH. Characterization of environmental sources of the human and animal pathogen Cryptococcus gattii in British Columbia, Canada, and the Pacific Northwest of the United States. Appl Environ Microbiol 2006; 73:1433-43. [PMID: 17194837 PMCID: PMC1828779 DOI: 10.1128/aem.01330-06] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cryptococcus gattii has recently emerged as a primary pathogen of humans and wild and domesticated animals in British Columbia, particularly on Vancouver Island. C. gattii infections are typically infections of the pulmonary and/or the central nervous system, and the incidence of infection in British Columbia is currently the highest reported globally. Prior to this emergence, the environmental distribution of and the extent of colonization by C. gattii in British Columbia were unknown. We characterized the environmental sources and potential determinants of colonization in British Columbia. C. gattii was isolated from tree surfaces, soil, air, freshwater, and seawater, and no seasonal prevalence was observed. The C. gattii concentrations in air samples were significantly higher during the warm, dry summer months, although potentially infectious propagules (<3.3 microm in diameter) were present throughout the year. Positive samples were obtained from many different areas of British Columbia, and some locations were colonization "hot spots." C. gattii was generally isolated from acidic soil, and geographic differences in soil pH may influence the extent of colonization. C. gattii soil colonization also was associated with low moisture and low organic carbon contents. Most of the C. gattii isolates recovered belonged to the VGIIa genetic subtype; however, sympatric colonization by the VGIIb strain was observed at most locations. At one sampling site, VGIIa, VGIIb, VGI, and the Cryptococcus neoformans serotype AD hybrid all were coisolated. Our findings indicate extensive colonization by C. gattii within British Columbia and highlight an expansion of the ecological niche of this pathogen.
Collapse
Affiliation(s)
- Sarah E Kidd
- School of Occupational and Environmental Hygiene, 364-2206 East Mall, Vancouver, University of British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Lin X, Huang JC, Mitchell TG, Heitman J. Virulence attributes and hyphal growth of C. neoformans are quantitative traits and the MATalpha allele enhances filamentation. PLoS Genet 2006; 2:e187. [PMID: 17112316 PMCID: PMC1636697 DOI: 10.1371/journal.pgen.0020187] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 09/21/2006] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus neoformans is a fungal human pathogen with a bipolar mating system. It undergoes a dimorphic transition from a unicellular yeast to hyphal filamentous growth during mating and monokaryotic fruiting. The traditional sexual cycle that leads to the production of infectious basidiospores involves cells of both alpha and a mating type. Monokaryotic fruiting is a modified form of sexual reproduction that involves cells of the same mating type, most commonly alpha, which is the predominant mating type in both the environment and clinical isolates. However, some a isolates can also undergo monokaryotic fruiting. To determine whether mating type and other genetic loci contribute to the differences in fruiting observed between alpha and a cells, we applied quantitative trait loci (QTL) mapping to an inbred population of F2 progeny. We discovered that variation in hyphal length produced during fruiting is a quantitative trait resulting from the combined effects of multiple genetic loci, including the mating type (MAT) locus. Importantly, the alpha allele of the MAT locus enhanced hyphal growth compared with the a allele. Other virulence traits, including melanization and growth at 39 degrees C, also are quantitative traits that share a common QTL with hyphal growth. The Mac1 transcription factor, encoded in this common QTL, regulates copper homeostasis. MAC1 allelic differences contribute to phenotypic variation, and mac1Delta mutants exhibit defects in filamentation, melanin production, and high temperature growth. Further characterization of these QTL regions will reveal additional quantitative trait genes controlling biological processes central to fungal development and pathogenicity.
Collapse
Affiliation(s)
- Xiaorong Lin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Johnny C Huang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Thomas G Mitchell
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Abstract
Cryptococcus neoformans is a major cause of fungal meningoencephalitis in immunocompromised patients. Despite recent advances in the genetics and molecular biology of C. neoformans, and improved techniques for molecular epidemiology, aspects of the ecology, population structure, and mode of reproduction of this environmental pathogen remain to be established. Application of recent insights into the life cycle of C. neoformans and its different ways of engaging in sexual reproduction under laboratory conditions has just begun to affect research on the ecology and epidemiology of this human pathogenic fungus. The melding of these disparate disciplines should yield rich dividends in our understanding of the evolution of microbial pathogens, providing insights relevant to diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Xiaorong Lin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
50
|
Duncan C, Stephen C, Campbell J. Clinical characteristics and predictors of mortality for Cryptococcus gattii infection in dogs and cats of southwestern British Columbia. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2006; 47:993-8. [PMID: 17078248 PMCID: PMC1571133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Since 1999, Cryptococcus gattii has emerged as an important pathogen of humans and animals in southwestern British Columbia. Historically thought to be restricted to the tropics and subtropics, C. gattii has posed new diagnostic and treatment challenges to veterinary practitioners working within the recently identified endemic region. Clinical reports of canine and feline cryptococcosis caused by C. gattii diagnosed between January 1999 and December 2003 were included in this case series. The most common manifestations of disease were respiratory and central nervous system signs. Multivariate survival analysis revealed that the only significant predictor of mortality was the presence of central nervous system signs upon presentation or during therapy. Case fatality rates in both species were high. Further investigation into effective treatment regimes is warranted.
Collapse
Affiliation(s)
- Colleen Duncan
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon.
| | | | | |
Collapse
|